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ABSTRACT
The purpose of the ROCKFlows project is to lay the foun-
dations of a Software Product Line (SPL) that helps the
construction of machine learning workflows. Based on her
data and objectives, the end user, who is not necessarily an
expert, should be presented with workflows that address her
needs in the ”best possible way”. To make such a platform
durable, data scientists should be able to integrate new algo-
rithms that can be compared to existing ones in the system,
thus allowing to grow the space of available solutions. While
comparing the algorithms is challenging in itself, Machine
Learning, as a constantly evolving, extremely complex and
broad domain, requires the definition of specific and flexible
evolution mechanisms. In this paper, we focus on mecha-
nisms based on meta-modelling techniques to automatically
enrich a SPL while ensuring its consistency.
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1. INTRODUCTION
The answer to the question ”What Machine Learning (ML)

algorithm should I use?” is always ”It depends.” It depends
on the size, quality, and nature of the data. It also depends
on what we want to do with the answer [21].

The industry of cloud-based machine learning (e.g., IBM’s
Watson Analytics, Amazon Machine Learning, Google’s Pre-
diction API) provides tools to learn ”from your data” with-
out having to worry about the cumbersome pre-processing
and ML algorithms. To address such a challenge they pro-
pose fully automated solutions to some classical learning
problems such as classification. Some other actors like Mi-
crosoft, with the Azure’s Machine Learning platform, allow
users to build much more complex ML workflows, in a graph-
ical editor that is targeted towards ML experts.

The common point between these solutions is that they
chose to select only a few algorithms, in comparison to the
hundreds that are available. However data scientists know
that the best algorithm will not be the same for each dataset
[22]. Moreover, new algorithms are regularly proposed by
data scientists for dealing with more or less specific prob-
lems and improving performances and accuracy [6]. Thus,

in order to help users who want to build ML workflows, we
have to propose a system that can present a large variety
of algorithms to users, while helping them in their choices
based on their data and objectives. At the same time, we
should be able to extend the supported solutions at least
by incorporating new algorithms. The challenge is to hide
the complexity of the choices to the end user and to revise
our knowledge with each addition: an algorithm can become
less efficient compared to a new one, while the introduction
of new pre-processing operations can extend the reach of
algorithms already present.

The contribution of this paper is thus to describe a tool-
supported approach, responding to this challenge: the ROCK-
Flows project1.

The remainder of the paper is organized as follows. We
discuss in the next section challenges we face and some re-
lated works. Section 3 describes the architecture that sup-
ports the project and two usage scenarios focusing each on
a different user of ROCKFlows. We detail the evolution
process and the correlated artefacts in Section 4. Section 5
concludes the paper and briefly discusses future work.

2. TOWARDS A SPL FOR MACHINE
LEARNING WORKFLOWS

The purpose of the ROCKFlows project is to lay the foun-
dations of a software platform that helps the construction of
ML workflows. This task is highly complex because of the in-
creasing number and variability of available algorithms and
the difficulty in choosing the suitable and parametrized algo-
rithms and their combinations. The problem is not only on
choosing the proper algorithms, but the proper transforma-
tions to apply on the input data. It is a trade-off between
many requirements (e.g., accuracy, execution and training
time).

Since Software Product Line (SPL) engineering is con-
cerned with both variability and systematically reusing de-
velopment assets in an application domain [5], we have based
our project on SPL and model-driven techniques. The SPL
engineering separates two processes: domain engineering for
defining commonality and the variability of the product line
and application engineering for deriving product line appli-

1ROCKFlows stands for Request your Own Convenient
Knowledge Flows.
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cations [15]. Similarly, the ROCKFlows project requires on
one hand to build a consistent SPL, allowing end users to get
reliable workflows, and on the other hand to allow evolution
of this SPL to integrate new algorithms and pre-processing
treatments.

Based on these requirements, we have identified the fol-
lowing challenges, addressing the needs for building and
evolving a SPL in a domain as complex and changing as ML,
ensuring a global consistency of the knowledge and scalabil-
ity of the system.

C1: Exploratory project in a complex environment.
Making a selection among the high number of data mining

algorithms is a real challenge: more than hundreds of algo-
rithms exist that can tackle a single ML problem such as
classification. While work exists to try and rank their per-
formance [6], it only gives an overview of which algorithms
are best in average, not for a given specific problem and not
according to different pre-processing pipelines.

Data scientists often approach new problems with a set
of best practices, acquired through experience. However,
there is few scientific evidence as to why an algorithm or
pre-processing technique leads to better results than another
and in which case. Thus, one of the biggest challenge for this
project is so to find a proper way to characterise algorithms
and to compare them, relatively to the very broad spectrum
of user needs and data representations.

Collaboration between SPL developers and data scientists
induces a complex software ecosystem [13] where some math-
ematical results may or not find a correspondence at end
user problem level. Heterogeneity of formalisms induces that
new evolutions are regularly discussed between the different
stakeholders.

Given these domain requirements, meta-model driven en-
gineering provides an efficient and powerful solution to ad-
dress the complexity of the ecosystem through support of
separation of concerns and collaborations. In order to oper-
ationalize it, we chose to consider this environment as a set
of components relying on different meta-models for which
the evolution mechanisms are exposed through services.

C2: SPL building in a constantly evolving environ-
ment.

While the number of ML algorithms and techniques con-
stantly grows, the fundamental understanding of ML inter-
nal mechanisms is not stable enough to allow us to set any
knowledge in stone. Both the domain and our understanding
of it evolve quickly, forcing constant evolution of the SPL.

The line evolves in particular through the addition of
new algorithms and pre-processings. We run experiments
to identify dataset patterns leading to similar behavior of
algorithms on different concrete datasets. The high num-
ber of possible combinations (variability of compositions and
algorithms) as well as the frequent changes in ML require
evolution mechanisms that are both incremental and loosely
coupled with the elements presented to the end user.

As of today, ROCKFlows’ SPL contains roughly 300 fea-
tures, and 5000 constraints, representing 70 different ML al-
gorithms, 5 pre-processing workflows, and is mostly focused
on classification problems.

Evolution in SPLs has been a challenge for many years [15].
In particular, several works exist on evolution of Feature
Models (FM) [8, 1]. They propose different mechanisms for

maintaining consistency of evolving FMs. In our case, we
rely on these operations to update our models, but we had
to encapsulate them in business oriented services.

Moreover, despite the huge variability of the system, we
have decided to propose the end user only choices that can
lead to a proper result. Hence, it should not be possible
to build a configuration for which we would not be able to
generate a workflow. For instance, it will not be possible for
a user to select, relatively to a given dataset, a performance
value for which we have no algorithm that can reach such
requirements. It is necessary for us to ensure a consistent
configuration process [20].

Contrary to the works allowing several users to modify
a model in contradictory manners and aiming to reconcile
those [3], here we are in a setting where only consistent
evolutions are possible. Thus we did not have to handle
co-evolution problems. Like the approach used in SPLEM-
MA [17], ”Maintenance Services” define the semantics of
evolution operations on the SPL ensuring its consistency.
However, the analogy between meta-elements manipulated
in ROCKFlows and SPLEMMA is hard to establish, espe-
cially because our solution and problem spaces are in a con-
stant evolution. Thus the associated meta-models are not
stable, implying intraspatial second degree evolutions [19]
i.e., several spaces and mappings are simultaneously mod-
ified; e.g., Adding a non-functional property kind, due to
some improvement of the experiment meta-model, involves
to extend the FM and corresponding end user representation
(problem space) and generation tools to take into account
this new feature.

C3: User Centered SPL.
We identify three stakeholders, each leveraging challenges.

- SPL users are the end users of the SPL: it can be a neo-
phyte who is looking for a solution to extract information
from a dataset as well as an expert who wants to check or
learn dependencies among dataset properties, algorithms,
targeted platforms and user objectives. They want to use
a system helping them to master the variability, i.e., to ex-
press their requirements and get their envisioned ML work-
flow. Both of these do not know about FMs and may need
complementary information like examples of uses of the al-
gorithms, details about the algorithm author or implemen-
tation, etc. Thus, the visualization of a FM as in standard
tool is not adapted. Creating a user interface dedicated to
the SPL is also problematic knowing the changing nature of
the system. At the same time, in a agile process, we need to
test the SPL with users in order to align it with their needs,
which are hard to identify a priori.

Some flowcharts have been designed to give users a bit of
a rough guide on how to approach ML problems [16, 14].
ROCKFlows wants this approach to be operational. So, we
do not aim for the construction of workflows by assembly,
but the automatic production of these workflows, without a
direct contribution of the user in this construction process.
Works such as these are however potential targets for the
generation of the workflows where proposed optimization
could then be used automatically. Moreover, faced with the
multitude of such systems (Clowdflows [10], MLbase [11],
Weka [9]), it is right to allow the user to select her execu-
tion target(s) so that the production is limited only to the
ML workflows implemented by these platforms.
- External Developer are domain experts who contribute

66



to the SPL. They do not have all the knowledge of the sys-
tem and contribute by adding new algorithms. They have to
be able to contribute separately with minimal interference.
- Internal developers are leaders of the SPL. They have
the knowledge of the global architecture and manage contri-
butions of external developers to integrate them. They have
to be able to maintain the platform and to ensure the consis-
tency of all products despite the evolution of the ecosystem.

3. ARCHITECTURE FOR ROCKFlows

3.1 ROCKFlows Big Picture
Figure 1 represents the current proposed architecture for

ROCKFlows on the component level. On the left of the cen-
tral vertical line are the components that will be necessary
for the end user to configure her worfklow. On the right,
components enabling users to add their own ML algorithm
in the system is described. Relationships between the dif-
ferent components are relying on meta-models.

We now describe this architecture through the description
of two scenarios:

3.1.1 Scenario 1: Configuration of a ML Workflow
A user willing to configure a new ML workflow will do so

through a web-based configuration interface2. The process
requires at least the following steps, as visible on the left of
figure 1:

(a) The Graphical User Interface (GUI) requests display meta-
data on the Feature Model. Metadata associate each
unique feature of the model with descriptions, references
or other artefacts aiming to help non-experts in their
choices. Figure 2 shows a screenshot of our GUI. Here,
user is presented with the choice of its main objective,
in the form of questions.

(b) Once the FM is loaded and displayed properly with the
metadata, the user configures the underlying FM by
responding to questions. The Feature Model compo-
nent in the figure exposes a web-service that allows for
configuration on any FM, through the use of SPLAR’s
API [12].

(c) Once a valid and complete configuration has been de-
fined, it is sent to the Workfow component. The configu-
ration is then transformed into a Platform Independent
workflow model, that can in a second step be used to
generate executable code for different target platforms.

(d) The Generator may require access to the base of algo-
rithms handled by the system in order to be able to
produce the proper code.

Though it is not described here, depending on user’s pref-
erence, the generated workflow would either be provided to
the user or directly executed by the target platform.

3.1.2 Scenario 2: Submission of a new algorithm
We will now focus on the introduction of new ML algo-

rithms in the SPL. Such an action has impacts on several
parts of the system:
- SPL: At least a new feature representing the algorithm

2The interface is accessible at http://rockflows.i3s.unice.fr

should be added in the FM;
- GUI: Display metadata should be updated to reflect this
new feature in the GUI;
- Generation: If we can execute the algorithm, the gener-
ator should be updated to allow it either through code or a
reference to the corresponding element in target platform(s);
- Experiments should be made with this new algorithm in
order to compare it to the other known algorithms. Cur-
rently, the properties that are considered are accuracy of
the results, execution time of the workflow, and memory
usage. If experiments can be achieved, i.e., Experiments

module has access to algorithm execution and results, the
SPL needs to be updated with performance information for
this algorithm but also for all the algorithms whose ranking
has changed.

The central component SPLConsistencyManager’s role is
to ensure that all required changes are made across the whole
system. Through the present scenario, we describe how this
component handles the impacts mentioned above.

(1) As an External Developer wants to add a new algorithm,
the GUI presents her with proper information that she
needs to provide. Because this information is meant to
change as the system encompasses more possibilities of
Machine Learning, it should be easy to change. Hence,
the SPLConsistencyManager provides the GUI with the
information needed to add a new algorithm in the tool.
The GUI presents then a generated form to the user.

(2) Once the External Developer has provided all informa-
tion on the algorithm, it is sent to the Consistency Man-
ager and dispatched among the other components.

(3) If the External Developer provided code to execute the
algorithm, the Experiments component is requested to
run tests on the algorithms, in order to find its perfor-
mance. This component is described more precisely in
the next section.

(4) Once experiments are finished, the manager analyses the
results to find whether any inconsistency was found be-
tween the information provided by the user and the re-
sults. If not, the algorithm can be added both to the
Feature Model and base of currently supported algo-
rithms.

(5) Finally, once the feature has been added to the FM,
its display metadata can be filled with the information
provided by the expert.

3.2 Component for experiments on algorithms
As we want even non-expert users to be able to get the

appropriate algorithm for their need, we chose to express
higher level goals such as best accuracy or quickest execution
time in the FM. This representation allows to filter out a
number of algorithms by offering users with trade-offs over
these goals. In a second step, or a more advanced mode,
using other models such as requirements engineering Goal
Models is considered. In combination with our FM, it could
allow during configuration to present the user with more
precise expected values for her non functional goals [2].

To be able to express knowledge such as ”best”, ”average”
or ”worst” accuracy, we need an appropriate way to com-
pare algorithms on a given problem. This ranking among
algorithms is computed by our Experiment module. The
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Figure 1: High level architecture for ROCKFlows.

Figure 2: Screenshot of ROCKFlows’ GUI.

Figure 3: Experiments

component runs each known algorithm on the available com-
patible datasets and stores its performance on the different
properties for each dataset. On top of that, it will transform
the datasets with a set of available pre-processing operations
and test again each algorithm with those new sets.

Algorithms results on similar datasets are then compared
to one another to get a result similar to the one visible on fig-
ure 3. Though it will not be discussed here, we have defined
an algorithm based on classical ML and statistical methods
to pull off this comparison and regroup datasets in so-called
dataset patterns. This knowledge can then be pushed in
the FM in the form of constraints linking a functional ob-
jective, an algorithm, a dataset pattern and the ranking for
each of the properties, also depending on the possible pre-
processings for this dataset.

As presented in section 3.1.2, the Experiment component
is driven by the SPL Consistency Manager, that is charged
to start experiments, gather and validate results before in-
corporating them in the SPL. As new algorithms are added,

all experiments do not have the need to be executed again,
however the ranking of the algorithms must be updated to
take in account the newest algorithm.

4. ARTEFACTS TO SUPPORT EVOLUTION
This section discusses how we allow users to provide in-

formation about new algorithms, how we use it to update
the system, and how we can ensure consistency despite the
multiple impacts of these changes.

4.1 Meta-models
Figure 4 shows an excerpt of the meta-elements that deal

with evolution of the SPL. Each component described earlier
corresponds to a meta-model, and the SPLConsistencyMan-

ager maintains consistency among them.

4.1.1 SPL: Feature Model and Configuration
Our feature model is represented in the SXFM (Simple

XML Feature Model)3. The rest of our SPL handling is also
made through SPLOT’s FM reasoning library, SPLAR4.

4.1.2 Addressing non-expert users
In order to make the system as accessible as possible, ad-

ditional information on features must be set, such as descrip-
tions or examples, as well as closed questions that will be
asked to the end user during configuration. This metadata
on the practical features is handled in a dedicated meta-
model AlgorithmDescriptionMM and used to build the GUIs
that are presented to the end users and external developers.
The model is briefly described in subsection 4.2.

4.1.3 Handling the results of Experiments
Information such as the accuracy ranking of algorithms

according to dataset patterns is managed by the Experiment
component. The expected format of this data is designed in
a dedicated meta-model ExperimentPropertyMM. It evolves
as we gain knowledge and experience.

3http://ec2-52-32-1-180.us-west-2.compute.amazonaws.
com:8080/SPLOT/sxfm.html
4An excerpt of the meta-model used for both FM and
configuration definition in the library, can be found
in https://github.com/FMTools/sxfm-ecore/blob/master/
plugins/sxfm/model/sxfm.png
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Figure 4: SPL Core Meta-models excerpt

4.2 Metadata on Algorithms
Data scientists adding their algorithms in the system need

to provide at least:
- The high level ML objective the algorithm can be used
for: classification of data, prediction of numerical values (re-
gression), anomaly detection, etc.;
- Properties of the algorithm in regards to input data:
which data types the algorithm supports, can the algorithm
handle missing values in the data, etc.;
- A description of the algorithm, examples of its use, refer-
ences to publications or web pages describing the algorithm.
As described in section 4.1.2, those will be displayed in the
configuration interface;
- If possible, code that will allow us to run the algorithm
in our tool, so that we can both compare it to the others
algorithms and provide executable workflows to end users.

Through the definition of theses elements in the Algo-

rithmDescriptionMM meta-model, a form is automatically
generated and presented to the domain expert. Thus, the
model can be extended to add new properties for the al-
gorithms and will be automatically handled by the GUI.
However the impact of such changes on the FM still has to
be handled by the SPL manager. We do not know if tools
such as the one described in [7] could help because those
changes mostly impact code.

4.3 Domain driven tooled approach to man-
age Feature Model evolution

Even though we have defined a single FM for ROCK-
Flows, we put a focus on separating concerns in it. The
tree is currently separated in 4 sub-trees handling: input
data description, user objectives, the processing algorithms,
and expected properties of the generated workflow. This
separation of concerns provides a first level of modularity
for the model.

Linking Domain artefact and FM structure. Metadata ex-
ternal to the FM itself defines particular points in the FM
where feature can be inserted. Only the sub-trees that need
to be modified are considered. In our example, we add all
algorithms responding to the classification problem in the
same sub-tree. This mechanism enables us to extend the
model cleanly, and abstract ourselves from the exact hierar-

chy of the features. So, adding new class of algorithms or
modifying the structure of the FM can easily be achieved.
Once the feature for the algorithm has been created, addi-
tional constraints need to be defined between the algorithm
and other features, in particular those describing input data.

Generating domain constraints. Only certain types of con-
straints must be defined among those different sub-trees.
For instance algorithms can define constraints towards input
data, such as ”SVM implies Numerical Data” but never the
other way around. However such a constraint only applies in
a workflow if no pre-processing is used. So, this constraint
has to be transformed to express a constraint depending on
the pre-processings that can be applied. The complexity of
these cases, their multitude and the frequency of evolution
lead us to encapsulate the generation of those constraints in
dedicated operators, working on given ensembles (e.g., pre-
processing set that returns numerical Data). They also in-
troduce features that are hidden to the end user, allowing
us to tame this complexity.
It is interesting to note that, depending of the semantics
associated to the features, different constraints should be
generated. For instance, if an algorithm cannot deal with
missing values, a constraint ”algo excludes missing values”
needs to be generated. In the other case, a constraint ”algo
implies missing values” should never be generated because
such an algorithm can still be used even if no missing value is
present in the input data. Like previously, this higher level
knowledge of the features is defined in our metadata. It al-
lows us to ensure that all necessary constraints are properly
defined for all algorithms we add into the SPL.

5. CONCLUSION AND FUTURE WORK
In this paper, we have outlined some of the difficulties

related to building and evolving a SPL for ML workflows.
To handle the line’s complexity and evolution, we have pro-
posed an architecture organized around a set of meta-models
and transformations encapsulated within services, A large
number of complementary perspectives are considered, both
on mechanisms to build the SPL and on the business ap-
proach of ML.

The complexity we are facing requires an agile and prag-
matic approach in which users are given the opportunity
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to provide feedback during the early stages of the project.
The necessity for evolution of the system leads us today to
consider moving towards approaches focused on the reuse of
existing components [18]. This would allow for a necessary
control over the system’s evolution.

The domain of ML is currently booming with propositions
for algorithms, distributivity of execution and the opening to
a larger audience. We consider to extend our approach to in-
tegrate the necessary parameters for distributing workflows’
execution as well as proposing deep learning workflows. A
longer term question is to target Scientific Workflow Man-
agement systems, allowing so to explore data driven exe-
cution through transformations targeting the specification
interchange language called WISP [4].

Finally, we wish to allow the end user to express her needs
in business terms, through an approach similar to IBM Wat-
son Analytics5. It is a question of integrating the state of the
art practices in our modelisation, without losing the power
of our evolutionary approach, driven by experiments.
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