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On examine ici le problème de fermeture apparaissant lorsque l'on souhaite effectuer des simulations d'écoulements diphasiques en retenant l'approche à deux fluides inconditionnellement hyperbolique, ce qui peut être réalisé en privilégiant les formulations basées sur les modèles ne faisant pas l'hypothèse d'équilibre local instantané sous jacente aux modèles "à une pression". De tels modèles à deux pressions ont été proposés notamment dans [START_REF] Baer | A two phase theory for the deflagration to detonation transition (DDT) in reactive granular materials[END_REF], [START_REF] Glimm | Renormalization group solution of two phase flow equations for Rayleigh-Taylor mixing[END_REF], [START_REF] Glimm | Two phase flow modelling of a fluid mixing layer[END_REF], [START_REF] Gonthier | A high resolution numerical method for a two phase model of deflagration to detonation transition[END_REF], [START_REF] Gavrilyuk | A variational principle for two fluid models[END_REF], [START_REF] Gavrilyuk | Hyperbolic models of homogeneous two fluid mixtures[END_REF], [START_REF] Gavrilyuk | Mathematical and numerical modelling of two phase compressible flows with micro inertia[END_REF], [START_REF] Gouin | Hamilton's principle and Rankine Hugoniot conditions for general motions of mixtures[END_REF], [START_REF] Kapila | Two phase modeling of a DDT: structure of the velocity relaxation zone[END_REF], [START_REF] Hicks | Hyperbolic two pressure models for two phase flows[END_REF], [START_REF] Saurel | A multiphase Godunov method for compressible multifluid and multiphase flows[END_REF]. Ces modèles nécessitent de faire certaines hypothèses concernant le transfert de masse, de quantité de mouvement et d'énergie à l'interface d'une part. La littérature propose pour celà un certain nombre de fermetures locales plus ou moins dédiées. Ils requièrent d'autre part la donnée de la vitesse et de la pression d'interface (qui interviennent explicitement dans l'expression des termes convectifs). On propose donc ici une approche qui permet d'une part de fermer le problème, au sens des relations algébriques, mais également en terme de relation de saut, ce qui est nécessaire puisque le système convectif associé n'admet pas de forme conservative. Une première hypothèse pré-suppose un type topologique de l'interface. Cette hypothèse impose alors trois formes possibles de moyenne pour la vitesse interfaciale. Une seconde hypothèse de fermeture permet d'obtenir une inégalité d'entropie physiquement admissible. Elle permet d'obtenir une relation liant vitesse d'interface et pression d'interface. Munis de ces fermetures, on vérifie alors que le problème de Riemann unidimensionnel associé au système convectif non conservatif admet des solutions qui respectent le principe physique de positivité pour les grandeurs fondamentales : densité partielle, fraction volumique et énergie interne. Il est alors en effet possible de fermer le système des relations de saut au voisinage de l'onde associée à la valeur propre λ 1 = V i , lorsque l'on a retenu les hypothèses précédentes. Les modèles sont comparés à quelques propositions existantes. Quelques résultats numériques donnent un aperc ¸u du comportement de certains schémas pour un choix de conditions initiales conduisant à une solution instationnaire simple mais d'importance fondamentale. On propose également une voie de modélisation alternative pour le terme de pression interfaciale, qui permet également de fermer le problème aux relations de saut dans tous les champs, dès lors que l'on retient le modèle de vitesse d'interface de base proposé.

Introduction

Computation of gas liquid flows requires use of some models. These may rely on the single fluid approach, following for instance the work in [START_REF] Allaire | A five equation model for the numerical solution of interfaces in two phase flows[END_REF], or on the two-fluid approach, when one no longer assumes instantaneous local equilibrium of velocity fields (and pressure fields) in each phase. A promising way to deal with this topic consists in using models such as those proposed in [START_REF] Baer | A two phase theory for the deflagration to detonation transition (DDT) in reactive granular materials[END_REF], [START_REF] Glimm | Renormalization group solution of two phase flow equations for Rayleigh-Taylor mixing[END_REF], [START_REF] Glimm | Two phase flow modelling of a fluid mixing layer[END_REF], [START_REF] Gonthier | A high resolution numerical method for a two phase model of deflagration to detonation transition[END_REF], [START_REF] Kapila | Two phase modeling of a DDT: structure of the velocity relaxation zone[END_REF], [START_REF] Hicks | Hyperbolic two pressure models for two phase flows[END_REF], [START_REF] Saurel | A multiphase Godunov method for compressible multifluid and multiphase flows[END_REF]. This nonetheless requires specific closures for interfacial velocity and pressure variables, and this is precisely the goal of the present work. In fact it is aimed at providing closures which only require "obvious" hypothesis on physical background, but also solutions which satisfy positivity requirement for mass fractions, internal energies and volume fractions.

Governing equations, closures and main properties

The governing set of equations contains convective terms, source terms and diffusive terms:

(I + D(W )) ∂W ∂t + ∂F (W ) ∂x + C(W ) ∂W ∂x = S(W ) + ∂ ∂x (E(W ) ∂W ∂x ) (1) 
with initial condition W (x, 0) = W 0 (x), and W , F (W ), G(W ) and S(W ) in R 7 , and C(W ), D(W ), E(W ) in R 7×7 . Source terms S(W ) account for mass transfer terms, drag effects, energy loss, and other contributions. We set here :

W t = (α 2 , α 2 ρ 2 , α 2 ρ 2 U 2 , α 2 E 2 , α 1 ρ 1 , α 1 ρ 1 U 1 , α 1 E 1 )
, where α 2 stands for the void fraction of phase labelled 2, and α 1 = 1α 2 . The density, velocity and total energy within phase k are denoted ρ k , U k and E k respectively. The convective flux is :

F (W ) t = (0, α 2 ρ 2 U 2 , α 2 (ρ 2 U 2 2 + P 2 ), α 2 U 2 (E 2 + P 2 ), α 1 ρ 1 U 1 , α 1 (ρ 1 U 2 1 + P 1 ), α 1 U 1 (E 1 + P 1 )
). Some non-conservative terms are present in governing equations, and viscous terms are accounted for through contribution pertaining to E(W ):

           D(W ) ∂W ∂t = (0, 0, 0, P i ∂α 2 ∂t , 0, 0, -P i ∂α 2 ∂t ) C(W ) ∂W ∂x = (V i ∂α 2 ∂x , 0, -P i ∂α 2 ∂x , 0, 0, P i ∂α 2 ∂x , 0) E(W ) ∂W ∂x = (0, 0, α 2 µ 2 ∂U 2 ∂x , α 2 µ 2 U 2 ∂U 2 ∂x , 0, α 1 µ 1 ∂U 1 ∂x , α 1 µ 1 U 1 ∂U 1 ∂x ) (2) 
Detailed expression of S(W ) may be found in many references. Internal energies e k are given functions of density ρ k and pressure P k within each phase:e k = e k (P k , ρ k ) that obey classical thermodynamic assumptions , and

E k = 0.5ρ k U k U k + ρ k e k .
Assuming that drag terms, mass transfer terms are provided by standard literature, one needs to define both interfacial pressure and velocity fields V i and P i . We assume that the interfacial velocity agrees with:

V i (W ) = β(W )U 1 (W ) + (1 -β(W ))U 2 (W ), 0 β(W ) 1 (3) 
for some given function β(W ). Moreover, we introduce the concept of "consistancy" property, that is:

U 1 = U 2 = U and P 1 = P 2 = P imply: P i = P (4) 
The latter enable to account for pressure and velocity non-equilibrium. We recall first that the homogeneous problem associated with the left hand side of (1) is hyperbolic. It has real eigenvalues

λ 1 = V i , λ 2 = U 2 -c 2 , λ 3 = U 2 , λ 4 = U 2 + c 2 , λ 5 = U 1 -c 1 , λ 6 = U 1 , λ 7 = U 1 + c 1 ,
and the right eigenvectors span the whole space R 7 unless

V i = U k + c k or V i = U k -c k , for k = 1, 2.
We introduce m k = α k ρ k , specific entropies s k and coefficients a k , and note:

ρ k (c k ) 2 = γ k P k = ( P k ρ k -ρ k ∂e k (P k , ρ k ) ∂ρ k )( ∂e k (P k , ρ k ) ∂P k ) -1 γ k P k ∂s k (P k , ρ k ) ∂P k + ρ k ∂s k (P k , ρ k ) ∂ρ k = 0 a k = (s k ) -1 ( ∂s k (P k , ρ k ) ∂P k )( ∂e k (P k , ρ k ) ∂P k ) -1
Fields associated with the 2-wave, the 4 -5-waves and the 7-wave are Genuinely Non Linear ( [START_REF] Raviart | Numerical approximation for hyperbolic systems of conservation laws[END_REF]), and the 3-wave and the 6-wave are Linearly Degenerate. Property 1 : The field associated with

λ 1 = V i is Linearly Degenerate if β(W )(1 -β(W )) = 0 or: β(W ) = (α 1 ρ 1 )(α 1 ρ 1 + α 2 ρ 2 ) -1 (5) 
Moreover, assuming that β(W ) = β(α 1 , ρ 1 , ρ 2 , P 1 , P 2 ) then the three previous choices are the only ones which ensure that the 1field is LD.

The proof simply requires to examine whether : ∇ W V i (W ).r 1 (W ) = 0, where r 1 (W ) stands for the right eigenvector associated with the first eigenvalue. This closure implies that the interface between both phases is infinitely thin, which seems reasonable to obtain a two-fluid model where mixing is expected to be connected with interfacial transfer terms and viscous effects and not to pure convective effects.

When restricting to the third choice [START_REF] Ët | Hybrid schemes to compute contact discontinuities in Euler systems with any EOS[END_REF] for V i , one may easily compute a family of six independent Riemann invariants through fields associated with λ p , p = 2, 7. We only provide here the list of Riemann invariants in the 1contact discontinuity:

I 1 1 (W ) = V i , I 1 2 (W ) = (m 1 +m 2 ) -1 m 1 m 2 (U 1 -U 2 ), I 1 3 (W ) = α 1 P 1 + α 2 P 2 + I 1 2 (U 1 -U 2 ), I 1 5 (W ) = e 1 + P1 ρ1 + (I 1 2 (W )) 2 2(m1) 2 , I 1 6 (W ) = e 2 + P2 ρ2 + (I 1 2 (W )) 2
2(m2) 2 . The last one I 1 4 (W ) cannot be computed unless one provides the explicit form of the interfacial pressure P i .

An entropic closure for the interfacial pressure

We now also assume that the following (obviously "consistant" in the sense of (4)) closure for P i holds:

P i (W ) = a 1 (W )(1 -β(W ))P 1 (W ) + a 2 (W )β(W )P 2 (W ) a 1 (W )(1 -β(W )) + a 2 (W )β(W ) (6) 
Thanks to this particular choice, the pair (η, F η ) such that :

η = -m 1 η 1 -m 2 η 2 where η k = Log(s k ) + ψ k (α k ), and 
F η = -m 1 η 1 U 1 -m 2 η 2 U 2 , but also ψ 1 (1 -α 2 ) = ψ 2 (α 2 )
, is an entropy-entropy flux pair: Property 2: If m k a k > 0, closure above ensures that the following entropy inequality holds:

∂η ∂t + ∂F η ∂x 0 
One may now compute the last Riemann invariant of the 1contact discontinuity, that is:

I 1 4 = s2
s1 . An advantage of the closure ( 6) is that this entropy inequality obviously degenerates to give the expected -single phase-entropy inequality on each side of the 1contact discontinuity. Proposals by Glimm and co-workers [START_REF] Glimm | Renormalization group solution of two phase flow equations for Rayleigh-Taylor mixing[END_REF]:

P i = α 2 P 1 + α 1 P 2 , V i = α 2 U 1 + α 1 U 2 are
quite different (the 1wave is GNL). Turning now to the work by Saurel and Abgrall [START_REF] Saurel | A multiphase Godunov method for compressible multifluid and multiphase flows[END_REF], we note that the standard choice of interface velocity belongs to the previous class [START_REF] Ët | Hybrid schemes to compute contact discontinuities in Euler systems with any EOS[END_REF]. However, the closure for the interface pressure is completely different from the present one, and takes the form : P = α 1 P 1 +α 2 P 2 . In [START_REF] Gonthier | A high resolution numerical method for a two phase model of deflagration to detonation transition[END_REF] and [START_REF] Kapila | Two phase modeling of a DDT: structure of the velocity relaxation zone[END_REF], closures correspond to P i = P 1 and V i = U 2 (which meets properties 1 and 2 with β(W ) = 0) where subscript 1 refers to the gas phase. In a recent work [START_REF] Gavrilyuk | Mathematical and numerical modelling of two phase compressible flows with micro inertia[END_REF], authors consider a dual asymmetric formulation, which turns to be: V i = U 1 (in agreement with property 1) and : P i = P 2 + ψ(α 2 ). We now focus on the closures ( 5), [START_REF] Gavrilyuk | A variational principle for two fluid models[END_REF] and turn to the "closure" of jump conditions, due to the presence of non conservative terms. Noting ψ some arbitrary average of (ψ l , ψ r ) and ∆ψ = ψ rψ l , these may be written :

( Vi -σ))∆(α k ) = 0 ∆(m k (U k -σ)) = 0 ∆(m k U k (U k -σ) + α k P k ) -Pi ∆(α k ) = 0 ∆(α k E k (U k -σ) + α k P k U k ) -P i V i ∆(α k ) = 0
On the left side (or the right side) of the 1-contact discontinuity, these make sense whatever is the definition of φ since ∆(α k ) = 0, which results in standard "single phase"jump relations within each phase, say:

∆(α k ) = ∆(ρ k (U k -σ)) = ∆(ρ k U k (U k -σ) + P k ) = ∆(E k (U k -σ) + P k U k ) = 0.
Through the 1-contact discontinuity we get:

σ = Vi = (V i ) l = (V i ) r ∆(m k (U k -σ)) = 0 for k = 1, 2 ∆(m 1 U 1 (U 1 -σ) + α 1 P 1 ) + ∆(m 2 U 2 (U 2 -σ) + α 2 P 2 ) = 0 ∆(α k E k (U k -σ) + α k P k U k ) -Vi ∆(m k U k (U k -σ) + α k P k ) = 0 for k = 1, 2
One may check that the latter provide the same parametrisation than Riemann invariants I 1 p listed above. One more jump condition is : -σ∆(η) + ∆(F η ) = 0, or equivalently ∆(Log( s2 s1 )) = 0. This actually corresponds to the exact connection associated with the last Riemann invariant in the 1-field, that is I 1 4 , the form of which has been given above. This last jump condition "implicitely" provides the counterpart of a "closure" for the remaining non conservative product Pi ∆(α k ).

We will now assume that perfect gas law holds in each phase: ρ k e k = (γ k -1)P k . Using previous closures for V i and P i , and assuming that (α 2 ) L = (α 2 ) R the 1D solution of the Riemann problem associated with the above set of equations has a unique entropy consistent solution involving constant states separated by shocks, rarefaction waves and contact discontinuities, provided that some classical condition holds on initial data: [START_REF] Raviart | Numerical approximation for hyperbolic systems of conservation laws[END_REF]). Moreover :

|W R -W L | < h(W L , W R ) ([
Property 3 : Assume now: (α 2 ) L = (α 2 ) R , and also that both

(1 -(α 2 ) L )(α 2 ) L and (1 -(α 2 ) R )(α 2 )
R are non zero. The connection of states through single waves in the 1D solution of the Riemann problem associated with the above set of equations ensures that all states are in agreement with positivity requirements for void fraction, mass fractions and partial pressures assuming perfect gas state law within each phase.

We insist that though the result seems obvious from a physical view point, it is actually not clear whether solutions of the one dimensional Riemann problem above should agree with the above positivity requirement. Hence the choice of the above closures a posteriori ensures that positivity requirements hold.

An alternative formulation of interfacial pressure

Another "consistant" way to close the interfacial pressure which seems physically relevant (actually P i will be constant through the 1wave) issues from:

P i (W ) = F (I 1 1 (W ), I 1 2 (W ), I 1 3 (W ), I 1 4 (W ), I 1 5 (W ), I 1 6 (W ))
still restricting to the particular choice of interface velocity described above. This actually will provide another physically relevant way to "close" jump conditions . Recall that since the explicit form of F is now unknown, I 1 4 (W ) has no explicit form. Nonetheless, we know that

2I 1 4 (W ) = P 1 -P 2 +(α 1 -α 2 )(P 1 +P 2 - 2P i ) + 2I 1 2 (W )(U 1 + U 2 )
. The objectivity requirement enables to restrict the list of arguments to I 1 2 (W ), I 1 3 (W ), I 1 5 (W ), I 1 6 (W ). Dimensionless properties imply:

P i = G(I 1 3 (W ), I 1 2 (W )(I 1 5 (W )) 1 2 , I 1 2 (W )(I 1 6 (W )) 1 2 
). Owing to "consistancy " condition (4), one may then require that G(a, 0, 0) = a. Among other choices, an obvious way to close the problem is to choose G(a, b, c) = a + µ(η|b| + (1η)|c|), which obviously agree with consistancy property, objectivity requirement, but also remains positive provided that µ is positive. The particular choice G(a, b, c) = a corresponds to the closure retained in [START_REF] Saurel | A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation[END_REF].

Numerical results

The overall method relies on the use of the fractional step method strategy, in order to account for source terms first -by providing approximate solutions of (I + D(W ))∂ t W = S(W ), and afterwards for convective terms and viscous terms. Computations below have been performed neglecting source terms and viscous terms. We use here an extension (see [START_REF] Declercq | Comparison of numerical solvers for turbulent compressible flow[END_REF]) of original Rusanov scheme and approximate Godunov scheme (introduced in [START_REF] Buffard | A sequel to a rough Godunov scheme. Application to real gas flows[END_REF]) to the frame of non conservative systems. The non conservative variable used for VFRoe-ncv scheme is: Y t = (α 2 , s 1 , U 1 , P 1 , s 2 , U 2 , P 2 ). We show here some computational results using CFL=0.45. The number on the x-axis stands for the number of cells. Both results associated with VFRoe-ncv scheme and Rusanov scheme are displayed. Perfect gas EOS have been used within each phase. The counterpart of the test below -in the single phase Euler framework-is the moving contact discontinuity (see [START_REF] Allaire | A five equation model for the numerical solution of interfaces in two phase flows[END_REF], [START_REF] Saurel | A simple method for compressible multifluid flows[END_REF], [START_REF] Ët | Hybrid schemes to compute contact discontinuities in Euler systems with any EOS[END_REF],...). Despite from its simplicity, it is an important reference since it enables to predict the numerical stability of interfaces. Initial conditions : (α 1 ) L = 0.9, (α 2 ) L = 0.1, (α 1 ) R = 0.5, (α 2 ) R = 0.5, 
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 321 Figure 3: Partial mass m 2 (U 1 ) L = 100, (τ 1 ) L = 1, (P 1 ) L = 10 5 , (U 1 ) R = 100, (τ 1 ) R = 8, (P 1 ) R = 10 5 , (U 2 ) L = 100, (τ 2 ) L = 1, (P 2 ) L = 10 5 , (U 2 ) R = 100, (τ 2 ) R = 8, (P 2 ) R = 10 5 are such that a single 1contact discontinuity is moving to the right. Both velocities and pressures are expected to remain constant.
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