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Abstract. Image segmentation is the process of partitioning an image
into a set of meaningful regions according to some criteria. Hierarchical
segmentation has emerged as a major trend in this regard as it favors the
emergence of important regions at different scales. On the other hand,
many methods allow us to have prior information on the position of
structures of interest in the images. In this paper, we present a versa-
tile hierarchical segmentation method that takes into account any prior
spatial information and outputs a hierarchical segmentation that empha-
sizes the contours or regions of interest while preserving the important
structures in the image. Several applications are presented that illustrate
the method versatility and efficiency.

Keywords: Mathematical Morphology, Hierarchies, Segmentation, Prior-based
Segmentation, Stochastic Watershed.

1 Introduction

In this paper, we propose a method to take advantage of any prior spatial in-
formation previously obtained on an image to get a hierarchical segmentation of
this image that emphasizes its regions of interest, allowing us to get more details
in the designated regions of interest of an image while still preserving its strong
structural information.

Potential applications are numerous. When having a limited storage capacity
(for very large images for example), this would allow us to keep details in the
regions of interest as a priority. Similarly, in situations of transmission with
limited bandwidth, one could first transmit the important information of the
image: the details of the face for a video-call, the pitch and the players for a
soccer game and so on. One could also use such a tool as a preprocessing one,
for example to focus on an individual from one camera view to the next one
in video surveillance tasks. Finally, from an artistic point of view, the result is
interesting and similar to a combination of focus and cartoon effects. Some of
these examples are illustrated in this paper.

Image segmentation has been shown to be inherently a multi-scale problem
[10]. That is why hierarchical segmentation has become the major trend in image
segmentation and most top-performance segmentation techniques [3][22][23][17]



fall into this category: hierarchical segmentation does not output a single parti-
tion of the image pixels into sets but instead a single multi-scale structure that
aims at capturing relevant objects at all scales. Researches on this topic are still
vivid as differential area profiles [21], robust segmentation of high-dimensional
data [9] as well as theoretical aspects regarding the concept of partition lattice
[26][24] and optimal partition in a hierarchy [11][12][31]. Our goal in this paper
is to develop a hierarchical segmentation algorithm that focuses on certain pre-
determined zones of the image. The hierarchical aspect also allows us, for tasks
previously described, to very simply tune the level of details wanted depending
on the application.

Furthermore, our algorithm is very versatile, as the spatial prior information
that it uses can be obtained by any of the numerous learning-based approaches
proposed over the last decades to roughly localize objects [20] [13] [25]. In this
regard, our work joins an important research point that consists in designing
approaches to incorporate prior knowledge in the segmentation, as shape prior on
level sets [4], star-shape prior by graph-cut [29], use of a shape prior hierarchical
characterization obtained with deep learning [5], or related work making use of
stochastic watershed to perform targeted image segmentation [16].

The remainder of the paper is organized as follows. Part 2 explains how we
construct and use graph-based hierarchical segmentation. Then part 3 specifies
how we use prior information on the image to obtain hierarchies with regionalized
fineness. Several examples of applications of this method are described in part
4. Finally, conclusions and perspectives are presented in part 5.

2 Hierarchies and partitions
2.1 Graph-based hierarchical segmentation

Obtaining a suitable segmentation directly from an image is very difficult. This
is why it is often make use of hierarchies to organize and propose interesting con-
tours by valuating them. In this section, we remind the reader how to construct
and use graph-based hierarchical segmentation.

For each image, let us suppose that a fine partition is produced by an initial
segmentation (for instance a set of superpixels [1,15] or the basins produced by
a classical watershed algorithm [18]) and contains all contours making sense in
the image. We define a dissimilarity measure between adjacent tiles of this fine
partition. One can then see the image as a graph, the region adjacency graph
(RAG), in which each node represents a tile of the partition; an edge links two
nodes if the corresponding regions are neighbors in the image; the weight of the
edge is equal to the dissimilarity between these regions. Working on the RAG
is much more efficient than working on the image, as there are far less nodes in
the RAG than there are pixels in the image.

Formally, we denote this graph G = (V, E ,W), where V corresponds to the
image domain or set of pixels/fine regions, E ⊂ V × V is the set of edges linking
neighbour regions, W : E → R+ is the dissimilarity measure usually based on
local gradient information (or color or texture), for instance W(i, j) ∝ |I(vi) −
I(vj)| with I : V → R representing the image intensity.



The edge linking the nodes p and q is designated by epq . A path is a sequence
of nodes and edges: for example the path linking the nodes p and s is the set
{p, ept, t, ets, s}. A connected subgraph is a subgraph where each pair of nodes is
connected by a path. A cycle is a path whose extremities coincide. A tree is a
connected graph without cycle. A spanning tree is a tree containing all nodes. A
minimum spanning tree (MST) MST (G) of a graph G is a spanning tree with
minimal possible weight, obtained for example using the Boruvka algorithm (the
weight of a tree being equal to the sum of the weights of its edges). A forest is
a collection of trees.

A partition π of a set V is a collection of subsets of V, such that the whole set
V is the disjoint union of the subsets in the partition, i.e., π = {R1,R2, . . . ,Rk},
such that ∀i,Ri ⊆ V ; ∀i 6= j,Ri ∩ Rj = ∅ ;

⋃k
i Ri = V.

Cutting all edges of theMST (G) having a valuation superior to a threshold
λ leads to a minimum spanning forest (MSF) F(G), i.e. to a partition of the
graph. Note that the obtained partition is the same that one would have obtain
by cutting edges superior to λ directly on G [19]. Since working on theMST (G)
is less costly and provides similar results regarding graph-based segmentation,
we work only with the MST (G) in the sequel.

Fig. 1. A: a partition represented by an edge-weighed graph; B: a minimum spanning
tree of the graph, with 2 markers in blue: the highlighted edge in blue is the highest
edge on the path linking the two markers ; C: the segmentation obtained when cutting
this edge; D blue and orange domain are the domains of variation of the two markers
generating the same segmentation.

So cutting edges by decreasing valuations gives an indexed hierarchy of par-
titions (H,λ), with H a hierarchy of partitions i.e. a chain of nested partitions
H = {π0, π1, . . . , πn|∀j, k, 0 ≤ j ≤ k ≤ n ⇒ πj v πk}, with πn the single-
region partition and π0 the finest partition on the image, and λ : H → R+ being
a stratification index verifying λ(π) < λ(π′) for two nested partitions π ⊂ π′.
This increasing map allows us to value each contour according to the level of
the hierarchy for which it disappears: this is the saliency of the contour, and
we consider that the higher the saliency, the stronger the contour. For a given
hierarchy, the image in which each contour takes as value its saliency is called



Ultrametric Contour Map (UCM)[3]. Representing a hierarchy by its UCM is an
easy way to get an idea of its effect because thresholding an UCM always pro-
vides a set of closed curves and so a partition. In this paper, for better visibility,
we represent UCM with inverted contrast.

To get a partition for a given hierarchy, there are several possibilities:

– simply thresholding the highest saliency values,
– marking some nodes as important ones and then computing a partition ac-

cordingly, which is known as marker-based segmentation,
– smartly editing the graph by finding the partition that minimizes an ener-

getic function.

In a complementary approach, we argue that the quality of the obtained par-
titions highly depends on the hierarchy that we use, and thus that changing
the dissimilarity can lead to more suitable partitions. Indeed, if the dissimilar-
ity reflects only a local contrast as in the hierarchy issued by the RAG, the
most salient regions in the image are the small contrasted ones. So instead of
departing from a simple and rough dissimilarity such as contrast and then use
an sophisticated technique to get a good partition out of it, one can also try
to obtain a more informative dissimilarity adapted to the content of the image
such that the simplest methods are sufficient to compute interesting partitions.
This way, the aforementioned techniques lead to segmentations better suited
for further exploitation. How can we construct more pertinent and informative
dissimilarities?

2.2 Stochastic watershed hierarchies

The stochastic watershed (SWS), introduced in [2] on a simulation basis and
extended with a graph-based approach in [17], is a versatile tool to construct
hierarchies. The seminal idea is to operate multiple times marker-based segmen-
tation with random markers and valuate each edge of theMST by its frequency
of appearance in the resulting segmentations.

Indeed, by spreading markers on the RAG G, one can construct a segmenta-
tion as a MSF F(G) in which each tree takes root in a marked node. Marker-based
segmentation directly on theMST is possible: one must then cut, for each pair
of markers, the highest edge on the path linking them. Furthermore, there is a
domain of variation in which each marker can move while still leading to the
same final segmentation. More details are provided in Figure 1.

Let us then consider on the MST an edge est of weight ωst and compute
its probability to be cut. We cut all edges of the MST with a weight superior
or equal to ωst, producing two trees Ts and Tt of roots s and t. If at least one
marker falls within the domain Rs of Ts nodes and at least one marker falls
within the domain Rt of Tt nodes, then est will be cut in the final segmentation.

Let denote µ(R) the number of random markers falling in a region R. We
want to attribute to est the following probability value:

P[(µ(Rs) ≥ 1) ∧ (µ(Rt) ≥ 1)] = 1− P[(µ(Rs) = 0) ∨ (µ(Rt) = 0)]

= 1− P(µ(Rs) = 0)− P(µ(Rt) = 0) + P(µ(Rs ∪ Rt) = 0)

(1)



If markers are spread following a Poisson distribution, then for a region R:

P(µ(R) = 0) = exp−Λ(R), (2)

With Λ(R) being the expected value (mean value) of the number of markers
falling in R. The probability thus becomes:

P(µ(Rs) ≥ 1 ∧ µ(Rt) ≥ 1) = 1− exp−Λ(Rs)− exp−Λ(Rt) + exp−Λ(Rs∪Rt) (3)

When the Poisson distribution has an homogeneous density λ:

Λ(R) = area(R)λ, (4)

When the Poisson distribution has a non-uniform density λ:

Λ(R) =

∫
(x,y)∈R

λ(x, y) dxdy (5)

The output of the SWS algorithm thus depends on the departure MST
(structure and edges valuations) and of the probabilistic law governing the mark-
ers distribution. Furthermore, SWS hierarchies can be chained, leading to a wide
exploratory space that can be used in a segmentation workflow [8].

Because of its versatility and good performance, SWS represents a good
departure algorithm to modify in order to inject prior information. Indeed, when
having a prior information about the image, is it possible to use it in order to
have more details in some parts rather than others?

3 Hierarchies highlighthing structures of interest using
prior information

3.1 Hierarchy with Regionalized Fineness (HRF)

In the original SWS, a uniform distribution of markers is used (whatever size or
form they may have). In order to have stronger contours in a specific region of
the image, we adapt the model so that more markers are spread in this region.

Let E be an object or class of interest, for example E = “face of a person”,
and I be the studied image. We denote by θE the probability density function
(PDF) associated with E obtained separately, and defined on the domain D
of I, and by PM(I, θE) the probabilistic map associated, in which each pixel
p(x, y) of I takes as value θE(x, y) its probability to be part of E. Given such
an information on the position of an event in an image, we obtain a hierarchical
segmentation focused on this region by modulating the distribution of markers.

If λ is a density defined on D to distribute markers (uniform or not), we set
θEλ as a new density, thus favoring the emergence of contours within the regions
of interest.

Considering a region R of the image, the mean number of markers falling
within R is then:

ΛE(R) =

∫
(x,y)∈R

θE(x, y)λ(x, y) dxdy (6)



Note that if we want N markers to fall in average within the domain D, we
work with a slightly modified density:

λ̂ =
N

µ(D)
λ (7)

Furthermore, this approach can be easily extended to the case where we want
to take advantage of information from multiple sources. Indeed, if θE1

and θE2

are the PDF associated with two events E1 and E2, we can combine those two
sources by using as a new density (θE1

+ θE2
)λ.

3.2 Methodology

We present here the steps to compute a HRF for an event E given a probabilistic
map PM(I, θE) providing spatial prior information on an image I:

– compute a fine partition π0 of the image, define a dissimilarity measure
between adjacent regions and compute the RAG G, and then the MST (G)
to easily work with graphs,

– compute a probabilistic map πµ = πµ(π0,PM(I, θE)) with each region of the
fine partition π0 taking as a new value the mean value of PM(I, θE)) in this
region,

– compute new values of edges by a bottom-up approach as described in section
3.1, where for each region Ri of π0, Λ(Ri) corresponds to the mean value
taken by pixels of the region Ri in πµ. Note that this approach allows a
highly efficient implementation using dynamic programming on graphs.

3.3 Modulating the HRF depending on the couple of regions
considered

If we want to favor certain contours to the detriment of others, we can modulate
the density of markers in each region by taking into account the strength of the
contour separating them but also the relative position of both regions.

We use the same example and notations as in section 3.1, and thus want to
modulate the distribution of markers relatively to Rs, Rt and their frontier. For
example, to stress the strength of the gradient separating both regions we can
locally spread markers following the distribution χ(Rs,Rt)λ, with χ(Rs,Rt) =
ωst. This corresponds to the classical volume-based SWS, which allows to obtain
a hierarchy that takes into account both surfaces of regions and contrast between
them.

To go further, one can use any prior information in a similar way. Indeed,
while using prior information to influence the output of the segmentation work-
flow, one might also want to choose whether the relevant information to empha-
size in resulting segmentations is the foreground, the background or the transi-
tions between them.

For example, having more details in the transition regions between back-
ground and foreground allows us to have more precision where the limit between



foreground and background is actually unclear. As a matter of fact, the prior
information often only provides rough positions of the foreground object with
blurry contours, and such a process would allow to get precise contours of this
object from the image.

Let us consider this case and define for each couple of regions (Rs,Rt) a
suitable χ(Rs,Rt). We then want χ(Rs,Rt) to be low if Rs and Rt both are in
the background or the foreground, and high if Rs is the background and Rt in
the foreground (or the opposite). We use:{

λ̃ = χλ

χ(Rs,Rt) = max(m(Rs),m(Rt))(1−min(m(Rs),m(Rt)))
0.01+σ(Rs)σ(Rt)

,
(8)

m(R) (resp. σ(R)) being the normalized mean (resp. normalized standard devi-
ation) of pixels values in the region R of PM(I). Thus the number of markers
spread will be higher when the contrast between adjacent regions is high (nu-
merator term) and when these regions are coherent (denominator term).

Then for each edge, its new probability to be cut is :

P[(µ(Rp) ≥ 1) ∧ (µ(Rq) ≥ 1)] = 1− exp−χ(Rs,Rt)Λ(Rp)− exp−χ(Rs,Rt)Λ(Rq)

+ exp−χ(Rs,Rt)Λ(Rp∪Rq)
(9)

In the spirit of [6], this mechanism provides us with a way to “realign” the
hierarchy with respect to the relevant prior information to get more details where
the information is blurry. Similar adaptations can be thought of to emphasize
details of background or foreground regions.

In the following, we illustrate the methodology exposed with some applica-
tions.

(a) (b) (c) (d)

(e) (f) (g)
Fig. 2. Hierarchical segmentation of faces. (a) Original image (b) Prior : Probabilistic
map obtained thanks to face detection algorithm and (c) Volume-based SWS Hierarchy
UCM (d) Volume-based HRF UCM with face position as prior (e)(f)(g) Examples of
segmentations obtained with HRF - 10,100,1000 regions.



4 Application examples

4.1 Scalable transmission favoring regions of interest

Let us consider a situation where one emitter wants to transmit an image through
a channel with a limited bandwidth, e.g. for a videoconference call. In such a
case, the more important informations to transmit are details on the face of the
person on the image. Besides, we nowadays have highly efficient face detectors,
using for example Haar-wavelets as features in a learning-based vision approach
[30]. Considering that for an image in entry, the face can be easily detected, we
can use this information to produce a hierarchical segmentation of the image
that accentuates the details around the face while giving a good sketch of the
image elsewhere. Depending on the bandwidth available, we can then choose the
level of the hierarchy to select and obtain the associated partition to transmit,
ensuring us to convey the face with as much details as possible. Some results are
presented in Figure 2, with notably a comparison between a classical volume-
based SWS UCM and a volume-based HRF UCM.

(a) (b) (c) (d)

(e) (f) (g)
Fig. 3. Hierarchical segmentation of non-blur objects. (a) Original image (b) Prior im-
age obtained with non-blur zones detection algorithm (c) Volume-based SWS Hierarchy
UCM (d) Volume-based HRF UCM with non-blur zones as prior (e)(f)(g) Examples of
segmentations obtained with HRF - 10,200,2000 regions.

4.2 Artistic aspect: focus and cartoon effect

The same method can also be used for artistic purposes. For example, when
taking as prior the result of a blur detector [28], we can accentuate the focus
effect wanted by the photograph and turn it into a cartoon effect as well - see
Figure 3 for an illustration of the results.



(a) (b) (c) (d)

(e) (f) (g)
Fig. 4. Hierarchical segmentation of the main class (class ”bike”) in an image with
heatmap issued of a CNN-based method as input. (a) Original image, (b) Heatmap
issued by the CNN-based localization method, (c) Volume-based Watershed Hierarchy
UCM and (d) Hierarchy with prior UCM. (e)(f)(g) Examples of segmentations obtained
with HRF - 10,100,200 regions.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j) (k)
Fig. 5. Hierarchical co-segmentation of matched objects. (a)-(e) Images I1 to I5 (f)
All matched key-points of I3 with other images key-points (g) Prior for I3: probability
map generated thanks to morphological distance function (h)(i) Volume-based SWS
Hierarchy UCM for I3 and I4 (j)(k) Volume-based HRF UCM for I3 and I4 with
matched key-points as prior.

In the same spirit, various methods now exist to automatically roughly lo-
calize the principal object in an image. We inspire ourselves from [20] to do so.
Using the state-of-the-art convolution neural network (CNN) classifier VGG19
[27] trained on the 1000 classes ImageNet database [7], we first determine what
is the main class in the image. Note that this CNN takes as input only images of
size 224×224 pixels. Once it is known, we can then, by rescaling the image by a
factor s ∈ {0.5, 0.7, 1.0, 1.4, 2.0, 2.8}, compute for sub-windows of size 224× 224



of the image the probability of appearance of the main class. By simply super-
imposing the results for all sub-windows, we thus obtain a probabilistic map of
the main class for each rescaling factor. By max-pooling, we keep in memory
the result of the scale for which the probability is the highest. The heatmap
thus produced can then be used to feed our algorithm. This way, we have at our
disposal an automatized way to focus on the principal class in the scene. Some
results are presented in Figure 4.

(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j)

(k) (l) (m)
Fig. 6. Hierarchical segmentation of faces. (a) Original image (b)(c)(d) UCM of HRF
depending of the couples of regions (section 3.3), of the regions only (section 3.1),
and both combined. The rest of the images are segmentations examples with 4,10,25
regions, the hierarchies being presented in the same order.

4.3 Hierarchical co-segmentation

Another potential application is to co-segment with the same fineness level an
object appearing in several different images. For example, when given a list of
images of the same object taken from different perspectives/for different condi-
tions, we can follow the state-of-the-art matching procedure [14]: (i) compute



all key-points in both images, (ii) compute local descriptors at these key-points,
(iii) match those key-points using a spatial coherency algorithm as RANSAC.
Once it is done we retain these matched key-points for both images, and generate
probability maps of the appearance of the matched objects using a morphological
distance function to the matched key-points.

These probability maps can then feed our algorithm, given as result a hier-
archical co-segmentation that emphasizes the matched zones of the image. Some
results are presented in Figure 5.

4.4 Example of the effect of the HRF highlighting transitions
between foreground and background

We illustrate here the HRF highlighting transitions between foreground and
background presented in section 3.3, by presenting its effect in the face detection
example presented in figure 6.

5 Conclusions and perspectives

In this paper we have proposed a novel and efficient hierarchical segmentation
algorithm that emphasizes the regions of interest in the image by using spatial
exogenous information on it. The wide variety of sources for this exogenous
information makes our method extremely versatile and its potential applications
numerous, as shown by the examples developed in the last section. To go further,
we could find a way to efficiently extend this work to videos. One could also
imagine a semantic segmentation method that would go back and forth between
localization algorithm and HRF to progressively refine the contours of the main
objects in the image.
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