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Robust Performance Analysis for a Range of Frequencies

S.Boersmé, A.Korniienke’, K.Laib?, J.W.van Wingerdeh

Abstract— Time domain specifications such as overshoot, infinite, it is from a practical point of view difficult to find
rise time and tracking behaviour can be extracted from an the maximum amplitude frequency response. It is however
amplitude frequency response. For uncertain systems we use h,siple to compute, per frequency, an upper bound on this

for this an upper bound on the maximum amplitude frequency . litude f ith the aidof
response. There are tools which can compute this upper bound maximum amplitude irequency response wi e aid:o

for each frequency in a grid. Computing this upper bound analysis tools and corresponding convex optimization. We
can be computational expensive when studying a large scale can then make statements on the time domain specifications
system hence it is interesting to have a low dense frequency ysing this upper bound.

grid. However, in such a case, it can for example occur that th As stated before, witj-analysis tools we can compute an
maximum peak of the amplitude frequency response occurs at ' - e . .

a frequency which is not in this grid. A consequence is that upper bound on the maximum ampllflpatlon of an uncertain
the overshoot will not be determined well for the system. In System. The method has been studied well over the past
this paper we will present a method such that this can not few years. See for example [3] and [4]. In this paper
occur. We will augment the uncertainty set with an additiond e exploit py-analysis tools in order to solve a problem
uncertain parameter. This uncertain parameter will cover the which can occur when applying it in the standard way. The

frequencies which are not covered by the grid. This allows bl is that wh h lvsis tools. th vsi
us to do a robustness analysis for a range of frequencies. problem s that when using-analysis tools, the analysis

In this case we are sure that we do not miss any crucial IS done 0“')’_ for spegific frequenCi?S in a grid. We do not
information with respect to the amplitude frequency resporse  analyse the intermediate frequencies hence we can not say

lying in between the frequencies in the grid. We illustrate his  anything about the maximum amplification of the system for
using two simulation examples. these intermediate frequencies. It is in addition not akvay
interesting to increase the density of the frequency gridesi
computing an upper bound is computational expensive. In
It is possible to extract time domain specifications athis paper we introduce a method which allows us to also
e.g. overshoot, rise time and tracking behaviour from thensure the maximum amplification through the system for
amplitude frequency response of a system. The slope in thHeese intermediate frequencies while using the stangdard
low frequency regions can give us for example informatioanalysis tools. In other words, the method allows us to do a
about the tracking behaviour of the system, the cross ovegbustness analysis for a range of frequencies. The method
frequency can give us information on the speed of the systegan be applied to systems with multiple inputs and multiple
and the maximum peak of the frequency response can give atputs (MIMO) as well as single input single output (SISO)
information on the overshoot of the system. However, whegystems.
dealing with uncertain systems as defined in for example [1] In [5], the authors propose a method to solve a simi-
and [2], it is not sufficient to study one amplitude frequencyar problem. They suggest to test a frequency dependent
response to extract this kind of information since the systeinfinite linear matrix inequality (LMI) conditions in the
is then a function of an infinite set containing the uncertairform of frequency independent finite LMI conditions. The
ties. Hence, in order to make statements on the previoudBtter conditions directly include the information about a
mentioned time domain specifications while looking at thepecified frequency range to which they are applied. The
amplitude frequency response, it is necessary to find theethod proposed in this paper is different. Instead of using
maximum among these responses. By using the latter Wwepecial LMI conditions”, we represent the frequency as an
can guarantee that we for example will find the maximununcertain parameter and then build our conditions based on
peak of the frequency response among all the uncertaintidee augmented system. The advantage is that we can use the
in the set. This maximum amplitude frequency respondgaditionali-analysis tools which implies that people familiar
can then be used to make statements on e.g. the overshodgth these techniques are able to directly apply the novel
Due to the fact that the set containing the uncertainties ivethod proposed in this paper. The outcome will then not
be an upper bound on the maximum amplification through
1S.Boersma is with the Department DCSC, Delft University etfinol-  an uncertain system for only one specific frequency but for
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amount of uncertainty is found for which the system ishaving the following state space representation:
robustly stable.

In this paper we will however analyse if the system i =Av+[B, Bu] (p)
has a robust performance property instead of stability. The b w
definition of robust performance in this paper will in adoliti q\ _|C, Dy, Dgwl| (P
differ from how it is defined in for example [1] and [2] and (Z) - [CZ] T+ [sz Dzw} (w> @)

the final result will be generalised. Moreover, we illustrat
the effectiveness of the approach using two examples. Th#e signak* is the complex conjugate transpose:and the
first example will be a relatively simple second order systeroperator is defined as the Redheffer star product [10]. In [1]
and serves to illustrate the method. The second example willlis is referred to as the upper linear fractional transtrm
be a large scale system where we, in addition to our methogbn. We furthermore have the infinite uncertainty get=
will use the Hierarchical Approach [7]. {A e R ™ | A=diag(0iln,,...,0:In,), ||Allec <1}
This paper is structured as follows. In Section II, wewith real scalar uncertaintie € R, fork =1,...,r with r
introduce the necessary preliminary mathematical tootsl usthe number of uncertainties amg the number of repetitions
throughout this paper. In Section Ill, we will give theof the uncertaintys, andn = >,_, ni, the size of the
problem formulation using an example. This example willincertaintyA. We note that the work presented in this paper
illustrate the necessity of the novel method presentediin thcan be extended to a more general class of uncertainties e.g.
paper. In Section IV, we will introduce the novel methodwe could include complex uncertainties in the get This
which will solve the problem as formulated in Section lIl.is however not necessary for illustrating the novel method
We will revisit the example and will illustrate the benefithence we only consider real uncertainties in the Aetwe
of the new method while applying it on the same examplelefine the following definition of robust performance. Note
In Section V we will demonstrate the novel method on dhat this definition is different from the one used in e.g. [1]
large scale system. Since computing an upper bound on taed [2].
amplitude frequency of such a high dimensional system is Definition 1 (Robust Performance)f for a specific fre-
computational expensive, the Hierarchical Approach islusequencyw; there exists ay € R such that, forM and A
The interested reader is referred to [7], [8] and [9] for morevaluated at the frequency, the LMI

detailed information on the Hierarchical Approach.
M*«A\"[I 0 ](MxA
(0 (MiY) <0 vaca @

holds, robust performance is ensured for the\-structure

In this section we summarise the theoretical backgrounglith performance transfek/ « A at the frequencw;.
used in this paper. We begin by giving the considered systemyyhen minimisingy?2, the best possible robust performance
interconnection followed by a definition of robust perfor-can be found. Note that in the single input single output
mance and a theorem with which we can ensure this robu(g|so) case, the minimuny is the maximum amplitude
performance. Figure 1 presents the system interconnectiﬁ@quency response of the performance trandferA among
under consideration. We define € C"= andw € C™ gl A € A for the frequency,. In the multiple input multi-
ple output (MIMO) case, this will be the maximum singular
value representing the maximum amplification through the
performance transfed/ x A among allA € A for the
frequencyw,;. The problem of testing if robust performance is
satisfied is that it should hold for alh € A with A being
an infinite set. In other words, we try to find a maximum
frequency response among an infinite number of frequency
responses when considering the SISO case. The following
theorem is taken from [8] and provides us with tools to
ensure, for a specific frequency;, robust performance as
defined in Definition 1.

Theorem 1 (Robust Performance Theorempbust per-
Fig. 1. TheM A-structure. formance as defined in Definition 1 is ensured for a specific

frequencyw; if and only if there exists a matrida with

YA and Zx such that

Il. PRELIMINARIES

as the performance and exogenous input signal respectivél@'titionsXa,

The signalsp € C™ and ¢ € C" are the output and «

input respectively of the uncertainty blogk € R™»*"s, The A Xa Ya A >
. . . " >0 VAeA  (3)

transferM « A is the performance transfer function which L) YA 2Za] \I

we would like to analyse with stablg#/ € Cn=T7axnwtns P



S Ka O ‘ Ya 0 with D and G as defined in (5). The valug®® =
(]\6[) 0* I 0 0 (]\14) <0 (4 Vargminy?isthen the upper bound on the maximum am-
Y} 0 ‘ Za 0 plitude frequency response for the frequengy|f we solve
0 0 U the problem given in (6) for the grid = [wi,ws,...,wy]
hold. [ we get an upper bound for each of these frequencies. This

. ... __upper bound can give us then information about previousl
As stated in Theorem 1, two LMIs should be verified bp . give | about p Y
i . scussed time domain performance specifications, the orig
to ensure robust performance where the one given in ( o .
. inal objective. Now that we have given all the necessary
depends om\ and should hold for alA € A. It is shown : .
mathematical tools, we can proceed by giving a problem

in [11] that by choosing a parametrisation of the matrl)§/vhich can occur when using these tools to compute an upper

dA, the LMI in (3) is always ensured. A consequenc : . e
] . o . ound and to make statements on time domain specifications
of introducing such a parametrisation is that the “if an : .

y using this upper bound.

only if” condition to ensure robust performance as given in
Theorem 1 will become an “if” condition. This is stated in I1l. PROBLEM FORMULATION
the following corollary.

Corollary 1: Let the matrix®a belong to a bounded set
® A such that (3) is always satisfied. Then robust perfo
mance as given in Definition 1 is ensured for a specifiél
frequencyw; if there exists a Hermitian matrika € ®a

Since the problem given in (6) is a frequency dependent
Iproblem, an upper bound for only the frequencies in the
grid under consideration can be ensured. Hence we do not
now what happens in between the subsequent frequencies
, - N ) in the grid. This implies that it is possible, for example,
with partitions Xa = X%’ XZA’ Zn = Zx 2 0.and  yhat we do not detect the maximum peak of the amplitude
Xa € C and Za € C"*"e such that (4) holds. frequency response with, as a consequence, a guarantee of
One possible parametrisation is the DG-scaling [11] anfine domain specifications other than the system actually

appropriate for the set of uncertainties we take into CONsypipits. Indeed, the more dense we make the frequency
sideration in this paper. Th.e interested reade.r is .refeln_ed rid, the more likely it is that we do not miss any important
[12] for other parametrisations. The DG-scaling is definegsormation. However, for high dimensional systems, it can

as the set: be computationally expensive to compute the upper bound
-D G hence it is interesting to have a non dense frequency grid.
Pa = {@A | P = {G* D]} We will illustrate a possible problem which can occur when
with D = bdi ag(Ds,...,D,) (5) gpplymg the. classical rr_1ethod to a relatively simple system
_ in the following subsection.
and G =bdiag(Gy,---,G,)

A. Numerical Example

J— * N Xn 1
And. we have thatD, = D > 0 € C**™ with D Given the following nominally stable uncertain SISO
having the propertyDA = AD, G, = —Gj, € Cex" system
for k = 1,...,r. We note that if one wants to take a more 1
general uncertainty set into account, i.e. include alsoptexrn MxA = ms2 + bs + k )
uncertainty, theG matrix in (5) has to be redefined as e.g. . B _ .
given in [11]. We omit this here since it does not contributdVith 0 = bo(1 +Wydy) andk = ko(1 + Widy,) with 0| f

to the demonstration of the new method presented in thig |9 < 1, A = di ag(dv, dy), i.e we have thah. = n,
paper. I,ng = np, = 2. We furthermore have thah = 10,by =

Suppose now that we are given a nominally stable uncepy Fo = 10, W, = .25b and Wi = .05k,. We can definel/

tain systemM x A with A € A. The objective is to find the accordingly as

maximum amplitude frequency response amongalt A M= <_Wb5 ~Wys %s) 1 (®)
for each frequency in the grid. Finding such a maximum U Y ) ms2 +bos + ko

response is from a practical point of view not interestingl.hen for the system given in (7), we can solve the problem
since the set_A is infinite as discussed previoqsly. It_ is(_ﬂ%ven,in (6) for a frequency gridj,i.e. we can compute an
however possible to compute, for each frequency in a grid,

! ) ugper bound on the maximum frequency response among all
upper bound on the maximum amplitude frequency FeSPONX e A for the frequencies in the grid. In Figure 2 we depict

basi? l:()): (n:grg;r?rgelfc?ng dtge sDjsn Ca?g?e%:\éﬁr}r? (S)Jh'ﬁﬁe results including the frequency response of the nominal
ubp ’ ! y soving QUeRCY model. The latter is considered as continuous to illustrate

in the grid the following problem: the possible problem which can arise using standard

min  ~2 analysis tools. When using the upper bound to, for example,
v2,D,G make statements on the maximum peak of the frequency
—-D 0 G 0 response, we obtain a maximum 6f91 [dB]. However,
ot (I)* 0 —2I ‘ 0 0 (I) <0 (6)  the nominal model already has a maximum10f46 [dB]
M G* 0 D 0 M though on a different frequency. This frequency is however
0 0 ‘ 0 I not in the setv used for computing the upper bound. Hence,



when using the upper bound, we will guarantee time domaiffter the replacement of all the integrator blocks in our
specifications which the system actually does not exhibitssystem, we can define an augmented uncertainty block

It could thus be interesting to be able to guarantee an upper
bound for the complete grid, i.e. also for the intermediate
frequencies. We will present in the following subsection a A, =di ag(A, Idy), [|Aallee <1 (10)
method which allows us to do this. We will see that we
need to solve problem (6) with modified and A for a
grid of frequencies and that we are able to ensure an uppgith n the number of integrators in the system under
bound for each frequency in the grid and for a small rangeonsideration. Then we can compute an augmenitfd
around each of the frequencies. The proposed method willatrix accordingly. Note that the augmented uncertainty
be illustrated using the same numerical example as presentstock A, will always contain one additional times repeated
in this section. uncertainty block. It is possible to generalise the abowt an

Nominal xz

Fig. 3. Integrator block (left) and integrator block withagmtain frequency
(right).

Magnitude [dB]
& \

4or 1 depict the augmented uncertainty, and M, in the M A-
structure. This is illustrated in Figure 4. The partitioms i
the matrixM, are given in (1). Now that we have explained

50 F

-60 L
10 10° 10t
Frequency [rad/s]

Fig. 2. Frequency response of the nominal model (black lar@&) the
upper bound on the maximum frequency response.

IV. PROPOSEDMETHOD

In order to ensure an upper bound for a range around a
frequency we introduce an additionally uncertain paramete
w; = w)(1+W,4,,) with |d,| < 1. In other words, we make
each frequency in the grid an uncertain parameter with
being one nominal frequency out of the grid dig, defining
the (symmetric) range around this nominal frequeagy A
consequence is that we will be able to guarantee an upper,
bound on the maximum amplitude frequency response for t
nominal frequency! and also for a symmetric range with : :
amplitude defined byW,, around the frequency?. Note : :
that in this new case, the frequency grid under consideratio : Ma:
will then be a grid with nominal frequencies defined as Trrrrrramrrrmmmmrmmrreanreet
w = [w?wl,...,w%]. Then each of these frequencies in_,
the grid can be considered as a nominal frequency ar)\;'fl'.
for each of these frequencies, the upper bound can be
computed, i.e. the problem given in (6) can be solved. In
order to practically clarify the proposed method, we préserthe necessary steps to ensure an upper bound for a range
in Figure 3 the integrator block in the original situationof frequencies and gave the definitions of the augmented
(left) and in the situation when the frequency is an uncertaiuncertaintyA, and M,, we are ready to give the following
parameter (right). Indeed, if we close the loop of the blockheorem.
scheme on the right and let— iw) we get the transfer:

| &I

4. The M A-structure with augmented uncertainty, and matrix

Theorem 2 (RP Theorem for a range of frequencies):

1 Robust performance as defined in Definition 1 is ensured
5, [0 <1 ) - 0 :
iwd (1 + W) for a nominal frequencyw; and a symmetric frequency



range with magnitudé¢/v,,| aroundw? if we solve: 13.18 [dB]. Using the previous method we guaranteed an
. 9 maximum amplification 0f6.91 [dB] which was already
WQ}','?G v violated by the nominal model. This implies that by using the
new method, we able to ensure time domain specifications

-D 0 G 0
I\* 0 I ‘ 0 0 I of the system which it really exhibits. The example given in
S.t. (Ma> o 0 TD 0 (Ma) <0
0 0 0 I 20

(11) 13.18
with D and G as defined in (5) according to the new or
uncertainty blockA, as given in (10). The valug®* = 0
y/argmin~?2 is then the upper bound on the maximum
frequency response for the frequency and a symmetric
frequency range with magnitud®/,,| aroundwy. OJ

The proof of this theorem follows directly from Theorem 1

-10

Magnitude [dB]
A N
o

and Corollary 1. If we solve the problem as defined in (11 -40

for the gridw = [w?, w9, ..., w%] we get an upper bound for 50

each of these frequencies and a range around each of th - |

frequencies. This upper bound can then give us informatic 107 10° 10"

Frequency [rad/s]

about time domain performance specifications, the originau
Objective. Observe that the I’ange for which we can enSUFQJ. 5. Frequency response of the nominal system (back ﬁmd)the
robust performance depends [3#1,,| hence the latter should upper bound on the maximum frequency response.

be chosen such that each subsequent frequency will be

overlapped by its neighbours. In the following subsectiorthis section illustrates that, by using the proposed method
we will give the same numerical example as we presentede are able to ensure time domain specifications of a system
before though now having uncertainty on the frequency ashich are guaranteed not violated. By using the standard

discussed in this subsection. technique we can guarantee a better performance due to a
) “wrong” choice of the frequency grid while this performance
A. Numerical Example is not exhibited by the system under consideration. The

In this section we reconsider again the system as giverovel method only needs a proper choice of the weight
in (7). We will now make the frequency an uncertain pa¥¥,, such that the subsequent frequencies overlap. For the
rameter as we have discussed in the previous subsectie®ample considered until now, we could argue to increase the
Since the system in (7) has two integrators, the new uneertadensity of the gridv to solve the frequency gridding problem
system will have one two times repeated uncertain parametegcause we are dealing with a relatively simple system. Then
in addition to the two uncertain parametérandk. The new we will most likely not miss the peak in the maximum
uncertainty block is defined a4, = bdi ag(d, dx,d.l2) amplitude frequency response. However, when dealing with
(hencen, = n, = 4) and the new)M, matrix can then be high dimensional systems, increasing the density o not

defined accordingly as: always interesting. This is due to the fact that computing an
upper bound for high dimensional systems are computational
M, = expensive. In the following section we apply the presented
—Wys —Wps —W, 3 —Wpkot 4% i i i
. _wr 7Wk(ngsfbo)i W 1 method on such a high dimensional system.

—Wes —Wys —W,mst Wy kot Wy s e
W, —W. —Waemi —We,(ms+bo)i W, | ms2+ bgs + ko

1 21 Zmi —(mstbo)i 1 V. LARGE SCALE NETWORK APPLICATION

When solving the problem as given in (11) while using The large scale system studied in this section will be
appropriate matrice® and G as given in (5), we obtain, a network of N = 16 phase locked loops (PLLs) and is
after properly choosingV,,, the (continuous) upper bound astaken from [13]. Such a network can for example be used
illustrated in Figure 5. Note that we use the same frequenty distribute and synchronise a clock signal in a multi-
grid as we did when computing the upper bound as depictedre processor [13]. The network can be presented using
in Figure 2. However, due to the fact that we made ththe M A-structure as depicted in Figure 6. Here we have
frequency an uncertain parameter, we are now also able ttee static matrix)/ which defines how the PLLs influence
guarantee an upper bound in between the frequencies undach other in order to synchronize the network [7] (see
consideration. It can be seen that we guarantee a maximiguation (13)) andA = di ag(7*,72,...,7"%) with T"
peak 0f13.18 [dB] and that the nominal frequency responsalefined as one PLL in the network. We furthermore have
is situated below the computed upper bound. It should e SISO performance transféf « A as the global transfer
clear that the upper bound is a bound on the maximumfunction for which we would like to compute an upper
amplitude frequency response hence we can conclude thegtund, i.e. for which we would like to ensure the optimal
the maximum amplification of the system is not more thanobust performance as defined in Definition 1. This example



C. Hierarchical Approach for a range of frequencies

|

3 For the network considered here, the Hierarchical Ap-
q Do proach consists of two steps, the local and the global step.

|

!

The final goal is to compute an upper bound on the maximum
amplitude frequency response of the SISO performance

3 WD transferM xA, i.e. we would like to ensure the optimal robust
I~ performance as defined in Definition 1 for the performance
L w transfer. In order to do so we can use Theorem 1. We can

unfortunately not use the parametrisation as defined in (5)
Fig. 6. Block scheme representation of the large scale myste since in that case, the LMl in (3) is not by definition verified.
Hence the first (local) step of the Hierarchical Approach
consists of finding a suitable parametrisation of the set
is suitable for illustration since the performance is nallyr ®a such that (3) always holds. We will, in the following
evaluated in the frequency domain [13]. subsections, describe the steps done in the Hierarchical
Approach in more detail.
A. PLL network description 1) Local step: In this step we make the frequency
In the network considered in this paper, all the PLLsn each PLL uncertain such that we obtaiA!, =
are homogeneous and their individual uncertainty blocksi ag(dx,,da,,d.12). We then definé’} accordingly which
belong to the same uncertainty sAt These uncertainties we can write as7, due to the fact that the PLLs are
“capture” the technological dispersions which occur dudomogeneous. Now we are interested in characterizing the
to the manufacturing process. They can be presented iaput-output behaviour of each PLL using integral quadrati
parametric uncertainties belonging to the samessefThen, constraints (IQCs) which can, in the complex plane, be
the description of théV PLLs is: interpreted by simple geometric forms: disc [7], band [8]
and cone [9] such that for each frequengy we have that:

ey (is?
T!(iw?) = 12(“"1 ) oy {1,...,N}
— (W))” + kiw} + ki T.\" [Xe Yi]| (T.
: 1) vy oz \1)<"
wherek, € [0.76,6.84] x 10%, a; € [91.1,273.3] andw) is ko Ak

the current frequency. FurthermorE!(iw?) can written as

the interconnection of a certain and an uncertain part: with k € {disc,band,corje Details concerning the formu-

lation of the IQCs are in [7], [8] and [9]. Finding the
Tl(iwg) =A% MPE Ale A matrices X;,Y; and Z, is also referred to as finding a
suitable embedding which can be characterised by IQCs. We
can apply Theorem 2 to obtain these IQCs for a range of
A = {A e R¥? | Al = di ag(6y,,da,)} frequencies around).
2) Global step: The different IQCs obtained in the local

B. Performance analysis step can be used to characterize tiePLLs gathered imA

The performance analysis of this network consists iguch that:
computing an upper bound on the maximum amplitude fre- (A>* {X Y] (A) -0
guency response. The problem of using standaemhalysis I Y* Z 1)~
tools on such high dimensional system is the computation
effort needed to compute an upper bound on the maximuholds with:
amplitude frequency response due to the large scale aspect.

order to reduce this effort, the authors in [7], [8] and [9¢us X = —di ag <Z e Xps ZTNka>
: k

with Al denoted as:

a method called the Hierarchical Approach initially propos .

in [14]. This method allows to reduce the computational .

effort with respect to the time necessary when using stahdar Y = —diag Z Tk Yk, oo ZTNkYk
techniques. Nevertheless, it is interesting to reducedbe-r k k

lution o_f the frequency grlq for which we compute the upper 7 = —diag Z T ZTNka
bound in both methods: direct and hierarchical. Indeed, the - -

denser the frequency grid, the higher the computation teffor

However, we can miss important information if we reducewherek € {disc,band,coneandr;, > 0 are introduced to
the density and as a consequence, make false statementdngnease the number of decision variables in the global step
the time performance of the system as we have seen in tiich can reduce the possible conservatism.

numerical example presented in Section Ill. Thereforesiti Now we can apply Theorem 2 to solve the problem of
interesting to apply our method on the network of PLLs using§inding an upper bound on the maximum amplitude global
the Hierarchical Approach. transfer frequency response by solving for each frequency



wY in the grid the following problem: this such that there is an overlap between the subsequent
9 frequencies. The upper bound will on its turn then become

min ~ .
N2,X,Y,Z less conservative.
X 0O |-Y 0 VII. CONCLUSIONS
I 0 —2I| 0 0 I L
s.t. ~ 7 — -1 <0 The method presented in this paper allows us to ensure
M _0 8 ‘ _0 ? M an upper bound on the maximum amplitude frequency re-

sponse for a range of frequencies. This could be interesting

(12) . . ) ;
Pt — AT according to the example given in Section Ill. Here we have
The valuey argmin7” is then the upper bound on illustrated that, by using a relatively simple SISO example

the maximum amplitude frequency response of the transfer, : . . A
- X 0 ._ Information on the time domain specifications can be ensured
M = A for the frequencyw, and a range around this

frequency defined byV,,. Note that the problem defined though the;e specifi_catiqns are not rgally exhibited by the
in (12) is an adapted version of the problem defined (6 .y.stem. Th|§ overestlmatmn_ occurred sine we are n_ot able to
When we solve the problem given in (12) for the grid sing classical techniques in the frequer_lcy domain, ensure
0 0 0 . an upper bound for a range of frequencies. The method in
w [w?,w], ..., wy], the (continuous) upper bound as .
depicted in Figure 7 is obtained. We observe in Figure 7 thﬁlalrt1IS paper however allows us to do so. .
We also have showed that the new method can be applied
to a more advanced high dimensional system. It is even
more interesting to do so since in such a case it is more
important to keep the density of the frequency low due to
the otherwise increasing computational load. So the prexghos
method allows us to keep the density of the frequency grid
low while also being able to ensure a continuous upper bound
from the first to the last frequency in the grid. By doing so we
are sure that the time domain specifications guaranteed usin
the upper bound are the specifications the systems actually
has.
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