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Fisher Waves: an individual based stochastic model.

B. Houchmandzadeh and M. Vallade
CNRS, LIPHY, F-38000 Grenoble, France

Univ.

Grenoble Alpes, LIPHY,

F-88000 Grenoble, France

The propagation of a beneficial mutation in a spatially extended population is usually studied
using the phenomenological stochastic Fisher-Kolmogorov (SFKPP) equation. We derive here an
individual based, stochastic model founded on the spatial Moran process where fluctuations are
treated exactly. At high selection pressure, the results of this model are different from the classical
FKPP. At small selection pressure, the front behavior can be mapped into a Brownian motion
with drift, the properties of which can be derived from microscopic parameters of the Moran model.
Finally, we show that the diffusion coefficient and the noise amplitude of SFKPP are not independent
parameters but are both determined by the dispersal kernel of individuals.

I. INTRODUCTION.

One of the most fundamental questions in evolution-
ary biology is the spread of a mutant with fitness 1 + s
into a wild type population with fitness 1. In a non-
structured population (i.e., for a population at dimen-
sion d = 0), the answer to this question was found by
Kimura[1] nearly 50 years ago as a good approximate so-
lution of the Fisher-Wright or the Moran model of popu-
lation genetics, and better solutions of the Moran model
have been proposed recently[2]. For geographically struc-
tured populations however, the question is far from set-
tled and only some specific information, such as the fix-
ation probability, has received partial answers in a field
that is now called evolutionary graph dynamics[3, 4]. For
geographically structured populations where the main in-
gredients of the competing populations, i.e., the fitness,
the carrying capacity and the diffusion of individuals, are
independent of the space, the evolutionary dynamics has
been mostly investigated through the stochastic Fisher
Kolmogorov Petrovsky, Piscounov (SFKPP) equation

Ou _ DV?u + au(l — u) +

at bu(l—uwn(x,t) (1)

where u(x,t) is the local relative density of the mutant
with respect to the local carrying capacity, D is the dif-
fusion coefficient of individuals, a is proportional to the
relative excess fitness of mutants; the last term is a noise
term that captures the local genetic drift, where b is re-
lated to the local carrying capacity and 7 is a white noise.
The problem that has attracted most attention is that of
the front propagation : if at the initial time, one half of
space is filled only with the mutant type and the other
half only with the wild type, then the dynamics of the
problem can be reduced to the dynamics of the front sep-
arating the two types.

The deterministic part of the equation (FKPP)
was proposed by Fisher[5] and Kolmogorov, Petrovsky,
Piscounov[6]; it has found applications in many ar-
eas of science ranging from ecology and epidemiology|7]
to chemical kinetics[8] and particle physics[9]. The
properties of the FKPP equation have been widely

investigated[10]. Specifically, this equation allows for
traveling wave solutions and it is known that a stable so-
lution of the FKPP is a wave front connecting the two re-
gions u = 1 and u = 0 with velocity ¢ = (d/dt) [, udx =
2v/aD and width B = Jzu(l —u)dz = 2/D/a.

The FKPP equation however is not well adapted to
evolutionary population dynamics at small selection pres-
sure, which is one of the relevant limits of population
genetics[11, 12]. The FKPP equation describes quanti-
ties (individuals, molecules,...) that at the fundamental
level are discrete; the noise associated with this discrete-
ness can play an important role in the dynamics of the
front, specifically at small selection pressures. This prob-
lem was tackled phenomenologically by adding either a
cutoff [13] or alternatively a noise term to the equation.
The form of the noise in the SFKPP was proposed by
Doering et al.[14]. The SFKPP proposed by Doering et
al. has now become a major mathematical tool for the
investigation of Fisher Waves. It has specifically been
used by Hallatschek and Korolev|[15] to investigate the
properties of the front at small selection pressure, where
they revealed the marked difference of the solutions with
respect to the deterministic equation.

The SFKPP equation however is phenomenological
and cannot be derived rigorously from a microscopic, in-
dividual based model of population genetics. Firstly, in-
dividual based models such as the Moran model are gov-
erned by discrete master equations and can be approxi-
mated by a Fokker-Planck equation, or their equivalent
stochastic differential equation, only in the limit of large
system size, i.e., large local carrying capacity|[2, 16]. The
local carrying capacity however does not appear explic-
itly in the SFKPP equation and it is difficult to assess
the precision of the Focker-Planck approximation solely
from this equation. Secondly, and more importantly, the
noise term /bu(l — w)n(z,t) in SFKPP is purely local.
This noise term is rigorous only for a 0 dimensional sys-
tem, where the equivalence between the Fokker-Planck
approximation and the stochastic differential equation
can be shown. For a spatially extended system, the noise
term should also include fluctuations arising from adja-
cent lattice cells. To our knowledge, however, a rigorous



derivation has not yet been achieved (see Mathematical
Details V A). The problem of noise arising from adjacent
cells was also noted by Korolev et al.[17]. Finally, in an
evolutionary model, both the diffusion coefficient and the
noise amplitude are the result of the same phenomenon
of individuals replacing each other randomly and they
should be linked through an Einstein like relation.

The aim of the present article is to study the dynamics
of the front between mutant and wild type individuals di-
rectly from the individual based, stochastic Moran model
of population genetics. For this model, the Master equa-
tion can be stated without ambiguity or approximation.
We show that the mean field approximation of the Mas-
ter equation gives rise to a partial differential equation
that differs from the FKPP equation and its predictions
at high selection pressure. Going beyond mean field, we
then derive the exact equations for the evolution of the
various moments of the front for a one dimensional sys-
tem and solve it at small selection pressure. In this ap-
proach, the noise term is not restricted to be only local.
We show, in agreement with [15] that even for a neutral
model (i.e., s =0), the front is well defined and the dis-
placement of the front can be mapped into a Brownian
motion at large times, the convergence time to this state
is shown to be in 1/y/t. The front drift and its veloc-
ity can then be derived at small selection pressure by a
perturbatiion approach where we can show, in contrast to
the FKPP predictions, that the speed of the front is linear
in the excess relative fitness s. Finally, we show that the
effective local population size which controls the noise
amplitude, and the diffusion coefficient are both deter-
mined by the dispersal kernel of individuals and cannot
be chosen as independent parameters.

This article is organized as follow. Section II is devoted
to the generalization of the Moran model to population
geographically structured into demes/islands, where the
dynamics of the front can be deduced from the internal
population dynamics of the islands and their exchanges.
We demonstrate in subsection II A how an FKPP-like
equation emerges from the mean field approximation of
the Master equation and show how it differs from the
classical FKPP equation. The following subsections of
section II are devoted to full stochastic treatments of the
dynamics of the front. Section IIT goes beyond the is-
land model and considers general migration kernels be-
tween individuals that are no longer grouped into demes.
Solving the Master equation of the model shows how the
island size and migration number between neighboring
islands of section II are related through the dispersal
kernel. The approach allows for the determination of
the effective population size and therefore the noise am-
plitude. The final section is devoted to discussion and
conclusions.
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Figure 1. The spatial Moran model for geographically ex-
tended populations.

II. THE ISLAND MODEL AND MUTANTS
PROPAGATION IN 1 DIMENSION.

The fundamental model of population genetics for non
structured populations|[18] was formulated by Fisher and
Wright[19]. A continuous time version, which is also more
mathematically tractable, was proposed by Moran[20].
The extension of the Moran model to geographically ex-
tended populations was formulated by Kimura|21] and
Maruyama|22] and in more recent terminology is referred
to as evolutionary dynamics on graphs [3]. The model is
also widely used in ecology, specifically in the framework
of the neutral theory of biodiversity[23-25].

In this model, populations, formed of wild type in-
dividuals with fitness 1 and mutants with fitness 1 + s
are structured into cells (or demes or islands) each con-
taining N individuals. When an individual dies in one
island, it is immediately replaced by the progeny of an-
other, therefore keeping the number of individuals in each
island always equal to IN. The replacement probability
is weighted by the fitness of the individuals; moreover,
the progeny stems from a local parent with probability
(1 —m) or a parent from a neighboring island with prob-
ability m (figure 1). These three parameters, N, s and
m are the only ingredients of this generic model.

Let us consider an infinitely extended one-dimensional
collection of islands and call n; the number of mutant
individuals on island i. We use the vector n as a
shorthand notation for the collection of these numbers
n = {...,n;,...}. The transition probability densities for
the number of mutants on island i to increase/decrease
by one individual is[4]:

1
Wt (n) = M(N —n;) [m + @n;’} 2)
N 2
W (m) = Lo, [(V = ni) = 2ol 3)
where p is the death rate of individuals and

n’i' = (ni_l + Niy1 — Qni). (4)
The rate of increase (2) for example is the probability
density per unit of time that one wild type individual
dies (u(N —n;) ) multiplied by the probability that it is
replaced by a mutant, either from a local parent ((1 —
m)n;/N) or a neighboring parent ((m/2N)(n;—1 + ni+1)



), and multiplied by the fitness of the mutant (1+s). The
fitness can be seen as an increase in the death rate of the
wild type individuals, or a higher replacement probabil-
ity /decreased death rate for the mutants. The probabil-
ity P(n,t) of observing the state n at time ¢ obeys the
Master equation

dP(n)
dt

- Z (W;F(ain)P(ain) - Wz‘Jr(n)P(n))

K2

+ (W (aln)P(afn) - W (m)P())  (5)

K2 K2

where a;-fn and a;n are shorthand notations for states

{...,n;£1,...}. Without loss of generality (see Mathemat-
ical Details V D), the initial condition we use throughout
this article is that of an initial sharp front

n; = N if 1 < 0; = 0 otherwise (6)

A. Mean field approximation.

The mean field approximation for (n;), the average
number of individuals on island ¢, is obtained by neglect-
ing fluctuations (i.e., by setting (n;ng) = (n;) (ng) )

d(ni)
dt

= (W ()~ W, ()

2
m s m
= Ry + 2 V= () (i) + 5 ()
Taking the space continuum limit by setting x = /¢4,
u(x) = n;/N, we obtain the partial differential equation

ou 0%u
aiD[l‘FS(l*U)]@‘FMSU(l*U) (7)
where the length ¢ is the spatial extension of an island
and D = pmt?/2 is the diffusion coefficient. We observe
that the mean field equation of the spatial Moran model
is different from the FKPP equation in the diffusion term.
Fisher himself, in his original article[5], had stressed that
using a simple diffusion term is an oversimplification of
basic population genetics processes. The modification of
the diffusion term has important consequences both on
the speed of the propagation front and on its width. The
minimum speed of the propagating wave in the equation
(7) is now (see Mathematical details V C)

which scales as s for high value of the excess fitness, in
contrast to the scaling in 4/s in the FKPP equation. Nu-
merical resolutions of eq.(7) (Figure 2) show that vy,
computed above is an excellent estimator of the speed of
the front. Furthermore, the width of the front does not
scale as \/D/us as in the case of the FKPP equation,
but is well approximated by

2/ D(1+ s)/us k(s) 9)

10 —
s
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Figure 2. The FKPP (black circle) and the spatial Moran
mean field (equation 7) (red squares) are solved numerically
for p = 1, D = 0.04 and the front speed is extracted for
various values of the excess relative fitness s. Solid curves
represent the theoretical values: FKPP ¢ = 24/uDs; Moran
¢ = 2/puDs(1+ s). Inset : Width of the front as a function
of s. Black circle: FKPP; red square: Moran. Solid curves
represent, for FKPP (black) B = 24/D/us; for Moran (red)

B =2y/D(1+ s)/usk(s) (eq. 51).

where k(s) is a small correction (see Mathematical details
V C). Specifically, for large s, the width converges to a
constant (15/8)/D/ .

A phenomenological argument can be used to under-
stand these modifications to the FKPP equation. It is
well known[26] that the dynamics of a pulled front is gov-
erned by the behavior at small u. In these regions, the
mean field equation (7) can indeed be approximated by
an FKPP equation, with the effective diffusion coefficient
D.sr=D(1+s).

We observe that the spatial Moran model differs sig-
nificantly from the prediction of FKPP equation at high
fitness s. We will show below that the same is true at
low fitness. This difference was first noted by Hallatschek
and Korolev([15] in their study of the SFKPP equation.

B. Stochastic characterization of the front.

Let us now come back to the full stochastic treatment
of the propagating front. The temporal evolution of local
population moments can be extracted from the Master
equation (5) (see Appendix V B):

d<n1> o -
=W -w)
L) — (g (W~ W) oy (W~ W)

+ 8, (W + W),

The most important global quantities are the front dis-
placement U(t) and its width B(t). These global quanti-



ties can be measured in terms of local populations by

+o0
U0 =5 Y )~ (o) (10)

+o0
BO) =55 Ym0 -] (1)

1=—00

The width B(t) weights the region where the mutant
population is different from either 0 or N, and in the
continuous limit, can be expressed as B = f 7 u(l —u)dz
where u(xz) = n;/N. Note that these quantities are al-
ways finite, as the sums involve only a finite number of
non-zero terms. We restrict this paper to the compu-
tation of the first moments of these quantities, namely
(U(t)), Var(U(t)) and (B(t)), where () stands for ensem-
ble average. The computation of these quantities implies
the computation of the second moments

Zp(t) = % Z {(ni(®)nitp(t)) = ni(0)niyp(0)} - (12)

The width of the front is then

(B(#)) = —Zo(t) + (U(1)) + B(0) (13)
and the variance of its displacement is
V() = (U2()) - U(1)°
(14)

1
=3 Zz]: (ning) — (i) (n;)

For the neutral front (s = 0), self consistent, exact equa-
tions without any moment closure approximation can be
derived directly for the global quantities. At small selec-
tion pressures Ns < 1, they can be recovered through a
first order perturbation analysis.

C. Behavior of the neutral front s = 0.

For a one dimensional system where mutants and wild
type have the same fitness (s = 0), we will show that the
front separating these two populations can be envisioned
as a well defined object that performs a Brownian motion
and whose width fluctuates around an equilibrium value:
(U(t)) = 0 and for large times, V(t) = mt and (B(t)) =
m(N —1)/2.

To obtain the above quantities, we sum over local fluc-
tuations

l d <n1> m n

wodt 2
1d{nin;) m
woodt 2

m m
)+ 5 () = 5 )}
There are different contributions to d (n;n;) /dt : one
is the local demographic noise 2 (n;(N —n;)) /N, which

2
+ 0i, {N (ni(N —

appears in the SFKPP equation ; the other term,
m (n;ny /N, is the demographic noise due to adjacent
cells and cannot a priori be neglected. In the extreme
case where N = 1 and therefore m = 1, the local demo-
graphic noise is exactly zero, but the stochasticity of the
system remains the same, as we will see below.

From now on, we will measure time in generation time
units, i.e., set ¢t < put. By summing over the first mo-
ments, we find trivially that the mean front position stays
at its initial value

d m mo
LWy =13 tnl) =0

The second moments on the other hand obey a set of
linear differential equations

1 dz
— = =21+ )2y +2(1 - §)Z1 + (1 - B)Cy(15)
1dz
Ed—tp = 72Zp —+ Zp+1 + Zp,1 —+ Cp p> 0 (16)

where « = (1 —m)/(Nm), 8 = 1/N and the coeflicients
Cp depend on the initial conditions :

1
Cp = N2 Z m(O)nZH(O)

The parameters « and 8 measure the relative contribu-
tion to the demographic noise of local versus adjacent
cells . The parameter 8 can be neglected with respect to
« only in the limit of small migration probability m < 1.

For an initially sharp front (eq. 6), Cp, = —dp0. We
stress that we can assume this condition without loss of
generality (see Appendix V D)

The above system (15,16) can be solved|24] exactly. In

the Laplace space where Zy,(w) = [, exp(—wt)Z,(t)dt,
the solution is particularly simple,
5 (1=B)Co . |

w 22+ 2az+28—12P

p(w) =

where w = (2 + 1/z) — 2. By taking the inverse Laplace
transform the exact solution of Z,(¢) can be found as
a combination of modified Bessel functions[24]. In this
article, we are mostly concerned with the large time
limit, which can be deduced from the expansion of Z,(w)
around w =0 :

Z(w) = *w <é + p:@K

) +0(1)

Z,y(t) = —w (1 + 1;;_;;) +o(t™Y?) (17)

where K = m(N — 1) + 2. The above approximation is
valid for ¢ > p?; a uniform large time approximation for
all p can also be found in terms of combinations of erf
functions|24], but is not needed here.

As B(0) =0 and (U(t)) = 0, eq.(13) implies that

(B(t)) = —Zol2).
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Figure 3. Front’s width (eq. 11) computed from numerical
simulations of the master equation (5) by a Gillespie algo-
rithm comprising M = 2000 sites (islands) for four sets of
parameters (N, m): Black circles (20,0.05) (Beq = 0.475);
green squares (40, 0.05) (Beq = 0.975); red diamonds (20, 0.2)
(Beq = 1.9); blue triangles (40,0.2) (Beq = 3.9). (a) aver-
age front (B(t)) computed over 10° stochastically generated
B(t), for t € [0,10°]. Dotted black curves : numerical simula-
tions ; solid red curves : theoretical prediction B(t) = —Zo(t)
(eql7). (b) probability distribution of the width B after equi-
librium has been reached (¢ € [1,100] x 10°, sampling time10?
) for the same parameters as in panel a. Symbols: numeri-
cal simulations ; solid curves : exponential fits of the data
p(B) = A exp(—aB) after the peak of the distribution has
been reached

The front therefore reaches a finite width
Beq = m(N —1)/2 (18)

and the equilibrium value is reached as 1/v/mt. Figure
3a shows the perfect agreement of these results with nu-
merical simulations. The above equilibrium value of the
width is also in agreement with the value found from
the SFKPP equation|[15] 4Db~! if the amplitude of the
noise term is interpreted as b = 4u¢/N. As noted by Hal-
latschek and Korolev[15], genetic drift alone can maintain
a finite front width at s = 0 in one dimension. Moreover,
numerical simulations of the discrete model show that
the width distribution probability of the front has an ex-
ponential tail (figure 3b)
Note that the width B defined above as

(B) =3 (b) = 57 3 (N =)

%

weights the regions with populations 0 < n; < N, but
contains no information about their spatial distribution.
A spatially wide front composed for example of alternat-
ing n =0 and n = N islands will have B = 0.

The shape of the front can be characterized more pre-
cisely by using the moving frame of the front as the ref-
erence frame and computing the mean relative mutant
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Figure 4. Mean front shape 3; (eq. 20) as a function of dis-
tance to the center of the front ¢, in the moving reference
frame. Numerical simulations schemes are the same as in
figure 3, with M = 6000. In each sampled stochastic real-
ization, the displacement is computed from the relation (10)
and the mutant population numbers in each site ¢ in a win-
dow of 1000-2000 sites around this position are recorded. The
mean front shape v; (eq.19) is computed on approximately
107 samples. (a) B; as a function of i for various (N,m)
parameters : (20,0.05) black, (40,0.05) green, (20,0.2) red,
(40,0.2) blue. (b) Same as in panel (a), but the z axis for each
curved is normalized by the corresponding equilibrium width
Beq = (N — 1)m/2. (c) The long tail of the front 8; (solid
curves), where the parameters are the same as in panel (a).
The dashed lines represent the function y = Beq /24 as visual
guides.

number v; and their weight ; in this frame

1
vi = N <ni+[U]> (19)

ﬂi = I/Z(l — I/i) (20)

where [U] is the integer part of the front displacement
given by the relation (10). These quantities are difficult
analytically but are readily computed by numerical sim-
ulation, as shown in Figure 4. As it can be observed,
the mean front shape 3; , which is a function of N and
m (Figure 4a) is spatially extended and decreases slowly
as a function of 4, the distance to the center of the front
(Fig. 4c). The width Beq computed above remains how-
ever a good indicator of the mean front shape, and all j3;
curves can be superimposed when the normalized index
i/Beq is used(Fig. 4b).

The variance of the position of the front V(t) =



Solid curves:

Figure 5. Variance of the position of the
neutral front as a function of time, computed from numer-
ical simulations of the master equation (5) by a Gillespie
algorithm, for various values of the migration parameter
m=0.05,0.1,0.15,0.25 and N = 10. Dashed lines: the theo-
retical values of V(t) = mt (eq. 21) for corresponding m.
The numerical simulations comprised M = 2000 sites and the
variance was computed over 6.4 x 10% stochastically generated
U(t), for t € [0,10).

(U2(1)) — (U(t))? can be extracted by similar methods
from equation (14) :

2 5 -~ Ziood)

= ZL(BW) —m(2:(6) ~ 2o(1)) ~ 2o}

As Z,(t) can be computed exactly, the temporal evolu-
tion of the variance can also be computed exactly. The
result is particularly simple for large times t > 1

V(t) = mt + O(v/'mt) (21)

The surprising result is that for large times, the diffusion
of the front is independent of its width. The figure 5
shows the agreement of this expression with numerical
solutions.

D. Behavior of the front at small s.

For a non-zero excess relative fitness, the moment clo-
sure does not hold and the front characteristics can no
longer be derived exactly. It is however possible to derive
the front speed to the first order of the perturbation s.

For s > 0 the position of the front is given by

dU) 1 )
=N Z (Wi () =W (n))

%

—s {B(t) —m(Zi(t) — Zo(t)) — %co}
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Figure 6. Speed ¢ (panel (a) ) and width B (panel B) of the
front as a function of excess relative fitness s for m = 0.05 and
N =10, 20,40, and 100. Solid lines in panel (a) represent the
first order theoretical expression ¢ = Nms/2 for Ns < 0.5.
Dashed green lines represent the mean field values ¢

2ms(s+ 1) and By, f = /2m(s+1)/s.

m.f —

At small selection pressures Ns < 1, on expanding the
above expression to the first order of perturbation, we
find, in the limit of large time

d(U) mNs
- 3 +0(1/V) (22)

Note that at small s, the front speed scales as the selec-
tion pressure Ns. Even for N = 1 when the front width
B.q = 0, the front acquires a non-zero speed (figure 6).

The above computation of the position of the front at
s > 0, which is a first order moment, requires the knowl-
edge of second order moments Z; at s = 0. The same
line of argument shows that computing the variance of
the position and width of the front for s > 0 , which are
second order moments, necessitates the computation of
third order statistical quantities. Even though compu-
tation of higher momenta is theoretically possible in the
neutral case s = 0, their effective computation remains
extremely tedious.

Figure 6 shows the result of stochastic based numeri-
cal simulations for a wide range of s and the agreement
with expression (22) at small selection pressure. It can
be observed that the mean field approximation becomes
correct only at very high excess relative fitness s and lo-
cal population size N. Fluctuations modify significantly
the prediction of the FKPP model.
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Figure 7. Neutral spatial Moran model with general migration
kernel. (a) Individuals are uniformly distributed in space ;
when an individual at site ¢ dies, it is replaced by the progeny
of its k—th neighbor with probability m(k). (b) Individuals
are grouped into demes of population size N*. In the classical
scheme of SFKPP (figure 1), the detailed migration kernel
m(k) is replaced by a single number m* of migration between
neighboring demes.

IIT. MICROSCOPIC MODEL AND GENERAL
MIGRATION KERNEL.

In the SFKPP description of the mutant wave (eq.1)
the diffusion coefficient D and the amplitude of the noise
b are considered independent parameters. The same is
true for the island model of the preceding section where
the population size of the island N and the migration
probability m between neighboring islands were consid-
ered independent. However, at the individual level of
evolution, both migration and genetic drift are the result
of the same phenomenon of individuals replacing each
other. These two parameters must therefore be linked
through an Einstein-like relation and cannot be indepen-
dent.

There is a level of arbitrariness in the island model
in the manner in which individuals are grouped together
and deme size N is chosen. As the amount of fluctua-
tions is critically controlled by N, the grouping process is
crucial. This arbitrariness also impacts on the migration
probability. The very existence of a unique migration
rate between nearest neighbor islands can be brought
into question. Consider for example the low migration
limit (m < 1) of the island model: two individuals phys-
ically far apart from each other but grouped into the
same island will have a higher probability of replacing
each other than two close individuals belonging to neigh-
boring islands.

A more rigorous approach to this problem would be to
consider a “microscopic” model where individuals are uni-
formly distributed in space and not arbitrarily grouped
into demes/islands. In this microscopic model, migra-
tion/replacement is not restricted to nearest neighbors
(figure 7a): when an individual dies at site ¢, it has a
probability m] of being replaced by the progeny of an in-

dividual at site j. Solving exactly this strictly individual
model then leads us to choose the effective population
size of each deme, which is used in the stepping stone
approach (figure 7b) and derive the exact relation be-
tween the diffusion coefficient and the noise amplitude,
both of which are a function of the dispersal kernel m;.

In this evolutionary graph approach, each site contains
exactly one individual (either wild type or mutant) n; =
0,1 ; the transition probability densities for the number of
mutants on site ¢ to increase/decrease by one individual
is a simple generalization of equations (2,3) . Thus:

W) = (L+s)pl —ni) d min;  (23)
Wi () = iy mi(1 = nj) (24)

where m is the probability that the progeny of an indi-
vidual at site j replaces an individual at site 7. In the lit-
erature of plants, the migration probability m? is known
as the dispersal kernel and can be measured precisely in
the field[27]. In the following, we will consider dispersal
kernels that depend only on the distance between two
sites, i.e., m} = m(|j — ).

A. Mean field approximation.

Following the same steps as in subsection II A, it is
straightforward to deduce the mean field approximation
of the corresponding master equation. For a migra-
tion probability that depends only on the distance be-
tween two sites, the mean field approximation is exactly
the same as expression (7), where ¢ here is the inter-
individual distance (lattice size), p the death rate and
the diffusion coefficient

D= “762 > kK m(k) (25)

is given in terms of mean dispersal distance.

From now on and to avoid confusion, we will refer to
all quantities derived in the island approximation (the
macroscopic view) of section II by the super script * .
The diffusion coefficient of the mean field approximation
derived in subsection IT A (relation 7), for example, is

,LL£*2
T2

D*

m* (26)

For a 1d system, the patch extension ¢* = N*{¢ (figure
7b) ; comparing expression (25) and (26) therefore leads
to

N*2m* = " k*m(k) (27)
k

We observe here that the deme size N* and the migration
probability between demes m* are indeed linked through
equation (27).



B. Stochastic characterization of the neutral front
at s =0.

The relation (27) is not sufficient to determine the ef-
fective population size N* of islands. To address this
issue, we need to solve exactly the full stochastic model.
We restrict the computation here to the neutral case
s = 0, the derivations for s # 0 following precisely the
steps developed previously.

The computational approach is similar to subsection
IIB. As before, the displacement of the front is defined
as

—+o0

Ut)=> [ni(t) = ni(0)] (28)

and
SAU©) = 3 (W) - W ()

Therefore, for the neutral front s = 0, d; (U) = 0 and

(U(t)) = 0.

The second order moments are also defined as before
Zp(t) =Y (ni(t)niyp(t)) — ni(0)ni1,(0) (29)

and we note that Z, = Z_,,. The equations governing Z,
for the rescaled time ¢ < ut are

d

—Zy = —27,

5 20 0 (30)
dtZ:D_QZ Zpik — Zp) +Cp p#0 (31)

k=—o0

where the C), are defined by the initial condition
Cp =2 m(k) > ni(0)(
k i

Note that equation (30) implies that Zy(¢t) = 0. This is
due to the fact that n? = n; and therefore Zy(t) = (U(t)).
For an initially sharp front

Nitp+k(0) — Nisp(0))

n; =1 if § <0; = 0 otherwise (32)
which will be used here,
Cp=2 3 m(k)(Ip| - k) (33)
k>|pl

For simplicity, we further restrict the solution of equa-
tions (30-31) to the generic geometric dispersal kernel

1—A
T ALk (34)

m(k) = (1 — 0x,0)

where the parameter A controls the dispersal length k:

2 1+)\
K —QZk _ﬁ (35)

k>0

i i i i
0 2000 4000 6000 8000 10000

Figure 8. Numerical simulation of the second moment Z,
(eq. 29) in the neutral Moran model with geometric seed
dispersal kernel (eq. 34) for p = 1,2,4,8. (Inset) Same data
but convergence to the limiting value Z(co) is shown ; the
gray dashed line is oc 1/y/f. Time is measured in units of
generation time (1/u). For the numerical simulation, a lattice
of 4096 individuals is used and the result is averaged over
8 x 10° trials.

The case N* = 1, m* = 1 of the preceding section is
obtained when A\ — 0. Note that in the framework of
the Moran model used here, a dead individual cannot re-
place itself, hence m(0) = 0. Moreover, for the geometric
dispersal kernel, relation (33) becomes

-1
C = _—— )\~
P —
It is straightforward to check that again all Z,, converge
as o< 1/v/t to the same value

A
T-22

where x? is defined in (35) and 0 = 23, km(k)=
1/(1—X). We observe that the stationary value of —Z,, is
given by a quantity similar to the variance of the disper-
sal kernel. Figure 8 shows the agreement between these
results and individual based numerical simulation of the
same system.

The width of the front can no longer be measured as
in relation (11) by B = )", n;(1 — n;) which is always 0.
Other analog metrics such as

=2

can be used to characterize the front. It is straightfor-
ward to show that

Zp(o0) = — =0 K? (36)

nz-i—p (37)

Y, =p—27, (38)

Figure 9 shows the excellent agreement between the the-
oretical results and the numerical simulations.
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Figure 9. (a) Numerical simulation of the front width
Yi(t) (eq. 37) in the neutral Moran model with geomet-

ric seed dispersal kernel (eq. 34) for increasing value of
A =0.25,0.33,0.4,0.5,0.55,0.6,0.66 and 0.75. (b) Same data
but convergence to the limiting value Y7 (o0) is shown ; the
gray dashed line is o< 1/4/t. Time is measured in units of
generation time (1/p). The numerical simulation parameters
are identical to figure 8.

The variance of the front displacement V' = <U 2> —

(U)2 can be computed by methods analogous to the pre-
vious section:

dv -
e Z (W +wy)
=-2> m(k)Z - Cy
k

where the W7 are the transition rates (23,24) and Cp is
defined by relation 33). For the geometric kernel m(k)
(eq. 34), using the long term solution (36) leads to

V(t) = k%t 4+ O(WV1) (39)

C. Grouping into islands.

We now group individuals virtually into islands of size
N* and establish the condition under which the results
obtained by the SFKPP /islands model are valid.

A patch of population size N* is a virtual packing of
individuals into a deme, which we refer to by its index ¢
(Figure 7b). The number of mutants in patch ¢ is

by
ny = Zm (40)

where by = ag+ N* —1 and aq41 = by + 1. Note that we
have N* possible choices for grouping individuals, as we
can set a; = N*q+r, where r =0, 1, ....N* — 1. We de-
fine the displacement and the width of the (macroscopic)
front as in subsection IIB (definitions 10,11)

+oo

U0 = 5 D [t~ n3(0)] (a1)
1 D

B*(t) = w3 > i) [N* = ng(1)] (42)

We compute the statistical properties of these quantities
by taking into account the detailed migration kernel (sub-
section III B) and compare them to the results obtained
in subsection II B where migrations were approximated
by a single migration probability m* between neighbor-
ing demes.

The macroscopic displacement U* (relation 41) is eas-
ily related to the microscopic displacement U (relation
28) :

. 1 +oo  bg
U= 1 Y S malt) — mi0)

1 oo
=N Z [ni(t) —n;(0)]

and therefore V* = Var(U*) = Var(U)/N*?. The vari-
ance of the microscopic displacement V' is given by rela-
tion (39), and hence, for long times,

Ii2

V= Wt (43)
Comparing this expression to the relation V* = m*t of
the island model (section II) where m* is the migration
probability between demes, we see that we must have

m* = K% /N*? (44)

The above relation is a confirmation of relation (27),
which we obtained by a mean field approximation. We
can also compute, at small selection pressure Ns, the



speed of the front that we find to be ¢ = sk?/2. Compar-
ing this result to the speed ¢* = ¢/N* = sN*m*/2 (eq.
22) of the island model leads again to the same relation
between m* and N* as relation (44).

The macroscopic width of the front (relation 42) can
also be computed in terms of microscopic quantities (see
Appendix VE)

* 1 s *
p=1

where Y, are the microscopic front width (defined by re-
lation 37). For large times, relations (38) and (36) lead
to
* 2 2 1 *

B =—|k"—0 +6(N +1) (45)
The above relation is in perfect agreement with numerical
simulations. Comparing the above relation to the width
of the front B* = m*(N* — 1)/2 of the island model

(relation 18) and using relation (44) for m*, we find that
we must have

N*=30—1 (46)

The above result determines the effective population size
in terms of the dispersal kernel. More precisely,

24+ A
1—-A
14+ A

(24 X)?

N* =

We note that m* is weakly dependent on A over its whole
range of variation [0, 1], whereas N* diverges as the dis-
persion characteristic length when A — 1.

IV. DISCUSSION AND CONCLUSION.

In this article, we have used the formalism of the spa-
tial Moran model to study the propagation of mutants in
a one dimensional geographically extended population.
The propagation of the mutant wave has usually been
studied in the framework of the SFKPP equation (1).
The SFKPP equation however is a phenomenological ap-
proach and its derivation from the fundamental models
of population genetics such as Wright-Fisher or Moran
is not obvious. The deterministic Fisher equation for
the dynamics of the proportion u(t) of a mutant in a
non-structured population is diu = su(l — u). For geo-
graphically structured populations, it seemed natural[5]
to add a spatial diffusion term and generalize simply
this equation to dyu = DAwu + su(l — u), where u(z, 1)
is the local proportion of the mutant. On the other
hand, since the time of Fisher and Wright, it was ob-
vious that genetic drift is an important factor at small
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selection pressure. For large non-structured (d = 0) pop-
ulations, Kimura tackled this problem by using a Fokker-
Planck approximation of the Master equations govern-
ing the WF or Moran models. The stochastic differ-
ential equation associated with the Kimura equation is
diu = su(l—u)+ \/u(l —u)/Nn(t). It then seemed nat-
ural to unite the two approaches and propose the SFKPP
equation (1).

We see here that many assumptions were made in this
process : (i) the form of the diffusion term may be dif-
ferent ; (i) w(z,t) is a local relative density and the
noise term of SFKPP would be a good approximation
only if the number of individuals in each patch where u
has been computed is large enough ; (iii) the noise term
Vu(l —u)/N itself was obtained for a non-structured
population and it is far from obvious that it should be
the same for an extended population and not involve the
spatial derivative of u.

The individual based approached that we develop in
this article is intended to overcome these problems and
to ground the SFKPP approach on a firmer basis. Us-
ing an explicit spatial island model, we have shown first
that the diffusion term is indeed different from the FKPP
equation (relation 7) and this difference has important
consequences on the speed and width of the front for
large selection pressures (relation 8,9).

For small selection pressures, we derive the parame-
ters of the front (speed, diffusion coefficient and width)
without any assumption on the size of the local popula-
tion and without neglecting the non-local noise. These
results are in agreement with the predictions of SFKPP
equation at small selection pressure as developed by [28§].

Finally, by taking into account the explicit migration
kernel, we establish the relation between the amplitude
of the diffusion and that of the noise ; this approach also
allows us to define the effective size of the local popu-
lation NV, which is the crucial parameter controlling the
noise as a function of the dispersal length.

Individual based models have the same level of com-
plexity as their equivalent stochastic differential equation
approach. We believe that the formalism developed in
this article is a step forward in the search for a better
understanding of natural populations and the dynamics
of mutant waves.
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V. MATHEMATICAL DETAILS.
A. The noise term in SFKPP

The argument for the phenomenological noise term
used by Doering et al. can be rephrased as follows in the



framework of population genetics. For a non-structured
population (a population at d = 0), in an ecosystem with
carrying capacity of N individuals formed of wild type in-
dividuals with fitness 1 and mutants with fitness 1 + s,
the transition rates for the one-step Moran process is [2]

_ H

W(n —m)= 5‘m7""1N(N —n)n(l+ dm—n18)
where n is the number of mutants. The probability

P(n,t) of observing n mutants at time ¢ is governed by
the Master equation associated with these rates

8Pnt ZWm%n P(m,t) — W(n — m)P(n,t)

For a large ecosystem (N > 1) at small selection pressure
(Ns < 1), the above Master equation can be approx-
imated by a Fokker-Plank equation called the Kimura
equation[1, 2, 1§]

OP(u,t) _ 0 u(l —u)P] n 1 02 [u(1 — u)P]
ot ou N ou?

where v = n/N and time is measured in units of 1/u.
The above diffusion equation is equivalent to a stochastic
differential equation for the density u[29]:

d—u:su(l—u)—l—

o u(l —u)/Nn(x,t) (47)

The origin of the noise is the genetic drift due to the size
of the system.

For a spatially extended system, the Doering et al.
phenomenological approach to derive the SFKPP con-
sists in adding a (spatial) diffusion term DV?u to the
stochastic equation 47, but conserving the same local
noise term, and neglecting fluctuations from adjacent
cells.

B. Moment computation algebra.

The rules of moment computations are fairly standard
(see for example [30]), but we give them here for self-
consistency. Various moments can be extracted directly
from the Master Equation

Z {W+ akn
+ Z {W (akn)P
k

by multiplying it by some operator and then making the
change of variable n — axn or aLn. Consider for example

aPnt W+(n)P(n)}

akn) -

(aln) — W~ (n)P(n) }48)

nmj _
- at%nm] nt
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After replacing 0;P by its value from equation 48, the
first term on the r.h.s. of the above equation reads:

Zznmjwk (axn)P(agn) — (...)

Changing the variable n — aLn

and n; — n; + 6 rand

I = Z Z (nl + 51’,1@) (nj + 5j,k)
n k

= <ij+ + an;r + 5i7jWi+>

implies n; — n; + 6i,k

Wi (m)P(n) - (...

Computing now the second term and grouping all the
terms, we get

d (nmﬁ
dt

J J

For the neutral case s = 0 we have
m

W;r - Wi_ = gn;/
and
2
Wi +Ww, = an(N —n;)+ %ni’ — %nm;’
So finally
d{n;n;

2 m m
#0057 0 =) + 5 ) = T i) |
C. Front speed and width in the mean field

approximation.

The minimum speed of propagating front of the equa-
tion

0 0?

a—?:D[l-ﬁ-s(l )]ag—i—,usu(l—u) (49)
is obtained by following the original Fisher[5] approach.
For a propagating front, on setting d;u = —wvd,u and

then setting ¢ = —du/dx, we get the equation for g(u) :

D[1+s(1 —u)]g;l—g —vg+psu(l—u)=0.  (50)

Setting p = dg/du|,—o as the slope of the curve at the
origin u = 0, the equation for p is

D(1+s)p* —vp+ps =0
which has a solution only for
uDs(1+ s)

V2 Upin = 2

The width B = [, u(l — u)dz of the front can be
computed following the same approach. Setting v =

= (s (W =W )) (W = W) (W 10



Ot f]R udz, exchanging the derivation on ¢ and integra-
tion on x, and performing integration by parts on the
propagating front, we get

du\ >
v = usB + Ds — | dx
R dx
1
:,usB—l—Ds/ gdu
0

The shape of the front g(u) is not known. However, g(u)
is a smooth function, g(0) = g(1) = 0 and its slope at
both ends, p = dg/du|,—o and ¢ = dg/du|,—1 are known
and determined from equation (50). Approximating then
g(u) by a third order polynomial that respects these con-
straints

g(u) =u(l —u)(p— (p+qu)
leads to:
B D(1+S)f<as
B =22 k) (51)
where
S 24+ s
H(s):1_24(1+s)<<\/1+s_1>(s+1)+1>
15 13 9
:1—6+ﬁ+(9( )fors>>1

D. Choice of initial conditions.

The definition of various moments we use in this article
such as relations (10-12) ensures that the infinite sums
over sites contain only a finite number of non-zero terms;
it avoids the problem of spurious effects due to manipu-
lation of divergent series. However, the initial front may
not need to be sharp, but only finite.

Consider the discrete function

fi=N if ¢ <0; =0 otherwise
where the position 0 corresponds the to middle of the
initial front. We can redefine the moments as

U= an(t) — fi
Zy = 5 A Onesp (1)) = Fifisn)

The differential equations we derived throughout this ar-
ticle remain invariant under this definition of the mo-
ments, the only difference being that the initial values of
these moments are non-zero.
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E. Relation between microscopic and macroscopic
front width.

By definition,

N*2B* =Y "ns(N* -
q .
DI

q i,j=aq
be—1 by
= g E ni(1 —n;) + g g (n; +n; — 2n;n;)
i=agq i=aq j=i+1

where n*is defined by relation (40), by = aq+N*—1 and
ag+1 = bg + 1. Note that we have N* possible choices for
grouping individuals, as we can set a; = N*q + r, where
r=20,1,...N*—1. Asn; = 0,1, the first term in the
above sum is zero and n? = n,;. Rearranging the indices
in the second term, we have

N*—1bg—k

N*2B* =" 3" 3" (ni+nipk — 2minigx)  (52)

q k=1 i=aq

Note that for an unrestricted sum

oo
g Ng 4+ Nigp — 20Niqp = Yy

i=—00

However, the problem with expression (52) is that we
are missing the terms n;n;yx , where ¢ is in one cell and
i+ k in another one. In fact, for each cell, we are missing
k terms of the form n;n;y; connecting two neighboring
cells. We now use our freedom to choose the grouping
r: we use N* different choices of r and sum all of them.
A term missing in one choice of r will be recovered in
another. As the result must not depend on the choice of
r, we have

N*—1

Z (N* = p)Y,

p=1

N*(N*QB*) —

The index manipulation is clearer when performed man-
ually on a few simple examples such as N* = 2 or 3.

F. Numerical simulations.

All numerical simulations are written in C++, and
data analysis is performed by the high level language
Julia[31]. Numerical simulation of the island model (sec-
tion II) is performed by a Gillespie algorithm by com-
puting the jump probabilities from the transition rates
(2,3). For the generalized migration kernel of section III,
the Gillespie approach is too cumbersome and a direct
approach has been used: the index of an individual is
chosen at random and it is replaced by the value of an-
other individual chosen according to the kernel m(k).
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