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CYCLICITY IN WEIGHTED `p SPACES

FLORIAN LE MANACH

Abstract. We study the cyclicity in weighted `p(Z) spaces. For
p ≥ 1 and β ≥ 0, let `pβ(Z) be the space of sequences u = (un)n∈Z

such that (un|n|β) ∈ `p(Z). We obtain both necessary conditions
and sufficient conditions for u to be cyclic in `pβ(Z), in other words,
for {(un+k)n∈Z, k ∈ Z} to span a dense subspace of `pβ(Z). The
conditions are given in terms of the Hausdorff dimension and the
capacity of the zero set of the Fourier transform of u.

1. Introduction and main results

For p ≥ 1 and β ∈ R, we define the Banach space

`pβ(Z) =

u = (un)n∈Z ∈ CZ, ‖u‖p`p
β

=
∑
n∈Z
|un|p(1 + |n|)pβ <∞


endowed with the norm ‖ · ‖`p

β
. Notice that `p0(Z) is the classical `p(Z)

space.

In this work, we are going to investigate cyclic vectors for `pβ(Z) when
β ≥ 0. A vector u ∈ `pβ(Z) is called cyclic in `pβ(Z) if the linear span of
{(un+k)n∈Z, k ∈ Z} is dense in `pβ(Z).

We denote by T the circle R/2πZ. The Fourier transform of u ∈
`p(Z) is given by

û : t ∈ T 7→
∑
n∈Z

une
int

and when û is continuous, we denote by Z(û) the zero set on T of û:
Z(û) = {t ∈ T, û(t) = 0}.

The case β = 0 was already studied by Wiener, Beurling, Salem
and Newman. When p = 1 or p = 2, Wiener characterized the cyclic
vectors u in `p(Z) by the zeros of û, with the following theorem.
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Theorem 1.1 ([16]). Let u ∈ `p(Z).
(1) If p = 1 then u is cyclic in `1(Z) if and only if û has no zeros

on T.
(2) If p = 2 then u is cyclic in `2(Z) if and only if û is non-zero

almost everywhere.

Lev and Olevskii showed that, for 1 < p < 2 the problem of cyclicity
in `p(Z) is more complicated even for sequences in `1(Z). The following
Theorem of Lev and Olevskii contradicts the Wiener conjecture.

Theorem 1.2 ([8]). If 1 < p < 2, there exist u and v in `1(Z) such
that Z(û) = Z(v̂), u is not cyclic in `p(Z), and v is cyclic in `p(Z).

So we can’t characterize the cyclicity of u in `p(Z) in terms of only
Z(û), the zero set of û. However for u ∈ `1(Z), Beurling, Salem and
Newman gave both necessary conditions and sufficient conditions for
u to be cyclic in `p(Z). These conditions rely on the ”size” of the set
Z(û) in term of it’s h-measure, capacity and Hausdorff dimension.

Given E ⊂ T and h a continuous function, non-decreasing and such
that h(0) = 0, we define the h-measure of E by

Hh(E) = lim
δ→0

inf
{ ∞∑
i=0

h(|Ui|), E ⊂
∞⋃
i=0

Ui, |Ui| ≤ δ

}
where the Ui are open intervals of T and where |Ui| denotes the length
of Ui.
The Hausdorff dimension of a subset E ⊂ T is given by
dim(E) = inf{α ∈ (0, 1), Hα(E) = 0} = sup{α ∈ (0, 1), Hα(E) =∞},
where Hα = Hh for h(t) = tα (see [6], pp. 23-30).
Let µ be a positive measure on T and α ∈ [0, 1). We define the α-energy
of µ by

Iα(µ) =
∑
n≥1

|µ̂(n)|2
(1 + |n|)1−α .

The α-capacity of a Borel set E is given by
Cα(E) = 1/inf{Iα(µ), µ ∈MP(E)},

where MP(E) is the set of all probability measures on T which are
supported on a compact subset of E. If α = 0, C0 is called the loga-
rithmic capacity.
An important property which connects capacity and Hausdorff dimen-
sion is that (see [6], p. 34)

dim(E) = inf{α ∈ (0, 1), Cα(E) = 0} = sup{α ∈ (0, 1), Cα(E) > 0}. (1.1)
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In the following theorem, we summarize the results of Beurling [2],
Salem [15] (see also [6] pp. 106-110) and Newman [10]. The Hölder
conjugate of p 6= 1 is noted by q = p

p−1 .

Theorem 1.3 ([2, 10, 15]). Let 1 ≤ p ≤ 2.
(1) If u ∈ `1(Z) and dim(Z(û)) < 2/q then u is cyclic in `p(Z).
(2) For 2/q < α ≤ 1, there exists E ⊂ T such that dim(E) = α and

every u ∈ `1(Z) satisfying Z(û) = E is not cyclic in `p(Z).
(3) There exists E ⊂ T such that dim(E) = 1 and every u ∈ `1(Z)

satisfying Z(û) = E is cyclic in `p(Z) for all p > 1.

In this paper we give a generalization of the results of Beurling,
Salem and Newman to `pβ(Z) spaces.
When βq > 1, we have an analogue of (1) in Wiener’s Theorem 1.1: a
vector u ∈ `pβ(Z) is cyclic if and only if û has no zeros on T. Indeed,
`pβ(Z) is a Banach algebra if and only if βq > 1 (see [4]).
When p = 2, Richter, Ross and Sundberg gave a complete characteri-
zation of the cyclic vectors u in the weighted harmonic Dirichlet spaces
`2
β(Z) by showing the following result:

Theorem 1.4 ([14]). Let 0 < β ≤ 1
2 and u ∈ `1

β(Z) .
The vector u is cyclic in `2

β(Z) if and only if C1−2β(Z(û)) = 0.

Our first main result is the following theorem.

Theorem A. Let 1 < p < 2, β > 0 such that βq ≤ 1.
(1) If u ∈ `1

β(Z) and dim(Z(û)) < 2
q
(1 − βq) then u is cyclic in

`pβ(Z).
(2) If u ∈ `1

β(Z) and dim(Z(û)) > 1 − βq then u is not cyclic in
`pβ(Z).

(3) For 2
q
(1− βq) < α ≤ 1, there exists a closed subset E ⊂ T such

that dim(E) = α and every u ∈ `1
β(Z) satisfying Z(û) = E is

not cyclic in `pβ(Z).
(4) If p = 2k

2k−1 for some k ∈ N∗ there exists a closed subset E ⊂ T
such that dim(E) = 1 − βq and every u ∈ `1

β(Z) satisfying
Z(û) = E is cyclic in `pβ(Z).

Note that in order to prove (2) and (4) we show a stronger result
(see Theorem 3.4).

We can summarize Theorem A by the following diagram:
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dim(Z(û))
0
|

2
q
(1− βq)
|

1− βq
|

1
|

(1) (3) and (4) (2)

The fourth propriety shows that the bound 1 − βq obtained in
(2) is optimal in the sense that there is no cyclic vector such that
dim(Z(û)) > 1 − qβ, and, we can find some cyclic vector u with
dim(Z(û)) = 1 − βq. However this is only proved if p = 2k

2k−1 for
some positive integer k. When p is not of this form, for all positive
integer k, we still prove similar results but we loose the optimality
because we fail to reach the bound 1− βq.

The ”equality case” dim(Z(û)) = 2
q
(1 − βq) is not treated by the

previous theorem. Newman gave a partial answer to this question when
β = 0, by showing that, under some additional conditions on Z(û),
dim(Z(û)) = 2

q
implies that u is a cyclic vector (see [10, Theorem 1]).

We need the notion of strong α-measure, α ∈ (0, 1), to state Newman’s
Theorem in the equality case. For E a compact subset of T, we note
(ak, bk), k ∈ N its complementary intervals arranged in non-increasing
order of lengths and set

rn = 2π −
n∑
k=0

(bk − ak). (1.2)

We will say that E has strong α-measure 0 if
lim
n→∞

rn n
1
α
−1 = 0.

Notice that if E has strong α-measure 0 then Hα(E) = 0. The converse
is true for some particular sets like Cantor sets but in general the
converse is false (for some countable sets).
Theorem 1.5. Let 1 < p < 2 and u ∈ `1(Z).
If Z(û) has strong α-measure 0 where α = 2

q
then u is cyclic in `p(Z).

Moreover, in [10], Newman asked the question :
For u ∈ `1(Z), does H2/q(Z(û)) = 0 imply that u is cyclic in `p(Z) ?

A positive answer to this question would contain Theorem 1.1 and
Theorem 1.3.(1). We are not able to answer this question completely.
Nevertheless, we show that if we replace 2/q-measure by h-measure
where h(t) = t2/qln(1/t)−γ with γ > 2

q
then the answer is negative.

Moreover we extend Newman’s Theorem to `pβ(Z).
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Theorem B. Let 1 < p < 2, β ≥ 0 such that βq < 1.
(1) If u ∈ `1

β(Z) and Z(û) has strong α-measure 0 where α = 2
q
(1−

βq) then u is cyclic in `pβ(Z).
(2) For every γ > 2

q
, there exists a closed subset E ⊂ T such that

every u ∈ `1
β(Z) satisfying Z(û) = E is not cyclic in `pβ(Z)

and such that Hh(E) = 0 where h(t) = tαln(e/t)−γ with α =
2
q
(1− βq)

Note that the set E constructed in part (2) of Theorem B satisfy
dim(E) = 2

q
(1− βq).

2. Preliminaries and lemmas

Let 1 ≤ p < ∞ and β ∈ R. We denote by D′(T) the set of distri-
butions on T and M(T) the set of measures on T. For S ∈ D′(T), we
denote by Ŝ = (Ŝ(n))n∈Z the sequence of Fourier coefficients of S and
we write S = ∑

n Ŝ(n)en, where en(t) = eint. The space Apβ(T) will be
the set of all distributions S ∈ D′(T) such that Ŝ belongs to `pβ(Z). We
endow Apβ(T) with the norm ‖S‖Ap

β
(T) = ‖Ŝ‖`p

β
. We will write Ap(T)

for the space Ap0(T). Thus the Fourier transformation is an isometric
isomorphism between `pβ(Z) and Apβ(T). We prefer to work with Apβ(T)
rather than `pβ(Z). In this section we establish some properties of Apβ(T)
which will be needed to prove Theorems A and B.

For 1 ≤ p < ∞ and β ≥ 0 we define the product of f ∈ A1
β(T) and

S ∈ Apβ(T) by

fS =
∑
n∈Z

(f̂ ∗ Ŝ)(n) en =
∑
n∈Z

∑
k∈Z

f̂(k)Ŝ(n− k)
 en,

and we see that ‖fS‖Ap
β

(T) ≤ ‖f‖A1
β

(T)‖S‖Apβ(T). Note that if S ∈
Ap−β(T) we can also define the product fS ∈ Ap−β(T) by the same for-
mula and obtain a similar inequality: ‖fS‖Ap−β(T) ≤ ‖f‖A1

β
(T)‖S‖Ap−β(T).

For p 6= 1, the dual space of Apβ(T) can be identified with Aq−β(T)
(q = p

p−1) by the following formula

〈S, T 〉 =
∑
n∈Z

Ŝ(n)T̂ (−n), S ∈ Apβ(T), T ∈ Aq−β(T).

We denote by P(T) the set of trigonometric polynomials on T. We
rewrite the definition of cyclicity in the spaces Apβ(T) for β ≥ 0 : S ∈
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Apβ(T) will be a cyclic vector if the set {PS, P ∈ P(T)} is dense in
Apβ(T). It’s clear that the cyclicity of S in Apβ(T) is equivalent to the
cyclicity of the sequence Ŝ in `pβ(Z). Moreover for 1 ≤ p < ∞ and
β ≥ 0, S is cyclic in Apβ(T) if and only if there exists a sequence (Pn)
of trigonometric polynomials such that

lim
n→∞

‖1− PnS‖Ap
β

(T) = 0. (2.1)

We need the following lemmas which gives us different inclusions
between the Apβ(T) spaces.

Lemma 2.1. Let 1 ≤ r, s <∞ and β, γ ∈ R.
(1) If r ≤ s then Arβ(T) ⊂ Asγ(T)⇔ γ ≤ β.
(2) If r > s then Arβ(T) ⊂ Asγ(T)⇔ β − γ > 1

s
− 1

r
.

Proof. (1) : We suppose that r ≤ s. If γ ≤ β and S ∈ Arβ(T), we have∑
n∈Z
|Ŝ(n)|s(1 + |n|)γs ≤

∑
n∈Z
|Ŝ(n)|s(1 + |n|)βs.

Since ‖ · ‖`s ≤ ‖ · ‖`r , we obtain S ∈ Asγ(T) and so Arβ(T) ⊂ Asγ(T).
Now suppose γ > β. Let S ∈ D′(T) be given by

Ŝ(n)(1 + |n|)β =
{

(1 +m)−2/r if |n| = 2m
0 otherwise.

Then we have S ∈ Arβ(T) \ Asγ(T).

(2) : Now suppose that r > s. If β− γ > 1
s
− 1

r
, we have by Hölder’s

inequality,

‖S‖Asγ(T) ≤ ‖S‖Ar
β

(T)

∑
n∈Z

(1 + |n|)
rs
r−s (γ−β)

1−s/r

, S ∈ Arβ(T),

so that Arβ(T) ⊂ Asγ(T).
Now suppose that β−γ < 1

s
− 1

r
. Let ε > 0 such that β−γ+ε < 1

s
− 1

r
,

α = −1
s
− γ + ε and let S ∈ D′(T) be such that Ŝ(n) = nα. We have

S ∈ Arβ(T) \ Asγ(T).
For the case β − γ = 1

s
− 1

r
we take S ∈ D′(T) such that

Ŝ(n)r(1 + |n|)βr = 1
(1 + |n|) ln(1 + |n|)1+ε

with ε = r
s
−1 > 0. We can show that S ∈ Arβ(T)\Asγ(T) which proves

that Arβ(T) 6⊂ Asγ(T). �
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For E ⊂ T, we denote by Apβ(E) the set of S ∈ Apβ(T) such that
supp(S) ⊂ E, where supp(S) denotes the support of the distribution
S. The following lemma is a direct consequence of the definition of
capacity (see [6]) and the inclusion Aq−β(T) ⊂ A2

α−1
2

(T) when q ≥ 2 and
0 ≤ α < 2

q
(1− βq).

Lemma 2.2. Let E a Borel set, β ≥ 0 and q ≥ 2. If there exists α,
0 ≤ α < 2

q
(1− βq), such that Cα(E) = 0 then Aq−β(E) = {0}.

We obtain the first results about cyclicity for the spaces Apβ(T), when
Apβ(T) is a Banach algebra. More precisely, we have (see [4])

Proposition 2.3. Let 1 ≤ p < ∞ and β ≥ 0. Apβ(T) is a Banach
algebra if and only if βq > 1. Moreover when βq > 1, a vector f ∈
Apβ(T) is cyclic in Apβ(T) if and only if f has no zeros on T.

Let f ∈ A1
β(T) ans S ∈ D′(T). We denote by Z(f) the zero set of

the function f . Recall that en : t 7→ eint.
Lemma 2.4. Let 1 ≤ p < ∞ and β ≥ 0. Let f ∈ A1

β(T) and S ∈
Ap−β(T). If for all n ∈ Z, 〈S, enf〉 = 0 then supp(S) ⊂ Z(f).
Proof. We have

〈S, enf〉 = 〈fS, en〉 = 0.
Hence fS = 0. Let ϕ ∈ C∞(T) such that supp(ϕ) ⊂ T \ Z(f). We

claim that ϕ
f
∈ A1

β(T) ⊂ Aqβ(T) where q = p
p−1 . So we obtain

〈S, ϕ〉 = 〈fS, ϕ
f
〉 = 0

which proves that supp(S) ⊂ Z(f).
Now we prove the claim. Let ε = min{|f(t)|, t ∈ supp(ϕ)} > 0 and
P ∈ P(T) such that ‖f − P‖A1

β
(T) ≤ ε/3.

By the Cauchy-Schwarz and Parseval inequalities, for every g ∈
C1(T), we get

‖g‖A1
β

(T) ≤ ‖g‖∞ + 2
√

2− 2β
1− 2β ‖g

′‖∞. (2.2)

Now, as in [11], by applying (2.2) to ϕ

P n
we see that

ϕ

f
=
∑
n≥1

ϕ
(P − f)n−1

P n
∈ A1

β(T),

which finishes the proof. �
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Proposition 2.5. Let 1 ≤ p < ∞ and f ∈ A1
β(T) with β ≥ 0. We

have
(1) If f is not cyclic in Apβ(T) then there exists S ∈ Aq−β(T) \ {0}

such that supp(S) ⊂ Z(f).
(2) If there exists a nonzero measure µ ∈ Aq−β(T) such that

supp(µ) ⊂ Z(f) then f is not cyclic in Apβ(T).
Proof. (1) If f is not cyclic in Apβ(T), by duality there exists S ∈
Aq−β(T) \ {0} such that

〈S, enf〉 = 0, ∀n ∈ Z.
Thus, by lemma 2.4, we have supp(S) ⊂ Z(f).

(2) Let µ ∈ Aq(T) ∩M(T) \ {0} such that supp(µ) ⊂ Z(f). Since
µ is a measure on T we have 〈µ, enf〉 = 0, for all n ∈ Z. So f is not
cyclic in Apβ(T). �

Recall that A1
β(T) is a Banach algebra. Let I be a closed ideal in

A1
β(T). We denote by ZI the set of common zeros of the functions of

I,
ZI =

⋂
f∈I
Z(f).

We have the following result about spectral synthesis in A1
β(T).

Lemma 2.6. Let 0 ≤ β < 1/2. Let I be a closed ideal in A1
β(T). If g

is a Lipschitz function which vanishes on ZI then g ∈ I.
Proof. The proof is similar to the one given in [6] pp. 121-123. For the
sake of completeness we give the important steps. Let I⊥ be the set
of all S in the dual space of A1

β(T) satisfying 〈S, f〉 = 0 for all f ∈ I.
Let g be a Lipschitz function which vanishes on ZI and S ∈ I⊥. By
Lemma 2.4, supp(S) ⊂ ZI . For h > 0, we set Sh = S ∗ ∆h where
∆h : t 7→ −|t|

h2 + 1
h

if t ∈ [−h, h] and 0 otherwise. We have ∆̂h(0) = 1/2π
and ∆̂h(n) = 1

2π
4 sin(nh/2)2

(nh)2 for n 6= 0. Since S is in the dual of A1
β(T),

Sh ∈ A1(T). Moreover we have supp(Sh) ⊂ supp(S) + supp(∆h) ⊂
ZhI := ZI + [−h, h]. We have

|〈Sh, g〉|2 =
∣∣∣∣∣
∫
ZhI \Z(g)

Sh(x)g(x)dx
∣∣∣∣∣
2

≤

∑
n∈Z
|Ŝ(n)∆̂h(n)|2

(∫
ZhI \Z(g)

|g(x)|2dx
)

≤ C

∑
n∈Z

Ŝ(n)2

n2

(|ZhI \ Z(g)|
)
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where C is a positive constant and where |E| denotes the Lebesgue
measure of E. So limh→0〈Sh, g〉 = 0. By the dominated convergence
theorem, we obtain that

lim
h→0
〈Sh, g〉 = lim

h→0

∑
n∈Z

Ŝh(n)ĝ(−n) = 1
2π

∑
n∈Z

Ŝ(n)ĝ(−n) = 1
2π 〈S, g〉.

So 〈S, g〉 = 0. Therefore g ∈ I. �

We also need the following lemma which is a consequence of Lemma
2.6. Newman gave a proof of this when β = 0 (see [10, Lemma 2]).

Lemma 2.7. Let 0 ≤ β < 1/2 and a closed set E ⊂ T.
There exists (fn) a sequence of Lipschitz functions which are zero on
E and such that

lim
n→∞

‖fn − 1‖Ap
β

(T) = 0

if and only if every f ∈ A1
β(T) satisfying Z(f) = E is cyclic in Apβ(T).

3. Proof of Theorem A

Before proving Theorem A, let us recall Salem’s Theorem (see [15]
and [6] pp. 106-110).

Theorem 3.1. Let 0 < α < 1 and q > 2
α

.
There exists a compact set E ⊂ T which satisfies dim(E) = α and there
exists a positive measure µ ∈ Aq(T) \ {0} such that supp(µ) ⊂ E.

To prove Theorem A, we also need the following result. The case
β = 0 was considered by Newman in [10]. For k ∈ N and E ⊂ T, we
denote

k × E = E + E + ...+ E =
{

k∑
n=1

xn, xn ∈ E
}
.

Theorem 3.2. Let 1 < p < 2 and β > 0 such that βq ≤ 1, and let
f ∈ A1

β(T).
(a) Let k ∈ N∗ be such that k ≤ q/2. If Cα(k × Z(f)) = 0 for some

α < 2
q
(1− βq)k, then f is cyclic in Apβ(T).

(b) Let k ∈ N∗ be such that q/2 ≤ k ≤ 1/(2β). If Cα(k × Z(f)) = 0
where α = 1− 2kβ, then f is cyclic in Apβ(T).

Proof. Let k ∈ N∗. Suppose that f is not cyclic in Apβ(T). Then
there exists L ∈ Aq−β(T), the dual of Apβ(T), such that L(1) = 1 and
L(Pf) = 0, for all P ∈ P(T).
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Since β < 1
2 , by (2.2), we get C1(T) ⊂ A1

β(T) ⊂ Apβ(T), and by [9]
(see also [10, Lemma 5]), there exists φ ∈ L2(T) such that

L(g) =
∫
T

(
g′(x)φ(x) + g(x)

)
dx, ∀g ∈ C1(T).

Since L ∈ Aq−β(T) which implies (L(en))n∈Z ∈ `q−β(Z), we obtain∑
n∈Z
|nφ̂(n)|q(1 + |n|)−βq <∞. (3.1)

Moreover we have,∫
T

(
(enf)′(x)φ(x) + (enf)(x)

)
dx = 0, n ∈ Z,

and so 〈φ′−1, enf〉 = 0 where φ′ is defined in terms of distribution. By
(3.1), φ′ − 1 ∈ Aq−β(T), so by lemma 2.4, we get supp(φ′ − 1) ⊂ Z(f).

For m ∈ N, we denote by φ∗m the result of convolving φ with itself
m times. Using the fact that S ′ ∗ T = S ∗ T ′ and 1 ∗ S ′ = 0 for any
distributions S and T , we have

(φ′ − 1) ∗
((
φ∗(m−1)

)(m−1)
+ (−1)m−1

)
= (φ∗m)(m) + (−1)m.

So we can show by induction on m ≥ 1 and by the formula supp(T ∗
S) ⊂ supp(T ) + supp(S) that

supp
(
(φ∗m)(m) + (−1)m

)
⊂ m×Z(f), ∀m ≥ 1. (3.2)

Note that ̂(φ∗k)(k)(n) = iknkφ̂(n)k for k ≥ 1 and n ∈ Z.

(a) : Suppose that 0 < k ≤ q/2 and Cα(k × Z(f)) = 0 for some
α < 2

q
(1− βq)k. We rewrite (3.1) as

∑
n∈Z

(
|nφ̂(n)|k

) q
k (1 + |n|)−

q
k
βk <∞.

So, if we set q′ = q
k
≥ 2 and β′ = βk, we have

(
φ∗k

)(k)
∈ Aq

′

−β′(T).

By (3.2) and by Lemma 2.2 we obtain that
(
φ∗k

)(k)
= (−1)k−1. This

contradicts the fact that ̂(φ∗k)(k)(0) = 0.

(b) : Now suppose that k ≥ q/2 and Cα(k × Z(f)) = 0 where
α = 1− 2kβ. Since q ≤ 2k, we have by (3.1),∑

n∈Z
|nφ̂(n)|2k(1 + |n|)−2kβ <∞.
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So
(
φ∗k

)(k)
∈ A2

−kβ(T) and
(
φ∗k

)(k)
= (−1)k−1. Again this is absurd

since ̂(φ∗k)(k)(0) = 0. �

We need to compute the capacity of the Minkowski sum of some
Cantor type subset of T. We denote by [x] the integer part of x ∈ R.
For λ ∈ [0, 1] and k ∈ N∗, we define

Kk
λ = {m ∈ N, ∃j ∈ N, m ∈ [2j, 2j(1 + λ+ 1/j)− k + 1]}

and we set in R/Z ' [0, 1[,

Skλ =
{
x =

∞∑
i=0

xi
2i+1 , (xi) ∈ {0, 1}N such that i ∈ Kk

λ ⇒ xi = 0
}
.

We denote Kλ = K1
λ and Sλ = S1

λ.
To prove (4) of Theorem A we need the following lemma.

Lemma 3.3. For all k ≥ 1, we have
(1) k × Sλ ⊂ Skλ ;
(2) Cα(Skλ) = 0 if and only if α ≥ 1−λ

1+λ ;
(3) dim(k × Sλ) = 1−λ

1+λ and C 1−λ
1+λ

(k × Sλ) = 0.

Proof. (1) : We prove this by induction. If k = 1 we have Sλ = S1
λ.

We suppose the result true for k − 1 for some k ≥ 2 and we will show
k × Sλ ⊂ Skλ. We have k × Sλ ⊂ (k − 1) × Sλ + Sλ ⊂ Sk−1

λ + Sλ.
Let x ∈ Sk−1

λ , y ∈ Sλ and z = x + y. Denote by (xi), (yi) and (zi)
their binary decomposition. Let m ∈ Kk

λ . There exists j ∈ N such
that m ∈ [2j, 2j(1 + λ + 1/j) − k + 1]. Since m ∈ Kk

λ , m and m + 1
are contained in Kk−1

λ ⊂ Kλ, we have xm = ym = xm+1 = ym+1 = 0.
Therefore we write

z = x+ y =
m−1∑
i=0

xi + yi
2i+1 +

∞∑
i=m+2

xi + yi
2i+1 .

Note that for infinitely many i ≥ m+ 2, xi + yi < 2, so we see that
∞∑

i=m+2

xi + yi
2i+1 <

1
2m+1 .

Therefore, we obtain by uniqueness of the decomposition that zm = 0.
This proves that x+ y ∈ Skλ and k × Sλ ⊂ Skλ.

(2) : We will study the capacity of Skλ by decomposing it. First we
show that the set Skλ is a generalized Cantor set in the sense of [3, 13].
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Let νj = [2j(1 +λ+ 1/j)− k+ 1] + 1 and N0 (depending only on k and
λ) such that for all j ≥ N0, 2j < νj < 2j+1. We set for N ≥ N0,

lN =
∞∑
j=N

1
2νj −

1
22j+1 .

Since 2j(1 + λ+ 1/j)− k + 1 < νj ≤ 2j(1 + λ+ 1/j)− k + 2, we have

∞∑
j=N

1
22j(1+λ+ 1

j
)

( 1
22−k −

1
22j(1−λ− 1

j
)

)
≤ lN

≤
∞∑
j=N

1
22j(1+λ+ 1

j
)

( 1
21−k −

1
22j(1−λ− 1

j
)

)

On one hand, there exists C ≥ 1 such that for all j ≥ N ,
1
C
≤ 1

22−k −
1

22j(1−λ− 1
j

)
≤ 1

21−k −
1

22j(1−λ− 1
j

)
≤ C.

On the other hand, for N ≥ N0,

1
22N (1+λ+ 1

N
)
≤

∞∑
j=N

1
22j(1+λ+ 1

j
)
≤ 1

22N (1+λ+ 1
N

)
+
∞∑
j=0

( 1
22N+1(1+λ)

)2j

≤ 1
22N (1+λ+ 1

N
)

+
∞∑
j=0

( 1
22N+1(1+λ)

)j+1

≤ 1
22N (1+λ+ 1

N
)

+ 2
22N+1(1+λ)

≤ 3
22N (1+λ+ 1

N
)
.

Hence we obtain that lN is comparable to 2−2N (1+λ+1/N), that is:

1
C22N (1+λ+ 1

N
)
≤ lN ≤

3C
22N (1+λ+ 1

N
)
. (3.3)

Moreover we have

lN = 1
2νN −

∞∑
j=N+1

1
22j −

1
2νj <

1
2νN ≤

1
22N . (3.4)

We set

EN =


2N−1∑
i=0

xi
2i+1 + lNz, z ∈ [0, 1], xi ∈ {0, 1}, i ∈ Kk

λ ⇒ xi = 0

 .
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We can see EN as a union of disjoint intervals by writing

EN =
⋃

(xi)∈{0,1}2N

i∈Kk
λ⇒xi=0

E
(xi)
N ,

where

E
(xi)
N =

2N−1∑
i=0

xi
2i+1 + lN [0, 1].

Note that the intervals E(xi)
N are disjoint since by (3.4), lN < 1

22N .
For fixed N ≥ N0, let (xi)0≤i≤2N−1 ∈ {0, 1}2N and (yi)0≤i≤2N+1−1 ∈
{0, 1}2N+1 .
Claim : E(yi)

N+1 ⊂ E
(xi)
N if and only if xi = yi for all 0 ≤ i < 2N and

yi = 0 for all 2N ≤ i < νN .
Indeed, suppose that E(yi)

N+1 ⊂ E
(xi)
N and let u ∈ E(yi)

N+1. We have

u =
2N−1∑
i=0

xi
2i+1 + lNz1 =

2N+1−1∑
i=0

yi
2i+1 + lN+1z2,

where z1 and z2 are in [0, 1]. By (3.4), lN < 1
2νN , and using the unique-

ness of the binary representation, we obtain xi = yi for all 0 ≤ i < 2N
and yi = 0 for all 2N ≤ i < νN .
Now suppose xi = yi for all 0 ≤ i < 2N and yi = 0 for all 2N ≤ i < νN .
Let u ∈ E(yi)

N+1. We write

u =
2N−1∑
i=0

xi
2i+1 +

2N+1−1∑
i=νN

yi
2i+1 + lN+1z,

where z ∈ [0, 1]. Note that
2N+1−1∑
i=νN

1
2i+1 + lN+1 = 1

2νN −
1

22N+1 + lN+1 = lN . (3.5)

So we have
2N−1∑
i=0

xi
2i+1 ≤

2N−1∑
i=0

xi
2i+1 +

2N+1−1∑
i=ZN

yi
2i+1 + lN+1z ≤

1
2

2N−1∑
i=0

xi
2i + lN ,

and u ∈ E(xi)
N . This conclude the proof of the claim.

By the claim, for fixed (xi) and for N ≥ N0, we have the following
properties :
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(i) the interval E(xi)
N contains precisely

pN = #{(yi)νN≤i≤2N+1−1: yi ∈ {0, 1}} = 22N+1−νN

intervals of the form E
(yi)
N+1,

(ii) the intervals of the form E
(yi)
N+1 contained in E

(xi)
N are equidistant

intervals of length lN+1: the distance of two consecutive intervals
of the form E

(yi)
N+1 is equal to 1

22N+1−lN+1
,

(iii) if we denote E(xi)
N = [a, b] then there exist (yi) and (zi) such that

E
(yi)
N+1 = [a, a+ lN+1] and E

(zi)
N+1 = [b− lN+1, b].

Finally we can write Skλ as
Skλ =

⋂
N≥N0

EN .

This shows that Skλ is a generalized Cantor set in the sense of [3, 13].
So, by [3, 13], we have for 0 < α < 1 that Cα(Skλ) = 0 if and only if

∞∑
N=N0

1
(pN0 · · · pN−1)lαN

=∞.

Since

2(k−2)(N−N0)+(2N−2N0 )(1−λ)−σN ≤ pN0 · · · pN−1

≤ 2(k−1)(N−N0)+(2N−2N0 )(1−λ)−σN ,

where

σN =
N−1∑
j=N0

2j
j
,

we have, by (3.3), Cα(Skλ) = 0 if and only if
∞∑

N=N0

22N (α(1+λ)−(1−λ))+α2N/N+σN−(k−1)(N−N0)+2N0 (1−λ) =∞.

Therefore Cα(Skλ) = 0 if and only if α ≥ 1−λ
1+λ .

(3) immediately follows from (1) and (2) by the capacity property
(1.1). �

We are ready to prove Theorem A. The following Theorem is a re-
formulation of Theorem A in Apβ(T) spaces.

Theorem 3.4. Let 1 < p < 2, β > 0 such that βq ≤ 1.
(1) If f ∈ A1

β(T) and dim(Z(f)) < 2
q
(1 − βq) then f is cyclic in

Apβ(T).
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(2) If f ∈ A1
β(T) and C1−βq(Z(f)) > 0 then f is not cyclic in

Apβ(T).
(3) For 2

q
(1 − βq) < α ≤ 1, there exists a closed set E ⊂ T such

that dim(E) = α and every f ∈ A1
β(T) satisfying Z(f) = E is

not cyclic in Apβ(T).
(4) Let k = [q/2]. For all ε > 0, there exists a closed set E ⊂ T

such that

dim(E) ≥ max
(

2
q

(1− βq)k − ε, 1− 2(k + 1)β
)

and such that every f ∈ A1
β(T) satisfying Z(f) = E is cyclic in

Apβ(T).
Furthermore, if p = 2k

2k−1 for some k ∈ N∗, E can be chosen
such that dim(E) = 1− βq.

Proof. (1) : Note that, by (1.1), dim(Z(f)) < 2
q
(1− βq) if and only if

there exists α < 2
q
(1− βq) such that Cα(Z(f)) = 0. If Cα(Z(f)) = 0,

by Lemma 2.2, there is no S ∈ Aq−β(T)\{0} such that supp(S) ⊂ Z(f)
. So, by Proposition 2.5 (1), f is cyclic in Apβ(T).

(2) : Suppose that C1−βq(Z(f)) > 0. There exists a probability mea-
sure µ of energy I1−βq(µ) < ∞, such that supp(µ) ⊂ Z(f) . So
µ ∈ A2

−βq/2(T) \ {0}. Since |µ̂(n)| ≤ 1 for all n ∈ Z and q ≥ 2,
we have µ ∈ Aq−β(T). By proposition 2.5 (2), f is not cyclic in Apβ(T).

(3) : Let 2
q
(1−βq) < α ≤ 1. There exists ε > 0 such that 2

q
(1−βq)+ε <

α. Let q′ such that 2
q
− 2β + ε = 2

q′
. Since β > 1

q
− 1

q′
, by Lemma 2.1,

Aq
′(T) ⊂ Aq−β(T). By Theorem 3.1, as q′ satisfies q′ > 2

α
, there exists

a closed subset E ⊂ T such that dim(E) = α and a non zero positive
measure µ ∈ Aq′(T) ⊂ Aq−β(T) such that supp(µ) ⊂ E. Now (3) follows
from proposition 2.5.(2).

(4) : Let k = [q/2]. Suppose first 2
q
(1 − βq)k > 1 − 2(k + 1)β and let

0 < ε′ < ε satisfying 1− 2(k+ 1)β ≤ 2
q
(1− βq)k− ε′. Consider the set

Sλ where λ verifies
2
q

(1− βq)k − ε′ < 1− λ
1 + λ

<
2
q

(1− βq)k.

By Lemma 3.3.(3) we have dim(Sλ) = 1−λ
1+λ and C 1−λ

1+λ
(k × Sλ) = 0.

Therefore by Theorem 3.2.(a), every f ∈ A1
β(T) such that Z(f) = Sλ

is cyclic in Apβ(T).
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Now suppose 2
q
(1 − βq)k ≤ 1 − 2(k + 1)β. We consider Sλ where

1−λ
1+λ = 1 − 2(k + 1)β. By lemma 3.3.(3) we have dim(Sλ) = 1−λ

1+λ =
1−2(k+1)β and C 1−λ

1+λ
((k+1)×Sλ) = 0. So by Theorem 3.2.(b), every

f ∈ A1
β(T) such that Z(f) = Sλ is cyclic in Apβ(T).

Suppose now that p = 2k
2k−1 for some k ∈ N∗. As before, we consider

Sλ where 1−λ
1+λ = 1− 2kβ = 1− βq. So again by Theorem 3.2.(b), every

f ∈ A1
β(T) such that Z(f) = Sλ is cyclic in Apβ(T). �

Note that the set E which is considered in 3.4.(4) verifies Cα(E) = 0
where

α ≥ max
(

2
q

(1− βq)k − ε, 1− 2(k + 1)β
)
.

4. Proof of Theorem B

In this section we investigate the sharpness of the constant 2
q
(1−βq)

in Theorem A.
Before proving Theorem B, we need the following two results. The

following Lemma is an extension of Newman’s Lemma 3 (see [10] pp
654-655).

Lemma 4.1. Let p ∈ [1, 2[, β ≥ 0 such that βq ≤ 1. There exists
C > 0 such that for all f ∈ A2

1(T),

‖f‖Ap
β

(T) ≤ C
1
p‖f‖

3
2−

1
p
−β

A2(T) (‖f‖A2(T) + ‖f ′‖A2(T))
1
p
− 1

2 +β.

Proof. It suffices to show that there exists C > 0 such that for all
sequences (cn) ∈ CN∗ ,

∞∑
n=1
|cn|p(1 + |n|)pβ ≤ C

( ∞∑
n=1
|cn|2

) 3
4p−

1
2−

βp
2
( ∞∑
n=1

n2|cn|2
) 1

2−
p
4 +βp

2

.

Then we apply this inequality to (f̂(n))n≥1 and (f̂(−n))n≥1. Let x2 =∑
n≥1 |cn|2 and x2y2 = ∑

n≥1 n
2|cn|2. Note that y ≥ 1. On one hand,

by the Hölder inequality,

∑
1≤n≤y

|cn|p(1 + n)pβ ≤
( y∑
n=1
|cn|2

)p/2 ( y∑
n=1

(1 + n)
2pβ
2−p

)1−p/2

≤
(
x2
) p

2
(
y(1 + y)

2pβ
2−p

)1− p2
≤ 2βpxpy1− p2 +pβ.
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On the other hand we set γ = 2p(1−β)
2−p . Since βq ≤ 1, γ > 1 and again

by the Hölder inequality we obtain,

∑
n>y

|cn|p(1 + n)pβ ≤ 2p
 ∞∑
n>y

n2|cn|2


p
2
 ∞∑
n>y

(1 + n)
2p(β−1)

2−p

1− p2

≤ 2p
(
x2y2

) p
2

(
1

γ − 1

)1−p/2 (
y1−γ

)1− p2

≤ 2p
(

1
γ − 1

)1−p/2

xpy1− p2 +pβ

So the conclusion of the Lemma holds with

C = max
2βp, 2p

(
1

γ − 1

)1−p/2


which is a positive constant depending only on p and β. �

The following theorem is due to Körner (see [7, Theorem 1.2]).

Theorem 4.2. Let h : [0,∞) → [0,∞) be an increasing continuous
function with h(0) = 0 and let φ : [0,∞) → [0,∞) be a decreasing
function. Suppose that

(1)
∫∞

1 φ(x)2dx =∞;
(2) there exist K1, K2 > 1 such that for all 1 ≤ x ≤ y ≤ 2x,

K1φ(2x) ≤ φ(x) ≤ K2φ(y);
(3) there exists γ > 0 such that

lim
x→∞

x1−γφ(x) =∞;

(4) there exist 0 < K2 < K3 < 1 such that for all t > 0,
K2h(2t) ≤ h(t) ≤ K3h(2t).

Then there exists a probability measure µ with support of Hausdorff
h-measure zero such that

|µ̂(n)| ≤ φ

(
1

h(|n|−1)

)(
ln
(

1
h(|n|−1)

))1/2

, ∀n 6= 0.

Recall Theorem B reformulated in Apβ(T) space.

Theorem 4.3. Let 1 < p < 2 and β ≥ 0 such that βq < 1.
(1) If f ∈ A1

β(T) and Z(f) has strong α-measure 0 where α =
2
q
(1− βq) then f is cyclic in Apβ(T).
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(2) For every γ > 2
q
, there exists a closed subset E ⊂ T such that

every f ∈ A1
β(T) satisfying Z(f) = E is not cyclic in Apβ(T) and

such that Hh(E) = 0 where h(t) = tα

ln(e/t)γ with α = 2
q
(1− βq).

Note that in (2), Hh is closed to Hα.

Proof. (1) : The proof of this result holds by using arguments analogous
to those of Newman for β = 0 (see [10, Theorem 1]). Denote by (ak, bk)
the complementary intervals of Z(f) arranged in non-increasing order
of lengths and set

rn = 2π −
n∑
k=0

(bk − ak).

The set Z(f) has strong α-measure 0 where α = 2
q
(1− βq) so

lim
n→∞

rn n
1
α
−1 = 0.

Let ε > 0 and n ∈ N such that rn < εn1− 1
α and εn−

1
α < 1. Let the

function ψ be given by

ψ(x) = max
(

1− n
1
α

ε
ρ(x), 0

)
, x ∈ T,

where
ρ(x) = dist

(
x,T \

n⋃
k=1

]ak, bk[
)
.

Then

‖ψ‖2
A2(T) =

∫
T\
⋃n

k=1]ak,bk[
ψ(t)2 dt+

n∑
k=1

∫ bk

ak

ψ(t)2χ
{ρ(x)≤εn−

1
α }

(t) dt

≤ rn +
n∑
k=1

2εn− 1
α ≤ 3εn1− 1

α .

Moreover

‖ψ′‖2
A2(T) =

∫
T
ψ′(t)2 dt =

n∑
k=1

∫ bk

ak

ψ′(t)2χ
{ρ(x)≤εn−

1
α }

(t) dt

≤
n∑
k=1

n 1
α

ε

2

2εn− 1
α ≤ 2n

1+ 1
α

ε
.

Since εn− 1
α < n

1
α

ε
and α = 2

q
(1− βq), by Lemma 4.1,

‖ψ‖Ap
β

(T) ≤ C
1
p

(
3εn1− 1

α

) 3
4−

1
2p−

β
2

5n
1+ 1

α

ε

 1
2p−

1
4 +β

2

≤ C ′ε1− 1
p
−β
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where C and C ′ depend only on β and p. Note that 1−ψ is a Lipschitz
function and Z(f) ⊂ Z(1− ψ). We conclude by Lemma 2.7.

(2) : Let α = 2
q
(1 − βq) and γ > 2

q
. By Theorem 4.2 with φ(t) =

(t ln(et))−1/2 for t ≥ 1 and h(t) = tα

ln(e/t)γ for t ∈ [0,∞), there exists a
probability measure µ with support of Hausdorff h-measure zero such
that

|µ̂(n)| ≤ φ

(
1

h(|n|−1)

)(
ln
(

1
h(|n|−1)

))1/2

≤ (|n|α ln(e|n|)γ)−1/2,

for n 6= 0. So∑
n6=0
|µ̂(n)|q(1 + |n|)−βq ≤ C

∑
n 6=0
|n|−αq/2−βq ln(e|n|)−γq/2

≤ C
∑
n 6=0

1
|n| ln(e|n|)γq/2 <∞

with C a positive constant. Hence µ ∈ Aq−β(T). We set E = supp(µ).
By lemma 2.5 the result is proved.

�

5. Remarks

We say that (ωn) ∈ RZ is a weight if wn ≥ 1 and ωn+k ≤ Cωnωk for
all k, n ∈ Z and C a positive constant. For ω a weight and 1 ≤ p <∞
we set

Apω(T) =

f ∈ C(T), ‖f‖pApω(T) =
∑
n∈Z
|f̂(n)|pωpn <∞

 .
Note that ‖fS‖Apω(T) ≤ ‖f‖A1

ω(T)‖S‖Apω(T) for f ∈ A1
ω(T) and S ∈

Apω(T). So we have the same result as (2.1) to characterize cyclicity in
Apω(T) by norm.

When ωn = O((1 + |n|)ε) for all ε > 0, for example ωn = ln(e+ |n|)β
where β ≥ 0, we can show the same result as Lemma 2.7. So by noting
that for all p ≥ 1 and δ > 0,

Apδ(T) ⊂ Apω(T) ⊂ Ap(T)

we obtain by Theorem A the following result:

Theorem 5.1. Let 1 < p < 2 and ω = (ωn)n∈Z a weight satisfying
ωn = O((1 + |n|)ε) for all ε > 0.

(1) If f ∈ A1
ω(T) and dim(Z(f)) < 2

q
then f is cyclic in Apω(T).
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(2) For 2
q
< α ≤ 1, there exists a closed subset E ⊂ T such that

dim(E) = α and every f ∈ A1
ω(T) satisfying Z(f) = E is not

cyclic in Apω(T).
(3) For all 0 < ε < 1, there exists a closed subset E ⊂ T such that

dim(E) = 1 − ε and every f ∈ A1
ω(T) satisfying Z(f) = E is

cyclic in Apω(T).

Proof. (1) : Let f ∈ A1
ω(T) such that dim(Z(f)) < 2

q
. There exists

0 < δ < 1/2 such that dim(Z(f)) < 2
q
(1 − δq). By Theorem 3.4.(1),

every g ∈ A1
δ(T) satisfying Z(g) = Z(f) is cyclic in Apδ(T). Therefore

by Lemma 2.7, there exist (fn) a sequence of Lipschitz functions which
are zero on Z(f) and such that

lim
n→∞

‖fn − 1‖Ap
δ
(T) = 0.

Moreover ωn = O((1 + |n|)δ) so

lim
n→∞

‖fn − 1‖Apω(T) = 0.

Again by Lemma 2.7 in Apω(T), we obtain that f is cyclic in Apω(T).
(2) : By the theorem of Salem (see Theorem 3.1 and Theorem

1.3.(2)), there exists a closed set E ⊂ T such that dim(E) = α and
every f ∈ A1(T) satisfying Z(f) = E is not cyclic in Ap(T). Let
f ∈ A1

ω(T) such that Z(f) = E . Since f ∈ A1(T), f is not cyclic in
Ap(T). However ‖ ·‖Ap(T) ≤ ‖·‖Apω(T) therefore f is not cyclic in Apω(T).

(3) : Let 0 < ε < 1 and β > 0 such that 1 − 2([q/2] + 1)β ≥ 1 − ε.
By Theorem 3.4.(4), there exists a closed set E ⊂ T such that

dim(E) ≥ 1− 2([q/2] + 1)β ≥ 1− ε

and such that every f ∈ A1
β(T) satisfying Z(f) = E is cyclic in Apβ(T).

Since Apβ(T) ⊂ Apω(T), we obtain, by Lemma 2.7, that every f ∈ A1
ω(T)

satisfying Z(f) = E is cyclic in Apω(T). �

When p > 2 the search for cyclic vectors in Ap(T) seems extremely
difficult. Newman in [10] shows that for all α < 2π there exists E ⊂ T
which has a Lebesgue measure |E| > α and such that every f ∈ A1(T)
satisfying Z(f) = E is cyclic in Ap(T). See also [10, Theorem 6] for
the existence of non cyclic functions under some conditions. We also
have a characterization of the cyclic vectors in term of the zeros of the
Fourier transform when p > 2 but it’s not very effective : A function
f ∈ A1(T) is cyclic in Ap(T) if and only if Z(f) does not support any
non-zero function g ∈ Aq(T) where q = p

p−1 .
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When ωn = log(e + |n|)β where 0 < β < 1, for all p > 2
1−β and for

all α < 2π, Nikolskii shows in [12, Corollary 6], there exists E ⊂ T
which has a Lebesgue measure |E| > α and such that every f ∈ A1

β(T)
satisfying Z(f) = E is cyclic in Apβ(T).
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