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Robust Performance Analysis for a Range of Frequencies

S.Boersma1, A.Korniienko2, K.Laib3, J.W.van Wingerden4

Abstract— Time domain specifications such as overshoot,
rise time and tracking behaviour can be extracted from an
amplitude frequency response. For uncertain systems we use
for this an upper bound on the maximum amplitude frequency
response. There are tools which can compute this upper bound
for each frequency in a grid. Computing this upper bound
can be computational expensive when studying a large scale
system hence it is interesting to have a low dense frequency
grid. However, in such a case, it can for example occur that the
maximum peak of the amplitude frequency response occurs at
a frequency which is not in this grid. A consequence is that
the overshoot will not be determined well for the system. In
this paper we will present a method such that this can not
occur. We will augment the uncertainty set with an additional
uncertain parameter. This uncertain parameter will cover the
frequencies which are not covered by the grid. This allows
us to do a robustness analysis for a range of frequencies.
In this case we are sure that we do not miss any crucial
information with respect to the amplitude frequency response
lying in between the frequencies in the grid. We illustrate this
using two simulation examples.

I. I NTRODUCTION

It is possible to extract time domain specifications as
e.g. overshoot, rise time and tracking behaviour from the
amplitude frequency response of a system. The slope in the
low frequency regions can give us for example information
about the tracking behaviour of the system, the cross over
frequency can give us information on the speed of the system
and the maximum peak of the frequency response can give us
information on the overshoot of the system. However, when
dealing with uncertain systems as defined in for example [1]
and [2], it is not sufficient to study one amplitude frequency
response to extract this kind of information since the system
is then a function of an infinite set containing the uncertain-
ties. Hence, in order to make statements on the previously
mentioned time domain specifications while looking at the
amplitude frequency response, it is necessary to find the
maximum among these responses. By using the latter we
can guarantee that we for example will find the maximum
peak of the frequency response among all the uncertainties
in the set. This maximum amplitude frequency response
can then be used to make statements on e.g. the overshoot.
Due to the fact that the set containing the uncertainties is
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infinite, it is from a practical point of view difficult to find
the maximum amplitude frequency response. It is however
possible to compute, per frequency, an upper bound on this
maximum amplitude frequency response with the aid ofµ-
analysis tools and corresponding convex optimization. We
can then make statements on the time domain specifications
using this upper bound.

As stated before, withµ-analysis tools we can compute an
upper bound on the maximum amplification of an uncertain
system. The method has been studied well over the past
few years. See for example [3] and [4]. In this paper
we exploit µ-analysis tools in order to solve a problem
which can occur when applying it in the standard way. The
problem is that when usingµ-analysis tools, the analysis
is done only for specific frequencies in a grid. We do not
analyse the intermediate frequencies hence we can not say
anything about the maximum amplification of the system for
these intermediate frequencies. It is in addition not always
interesting to increase the density of the frequency grid since
computing an upper bound is computational expensive. In
this paper we introduce a method which allows us to also
ensure the maximum amplification through the system for
these intermediate frequencies while using the standardµ-
analysis tools. In other words, the method allows us to do a
robustness analysis for a range of frequencies. The method
can be applied to systems with multiple inputs and multiple
outputs (MIMO) as well as single input single output (SISO)
systems.

In [5], the authors propose a method to solve a simi-
lar problem. They suggest to test a frequency dependent
infinite linear matrix inequality (LMI) conditions in the
form of frequency independent finite LMI conditions. The
latter conditions directly include the information about a
specified frequency range to which they are applied. The
method proposed in this paper is different. Instead of using
“special LMI conditions”, we represent the frequency as an
uncertain parameter and then build our conditions based on
the augmented system. The advantage is that we can use the
traditionalµ-analysis tools which implies that people familiar
with these techniques are able to directly apply the novel
method proposed in this paper. The outcome will then not
be an upper bound on the maximum amplification through
an uncertain system for only one specific frequency but for
a range of frequencies. The magnitude of this symmetric
range then depends on the size of uncertainty we put on
the frequency under consideration. In [6], the authors also
propose to make the frequency an uncertain parameter and
then use classicalµ-analysis tools to make statements on
the system. To be more precise, a bound on the maximum



amount of uncertainty is found for which the system is
robustly stable.

In this paper we will however analyse if the system
has a robust performance property instead of stability. The
definition of robust performance in this paper will in addition
differ from how it is defined in for example [1] and [2] and
the final result will be generalised. Moreover, we illustrate
the effectiveness of the approach using two examples. The
first example will be a relatively simple second order system
and serves to illustrate the method. The second example will
be a large scale system where we, in addition to our method,
will use the Hierarchical Approach [7].

This paper is structured as follows. In Section II, we
introduce the necessary preliminary mathematical tools used
throughout this paper. In Section III, we will give the
problem formulation using an example. This example will
illustrate the necessity of the novel method presented in this
paper. In Section IV, we will introduce the novel method
which will solve the problem as formulated in Section III.
We will revisit the example and will illustrate the benefit
of the new method while applying it on the same example.
In Section V we will demonstrate the novel method on a
large scale system. Since computing an upper bound on the
amplitude frequency of such a high dimensional system is
computational expensive, the Hierarchical Approach is used.
The interested reader is referred to [7], [8] and [9] for more
detailed information on the Hierarchical Approach.

II. PRELIMINARIES

In this section we summarise the theoretical background
used in this paper. We begin by giving the considered system
interconnection followed by a definition of robust perfor-
mance and a theorem with which we can ensure this robust
performance. Figure 1 presents the system interconnection
under consideration. We definez ∈ Cnz and w ∈ Cnw

M

M ⋆∆

∆

z w

pq

Fig. 1. TheM∆-structure.

as the performance and exogenous input signal respectively.
The signalsp ∈ Cnp and q ∈ Cnq are the output and
input respectively of the uncertainty block∆ ∈ Rnp×nq . The
transferM ⋆ ∆ is the performance transfer function which
we would like to analyse with stableM ∈ Cnz+nq×nw+np

having the following state space representation:

ẋ = Ax+
[
Bp Bw

]
(
p

w

)

(
q

z

)

=

[
Cq

Cz

]

x+

[
Dqp Dqw

Dzp Dzw

](
p

w

)

(1)

The signalz∗ is the complex conjugate transpose ofz and the
operator⋆ is defined as the Redheffer star product [10]. In [1]
this is referred to as the upper linear fractional transforma-
tion. We furthermore have the infinite uncertainty set∆ =
{∆ ∈ Rnp×nq | ∆ = diag(δ1In1

, . . . , δrInr
), ||∆||∞ ≤ 1}

with real scalar uncertaintiesδk ∈ R, for k = 1, . . . , r with r

the number of uncertainties andnk the number of repetitions
of the uncertaintyδk and n =

∑r

k=1 nk, the size of the
uncertainty∆. We note that the work presented in this paper
can be extended to a more general class of uncertainties e.g.
we could include complex uncertainties in the set∆. This
is however not necessary for illustrating the novel method
hence we only consider real uncertainties in the set∆. We
define the following definition of robust performance. Note
that this definition is different from the one used in e.g. [1]
and [2].

Definition 1 (Robust Performance):If for a specific fre-
quencyωi there exists aγ ∈ R such that, forM and ∆
evaluated at the frequencyωi, the LMI

(
M ⋆∆

I

)
∗
[
I 0
0 −γ2I

](
M ⋆∆

I

)

< 0 ∀∆ ∈ ∆ (2)

holds, robust performance is ensured for theM∆-structure
with performance transferM ⋆∆ at the frequencyωi.

When minimisingγ2, the best possible robust performance
can be found. Note that in the single input single output
(SISO) case, the minimumγ is the maximum amplitude
frequency response of the performance transferM⋆∆ among
all ∆ ∈ ∆ for the frequencyωi. In the multiple input multi-
ple output (MIMO) case, this will be the maximum singular
value representing the maximum amplification through the
performance transferM ⋆ ∆ among all∆ ∈ ∆ for the
frequencyωi. The problem of testing if robust performance is
satisfied is that it should hold for all∆ ∈ ∆ with ∆ being
an infinite set. In other words, we try to find a maximum
frequency response among an infinite number of frequency
responses when considering the SISO case. The following
theorem is taken from [8] and provides us with tools to
ensure, for a specific frequencyωi, robust performance as
defined in Definition 1.

Theorem 1 (Robust Performance Theorem):Robust per-
formance as defined in Definition 1 is ensured for a specific
frequencyωi if and only if there exists a matrixΦ∆ with
partitionsX∆, Y∆ andZ∆ such that

(
∆
I

)
∗
[
X∆ Y∆

Y ∗

∆ Z∆

]

︸ ︷︷ ︸

Φ∆

(
∆
I

)

≥ 0 ∀∆ ∈ ∆ (3)



(
I

M

)
∗







X∆ 0 Y∆ 0
0 −γ2I 0 0
Y ∗

∆ 0 Z∆ 0
0 0 0 I







(
I

M

)

< 0 (4)

hold.�
As stated in Theorem 1, two LMIs should be verified

to ensure robust performance where the one given in (3)
depends on∆ and should hold for all∆ ∈ ∆. It is shown
in [11] that by choosing a parametrisation of the matrix
Φ∆, the LMI in (3) is always ensured. A consequence
of introducing such a parametrisation is that the “if and
only if” condition to ensure robust performance as given in
Theorem 1 will become an “if” condition. This is stated in
the following corollary.

Corollary 1: Let the matrixΦ∆ belong to a bounded set
Φ∆ such that (3) is always satisfied. Then robust perfor-
mance as given in Definition 1 is ensured for a specific
frequencyωi if there exists a Hermitian matrixΦ∆ ∈ Φ∆

with partitions X∆ = X∗

∆, Y∆, Z∆ = Z∗

∆ ≥ 0 and
X∆ ∈ Cnp×np andZ∆ ∈ Cnq×nq such that (4) holds.
One possible parametrisation is the DG-scaling [11] and
appropriate for the set of uncertainties we take into con-
sideration in this paper. The interested reader is referredto
[12] for other parametrisations. The DG-scaling is defined
as the set:

Φ∆ =

{

Φ∆ | Φ∆ =

[
−D G

G∗ D

]}

with D = bdiag(D1, . . . , Dr)

and G = bdiag(G1, · · · , Gr)

(5)

And we have thatDk = D∗

k > 0 ∈ Cnk×nk with D

having the propertyD∆ = ∆D, Gk = −G∗

k ∈ Cnk×nk

for k = 1, . . . , r. We note that if one wants to take a more
general uncertainty set into account, i.e. include also complex
uncertainty, theG matrix in (5) has to be redefined as e.g.
given in [11]. We omit this here since it does not contribute
to the demonstration of the new method presented in this
paper.

Suppose now that we are given a nominally stable uncer-
tain systemM ⋆∆ with ∆ ∈ ∆. The objective is to find the
maximum amplitude frequency response among all∆ ∈ ∆

for each frequency in the grid. Finding such a maximum
response is from a practical point of view not interesting
since the set∆ is infinite as discussed previously. It is
however possible to compute, for each frequency in a grid, an
upper bound on the maximum amplitude frequency response
based on Corollary 1 and the DG-scaling given in (5). This
upper bound can be found by solving for each frequencyωi

in the grid the following problem:

min
γ2,D,G

γ2

s.t.

(
I

M

)
∗







−D 0 G 0
0 −γ2I 0 0
G∗ 0 D 0
0 0 0 I







(
I

M

)

< 0
(6)

With D and G as defined in (5). The valueγopt =√

argmin γ2 is then the upper bound on the maximum am-
plitude frequency response for the frequencyωi. If we solve
the problem given in (6) for the gridω = [ω1, ω2, . . . , ωN ]
we get an upper bound for each of these frequencies. This
upper bound can give us then information about previously
discussed time domain performance specifications, the orig-
inal objective. Now that we have given all the necessary
mathematical tools, we can proceed by giving a problem
which can occur when using these tools to compute an upper
bound and to make statements on time domain specifications
by using this upper bound.

III. PROBLEM FORMULATION

Since the problem given in (6) is a frequency dependent
problem, an upper bound for only the frequencies in the
grid under consideration can be ensured. Hence we do not
know what happens in between the subsequent frequencies
in the grid. This implies that it is possible, for example,
that we do not detect the maximum peak of the amplitude
frequency response with, as a consequence, a guarantee of
time domain specifications other than the system actually
exhibits. Indeed, the more dense we make the frequency
grid, the more likely it is that we do not miss any important
information. However, for high dimensional systems, it can
be computationally expensive to compute the upper bound
hence it is interesting to have a non dense frequency grid.
We will illustrate a possible problem which can occur when
applying the classical method to a relatively simple system
in the following subsection.

A. Numerical Example

Given the following nominally stable uncertain SISO
system

M ⋆∆ =
1

ms2 + bs+ k
(7)

with b = b0(1 +Wbδb) andk = k0(1 +Wkδk) with |δb| ≤
1, |δk| ≤ 1,∆ = diag(δb, δk), i.e we have thatnz = nw =
1, nq = np = 2. We furthermore have thatm = 10, b0 =
.3, k0 = 10,Wb = .25b0 andWk = .05k0. We can defineM
accordingly as

M =

(
−Wbs −Wbs Wbs
−Wk −Wk Wk

−1 −1 1

)
1

ms2 + b0s+ k0
(8)

Then, for the system given in (7), we can solve the problem
given in (6) for a frequency gridω i.e. we can compute an
upper bound on the maximum frequency response among all
∆ ∈ ∆ for the frequencies in the grid. In Figure 2 we depict
the results including the frequency response of the nominal
model. The latter is considered as continuous to illustrate
the possible problem which can arise using standardµ-
analysis tools. When using the upper bound to, for example,
make statements on the maximum peak of the frequency
response, we obtain a maximum of6.91 [dB]. However,
the nominal model already has a maximum of10.46 [dB]
though on a different frequency. This frequency is however
not in the setω used for computing the upper bound. Hence,



when using the upper bound, we will guarantee time domain
specifications which the system actually does not exhibits.

It could thus be interesting to be able to guarantee an upper
bound for the complete gridω, i.e. also for the intermediate
frequencies. We will present in the following subsection a
method which allows us to do this. We will see that we
need to solve problem (6) with modified∆ and M for a
grid of frequencies and that we are able to ensure an upper
bound for each frequency in the grid and for a small range
around each of the frequencies. The proposed method will
be illustrated using the same numerical example as presented
in this section.
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Fig. 2. Frequency response of the nominal model (black line)and the
upper bound on the maximum frequency response.

IV. PROPOSEDMETHOD

In order to ensure an upper bound for a range around a
frequency we introduce an additionally uncertain parameter
ωi = ω0

i (1+Wωδω) with |δω| ≤ 1. In other words, we make
each frequency in the grid an uncertain parameter withω0

i

being one nominal frequency out of the grid andWω defining
the (symmetric) range around this nominal frequencyω0

i . A
consequence is that we will be able to guarantee an upper
bound on the maximum amplitude frequency response for the
nominal frequencyω0

i and also for a symmetric range with
amplitude defined byWω around the frequencyω0

i . Note
that in this new case, the frequency grid under consideration
will then be a grid with nominal frequencies defined as
ω = [ω0

1 , ω
0
2 , . . . , ω

0
N ]. Then each of these frequencies in

the grid can be considered as a nominal frequency and
for each of these frequencies, the upper bound can be
computed, i.e. the problem given in (6) can be solved. In
order to practically clarify the proposed method, we present
in Figure 3 the integrator block in the original situation
(left) and in the situation when the frequency is an uncertain
parameter (right). Indeed, if we close the loop of the block
scheme on the right and lets → iω0

i we get the transfer:

1

iω0
i (1 +Wωδω)

, |δω| ≤ 1 (9)

After the replacement of all the integrator blocks in our
system, we can define an augmented uncertainty block

∆a = diag(∆, Inδω), ||∆a||∞ ≤ 1 (10)

with n the number of integrators in the system under
consideration. Then we can compute an augmentedMa

matrix accordingly. Note that the augmented uncertainty
block∆a will always contain one additionaln times repeated
uncertainty block. It is possible to generalise the above and

-

Fig. 3. Integrator block (left) and integrator block with uncertain frequency
(right).

depict the augmented uncertainty∆a andMa in the M∆-
structure. This is illustrated in Figure 4. The partitions in
the matrixMa are given in (1). Now that we have explained

Fig. 4. TheM∆-structure with augmented uncertainty∆a and matrix
Ma.

the necessary steps to ensure an upper bound for a range
of frequencies and gave the definitions of the augmented
uncertainty∆a andMa, we are ready to give the following
theorem.

Theorem 2 (RP Theorem for a range of frequencies):
Robust performance as defined in Definition 1 is ensured
for a nominal frequencyω0

i and a symmetric frequency



range with magnitude|Wω| aroundω0
i if we solve:

min
γ2,D,G

γ2

s.t.

(
I

Ma

)
∗







−D 0 G 0
0 −γ2I 0 0
G∗ 0 D 0
0 0 0 I







(
I

Ma

)

< 0

(11)
with D and G as defined in (5) according to the new
uncertainty block∆a as given in (10). The valueγopt =√

argmin γ2 is then the upper bound on the maximum
frequency response for the frequencyω0

i and a symmetric
frequency range with magnitude|Wω | aroundω0

i . �
The proof of this theorem follows directly from Theorem 1

and Corollary 1. If we solve the problem as defined in (11)
for the gridω = [ω0

1 , ω
0
2 , . . . , ω

0
N ] we get an upper bound for

each of these frequencies and a range around each of these
frequencies. This upper bound can then give us information
about time domain performance specifications, the original
objective. Observe that the range for which we can ensure
robust performance depends on|Wω | hence the latter should
be chosen such that each subsequent frequency will be
overlapped by its neighbours. In the following subsection,
we will give the same numerical example as we presented
before though now having uncertainty on the frequency as
discussed in this subsection.

A. Numerical Example

In this section we reconsider again the system as given
in (7). We will now make the frequency an uncertain pa-
rameter as we have discussed in the previous subsection.
Since the system in (7) has two integrators, the new uncertain
system will have one two times repeated uncertain parameter
in addition to the two uncertain parametersb andk. The new
uncertainty block is defined as∆a = bdiag(δb, δk, δωI2)
(hencenp = nq = 4) and the newMa matrix can then be
defined accordingly as:

Ma =




−Wbs −Wbs −Wbmsi −Wbk0i Wbs
−Wk −Wk −Wkmi −Wk(ms+b0)i Wk

−Wωs −Wωs −Wωmsi Wωk0i Wωs
−Wω −Wω −Wωmi −Wω(ms+b0)i Wω

−1 −1 −mi −(ms+b0)i 1




1

ms2 + b0s+ k0

When solving the problem as given in (11) while using
appropriate matricesD and G as given in (5), we obtain,
after properly choosingWω, the (continuous) upper bound as
illustrated in Figure 5. Note that we use the same frequency
grid as we did when computing the upper bound as depicted
in Figure 2. However, due to the fact that we made the
frequency an uncertain parameter, we are now also able to
guarantee an upper bound in between the frequencies under
consideration. It can be seen that we guarantee a maximum
peak of13.18 [dB] and that the nominal frequency response
is situated below the computed upper bound. It should be
clear that the upper bound is a bound on the maximum
amplitude frequency response hence we can conclude that
the maximum amplification of the system is not more than

13.18 [dB]. Using the previous method we guaranteed an
maximum amplification of6.91 [dB] which was already
violated by the nominal model. This implies that by using the
new method, we able to ensure time domain specifications
of the system which it really exhibits. The example given in
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Fig. 5. Frequency response of the nominal system (back line)and the
upper bound on the maximum frequency response.

this section illustrates that, by using the proposed method,
we are able to ensure time domain specifications of a system
which are guaranteed not violated. By using the standard
technique we can guarantee a better performance due to a
“wrong” choice of the frequency grid while this performance
is not exhibited by the system under consideration. The
novel method only needs a proper choice of the weight
Wω such that the subsequent frequencies overlap. For the
example considered until now, we could argue to increase the
density of the gridω to solve the frequency gridding problem
because we are dealing with a relatively simple system. Then
we will most likely not miss the peak in the maximum
amplitude frequency response. However, when dealing with
high dimensional systems, increasing the density ofω is not
always interesting. This is due to the fact that computing an
upper bound for high dimensional systems are computational
expensive. In the following section we apply the presented
method on such a high dimensional system.

V. L ARGE SCALE NETWORK APPLICATION

The large scale system studied in this section will be
a network ofN = 16 phase locked loops (PLLs) and is
taken from [13]. Such a network can for example be used
to distribute and synchronise a clock signal in a multi-
core processor [13]. The network can be presented using
the M∆-structure as depicted in Figure 6. Here we have
the static matrixM̃ which defines how the PLLs influence
each other in order to synchronize the network [7] (see
Equation (13)) and∆̃ = diag(T 1, T 2, . . . , T 16) with T l

defined as one PLL in the network. We furthermore have
the SISO performance transfer̃M ⋆ ∆̃ as the global transfer
function for which we would like to compute an upper
bound, i.e. for which we would like to ensure the optimal
robust performance as defined in Definition 1. This example



M̃

M̃ ⋆ ∆̃

∆̃

z̃ w̃

p̃q̃

Fig. 6. Block scheme representation of the large scale system.

is suitable for illustration since the performance is naturally
evaluated in the frequency domain [13].

A. PLL network description

In the network considered in this paper, all the PLLs
are homogeneous and their individual uncertainty blocks
belong to the same uncertainty set∆. These uncertainties
“capture” the technological dispersions which occur due
to the manufacturing process. They can be presented as
parametric uncertainties belonging to the same set∆. Then,
the description of theN PLLs is:

T l(iω0
i ) =

kl(iω
0
i + al)

− (ω0
i )

2
+ kliω

0
i + klal

, ∀l ∈ {1, . . . , N}

wherekl ∈ [0.76, 6.84]× 104, al ∈ [91.1, 273.3] andω0
i is

the current frequency. Furthermore,T l(iω0
i ) can written as

the interconnection of a certain and an uncertain part:

T l(iω0
i ) = ∆l ⋆ MPLL, ∆l ∈ ∆

with ∆l denoted as:

∆ = {∆l ∈ R
2×2 | ∆l = diag(δkl

, δal
)}

B. Performance analysis

The performance analysis of this network consists in
computing an upper bound on the maximum amplitude fre-
quency response. The problem of using standardµ-analysis
tools on such high dimensional system is the computation
effort needed to compute an upper bound on the maximum
amplitude frequency response due to the large scale aspect.In
order to reduce this effort, the authors in [7], [8] and [9] use
a method called the Hierarchical Approach initially proposed
in [14]. This method allows to reduce the computational
effort with respect to the time necessary when using standard
techniques. Nevertheless, it is interesting to reduce the reso-
lution of the frequency grid for which we compute the upper
bound in both methods: direct and hierarchical. Indeed, the
denser the frequency grid, the higher the computation effort.
However, we can miss important information if we reduce
the density and as a consequence, make false statements on
the time performance of the system as we have seen in the
numerical example presented in Section III. Therefore, it is
interesting to apply our method on the network of PLLs using
the Hierarchical Approach.

C. Hierarchical Approach for a range of frequencies

For the network considered here, the Hierarchical Ap-
proach consists of two steps, the local and the global step.
The final goal is to compute an upper bound on the maximum
amplitude frequency response of the SISO performance
transferM̃⋆∆̃, i.e. we would like to ensure the optimal robust
performance as defined in Definition 1 for the performance
transfer. In order to do so we can use Theorem 1. We can
unfortunately not use the parametrisation as defined in (5)
since in that case, the LMI in (3) is not by definition verified.
Hence the first (local) step of the Hierarchical Approach
consists of finding a suitable parametrisation of the set
Φ∆ such that (3) always holds. We will, in the following
subsections, describe the steps done in the Hierarchical
Approach in more detail.

1) Local step: In this step we make the frequency
in each PLL uncertain such that we obtain∆l

a =
diag(δkl

, δal
, δωI2). We then defineT l

a accordingly which
we can write asTa due to the fact that the PLLs are
homogeneous. Now we are interested in characterizing the
input-output behaviour of each PLL using integral quadratic
constraints (IQCs) which can, in the complex plane, be
interpreted by simple geometric forms: disc [7], band [8]
and cone [9] such that for each frequencyω0

i we have that:

(
Ta

I

)
∗
[
Xk Yk

Y ∗

k Zk

] (
Ta

I

)

< 0

with k ∈ {disc,band,cone}. Details concerning the formu-
lation of the IQCs are in [7], [8] and [9]. Finding the
matricesXk, Yk and Zk is also referred to as finding a
suitable embedding which can be characterised by IQCs. We
can apply Theorem 2 to obtain these IQCs for a range of
frequencies aroundω0

i .
2) Global step:The different IQCs obtained in the local

step can be used to characterize the16 PLLs gathered iñ∆
such that:

(

∆̃
I

)∗ [
X Y

Y ∗ Z

] (

∆̃
I

)

≥ 0

holds with:

X = −diag

(

∑

k

τ1kXk, . . . ,
∑

k

τNkXk

)

Y = −diag

(

∑

k

τ1kYk, . . . ,
∑

k

τNkYk

)

Z = −diag

(

∑

k

τ1kZk, . . . ,
∑

k

τNkZk

)

wherek ∈ {disc,band,cone} andτik > 0 are introduced to
increase the number of decision variables in the global step
which can reduce the possible conservatism.

Now we can apply Theorem 2 to solve the problem of
finding an upper bound on the maximum amplitude global
transfer frequency response by solving for each frequency



ω0
i in the grid the following problem:

min
γ2,X,Y,Z

γ2

s.t.

(
I

M̃

)∗







−X 0 −Y 0
0 −γ2I 0 0

−Y ∗ 0 −Z 0
0 0 0 I







(
I

M̃

)

< 0

(12)
The valueγopt =

√

argmin γ2 is then the upper bound on
the maximum amplitude frequency response of the transfer
M̃ ⋆ ∆̃ for the frequencyω0

i and a range around this
frequency defined byWω . Note that the problem defined
in (12) is an adapted version of the problem defined (6).
When we solve the problem given in (12) for the grid
ω = [ω0

1 , ω
0
2, . . . , ω

0
N ], the (continuous) upper bound as

depicted in Figure 7 is obtained. We observe in Figure 7 that
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Fig. 7. The upper bound on the maximum frequency response of the
performance transfer function.

the performance transfer can be seen as a sensitivity function
from which bandwidthωb, maximum peakMs and slope in
the low frequency region can be extracted. These can give
us information on the time domain specifications rise time,
overshoot and tracking behaviour of the system respectively.
Due to the fact that we use the proposed method, we are
able to ensure a continuous upper bound and will for sure
not miss any important information about the system.

VI. D ISCUSSION

In this paper we presented a method which allows us to
compute an upper bound for a range of frequencies on the
maximum amplitude frequency response of a system. The
range depend on the weightWω. If the latter is chosen such
that the subsequent frequencies in the frequency grid overlap,
then we are able to guarantee an continuous upper bound on
the maximum amplitude frequency response from the first
frequency in the grid to the last. It should be noted that
the solution can become conservative. The source of this
conservatism is the additional uncertainty on the frequency
one introduces in the system using the new method. This
conservatism depends on|Wω | which on its turn depends on
the resolution of the frequency grid. The denser the frequency
grid, the smaller we can make|Wω| since we need to set

this such that there is an overlap between the subsequent
frequencies. The upper bound will on its turn then become
less conservative.

VII. C ONCLUSIONS

The method presented in this paper allows us to ensure
an upper bound on the maximum amplitude frequency re-
sponse for a range of frequencies. This could be interesting
according to the example given in Section III. Here we have
illustrated that, by using a relatively simple SISO example,
information on the time domain specifications can be ensured
though these specifications are not really exhibited by the
system. This overestimation occurred sine we are not able to,
using classical techniques in the frequency domain, ensure
an upper bound for a range of frequencies. The method in
this paper however allows us to do so.

We also have showed that the new method can be applied
to a more advanced high dimensional system. It is even
more interesting to do so since in such a case it is more
important to keep the density of the frequency low due to
the otherwise increasing computational load. So the proposed
method allows us to keep the density of the frequency grid
low while also being able to ensure a continuous upper bound
from the first to the last frequency in the grid. By doing so we
are sure that the time domain specifications guaranteed using
the upper bound are the specifications the systems actually
has.
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