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Abstract

We present a Bayesian model selection approach to estimate the intrinsic dimensionality of
a high-dimensional dataset. To this end, we introduce a novel formulation of the probabil-
isitic principal component analysis model based on a normal-gamma prior distribution. In
this context, we exhibit a closed-form expression of the marginal likelihood which allows to
infer an optimal number of components. We also propose a heuristic based on the expected
shape of the marginal likelihood curve in order to choose the hyperparameters. In non-
asymptotic frameworks, we show on simulated data that this exact dimensionality selection
approach is competitive with both Bayesian and frequentist state-of-the-art methods.

Keywords: Dimensionality reduction, Marginal likelihood, Multivariate analysis, Model
selection, Principal components.

1. Introduction

The computer age is characterized by a surge of multivariate data, which are often difficult
to explore or describe. A natural way to deal with such datasets is to reduce their dimen-
sionality in a interpretable way, trying not to loose too much information. Accordingly, a
wide range of dimension-reduction techniques have been developed over the years. Principal
component analysis (PCA), perhaps the earliest of these techniques, remains today one of
the most widely used (Jolliffe and Cadima, 2016). Introduced by Pearson (1901) and redis-
covered by Hotelling (1933) in the beginning of the twentieth century, PCA has had indeed
an ubiquitous role in statistical analysis since the introduction of electronic computation in
the 1950s. Recent exemples include climate research (Hannachi et al., 2006), genome-wide
expression studies (Ringnér, 2008), massive text mining (Zhang and El Ghaoui, 2011), and
deep learning (Chan et al., 2015). For a more exhaustive overview of past applications of
PCA, we defer the reader to the monograph of Jolliffe (2002) or the recent review paper of
Jolliffe and Cadima (2016).

Specifically, PCA consists in a simple procedure: the practitioner orthogonally projects
his multivariate data on a space spanned by the eigenvectors associated with the largest
eigenvalues of the empirical covariance matrix. The dimension of the representation learnt
in this way is simply the number of eigenvectors – called principal components (PCs) –
kept for the projection. However, it may come as a surprise that in spite of the popular-
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ity of this method, no authoritative solution has been widely accepted for choosing how
many PCs should be computed. Common practice is to choose this dimension by con-
sidering the eigenvalues scree of the sample covariance matrix. This ad-hoc technique,
popularized by Cattell (1966), has been largely modified and perfected over the last fifty
years (Jackson, 1993; Zhu and Ghodsi, 2006), and is often chosen when PCA is used as
a building block within a larger algorithmic framework – see e.g. Bouveyron et al. (2007)
for an example in cluster analysis or Evangelopoulos et al. (2012) in latent semantic anal-
ysis. However, more refined approaches have also been developed. Earlier works were
based on hypothesis testing (Jolliffe, 2002, Section 6.1.4). Cross-validation, suggested by
Wold (1978) and developed over the years (Bro et al., 2008), is known to be effective in
a wide variety of settings (Josse and Husson, 2012). Another fruitful line of work fol-
lows the seminal article of Tipping and Bishop (1999), who recast PCA as a simple in-
ferential problem. Their model, called probabilistic PCA (PPCA), led to several model-
based methods for dimensionality selection, both from frequentist (Ulfarsson and Solo, 2008;
Bouveyron et al., 2011; Passemier et al., 2017) and Bayesian (Bishop, 1999; Minka, 2000;
Hoyle, 2008; Sobczyk et al., 2017) perspectives.

Most of the aforementioned methods are based on asymptotic considerations. However,
it was recently proven that, in an asymptotic framework, hard thresholding the eigenvalues
surprisingly suffices to provide an optimal dimensionality (Gavish and Donoho, 2014). Thus,
the path to more efficient schemes for finding the number of PCs goes through the study of
non-asymptotic criteria, which have been overlooked in the past. A natural non-asymptotic
answer is provided by exact Bayesian model selection, which was previously used at the
price of computationally expensive Markov chain Monte Carlo (MCMC) sampling (Hoff,
2007). We present here a prior structure based on the PPCA model that allows us to
exhibit a closed-form expression of the marginal likelihood, leading to an efficient algorithm
that selects the number of PCs without any asymptotic assumption. Specifically, we rely
on a normal prior distribution over the loading matrix and a gamma prior distribution over
the noise variance. Imposing a simple constraint on the hyperparameters of the respective
distributions, we show that this allows the data to marginally follow a generalized Laplace
distribution, leading to an efficient closed-form computation of the marginal likelihood. We
also propose a heuristic based on the expected shape of the marginal likelihood curve in
order to choose hyperparameters. With simulated data, we demonstrate that our approach
is competitive compared to state-of-the-art methods, especially in non asymptotic settings
and with less observations than variables. This setting is at the core of many practical
problems, such as genomics and chemometrics.

In Section 2, we briefly review PPCA and present several dimensionality selection tech-
niques based on this model. The new normal-gamma prior is presented in Section 3 together
with a derivation of the closed-form expression of the marginal likelihood. A heuristic to
choose hyperparameters is also presented. Numerical experiments are provided in Section
4.

2. Choosing the intrinsic dimension in probabilistic PCA

Let us assume that a centered independent and identically distributed (i.i.d.) sample
x1, ...,xn ∈ R

p is observed that we aim at projecting onto a d-dimensional subspace while
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retaining as much variance as possible. All the observations are stored in the n × p matrix
X = (x1, ...,xn)

T .

2.1 Probabilistic PCA

The PPCA model Md assumes that, for all i ∈ {1, ..., n}, each observation is driven by the
following generative model

xi = Wyi + εi, (1)

where yi ∼ N (0, Id) is a low-dimensional Gaussian latent vector, W is a p × d parameter
matrix called the loading matrix and εi ∼ N (0, σ2Ip) is a Gaussian noise term.

This model is an instance of factor analysis and was first introduced by Lawley (1953).
Tipping and Bishop (1999) then presented a thorough study of this model. In particular,
expanding a result of Theobald (1975), they proved that this generative model is indeed
equivalent to PCA in the sense that the principal components of X can be retrieved using
the maximum likelihood (ML) estimator WML of W. More specifically, if A is the p × d
matrix of ordered principal eigenvectors of XTX and if Λ is the d× d diagonal matrix with
corresponding eigenvalues, we have

WML = A(Λ− σ2Id)
1/2R, (2)

where R is an arbitrary orthogonal matrix.
Under this sound probabilistic framework, dimension selection can be recast as a model

selection problem, for which standard techniques are available. We review a few important
ones in the next subsection.

2.2 Model selection for PPCA

The problem of finding an appropriate dimension can be seen as choosing a "best model"
within a family of models (Md)d∈{1,...,p−1}. A first popular approach would be to use
likelihood penalization, leading to the choice

d∗ ∈ argmaxd∈{1,...,p−1}{log p(X|WML, σML,Md)− pen(d)},

where pen is a penalty which grows with d. These methods include the popular Akaike
information criterion (AIC, Akaike, 1974), the Bayesian information criterion (BIC, Schwarz,
1978), or other refined approaches (Bai and Ng, 2002). However, their merits are mainly
asymptotic, and our main interest in this paper is to investigate non-asymptotic scenarios.
While the penalty term is usually necessary to avoid selecting the largest model, under
a constrained PPCA model, called isotropic PPCA, Bouveyron et al. (2011) proved that
regular maximum likelihood was suprinsingly consistent. While the theoretical optimality
of this method is also asymptotic, the fact that it directly maximizes a likelihood criterion
which is not derived based on asymptotic considerations makes it of particular interest within
the scope of this paper.

Another interesting set of techniques non-asymtotic in essence is Bayesian model selection
(Kass and Raftery, 1995). Such approaches require the (approximate) computation of the
marginal likelihood of Bayesian versions of the PPCA model. However, the usual Bayesian
information criterion (BIC) approximation fails to approximate the marginal likelihood in
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the case of PPCA because of violated regularity conditions. To grasp the origin of these
violations, consider the case where the true intrinsic dimensionality is one – so that the
data lives close to a “true line”. It is then possible to find a continuously infinite set of 2-
dimensional planes that all contain this true line, leading to the non-invertibility of the Fisher
information matrix of the PPCA model for d = 2 in some parts of the parameter space,
and to the failure of the Laplace approximation that underlies the BIC. More details on
these problems for the very close factor analysis model can be found in Drton and Plummer
(2017). Note that, even though the BIC provides a poor approximation of the marginal
likelihood of a PPCA model, it can asymptotically lead to consistent model selection in a
variety of settings (Bai et al., 2018). A more refined approach than the BIC was proposed by
Minka (2000) who derived a Laplace approximation of the marginal likelihood, that involves
the eigenvalues of the covariance matrix. This technique, albeit asymptotic and subject to
the same regularity violations, has been proven empirically efficient in several small-sample
scenarios.

Another interesting framework considered in the literature is the case where both n
and p grow to infinity. Several consistent estimators have been proposed, both from a pe-
nalization point of view (Bai and Ng, 2002; Passemier et al., 2017; Bai et al., 2018), using
Stein’s unbiased risk estimator (Ulfarsson and Solo, 2008) or in a Bayesian context (Hoyle,
2008; Sobczyk et al., 2017). While these high-dimensional scenarios are of growing impor-
tance, they fall beyond the scope of this paper, which is focused on the non-asymptotic
setting (with potentially fewer observations than variables), for which very few automatic
dimension selection methods are available.

3. Exact dimensionality selection for PPCA under a normal-gamma prior

In this section, we present a prior structure that leads to a closed-form expression for the
marginal likelihood of PPCA.

3.1 The model

We consider the regular PPCA model already defined in (1),

∀i ∈ {1, ..., n}, xi = Wyi + εi,

where yi ∼ N (0, Id), W is a p × d parameter matrix, and εi ∼ N (0, σ2Ip). We rely on
a Gaussian prior distribution over the loading matrix W and a gamma prior distribution
over the noise variance σ2. Specifically, we use a gamma prior σ2 ∼ Gamma(a, b) with
hyperparameters a > 0 and b > 0 together with i.i.d. Gaussian priors for the entries of
the loading matrix wjk ∼ N (0, φ−1) for j ∈ {1, ..., p} and k ∈ {1, ..., d} with some precision
hyperparameter φ > 0.

Within the framework of Bayesian model uncertainty (Kass and Raftery, 1995), the pos-
terior probabilities of models can be written as, for all d ∈ {1, ..., p},

p(Md|X, a, b, φ) ∝ p(X|a, b, φ,Md)p(Md), (3)

where

p(X|a, b, φ,Md) =

n∏

i=1

∫

Rd×p×R+

p(xi|W, σ,Md)p(W|φ)p(σ|a, b)dWdσ,
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is the marginal likelihood of the data under conditional independence (Kass and Steffey,
1989). Note that this expression also involves model prior probabilities – in this paper, we
will simply consider a uniform prior

∀d ∈ {1, ..., p}, p(Md) ∝ 1.

Computing the high-dimensional integral of the marginal likelihood usually comes at
the price of various approximations (Bishop, 1999; Minka, 2000; Hoyle, 2008) or expensive
sampling (Hoff, 2007). However, with our specific choice of priors, and imposing a constraint
on their respective hyperparameters, we obtain a closed-form expression for the marginal
likelihood.

Theorem 1 Let d ∈ {1, ..., p}. Under the normal-gamma prior with b = φ/2, the log-
marginal likelihood of model Md is given by

log p(X|a, φ,Md) =

n∑

i=1

log p(xi|a, φ,Md)

= −n log 2− np

2
log(2π)− np

2
log(2φ−1)− n log Γ(a+ d/2)

+ (a+
d− p

2
)

n∑

i=1

log(

√
φ||xi||2
2

) +

n∑

i=1

logKa+(d−p)/2(
√

φ||xi||2),

(4)

where Kν is the modified Bessel function of the second kind of order ν ∈ R.

A detailed proof of this theorem is given in the next subsection. Note that the modified
Bessel function Kν can be evaluated using most statistical computing software. For instance,
we used in our experiments the R package Bessel (Mäechler, 2013).

To the best of our knowledge, this result is the first computation of the marginal likeli-
hood of a PPCA model. It is worth mentioning that, in a slightly different context, Ando
(2009) also derived the marginal likelihood of a factor analysis model, with Student factors.
Similarly, Bouveyron et al. (2018) derived the exact marginal likelihood of the noiseless
PPCA model, in order to obtain sparse PCs.

It is worth noticing that the use of a gamma prior for a variance parameter is rather pecu-
liar. Indeed, most Bayesian hierarchical models choose inverse-gamma priors for variances.
This choice is often motivated by its conjugacy properties (see e.g. George and McCulloch,
1993, for a linear regression example or Murphy, 2007, in a wider setting). The derivation
provided in the next subsection notably explains why this gamma prior over σ2 actually
arises naturally.

Regarding the loading matrix, Gaussian priors have been extensively used in the past
(Bishop, 1999; Archambeau and Bach, 2009; Nakajima et al., 2015; Bouveyron et al., 2018).
They also correspond to the usual prior choice for probabilistic matrix factorization (Mnih and Salakhutdinov,
2008). Since the number of “free parameters” of the loading matrix is dp − d(d − 1)/2
(see e.g. Sobczyk et al., 2017, Appendix B), such Gaussian priors that sample indepen-
dently dp values can be seen as too overparametrised. Consequently, several methods
build priors on parameter spaces of smaller dimensions. Indeed, both Minka (2000) and
Hoff (2007) place priors on the singular values decomposition of W rather than directly
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on W. These approaches allow to maintain the identifiability of the PPCA model. On
the other hand, overparametrised priors, like the one considered in this paper, lead to
more complex and less interpretable posteriors, but have particularly interesting dimen-
sionality selection properties, both in practice (Bishop, 1999; Archambeau and Bach, 2009;
Knowles and Ghahramani, 2011) and in theory (Nakajima et al., 2015). Note also that Ando
(2009) as well as Bouveyron et al. (2018), who derived closed-forms of marginal likelihoods
of related models, relied on such overparametrised priors.

When it comes to hyperparameters, while Hoff (2007) uses empirical Bayes heuristics,
Minka (2000) avoids hyperparameter specification by relying on the asymptotics of the
Laplace approximation. Similarly, the BIC-based approach of Sobczyk et al. (2017) is prior-
independent. Being prior-dependent our approach would allow conversely to tune hyper-
parameters using prior knowledge (for example, prior knowledge on σ may be known by
assessing PCA reconstruction quality). We also propose an automatic empirical Bayes way
of choosing these hyperparameters in Section 3.3.

3.2 Derivation of the marginal likelihood

We begin by shortly reviewing the generalized Laplace distribution, which will prove to be
key within the PPCA framework. This distribution was introduced by Kotz et al. (2001, p.
257). For a more detailed overview, see Kozubowski et al. (2013).

Definition 2 A random variable z ∈ R
p is said to have a multivariate generalized

asymmetric Laplace distribution with parameters s > 0,µ ∈ R
p and Σ ∈ S+

p if its
characteristic function is

∀u ∈ R
p, φGALp(Σ,µ,s)(u) =

(

1

1 + 1
2u

TΣu− iµTu

)s

.

When µ = 0, the generalized Laplace distribution is elliptically contoured and is referred
to as the symmetric generalized Laplace distribution. The elementary properties of the
generalized Laplace distribution are discussed by Kozubowski et al. (2013). We list the ones
that we consider in the proof of Theorem 1.

Proposition 3 If z ∼ GALp(Σ,µ, s), we have E(z) = sµ and Cov(z) = s(Σ + µµT ).
Moreover, if Σ is positive definite, the density of z is given by

∀x ∈ R
p, fz(x) =

2eµ
T
Σ

−1
x

(2π)p/2Γ(s)
√
detΣ

(
QΣ(x)

C(Σ,µ)

)s−p/2

Ks−p/2 (QΣ(x)C(Σ,µ)) , (5)

where QΣ(x) =
√
xTΣ−1x and C(Σ,µ) =

√

2 + µTΣ−1µ.

Proposition 4 Let s1, s2 > 0,µ ∈ R
p and Σ ∈ S+

p . If z1 ∼ GALp(Σ,µ, s1) and z2 ∼
GALp(Σ,µ, s2) are independant random variables, then

z1 + z2 ∼ GALp(Σ,µ, s1 + s2). (6)

6



Bouveyron, Latouche, and Mattei

This proposition is a direct consequence of the expression of the characteristic function of
the generalized Laplace distribution.

Another appealing property of the multivariate generalized Laplace distribution is that it
can be interpreted as an infinite scale mixture of Gaussians with gamma mixing distribution
(a property called Gauss-Laplace representation by Ding and Blitzstein, 2017).

Proposition 5 (Generalized Gauss-Laplace representation) Let s > 0 and Σ ∈ S+
p .

If u ∼ Gamma(s, 1) and x ∼ N (0,Σ) is independent of u, we have

√
ux ∼ GALp(Σ, 0, s). (7)

For a proof of this result, see Kotz et al. (2001, Chapter 6).
To prove Theorem 1, we first study the marginal distribution of the signal term. Follow-

ing Mattei (2017), we can state the following lemma.

Theorem 6 Let W be a p × d random matrix with i.i.d. columns following a N (0, φ−1Ip)
distribution, y ∼ N (0, Id) be a Gaussian vector independent from W. We obtain

Wy ∼ GALp(2φ
−1Ip, 0, d/2). (8)

Lemma 7 Let W be a p × d random matrix with i.i.d. columns following a N (0, φ−1Ip)
distribution, y ∼ N (0, Id) be a Gaussian vector independent from W. We obtain

Wy ∼ GALp(2φ
−1Ip, 0, d/2). (9)

Proof For each k ∈ {1, ..., d} let wk be the k-th column of W, uk = y2k and ξk = ykwk.
To prove the lemma, we demonstrate that ξ1, ..., ξd follow a GAL distribution and use the
decomposition

Wy =
d∑

k=1

ξk.

Let k ∈ {1, ..., d}. Since y is standard Gaussian, uk = y2k follows a χ2(1) distribution, or
equivalently a Gamma(1/2, 1/2) distribution. Therefore, uk/2 ∼ Gamma(1/2, 1). Moreover,

note that
√
ukwk = |yk|wk = yksign(yk)wk

d
= ykwk since |yk| and sign(yk) are independent

and sign(yk)wk
d
= wk. Therefore, according to Proposition 5, we have

ξk =

√
uk
2

√
2wk ∼ GALp(2φ

−1Ip, 0, 1/2).

Since ξ1, ..., ξd are i.i.d. and following a GALp(2φ
−1Ip, 0, 1/2) distribution, we can use

Proposition 4 to conclude that

Wy =

d∑

k=1

ξk ∼ GALp(2φ
−1Ip, 0, d/2).

We now focus on the second term of (1) involving the noise vector.
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Lemma 8 Let εi|σ2 ∼ N (0, σ2Ip) and σ2 ∼ Gamma(a, b) then

εi ∼ GALp

(
b−1Ip, 0, a

)
.

Proof Again, the Gauss-Laplace representation is leveraged. Indeed, the noise can be
written as

εi =
√
bσ2ei,

where ei ∼ N (0, b−1Ip). Therefore, the Gauss-Laplace representation allows to conclude.

Now that we have proved that both the signal and the noise term follow marginally a
generalized Laplace distribution, we use Proposition 4 which ensures that, assuming b = φ/2,
the sum of the two generalized Laplace random vectors is a generalized Laplace random
vector:

xi ∼ GALp(2φ
−1Ip, 0, a+ d/2). (10)

Using the expression of the density of the generalized Laplace distribution, we eventually
end up with the closed-form expression of the marginal likelihood of Theorem 1.

3.3 Choosing hyperparameters

To obtain a closed-form expression of the marginal likelihood, we have shown that it is
sufficient to assume that b = φ/2. This constraint, which appeared quite arbitrarily for
the sake of mathematical convenience, has the benefit of not being too limiting. Indeed,
since the other parameter of the gamma prior is unconstrained, the prior variances of the
loading matrix and the noise variance remain untied by the constraint, and may be chosen
independently. Two hyperparameters remain henceforth to be tuned: the shape parameter of
the gamma prior a and the precision hyperparameter φ. We developed data-driven heuristics
for this purpose.

A first observation is that, when d grows, σ is expected to decay because the signal part
of the model can be more expressive. This prior information can be distilled into the model
by roughly centering the gamma priors on estimates of σ̂ (note that this rationale is close
to the one of Hoff, 2007). More precisely, our heuristic is to choose a such that E(σ) ∝ σ̂ for
each d. In order for φ to control the diffusiveness of both the loading matrix and the variance,
we specifically made the choice a = σ̂2/φ. In our experiments, we chose the ML estimator
σ̂ = σML (which is the mean of the p− d smallest eigenvalues of the covariance matrix, see
Tipping and Bishop, 1999) but more complex estimates may be considered (Passemier et al.,
2017).

Regarding the remaining parameter φ, we propose a heuristic based on the following
statements which can be made regarding the problem of dimension selection:

• overestimation of d should be preferred to underestimation since loosing some informa-
tion is much more damageable than having a representation not parsimonious enough,

• consequently, the marginal likelihood curve as a function of the dimension should have
two distinct phases: a first one when "signal dimensions" are added (before the true
value of d), and a second one, when "noise dimensions" are added.
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Figure 1: Different shapes of the marginal likelihood curve for growing values of φ. φ∗ cor-
responds to the maximum of the heuristic criterion that we describe is Subsection
3.3. The true dimensionality is 20. More detailed results are available as an online
GIF animation (http://pamattei.github.io/animationeasy.gif).

Thus, we built a simple heuristic criterion to judge the relevance of a choice of φ by the
shape of the marginal likelihood curve. First, if the slope of the first part of the curve
(before the maximum) is lower than the slope of the second part, this means that this choice
leads to underestimation and is therefore discarded. Second, the criterion is equal to the
discrete second derivative of the marginal likelihood curve evaluated at the maximum, in
order to select a hyperparameter leading to a strong distinction between the two phases.
This criterion is eventually maximized over a grid of values of φ. When there is no maximum,
we set the heuristic criterion to −∞: this is equivalent to putting zero prior mass on the two
extreme models of the curve, which is consistent with the idea of having two distinct phases
in the marginal likelihood curve. This scheme for hyperparameter choice is illustrated in
Fig. 1 using the simpler simulation scheme described in Subsection 4.2.

4. Numerical experiments

In this section, we perform some numerical experiments in order to highlight the main
features of the proposed approach and to compare it with state-of-the-art methods.

4.1 Simulation scheme

To assess the performance of our algorithm (referred hereafter as ngPPCA or NG, for short),
we consider the following simulation scheme in the following experiments. We follow the
simulation setup proposed in Bouveyron et al. (2011) based on their isotropic PPCA model.
We therefore simulate data sets following the isotropic PPCA model which assumes that the
covariance matrix of X has only two different eigenvalues α and β (instead of d+ 1 in the
PPCA model). In this case, the signal-to-noise ratio (SNR hereafter) is simply defined by

SNR =
αd

β(p− d)
.

9
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In our simulation, β is set up to 1 and α > 1, which will control the strength of the signal,
varies to explore different signal-to-noise ratios. Then, an orthonormal p × p matrix Q

is drawn uniformly at random. The data is eventually generated according to a centered
Gaussian distribution with covariance matrix

QTdiag(

d times
︷ ︸︸ ︷
α, ..., α,

p−d times
︷ ︸︸ ︷

1, ..., 1 )Q.

Finally, the number p of variables is fixed to 50 in all experiments and the number n of
observations varies in the range {40, 50, 70, 100}.

4.2 Introductory examples

We first conduct two small simulations to illustrate the behaviour of our algorithm and its
difference with the Laplace approximations of Minka (2000) and Sobczyk et al. (2017). We
consider two scenarios: a simple case and a harder and more realistic one.

Simple scenario We consider a setup with n = 100 and SNR = 20. In this simple
scenario, we first illustrate our heuristic for hyperparameter tuning by displaying marginal
likelihood curves for different values of φ (Fig. 1). The heuristic criterion allows to find the
desired shape, leading to a correct dimensionality estimation. A GIF animation displaying
all values of the criterion for a large grid of 200 values of φ is provided as a online material1.
This animation illustrates on this simple data set, a wide range of values of φ lead to
dimensionality recovery. Our heuristic proposal φ∗ is roughly located in the center of this
range. On Fig. 2, we compare the results of our algorithm with the Laplace approximations
of the marginal likelihood of Minka (2000) and Sobczyk et al. (2017). In this case, both
methods recover the true dimensionality of the data and are very confident with their choice
(the posterior probability of the true model is higher than 99% for all approaches). The
three curves have a similar shape, in compliance with the expected shape, as detailed in
Subsection 3.3.

Challenging scenario We now consider a setup with n = 40 and SNR = 20. A GIF
animation illustrating hyperparameter tuning is provided online2. Again, our results are
compared with Laplace approximations (Fig. 3). Regarding our exact approach (left panel),
the marginal likelihood curve has a similar shape to the one of the first simulation. This
shape is satisfactory, even though the algorithm slightly underestimates the dimensionality
by choosing the model M19 (with posterior probability > 99%). The true model M20 is the
second best model according to the NG prior.

Minka’s (2000) Laplace approximation prefers simpler models (with lower intrinsic di-
mensionality). Indeed, the top two models chosen by this Laplace approximation are M18

(with posterior probability 73.8%) and M19 (with posterior probability 26.2%).

Like our approach, PESEL (Sobczyk et al., 2017) chooses M19 with posterior probability
> 99%. However, it also has a tendency to prefer overly simple models. Indeed, the second
best model is M18, and PESEL gives a surprisingly high posterior probability to very simple

1. http://pamattei.github.io/animationeasy.gif

2. http://pamattei.github.io/animationhard.gif
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Figure 2: Exact log-evidence for ngPPCA (left) and the Laplace approximations of Minka
(2000) (middle) and Sobczyk et al. (2017) (right) for the simpler simulation sce-
nario (n = 100). The true dimensionality is d = 20. All three curves have the
desirable properties detailed is Subsection 3.3 and find the correct dimensionality
d = 20.
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Figure 3: Exact log-evidence for ngPPCA (left) and the Laplace approximations of Minka
(2000) (middle) and Sobczyk et al. (2017) (right) for the more challenging simu-
lation scenario (n = 40). The true dimensionality is d = 20. Both Laplace ap-
proximations have their way of preferring overly simple models, while the shape
provided by ngPPCA is consistent with the ones obtained with n = 100.
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models with less than 5 dimensions. Indeed, for example, PESEL prefers M1,M2,M3, or
M4 over M10.

By being more resistant to underestimation, the exact method appears less likely to de-
stroy valuable information, which would be damaging in a dimensionality selection context.

As a summary, those experiments confirm the expected behaviors of NG vs. Laplace
approximations: in the first scenario (n = 100, p = 50), the asymptotic assumption of the
Laplace approximations are much more relevant than in the second setup (n = 40, p = 50).
Our method, which does not rely on such an assumption, is less impacted by the reduction
of the sample size. Moreover, our heuristic for hyperparameter selection prevents against
damaging underestimation.

4.3 Benchmark comparison with other dimension selection methods

This section now focuses on the comparison of our methodology with other dimension se-
lection methods. We here consider all possible scenarios with n ∈ {40, 50, 70, 100} and a
SNR grid going from 1.5 to 30 (50 repetitions are made for each case). We compare the
performance of our technique based on the normal-gamma prior (NG) with the following
four competitors:

• the Laplace approximation of Minka (2000) which is a benchmark Bayesian method
for dimension selection,

• the generalized cross-validation approximation (GCV) of Josse and Husson (2012)
which is known to give state of the art results in many scenarios (see the vast simulation
study of Josse and Husson, 2012),

• the high-dimensional Laplace approximation of Sobczyk et al. (2017) called PESEL,
which performs well even in scenarios that imply a large number of variables,

• the profile likelihood approach (PL) of Zhu and Ghodsi (2006) which represents scree-
based techniques and has been very popular in several different contexts (Fogel et al.,
2007; Evangelopoulos et al., 2012),

• the ML approach of Bouveyron et al. (2011), which maximizes a non-asymptotic crite-
rion (the likelihood). Notice that this approach is specifically adapted to our simulation
scheme and this advantage allows us to consider this technique as a gold-standard for
this simulated data.

We use two metrics to evaluate the results, one based on point estimates of the dimension-
ality, and one based on the posterior mass of a neighbourhood of the true dimensionality.

First, we assess in Fig. 4 the percentage of correct answers given by each algorithm,
which is a standard measure used in other simulations studies (see e.g. Minka, 2000; Hoyle,
2008; Ulfarsson and Solo, 2008). One can first notice that all methods vastly outperform the
profile likelihood (PL) approach, which seems not well-suited for small sample sizes. Second,
generalized cross-validation gives often satisfactory results, but fails to be competitive with
model-based methods (Laplace, ML, NG and PESEL) when the SNR is high. The ML
approach has a good behavior, especially when n is very small, this is partly explained by
the fact that it is designed for this very simulation setup. Regarding the three Bayesian
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methods, the Laplace approximation is often outperformed by PESEL, and consistently
outperformed by our approach (NG), mainly because of the important violation of the
n → +∞ assumption. PESEL gives very good results at high SNR, but is outperformed
by our approach at low SNR, which eventually is the only method that gives satisfactory
results in all settings (high and low SNR, moderate and small n).

Second, to compare the relevance of the various Bayesian posteriors, we evaluate the
posterior probabilities that d ∈ {18, ..., 22} for the two Laplace approximations, as well as for
our approach (Fig. 5). By this standard, NG outperforms the two Laplace approximations
in almost all scenarios. Perhaps more importantly, these results suggest that both Laplace
approximations are generally overly confident, and underestimate model uncertainty. This is
especially the case for PESEL, which goes very quickly from being very confident that d is far
away from 20, to being very confident that d is exactly 20. On the other hand, our approach
always gives a small posterior mass to the fact that d is close to 20, and slowly grows more
and more confident. These results illustrate that BIC-like approximations usually provide
good point estimates, but poor posterior estimates (see e.g. Drton and Plummer, 2017,
Section 5.2, for another example of this quite general phenomenon).

5. Conclusion

PCA is more of a descriptive and exploratory tool than a model. Therefore, no unique
dimension selection method should be uniquely preferred – sometimes, very relevant infor-
mation may actually lie within the last PCs (Jolliffe, 2002, section 3.4).

However, PCA’s ubiquity in the statistical world makes necessary the search for guid-
ance procedures to help the practitioner choose the number of PCs. This need is even more
critical when the data are scarce or particularly expensive. Our work, by deviating from
usually adopted asymptotic settings, is a step in that direction. Regarding future work, our
exact computation of model posterior probabilities may be used to perform Bayesian model
averaging (Hoeting et al., 1999) in predictive contexts. Potential applications could involve
principal component regression (Jolliffe, 2002, Chapter 8), image denoising (Deledalle et al.,
2011), or deep learning (Chan et al., 2015). In that context, potential drawbacks of ap-
proaches based on the marginal likelihood (like ours or the Laplace approximations) would
be that they can suffer importantly from model misspecification, and that they might not
be optimal for predictive purposes.

As a concluding note, this work comes as an illustration that exactly computing the
marginal likelihood is sometimes easier than expected. Although both recent asymptotic
approximations (Drton and Plummer, 2017) and the MCMC arsenal (Friel and Wyse, 2012)
are well-equipped to deal with marginal likelihoods, we argue, like Lin et al. (2009), that
finding exact expressions is an important task that should not be deemed untractable too
hastily.
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