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EQUITABLE COLORINGS OF K4-MINOR-FREE GRAPHS

RÉMI DE JOANNIS DE VERCLOS AND JEAN-SÉBASTIEN SERENI

Abstract. We demonstrate that for every positive integer ∆, every K4-minor-free graph
with maximum degree ∆ admits an equitable coloring with k colors where k > ∆+3

2 . This
bound is tight and confirms a conjecture by Zhang and Whu. We do not use the discharging
method but rather exploit decomposition trees of K4-minor-free graphs.

1. Introduction

Equitable coloring is an ubiquitous notion. From a combinatorial point of view, it corre-
sponds to a natural variation of usual graph coloring where the color classes are required to
all have the same size, plus/minus one vertex. Practically, this is one way to prevent color
classes from being very large, which can be useful when using graph coloring for scheduling
purposes for instance. Theoretically, equitable colorings were used successfully in a priori
unrelated topics, such as probability. Indeed, one of the seminal results regarding equitable
colorings is the following theorem, which was established by Hajnal and Szemerédi [2] (the
statement was first conjectured by Erdős).

Theorem 1.1 (Hajnal–Szemerédi, 1970). Every graph with maximum degree at most ∆
admits an equitable coloring using ∆ + 1 colors.

Theorem 1.1 allowed for a simplified demonstration of the Blow-up lemma — found by
Rödl and Ruciński [9]. In addition, this theorem was also used to derive deviation bounds
for sums of random variables with some degree of dependence — this was done by Alon
and Füredi [1] and by Janson and Ruciński [3]. Let us point out that in 2010, that is,
forty years after Theorem 1.1 was proved, a much simpler demonstration was finally found,
building on several other related results. More precisely, Kierstead, Kostochka, Mydlarz
and Szemerédi [4] managed to find a two-page proof of Theorem 1.1, which also has the
advantage to lead to a polynomial-time algorithm that efficiently finds a relevant coloring
— contrary to the original argument.

As it turns out, the notion of equitable colorings behaves pretty differently from usual
colorings, and it is a challenging task to better comprehend its relation to well-known graph
classes. Starting from graphs with bounded maximum degree, it is natural to consider next
d-degenerate graphs. The following theorem was established by Kostochka and Nakprasit [6],
in a more general form.
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Theorem 1.2 (Kostochka–Nakprasit, 2003). Let ∆ be an integer greater than 53. If G is a
2-degenerate graph with maximum degree at most ∆, then G is equitably k-colorable whenever
k > ∆+3

2 .

Theorem 1.2 partially confirms a conjecture by Zhang and Wu [10, Conjecture 9], (also
see [8, Conjecture 6, p. 1209]) that if ∆ > 3, then every series-parallel graph with maximum
degree ∆ admits an equitable k-coloring whenever k > ∆+3

2 . Indeed, series-parallel graphs
are known to be 2-degenerate, so Theorem 1.2 yields that the conjecture is true if ∆ > 54.
The purpose of our work is to establish the conjecture for all the remaining cases, that is,
∆ ∈ {3, . . . , 53}. (Although, in our proofs we do not use the upper bound on ∆, and simply
prove the statement for all K4-minor-free graphs.)

The statement conjectured by Zhang and Wu is actually a strengthening of a result of
theirs [10], which establishes that every series-parallel graph with maximum degree ∆ > 3
admits an equitable k-coloring if k > ∆. The conjecture can also be seen as a generalisation
of a theorem of Kostochka [5] that every outerplanar with maximum degree ∆ > 3 admits
an equitable k-coloring whenever k > ∆+3

2 .
It is worth mentioning that Kostochka, Nakprasit and Pemmaraju [7] established (a gen-

eralisation of) the following interesting statement.

Theorem 1.3 (Kostochka, Nakprasit & Pemmaraju, 2005). Fix an integer k > 124. If G is
a 2-degenerate graph with maximum degree at most 1

2 |V (G)|+ 1, then G admits an equitable
k-coloring.

Theorem 1.3, however, does not bring us any new information regarding the problem at
hands. Indeed, we need to consider graphs with maximum degree ∆ 6 53, while the number
of colors needs to be at least 124. Hence for our question the information provided by
Theorem 1.3 is already contained in the aforementioned result of Zhang and Wu [10].

As reported earlier, we establish the following.

Theorem 1.4. If G is a K4-minor-free graph with maximum degree ∆, then G admits an
equitable k-coloring whenever k > ∆+3

2 .

Contrary to the proof of some of the results mentioned above, we do not rely on dis-
charging, but rather on the structural links between K4-minor-free graphs and two-terminal
series-parallel graphs: in particular, our proof heavily relies on a so-called SP-tree. Before
proceeding with the proof, we review some folklore properties of K4-minor-free graphs and
two-terminal series-parallel graphs and introduce a bit of terminology.

It would be interesting to know whether Theorem 1.4 can be extended to the class of
2-degenerate graphs. A generalisation of this has actually been conjectured in 2003 by
Kostochka and Napkrasit [6].

Conjecture 1.5. Fix an integer ∆. If d ∈ {2, . . . ,∆} and G is a d-degenerate graph with
maximum degree at most ∆, then G admits an equitable k-coloring whenever k > ∆+d+1

2 .

2. The structure of K4-minor-free Graphs

As it turns out, graphs with no K4-minor are strongly related to two-terminal series-
parallel graphs. A two-terminal graph is a graph with two distinguished vertices called
poles. Two-terminal series-parallel graphs are two-terminal graphs that can be obtained
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by the following recursive construction1. The basic two-terminal series-parallel graph is an
edge uv with the two poles being its end-vertices. For i ∈ {1, 2}, let Gi be a two-terminal
series-parallel graph with poles ui and vi. The graph S(G1, G2) obtained by identifying
the vertices v1 and u2 is also a two-terminal series-parallel graph and its two poles are the
vertices u1 and v2. The graph S(G1, G2) obtained in this way is called the serial join of G1
and G2. The parallel join of G1 and G2 is the graph P (G1, G2) obtained by identifying the
pairs of vertices (u1, u2) and (v1, v2); the poles of P (G1, G2) being the identified vertices.
Two-terminal series-parallel graphs are precisely those that can be obtained from edges by
a series of serial and parallel joins. The decomposition tree corresponding to a two-terminal
series-parallel graph G is not unique. In fact, there is a lot of freedom in its choice as can
be seen in the following well-known result.
Lemma 2.1. Let G be a two-terminal series-parallel graph and v a vertex of G. There exists
an SP-decomposition tree such that v is one of the poles of the graph corresponding to the
root of the SP-decomposition tree.

It is also well known that every 2-edge-connected K4-minor-free graph is a two-terminal
series-parallel graph.
Lemma 2.2. Every block of a K4-minor-free graph is a two-terminal series-parallel graph.

The set of K4-minor-free graphs can also be seen as the closure of two-terminal series-
parallel graphs by the spanning subgraph relation.
Lemma 2.3. A graph G has no K4-minor if and only if G is the spanning subgraph of a
two-terminal series-parallel graphs.

To see Lemma 2.3, note that spanning subgraphs of two-terminal series-parallel graphs
has no K4-minor. The reversed direction is deduced by induction on the structure of K4-
minor-free graph given by Lemma 2.2 using Lemma 2.1.

As a consequence, the K4-minor-free graphs are precisely those for which we can choose
two poles such that the two-terminal graph obtained can be constructed from the two graphs
of size two by a series of serial and parallel joins. The construction of a particular K4-minor-
free graph G can thus be encoded by a rooted tree, which is called the SP-decomposition
tree of G. Each node of the tree corresponds to a subgraph of G obtained at a step of the
recursive construction of G. The leaves correspond to graphs with only two poles (and no
other vertex) that may or may not be connected by an edge. Each inner node of the tree
corresponds to either a serial join or to a parallel join. Based on this, there are two types of
inner nodes: S-nodes and P-nodes. The inner nodes have at least two children: the subgraphs
corresponding to their children are joined together by a sequence of serial or parallel joins
depending on the type of the node. Since the result of a sequence of serial joins depends on
the order in which the serial joins are applied, the children of each inner node are ordered.
Without loss of generality, we can assume that the children of a P-node are S-nodes and
leaves only, and the children of an S-node are P-nodes and leaves only.

If A is a two-terminal graph, the vertices of A distinct from its poles are said to be its
inner vertices. The set of inner vertices of A is Inner(A). We define width(A), the width
of A, to be the number of inner vertices of A, that is, width(A) = |Inner(A)| (note that

1We point out that in the literature, such graphs are sometimes called simply ’series-parallel graphs’,
while this term can also be used to refer to K4-minor-free graphs.
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width(A) = |V (A)| − 2). We introduce some terminology for particular two-terminal K4-
minor-free graphs. A two-terminal graph obtained by a parallel join of several two-edge
paths is a diamond. A two-terminal graph obtained by a parallel join of several two-edge
paths and an edge is a crystal. Observe that an edge may be seen as a crystal of width 0.
If i is a positive integer, we define D(i) to be the diamond with width i and C(i) to be the
crystal with width i. Let D′(1) be the graph K1,3 with two vertices of degree 1 as poles.
For i > 2, we define D′(i) to be the graph obtained by a parallel join of D′(1) with i − 1
paths of length 2. Let C ′(i) be obtained from D′(i) by adding an edge between the poles.
We let Pi be the path with i vertices. If G is a graph and U a subset of the vertices of G, we
let G−U be the subgraph of G induced by the vertices of G that do not belong to U . For a
positive integer k, we take the representatives of Zk to be {1, . . . , k}, rather than the more
common {0, . . . , k − 1}. An equitable k-coloring of a graph G is a mapping α : V (G) → Zk

such that |α−1({i})| and |α−1({j})| differ by at most one for every (i, j) ∈ Z2
k.

The next lemma is a simple but useful remark about common neighbors of the poles of a
K4-minor-free graph.

Lemma 2.4. If H is a K4-minor-free graph with poles a and b, then NH(a) ∩ NH(b) is an
independent set of H.

Proof. We prove by induction on the number of vertices of the SP-decomposition tree of H
that no two vertices in NH(a) ∩NH(b) belong to a same component of H \ {a, b}.

• The statement is trivial if the SP-tree has only one node, that is if H has two vertices.
• If H is the series join of H1 and H2, then the only possible common neighbor of a
and b is the common pole of H1 and H2. The statement is therefore true in this case
also.
• If H is the parallel join of H1 and H2, then let x and y be two common neighbors of a
and b. Either x and y belong to Hi for some i ∈ {1, 2}, in which case the result follows
from the induction hypothesis applied on Hi; or x and y are in different components
of H \ {a, b}.

�

Let T be an SP-decomposition tree (of a K4-minor-free graph), and n be a node of T
representing the subgraph H with poles a and b. Assume that H − {a, b} has m compo-
nents C1, . . . , Cm. The node n is in normal form if m 6 1 (i.e. H−{a, b} either is connected
or has no vertex at all), or if n is a parallel node with children H1, . . . , Hm plus the edge ab
if ab ∈ E(H), where H i is the subgraph of H induced by Ci ∪ {a, b} from which we remove
the edge ab if it is present. The tree T is in normal form if every node of T is in normal
form.

Lemma 2.5. If G is a K4-minor-free graph, then G admits a construction tree T in normal
form.

Proof. As a K4-minor-free graph, G has two vertices a and b and an SP-decomposition
tree T that represents the two-terminal graph G with poles a and b. Note that we may
assume that T is a binary tree (where P-nodes and S-nodes may not alternate).

To prove the lemma, we describe an inductive procedure that transform the (binary) SP-
decomposition tree T into an SP-decomposition tree T ′ in normal form that represents the
same graph G. Assume that this procedure exists for trees with fewer nodes than T . If n is a
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leaf, then G has two vertices and further V (G)−{a, b} is empty, so n is in normal form indeed.
So we now suppose that n has two children representing the graphs G1 and G2, respectively.
By induction, for each i ∈ {1, 2} there is a tree Ti in normal form that represents Gi. We
distinguish two cases depending on the type of the root n of T .

• Suppose that n is a P-node, so G = P (G1, G2). Let C1
i , . . . , C

mi
i be the components

of Gi−{a, b}, and note that mi is a positive integer. If mi = 1, then we set H1
i := Gi.

If mi > 2, then according to the definition of normal forms the graph Gi is encoded
in Ti by the parallel join of H1

i , . . . , H
mi
i , plus possibly the edge ab. (We recall that

it means that each graph Hj
i is the subgraph of Gi induced by Cj

i ∪ {a, b} from
which the edge ab is deleted if it is present.) The sought SP-decomposition tree T ′
is then obtained by making a new P-node n the parent node of each of the SP-
decomposition trees representing H1

1 , . . . , H
m1
1 , H1

2 , . . . , H
m2
2 (each of them in normal

form), and, possibly, of a leaf representing an edge if ab ∈ E(G).
• Suppose that n is an S-node, so G = S(G1, G2). First note that ab /∈ E(G). Let c be
the common pole of G1 and G2. Let C1

1 , . . . , C
k1
1 be the components of G1 − {a, c}

that contain a neighbor of c and let Ck1+1
1 , . . . , Cm1

1 be the other components of
G1 − {a, c}. We define analogously the components C1

2 , . . . , C
m2
2 and the index k2

with respect to G2−{b, c}. For each j ∈ {1, . . . ,m1}, we define Hj
1 to be the subgraph

of G corresponding to the component Cj
1 of G1−{a, c} as in the definition of normal

forms. The graphs H1
2 , . . . , H

m2
2 are defined analogously with respect to G2 − {b, c}.

According to the definition of normal forms, either H1
i = Gi or, in Ti, the graph Gi

is represented by P (H1
i , . . . , H

mi
i ). Note that the components of G − {a, b} are

exactly Ck1+1
1 , . . . , Cm1

1 , Ck2+1
2 , . . . , Cm2

1 and {c} ∪ (⋃k1
j=1 C

j
1) ∪ (⋃k2

j=1C
j
2). Based on

this, the sought tree T ′ is the tree with a P-node as a root, whose children are the
SP-decomposition trees representing Hk1+1

1 , . . . , Hm1
1 , Hk2+1

2 , . . . , Hm2
2 and S(F1, F2),

where Fi := P (H1
i , . . . , H

k1
i ) for i ∈ {1, 2} (each of them in normal form). It follows

from the construction that the node n is in normal form, hence so is the tree T ′. This
concludes the proof.

�

3. Reductions

We note that the statement of Theorem 1.4 is true if k 6 2, since then ∆ ∈ {0, 1}.
So from now on we assume that k > 3. We fix a minimal counter-example (G, k), where
k > d∆(G)+3

2 e, along with an SP tree-decomposition T of G with every node in normal form
(Lemma 2.5 ensures that this is possible). It follows that k < |V (G)|, as any graph H
admits an equitable t-coloring if t > |V (H)|. We may also assume that G is connected. As
a consequence, every component of a subgraph of G with poles a and b that is represented
by a subtree of T contains a or b. A subtree T ′ of T is a construction subtree if T ′ is rooted
at a node r of T and T ′−{r} consists of at least two subtrees of T −{r} containing children
of r such that if r is an S-nodes, then all these children are consecutive around r in T .

Throughout this section, each time a coloring c is obtained by induction (or, equivalently,
by a minimality argument), we assume the colors to be ordered increasingly, that is, such
that |α−1({i})| 6 |α−1({j})| for every two colors i and j with i < j. (This condition implies
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that if we consider a k-coloring α of an n′-vertex graph with n′ < k, then the colors used
by c are precisely k, k − 1, . . . , k − n′, each being used exactly once.)
Lemma 3.1. The graph G has no construction subtree representing a subgraph C(k − 1)
or D(k − 1).
Proof. Suppose, on the contrary, that H is such a subgraph of G. Let a and b be the
poles and v1, . . . , vt the inner vertices of H. Let F be the graph constructed from G by
contracting V (H) to a vertex c, removing parallel edges and loops when they occur. Note that
F has noK4-minor. In addition, dF (c) 6 dG(a)+dG(b)−2(k−1) 6 2k−4. By the minimality
of G, there is an equitable k-coloring α of F . Define α′(v) := α(v) for v ∈ V \ V (H). Note
that α′ is a partial proper coloring of G, that is, a proper coloring defined on a subset
of V (G). To finish the proof, it suffices to extend α′ to a proper coloring of G such that
the multisets {α′(a), α′(b), α′(v1), . . . , α′(vk)} and {α(c), 1, . . . , k} are equal. (Note that in
this latter multiset one color has multiplicity two — namely α(c) — and k − 1 colors have
multiplicity one.) We now distinguish two cases.

• If ab /∈ E, then we set α′(a) := α′(b) := α(c) and we color v1, . . . , vk using all the
elements of the set {1, . . . , k} \ {α(c)}.
• If ab ∈ E, then a has at most ∆− k 6 k− 3 colored neighbors. So a can be properly
colored with a color α′(a) different from α(c). Similarly, b has at most k − 2 colored
neighbors (including a), so b can be properly colored with a color α′(b) different
from α(c) (and from α′(a)). Now, we color v1, . . . , vk using the elements of the
multiset {α(c), α(c), 1, . . . , k} \ {α′(a), α′(b)}, with the corresponding multiplicities.

�

Corollary 3.2. For every integer t > k − 1, the graph G has no construction subtree repre-
senting a subgraph C(t) or D(t).
Proof. Assume otherwise that H is such a subgraph of G. Let a and b be the poles of H.
Let n be the root of the construction subtree that represents H. Since n is in normal form
and H − {a, b} is an independent set of size t, the node n is a parallel node with at least t
children representing a path P3 with end vertices a and b (the node n may have other children
as well). Choosing n as a root along with k − 1 of the children of n representing a P3 yields
a construction subtree of T that represents D(k − 1), which contradicts Lemma 3.1. �

Lemma 3.3. If a construction subtree of T represents a graph H with 1 6 width(H) 6 k,
then Inner(H) is dominated by a pole of H unless width(H) > 2 and H ∈ {C ′(t), D′(t)},
where t = width(H)− 1.
Proof. Assume that each of the poles a and b of H has a non-neighbor in Inner(H), which
we name a′ and b′, respectively. Note that it is possible to ensure that a′ 6= b′ unless
Inner(H) \N(a) = Inner(H) \N(b) = {a′}. In this latter case, since each component of H
contains a or b as reported earlier, we deduce that H is connected. It then follows from
Lemma 2.4 that H is equal to either C ′(t) or D′(t), with t = width(H)− 1 > 1.

We now assume that a′ 6= b′, which yields to a contradiction. Indeed, let F be the
graphG−Inner(H) to which we add the edge ab if it is not already present. By the minimality
of G there is an equitable k-coloring α of F . To obtain a contradiction, it suffices to extend α
to a proper coloring of G such that {α(v) | v ∈ Inner(H)} equals {1, . . . ,width(H)}. (We
recall that the colors are increasingly ordered.)
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To do so, we define α(a′) := α(a) if α(a) 6 width(H) and α(b′) := α(b) if α(b) 6 width(H)
and we arbitrarily assign the colors of {1, . . . ,width(H)} \ {α(a), α(b)} to the non-colored
vertices, each color being assigned once. �

Our next statement is a direct consequence of Lemma 3.3.

Corollary 3.4. If a construction subtree of T represents a graph H with width(H) 6 k,
then the subgraph induced by Inner(H) is a forest.

Proof. The statement is clear if H ∈ {C ′(t), D′(t)} for some integer t, so by Lemma 3.3 we
can assume that Inner(H) is dominated by a pole a of H. Then Inner(H) induces an acyclic
graph, as otherwise Inner(H) ∪ {a} would induce a subgraph of G containing a subdivision
of K4. �

Lemma 3.5. Let H be a graph with poles a and b represented by a construction subtree of T
and assume that width(H) = k − 1. Then dH(a) + dH(b) 6 2k − 4.

Proof. Assume on the contrary that dH(a) + dH(b) > 2k − 3. Let F be the graph obtained
from G by contracting H into one vertex c, again removing parallel edges and loops when
they occur. In other words, we set V (F ) := (V (G) \ V (H)) ∪ {c} and NF (v) := NG(v)
for v ∈ V (G) \ V (H) while NF (c) := (NG(a) ∪NG(b)) ∩ V (F ). By our assumption, dG(c) 6
dG(a) − dH(a) + dG(b) − dH(b) 6 2∆ − (2k − 3) 6 ∆. Consequently, F is a K4-minor-free
graph with maximum degree at most ∆. By the minimality of G there is an equitable k-
coloring α of F . To obtain an equitable colouring of G, it suffices to extend α to V (G) in
such a way that the multisets {α(v) | v ∈ V (H)} and {α(c), 1, . . . , k} are equal. We note that
Corollary 3.4 yields that Inner(H) induces an acyclic graph. We distinguish three cases.

• If ab /∈ E(G) then we define α(a) := α(b) := α(c) and we arbitrarily distribute all the
colors in {1, . . . , k} \ {α(c)} to the vertices in Inner(H).
• If ab ∈ E(G) and a has a non-neighbor a′ ∈ Inner(H), then by Lemma 3.3, it
follows that either b dominates Inner(H) or H = C ′(k − 2). In both cases, we
know that b has at least k − 2 neighbors in Inner(H). It follows that b has at
most ∆ − (k − 2) 6 k − 1 neighbors outside of Inner(H), including a. We define
α(a) := α(a′) := α(c). By the preceding remark it is possible to properly color b
with a color α(b) (so in particular α(a) 6= α(b)). To finish the coloring, we assign
arbitrarily all the colors in {1, . . . , k}\{α(a), α(b)} to the vertices in Inner(H)\{a′}.
• If both a and b dominate Inner(H), then by Lemma 2.4 we know that H = C(k− 1),
which does not occur by Lemma 3.1.

�

Lemma 3.6. If H is a graph represented by a construction subtree of G, then width(H) 6=
k − 1.

Proof. Assume otherwise that there is such a graph H with width k− 1. By Lemma 3.3, we
may assume that a pole a of H has at least k− 2 neighbors in Inner(H). Let b be the other
pole of H. By Lemma 3.5, we have dH(b) 6 2k − 4− dH(a) 6 k − 2. It follows that b has a
non-neighbor b′ in Inner(H). By the minimality of G, the graph F := G− (Inner(H)∪ {a})
has an equitable k-coloring α. To finish the proof, it suffices to extend α to V (G) in such a
way that {α(v) | v ∈ Inner(H) ∪ {a}} equals {1, . . . , k}. Since a has at most k − 1 colored
neighbors, it is possible to properly color a with a color α(a). We set α(b′) := α(b) unless
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α(a) = α(b). Then we arbitrarily color the (k− 1 or k− 2) non-colored vertices using all the
(k − 1 or k − 2) colors in {1, . . . , k} \ {α(a), α(b)}. �

Corollary 3.7. If H is a graph represented by a construction subtree of G, then H /∈
{C ′(k − 1), D′(k − 1)}.

Proof. Assume otherwise that H is such a graph, with poles a and b, and represented by
a construction subtree of G with root n. Since n is in normal form and H − {a, b} is
disconnected, the node n is a parallel node with a children representing a star K1,3 and
(at least) k − 2 children each representing a path P3 with end-vertices a and b (the node n
may have further children). It follows that T has a construction subtree of G rooted on n
representing D′(k − 2), which has width k − 1. This contradicts Lemma 3.6. �

Lemma 3.8. If H is a graph represented by a construction subtree of G, then width(H) 6= k.

Proof. Suppose, on the contrary, that H is such a graph with width k. Let a and b be the
poles of H. By Lemmas 3.2 and 3.7, we know that H /∈ {C(k), C ′(k − 1), D(k), D′(k − 1)}.
It now follows from Lemma 3.3, that a dominates Inner(H). Then b has a non-neighbor b′ ∈
Inner(H), for otherwise b also would dominate Inner(H), so Lemma 2.4 would imply that
H ∈ {C(k), D(k)}.

Let F be the graph G− Inner(H) to which we add the edge ab if it is not already present.
By the minimality of F there is an equitable k-coloring α of F . To finish the proof, it suffices
to deduce a proper coloring α′ of G that equals α on V (G) \ (Inner(H)∪{a}) and such that
the multisets {α′(u) |u ∈ Inner(H) ∪ {a}} and {1, . . . , k}∪{α(a)} are equal. We distinguish
two cases depending on the value of k.

• Case 1: k > 4. Since a has k neighbors in Inner(H), the vertex a has at most
∆ − k 6 k − 3 colored neighbors, so we can properly recolor a with a color α′(a)
different from both α(a) and α(b). By Corollary 3.4, Inner(H) is a forest and we know
that |Inner(H) \ {b′}| = k−1 > 3, so there is an independent set A ⊂ Inner(H)\{b′}
of size 2. To complete the coloring, we assign α(b) to b′ and α(a) to the vertices in A
and we distribute arbitrarily the colors in {1, . . . , k} \ {α′(a), α(a), α(b)} to the non-
colored vertices.
• Case 2: k = 3. Since a dominates a set of size k, it holds that k 6 ∆ 6 2k −

3, so k = 3 = ∆. Moreover, it also follows that ab /∈ E. As a consequence of
Corollary 3.4, the set Inner(H) contains two non-adjacent vertices v1 and v2. Let u
be the third vertex in Inner(H), so Inner(H) = {v1, v2, u}. We define α′(a) := α(b),
we set α′(vi) := α(a) for i ∈ {1, 2} and we attribute to u the third color, that is the
one in {1, 2, 3} \ {α(a), α(b)}.

In both cases, we obtain an equitable k-coloring of G, a contradiction. �

Our last two lemmas rely on the following observation.

Observation 3.9. Let m be a positive integer and let λ1, . . . , λm ∈ {1, 2}. If A1 and A2 are
two subsets of the vertices of a graph G that has no edge between A1 and A2, then the vertices
in A1 ∪ A2 can be properly colored using the colors 1, . . . ,m with respective multiplicities
λ1, . . . , λm whenever ∑m

j=1 λj = |A1|+ |A2| and |Ai| 6 m for i ∈ {1, 2}.
8



Proof. For s ∈ {1, 2}, set ms := {i ∈ {1, . . . ,m} |λi = s}. We know that |A1| + |A2| =
m1 + 2m2 = m + m2. We deduce that A1 6 m2 and A2 6 m2. This ensures that the
following greedy procedure is valid. For every color i with λi = 2, we color one vertex in A1
and one vertex in A2 with i. After that, it remains to assign arbitrarily the m1 colors of
multiplicity 1 to the m1 non-colored vertices. �

Lemma 3.10. Let H := P (H1, H2) be a graph represented by a construction subtree of T .
Assume that width(Hi) 6 k − 2 for i ∈ {1, 2}. Then width(H) 6 k − 2.
Proof. We proceed by contradiction. Let H be a minimal counter-example. By Lemmas 3.6
and 3.8, we know that width(H) = k + µ for some positive integer µ.

Let a and b be the poles of H. We first prove that every component U of H − {a, b} has
at least µ+ 2 vertices. Indeed, since the root n of the construction subtree representing H is
in normal form, the node n is a parallel node and the subgraph induced by U ∪ {a, b}, from
which we remove the edge ab if it is present, is represented by a children of n, so H ′ := H−U
is represented by a construction subtree of T . If moreover |U | 6 µ+ 1, then H ′ has width at
least k− 1, thereby contradicting the minimality of H. In particular, width(Hi) > µ+ 2 > 3
for i ∈ {1, 2}, so k > 5.

Assume for the time being that neither a nor b dominates Inner(H). By the remark above
and Lemma 3.3, we know that each of Inner(H1) and Inner(H2) is dominated by either a
or b. Consequently, we may assume that a dominates Inner(H1) but not Inner(H2) and
b dominates Inner(H2) but not Inner(H1). Let u1 ∈ Inner(H1) and u2 ∈ Inner(H2) be
non-neighbors of b and a, respectively. We distinguish two cases depending on the value
of µ.

First case: µ 6 2. Let F be the graph G − Inner(H) to which we add a crystal C(µ)
with poles a and b. Let v1, . . . , vµ be the inner vertices of this new crystal. Note that
|V (G)| − |V (F )| = k. Since dH(a) > width (H1) > µ + 2 and similarly dH(b) > µ + 2, the
graph F has maximum degree at most ∆.

By the minimality of G there is an equitable k-coloring α of F . Note that the restric-
tion of α to V (G) \ Inner(H) is also a proper partial coloring of G. To equitably color G,
it suffices to extend this partial coloring to a proper coloring β of G such that the multi-
set {β(v) | v ∈ Inner(H)} equals the multiset C := {1, . . . , k} ∪ {α(vi) | 1 6 i 6 µ}.

The colors α(a) and α(b) both have multiplicity exactly 1 in C and the maximal multi-
plicity in C is at most µ+ 1. We set β(u1) := α(b) and β(u2) := α(a).

If the maximal multiplicity in C is 2, then Observation 3.9 ensures that we can properly
assign the k − 2 remaining colors since each of H1 and H2 has at most k − 3 non-colored
vertices. This yields an equitable k-coloring of G, which is a contradiction.

If the maximal multiplicity in C is 3, then µ = 2, so width(H1) > k + 2 > 4. It follows
then that Inner(H1) \ {u1} contains an independent set {v1, v2} of size 2. Indeed, otherwise
Inner(Hi) \ {ui} would be a clique of size at least 3, which with a or b would induce a copy
of K4 in G. Let v3 be a vertex in Inner(H2) \ {u2}. We color v1, v2 and v3 with the (unique)
color of multiplicity 3 in C. Again, observation 3.9 ensures that we can properly assign
the k − 3 remaining colors since each of H1 and H2 has at most k − 4 non-colored vertices.

Second case: µ > 3. Let F be the graph G − Inner(H) to which we add the edge ab
if it is not already present. By the minimality of G there is an equitable k-coloring α
of F . To equitably color G, it suffices to extend α to a proper coloring of G such that the
multiset {α(v) | v ∈ Inner(H)} equals the multiset C := {1, . . . , k, 1, . . . , µ}.
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As µ > 3, every component of H − {a, b} has at least µ + 2 > 5 vertices. Consequently,
a has two non-adjacent non-neighbors w2 and w′2 in Inner(H2). To see this, consider a
component U of Inner(H2). By Lemma 2.4, the set U contains only one neighbor of a. It
follows that |U \N(a)| > 3, which gives the announced property since by Corollary 3.4 the
set U induces a tree in G. One proves similarly that b has two non-adjacent non-neighbors w1
and w′1 in Inner(H1). We set α(w2) := α(a), α(w1) := α(b) and if necessary α(w′2) := α(a)
and/or α(w′1) := α(b). After this, each of H1 and H2 has at most k− 3 non-colored vertices.
By Observation 3.9, we can extend this coloring using the k − 2 remaining colors in C.

From now on, we assume that a dominates Inner(H). Set F := G− (Inner(H)∪ {a}). By
the minimality of G there is an equitable k-coloring α of F . To equitably color G, it suffices
to extend α to a proper coloring of G such that the multiset {α(v) | v ∈ Inner(H) ∪ {a}}
equals the multiset C := {1, . . . , k+µ+ 1}, where integers are reduced modulo k. Note that
k + µ + 1 6 width(H1) + width(H2) + 1 < 2k so every color has multiplicity either 1 or 2
in C.

The vertex a has at most k − 3 − µ colored neighbors. There are k − 1 − µ colors with
multiplicity one in C. Consequently, it is possible to color a with a color of multiplicity one
that is different from α(b).

We now place the color α(b). We know that width(H) > k + µ > 6. By Lemma 2.4, and
since each component of H \ {a, b} has size at least µ+ 2 > 3, the vertex b has at least one
non-neighbor in each of H1 and H2. We color a number of these non-neighbors equal to the
multiplicity of α(b) in C (which is either 1 or 2) using the color α(b). Observation 3.9 then
ensures that we can obtain an equitable coloring with the k − 2 remaining colors. �

Lemma 3.11. Let H := S(H1, H2) be a graph represented by a construction subtree of T .
Assume that width (Hi) 6 k − 2 for i ∈ {1, 2}. Then width (H) 6 k − 2.

Proof. Suppose, on the contrary, that H contradicts the statement. Subject to this, we
choose H to have as few vertices as possible. We may assume that width (H) > k + 1 by
Lemmas 3.6 and 3.8. Let b be the common pole of H1 and H2 and let a and c be the other
poles of H1 and H2, respectively.

Case 1: For each i ∈ {1, 2}, the subgraph of G induced by Inner(Hi) contains an
independent set {u1

i , u
2
i } of size 2. Let F be the graph G− Inner(H) to which we add the

edge ac if it is not already present. By the minimality of G there is an equitable k-coloring α
of F , which we aim to extend to G such that the multiset {α(v) | v ∈ Inner(H)} equals the
multiset C := {1, . . . ,width (H)}, where each integer is reduced modulo k.

We know that width (H) 6 width (H1)+width (H2)+1 6 2k−3. It follows that there is a
color γ ∈ {1, . . . , k} \ {α(a), α(c)} of multiplicity one in C. We set α(b) := γ, α(u1

1) := α(b),
α(u2

1) := α(a) and if necessary α(u1
2) := α(b) and/or α(u2

2) := α(a). For each i ∈ {1, 2}, the
subgraph Hi has at most k − 3 non-colored vertices left, so by Observation 3.9 it is possible
to extend the coloring using the k−3 remaining colors with the corresponding multiplicities.

Case 2: Inner(H1) induces a clique. We know that

width(H1) > width(H)− width(H2)− 1 > k + 1− (k − 2)− 1 > 2.

By Corollary 3.4, Inner(H1) is a forest, so width(H1) = 2. It forces moreover width(H2) to
be k − 2. This in particular implies that k > 4. Observe that the minimality of H ensures
that each of the poles a and c has at least two neighbors in H.
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Let d and e be the inner vertices of H1. We define F to be the graph G − (Inner(H1) ∪
Inner(H2)) to which we add the edges ab, bc and ac if not already present. Note that the
graph thus obtained still has maximum degree at most ∆. By the minimality of G there is
an equitable k-coloring α of F .

It remains to deduce an equitable k-coloring of G. To do so, we recolor b with a color γ
different from α(a), from α(b) and from α(c), which is possible as k > 4. Next we color d
with α(b) and e with α(c). It now suffices to distribute arbitrarily the colors in {1, . . . , k} \
{γ, α(c)} to the vertices in Inner(H2). �

We are now ready to conclude.
Proof of Theorem 1.4. A direct induction on the tree T using Lemmas 3.10 and 3.11 shows
that G has at most k − 2 inner vertices. This contradicts our assumption that |V (G)| > k,
thereby finishing the proof of Theorem 1.4. �
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