
HAL Id: hal-01484077
https://hal.science/hal-01484077

Submitted on 6 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Timed Sequences: A Framework for Computer-Aided
Composition with Temporal Structures

Jérémie Garcia, Dimitri Bouche, Jean Bresson

To cite this version:
Jérémie Garcia, Dimitri Bouche, Jean Bresson. Timed Sequences: A Framework for Computer-Aided
Composition with Temporal Structures. TENOR 2017, 3rd International Conference on Technologies
for Music Notation and Representation, May 2017, A Coruña, Spain. �hal-01484077�

https://hal.science/hal-01484077
https://hal.archives-ouvertes.fr


TIMED SEQUENCES: A FRAMEWORK FOR COMPUTER-AIDED
COMPOSITION WITH TEMPORAL STRUCTURES

Jérémie Garcia
Universit de Toulouse – ENAC

Toulouse, France
jeremie.garcia@enac.fr

Dimitri Bouche, Jean Bresson
UMR STMS

IRCAM-CNRS-UPMC Sorbonne Universités
Paris, France

{bouche,bresson}@ircam.fr

ABSTRACT

The software framework we present implements a sim-
ple and generic representation of the temporal dimension
of musical structures used in computer-aided composition
software. These structures are modeled as ordered sets of
abstract “timed items” whose actual dates can be set and
determined following different strategies. The timed items
can be linked to an underlying action scheduling and ren-
dering system, and can also be used as temporal handles to
perform time stretching and hierarchical synchronization
operations. A graphical user interface associated with this
model can be embedded as a component within musical
editors. We give several examples of musical objects im-
plemented in this framework, as well as examples of time-
domain operations and user interactions.

1. INTRODUCTION

Contemporary music composers commonly use computer
systems to generate musical structures (scores, sounds,
control data for signal and media processing). Most of
these structures embed a fundamental notion of timing,
which is expressed differently depending on their nature,
on the tools used to create or manipulate them, or on the
approach of the composer working and producing them.
Working with time in consistent and efficient ways is there-
fore an important and challenging issue in computer music
practice and research [1, 2].

Let us take the example of a compositional process in-
volving the control of sound spatialization and the mo-
tion of sound sources defined with a set of 2D- or 3D-
trajectories — sequences of pairs {time, 3D-position} for
the different sound sources. Composers can face here sev-
eral non-trivial time-related tasks such as the inner tim-
ing of the trajectories, their synchronization with the con-
tent of the sound sources or with other trajectories, etc.
They may also want to integrate these trajectories within
a higher-level time-structure along with other musical data
— typically, in a score or in a Digital Audio Workstation.
Besides, all these operations are likely to be repeated and
spread at different levels of the compositional process, and

Copyright: c©2017 Jérémie Garcia et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

applied to other types of musical objects with similar tem-
poral characteristics.

Various approaches have been explored to unify and
synchronize temporal dimensions of signal and symbolic
structures in computer music environments, either from a
graphical point of view [3] or from a more formal, logical
perspective using temporal constraints [4], however with-
out focusing explicitly on user-interaction.

From a composer’s perspective, Stroppa and Duthen [5]
introduced the concept of pivots, as “virtual anchors that
are used to describe temporal objects [which] act as a skele-
ton of the temporal structure of the object and will be used
to organise various elements together”. Bel [6] followed a
similar approach to describe musical objects and satisfy
temporal constraints, but used a simpler model using a
unique pivot for each object, thus not capturing any pos-
sible complexity in the internal time structures.

The present project takes place in the OpenMusic com-
puter-aided composition environment [7]. It originates from
previous work on the control of sound spatialization pro-
cesses [8], and aims at facilitating the creation of musical
objects by providing a unified framework to support both
computational and graphical interaction for timing opera-
tions.

We propose a generic representation and software frame-
work designed as a “temporal backbone” for musical struc-
tures, representing them as simple sequences of timed com-
ponents, which we call timed-items. Timed-items can have
different roles to make for explicit structuring, time trans-
formations, or synchronization operations. They help han-
dling time both at the micro level, to specify the inner
structure of the musical objects, and at the macro level,
to organize them in compound structures.

We describe the architecture and the main characteristics
of the model in Section 2. We then present the correspond-
ing graphical user interface and interactions in Section 3.
In Section 4, we give several examples of musical objects
and interfaces implemented in OpenMusic. In Section 5,
we describe internal and external synchronization opera-
tions, and how this representation system supports the def-
inition and manipulation of global time structures in a com-
positional process.

mailto:jeremie.garcia@enac.fr
mailto:bouche@ircam.fr
http://creativecommons.org/licenses/by/3.0/


2. MODEL AND ARCHITECTURE

2.1 Timed Sequences

We consider timed musical objects as subclasses of an ab-
stract superclass that we call a TIMED-SEQUENCE. This
class holds an ordered set of “timed items” which represent
basic components determining the temporal organisation
inside the musical object. Public accessors allow the user
(or programmer) to deal seamlessly with this list of items.
Subclasses of TIMED-SEQUENCE can either use these ac-
cessors to maintain it during the life of an instance, or re-
define them in order to redirect reading/writing and timing
operations to existing attributes of the structure. A couple
of additional methods can also be overridden to redefine or
complement the addition or deletion procedures of timed
items in a TIMED-SEQUENCE.

The main application programming interface (API) con-
tains the following functions:

- get-timed-item-list:
⇒ returns the list of timed items of a TIME-SEQUENCE

- set-timed-item-list:
⇒ sets a new list of timed items in a TIME-SEQUENCE

- make-timed-item-at-time:
⇒ returns an item created at a given date in a TIME-
SEQUENCE

- remove-timed-item:
⇒ removes an given item from a TIME-SEQUENCE

2.2 Timed Items

The class TIMED-ITEM is also provided as a default super-
class for the elements in a TIMED-SEQUENCE. Each item
has a time value (or date), which can be explicit (specified
by the user) or implicit. It is not mandatory indeed, that all
the elements in a TIMED-SEQUENCE have an explicit date:
if we consider a trajectory describing a motion in space, for
instance, a global duration might be specified for the mo-
tion, without a specific date assigned to every point in that
trajectory: in this case, points’ timing can remain implicit.

If its date is implicit, however, a TIMED-ITEM must be
included in a sequence where an explicitly-dated item is
present before and after it. The computation of a date is
then possible provided a measure of distance exists be-
tween two items of a given type, which allows for time
interpolation. 1 Implicit dates are therefore computed “on-
deman” (as in a lazy-evaluation approach) and are implic-
itly updated by any change in the TIMED-SEQUENCE.

Finally, a special tag (master) can be assigned to the
TIMED-ITEMs, meaning that they can be used as anchors
for global time transformation or synchronization opera-
tions. Only explicitly-timed items can be tagged as master,
and the first and last items of a sequence are always consid-
ered as master: they have a date assigned by default, and
are privileged anchors to stretch, compress or synchronize
the musical structures.

1 The same measure of distance, in the case of spatial trajectories for
instance, can be used to determine if two successive items are at the same
position (distance = 0). This implies an idea of stability or steadiness of
the structure over the duration defined by the two items.

2.3 Time-modification of Items

Interactions with the TIMED-SEQUENCE mostly consist in
setting the date of the TIMED-ITEMs by different means:
graphical or algorithmically. Depending on the type of the
item, this operation will yield different effects as illustrated
in Figure 1:

• Setting the date or moving an “untimed” item makes
it explicitly timed.

• Changing the date of an explicitly timed item affects
and updates the implicit date of its direct and indirect
untimed neighbours.

• Changing the date of a master item changes the date
of its direct or indirect timed neighbours and thus
impacts the implicit date of their direct and indirect
untimed neighbours as well.

The set of possible types of item: {untimed, timed,master}
is therefore strictly ordered, which introduces a hierarchy
in the temporal structure that influences the way explicit
or implicit dates are computed: the date of an item is sys-
tematically updated according to the dates of its closest left
and right neighbours of a superior type.

Figure 1. Impact of the time-modification of a timed-
item (horizontal arrows indicate the changes yield by the
initial item translation). a) Simple translation of a timed
item (with timed neighbours — no side-effect). b) Trans-
lation with update of an item with no explicit date on the
right (preserving a constant ratio). c) Translation and time
stretching between master timed items.

2.4 Rendering

The TIMED-SEQUENCE model also allows for a seamless
integration of musical objects in a generic rendering sys-
tem [9]. In addition to the previous API, the method collect-
actions allows a TIMED-SEQUENCE to return a list of ac-
tions and tasks to execute, related to the rendering of the
structure in a given time interval. Actions can just be as-
signed to TIMED-ITEMs, so that playing the musical se-
quence can be modeled as reading through the list of TIMED-
ITEMs in the corresponding interval, and triggering the cor-
responding actions. They can also be generated or interpo-
lated to produce more complex sequences of actions dy-
namically: sampling can be achieved for instance by pe-
riodic calls to the make-timed-item-at-time function, not
modifying the original sequence of TIMED-ITEMs.



Figure 2. Main view of the timeline-editor associated to a TIME-SEQUENCE. The TIMED-ITEMs of different types are
represented respectively as ◦ (untimed / implicit time), • (timed) and � (master).

3. GRAPHICAL EDITOR AND INTERACTIONS

A graphical user interface (GUI) is associated to the TIMED-
SEQUENCE. This GUI allows the visualization of the TIMED-
ITEMs and the execution of the most common operations
on time structures. The main view (called timeline-editor,
see Figure 2) lets the user select, add or delete timed items
via calls to the API functions. For instance, adding a point
in the timeline-editor (command+click) triggers a call to
make-timed-item-at-time and adds the returned item to
the sequence using set-timed-item-list. Setting/changing
the date of TIMED-ITEMs is essentially done by transla-
tions on the timeline using the mouse. Keyboard short-cuts
let user change the “type” of the items, mainly to turn stan-
dard items to master items and vice-versa.

Each master item creates a marker in the ruler visible at
the bottom of the view. The marker, displayed as a yellow
arrow, can be used as a proxy to move and synchronize
the master item with the ruler. A cursor is also displayed
as a vertical red line (around 1600 ms in Figure 2), which
can be linked to the playback and rendering functionalities
of the host environment to display or set the current play-
time.

4. IMPLEMENTATION OF MUSICAL OBJECTS

A core set of objects can be defined in the generic frame-
work introduced so far. It is possible to build such objects
directly on top of the proposed architecture (Section 4.1),
or by adapting existing objects to implement its API (Sec-
tions 4.2 and 4.3). The TIMED-SEQUENCE API and the
timeline-editor handle the time representation and manip-
ulations of the integrated objects.

4.1 Basic Timed Sequences

The TIMED-SEQUENCE model defines a generic type of
object to use in computer music applications. We call DATA-
STREAM a simple sequence of timed events directly inher-
iting from TIMED-SEQUENCE. The timed items in a DATA-
STREAM are called DATA-FRAMEs. They contain data and
perform specific actions to render these data. Subclasses
of DATA-FRAME include for instance MIDI events or Open
Sound Control (OSC) bundles, where data is a set of mes-
sages and the rendering transmits the messages via dedi-
cated protocols.

Figure 3 shows a prototype editor created for DATA-
STREAM objects, which plots DATA-FRAMEs (in this case,
representing OSC bundles) along the horizontal time axis.
The timeline-editor at the bottom is included as a compo-
nent in the main editor, and enables time manipulations on

the data frames, such as local/piecewise stretch and com-
pression, snap to grid, etc.

Figure 3. Editor for a sequence of data (class DATA-
STREAM) containing DATA-FRAMEs (in this case, OSC
bundles). Each DATA-FRAME is represented as a coloured
shape. The graphical parameters (shape, colour, size or
vertical position of the frames) are assigned using an arbi-
trary mapping with the data. Note the timeline-editor GUI
component at the bottom.

A specialization of the previous structures allows for the
implementation of a PIANO-ROLL representation as shown
on Figure 4. The class MIDI-NOTE is a specific DATA-
FRAME containing pitch, velocity and duration informa-
tion. When rendered, it produces two actions sending MIDI
key-on and key-off events.

Figure 4. Editor for a sequence of MIDI notes (PIANO-
ROLL) including a timeline-editor.

Since the model lets musical objects being built without
exhaustive specific timing, one could consider specifying
the date of two master items in a DATA-STREAM (DATA-
FRAMEs or MIDI-NOTEs) and let the system interpolate in-
termediate time values.



4.2 Timed Controllers: Curves and Automations

The TIMED-SEQUENCE API can also be used to improve
time manipulations in existing objects, such as the timed
controllers and automations commonly used in computer
music systems. It is straightforward to implement the ac-
cessors presented in Section 2 with a break-points function
(BPF) object, which contains an ordered list of 2D points,
and where the time dimension is implicitly associated to
one of these dimensions (x / horizontal axis). Likewise,
the timeline-editor can be embedded as a component in a
BPF editor, as presented in Figure 5.

Figure 5. Editor of a break-point function implement-
ing the TIME-SEQUENCE API, including a timeline-editor
component. Each point in the graph is considered as a
TIMED-ITEM.

4.3 Trajectories

As mentioned in the introduction, timing in trajectory spec-
ification is often a delicate problem. Indeed, although effi-
cient interfaces exist to draw and design 2D or 3D curves,
time specification must generally be done piecewise or us-
ing a global duration given to the entire movement.

The integration of the TIMED-SEQUENCE model in 2D or
3D curves is done through the definition of “timed points”,
an extension of 2D/3D points (including x, y and z co-
ordinates) and subtype of TIMED-ITEM. The embedded
API and graphical interface allow the user to easily per-
form time manipulations on such graphical structures.

In Figure 6 two master points control the global scaling
and synchronization of a trajectory. A timed point with
a defined date near the middle of the sequence splits the
overall morphology into two parts with relatively equiva-
lent durations. The rest of the points have no explicit date
(their positioning in time will be computed on-demand when-
ever needed, according to the dates of the timed and master
points).

5. SYNCHRONIZATION

Synchronization is one of the main time-domain operations
performed in musical software, and is often identified as a
key element of computer music systems [10]. Our frame-
work facilitates the implementation of intuitive synchro-
nization tools by connecting multiple timelines.

Figure 6. Editor of a 2D-curve in which only three points
have an explicit date. The other (implicit) dates are de-
duced to preserve a constant speed across the different seg-
ments.

5.1 Internal Synchronization

Sticking with the sound spatialization example, let us now
consider the case of multiple trajectories to control the mo-
tions of several sound sources. Time-synchronization strate-
gies are crucial in this case: how to make specific (spatial)
regions match in time?

The SPAT-SCENE is an interactive object/controller de-
signed for sound spatialization processes, made up from a
set of 3D trajectories (TIMED-SEQUENCEs) and connected
to interactive (real-time) visualization and rendering [11].
Figure 7 shows the editor developed for this object, where
the timeline-editor represents each trajectory in an individ-
ual track.

Figure 7. SPAT-SCENE editor. Each sound spatialization
trajectory is associated with a timeline in the timeline-
editor component at the bottom.

The aggregation of timeline views dedicated to each tra-
jectory in a single timeline-editor enables the implemen-
tion of local synchronization strategies in such compound



objects. First, the snap-to-grid functionality supports the
adjustment of the time positions to the closest items or
grid element within a certain range. This helps users to
precisely set items from different sequences at the same
date. Second, the markers created by the master items
fuse when they are at the same date, and therefore act as
proxies to all master items situated at this particular date.
This allows several master items from different timelines
that have been synchronized to be moved simultaneously,
and facilitates stretching and compression operation to the
neighbour segments of all corresponding objects. Figure 7
illustrates this behaviour with several master items being
selected and moved through the user interacting with a sin-
gle marker.

5.2 External Synchronization

The synchronization of master items can also occur at a
higher structural level, when several temporal objects are
combined to form more complex musical structures, for
instance within a sequencer.

Figure 8 illustrates a scenario in which the user decides
to synchronize two hand-drawn audio effect automations
with specific parts of a sound file. The scenario is im-
plemented in a musical container interface currently de-
veloped in OpenMusic on top of the same timed-sequence
model.

Before synchronizing the objects, the composer annotates
the sound file with two markers in order to define the begin-
ning of two “sections” A and B, and adds a master point in
BPF2 to synchronize with these markers. All master items
are collected out of the objects to their container’s context,
and lifted to the time ruler at the top of the sequencer in-
terface (represented as vertical yellow lines). From there,
the targeted operation requires dragging only a couple of
markers in the time ruler.

In Figure 8.a the beginning of both automation curves
(considered master points by default) is synchronized with
the first marker in the sound (beginning of section A). The
user action 1© then synchronizes the central master point
of BPF2 (marker displayed in red on the ruler at the top)
with the last point of BPF1 (also considered as a mas-
ter/synchronization point by default). This action ties to-
gether the two items, which can then be manipulated as
a single entity. 2 In Figure 8.b, the user performs action
2© to position this “grouped” marker at the beginning of

section B of the sound file, thereby modifying the length
of BPF1 and the relative lengths of the two segments in
BPF2. Finally, in Figure 8.c, action 3© connects the end
point of BPF2 to the end of the sound file, in order to ad-
just the duration of the second segment of the automation.
Figure 8.d shows the resulting sequence with synchronized
markers and items.

2 Similarly to the internal synchronization, a snap functionality allows
any dragged marker to be adapted to the position of the closest one within
a given time window.

Figure 8. Synchronization of two effect automation curves
with a sound. 1©, 2© and 3© represent user actions.



6. CONCLUSION

We introduced a programming and a graphical user inter-
face framework for the representation of time in musical
objects. We described the underlying concept of TIMED-
SEQUENCE, an abstract representation containing an or-
dered set of TIMED-ITEMs, and the corresponding API used
to represent musical objects through these simple struc-
tures. TIMED-ITEMs also facilitate explicit structuring of
an object by defining temporal anchors that can be used
to perform stretching and synchronization operations, both
internally within an object, or externally with other objects.

This framework therefore enables expressive means to
work with time either algorithmically or via graphical user
interfaces, and provides end-users with consistent visual-
ization and interaction mechanisms.

The TIMED-SEQUENCE model is currently implemented
in the Common Lisp Object System [12] and used as a
basis for the design of new interfaces and time structures
in the OpenMusic environment.

Future work will focus on the representation of symbolic
notation with our model in order to propose a comprehen-
sive systems for composers to describe and process time
structures in score-oriented frameworks. We also plan to
explore more advanced interaction mechanisms, for instance
considering weighted timed-items to control more sophis-
ticated stretching and synchronization operations.

7. ACKNOWLEDGEMENTS

This work is supported by the French National Research
Agency project EFFICACe ANR-13-JS02-0004.

8. REFERENCES

[1] R. B. Dannenberg, “Music Representation Issues,
Techniques, and Systems,” Computer Music Journal,
vol. 17, no. 3, pp. 20–30, 1993.

[2] H. Honing, “Issues on the Representation of Time
and Structure in Music,” Contemporary Music Review,
vol. 9, no. 1-2, pp. 221–238, 1993.

[3] J. Bresson and C. Agon, “Scores, Programs and Time
Representations: The Sheet Object in OpenMusic,”
Computer Music Journal, vol. 32, no. 4, 2008.

[4] A. Allombert, M. Desainte-Catherine, J. Laralde, and
G. Assayag, “A System of Interactive Scores Based on
Qualitative and Quantitative Temporal Constraints,” in
ARTECH 2008. Proceedings of the 4th International
Conference on Digital Arts, Porto, Portugal, 2008.

[5] M. Stroppa and J. Duthen, “Une représentation de
structures temporelles par synchronisation de pivots,”
in Colloque Musique et Assistance Informatique, Mar-
seille, France, 1990.

[6] B. Bel, “Time-setting of sound-objects: a constraint-
satisfaction approach,” in International Workshop on
Sonic Representation and Transform, Trieste, Italy,
1992.

[7] J. Bresson, C. Agon, and G. Assayag, “OpenMusic:
Visual Programming Environment for Music Compo-
sition, Analysis and Research,” in Proceedings of the
ACM international conference on Multimedia – Open-
Source Software Competition, Scottsdale, USA, 2011.

[8] J. Bresson and M. Schumacher, “Representation and
Interchange of Sound Spatialization Data for Compo-
sitional Applications,” in Proceedings of the Interna-
tional Computer Music Conference, Huddersfield, UK,
2011.

[9] D. Bouche and J. Bresson, “Planning and Scheduling
Actions in a Computer-Aided Music Composition Sys-
tem,” in Proceedings of the 9th International Schedul-
ing and Planning Applications Workshop (SPARK),
Jerusalem, Israel, 2015.

[10] P. Desain and H. Honing, “Towards a Calculus for Ex-
pressive Timing in Music,” Computers in Music Re-
search, vol. 3, pp. 43–120, 1991.

[11] J. Garcia, T. Carpentier, and J. Bresson, “Interactive-
Compositional Authoring of Sound Spatialization,”
Journal of New Music Research, vol. 46, no. 1, 2017.

[12] R. P. Gabriel, J. L. White, and D. G. Bobrow, “CLOS:
Integration Object-oriented and Functional Program-
ming,” Communications of the ACM, vol. 34, no. 9, pp.
29–38, 1991.


	 1. Introduction
	 2. Model and Architecture
	2.1 Timed Sequences
	2.2 Timed Items
	2.3 Time-modification of Items
	2.4 Rendering

	 3. Graphical Editor and Interactions
	 4. Implementation of Musical Objects
	4.1 Basic Timed Sequences
	4.2 Timed Controllers: Curves and Automations
	4.3 Trajectories

	 5. Synchronization
	5.1 Internal Synchronization
	5.2 External Synchronization

	 6. Conclusion
	 7. ACKNOWLEDGEMENTS
	 8. References

