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Introduction and main results

For p ≥ 1 and β ∈ R, we define the Banach space

p β (Z) =    u = (u n ) n∈Z ∈ C Z , u p p β = n∈Z |u n | p (1 + |n|) pβ < ∞   
endowed with the norm • p β . Notice that p 0 (Z) is the classical p (Z) space.

In this work, we are going to investigate cyclic vectors for p β (Z) when β ≥ 0. A vector u ∈ p β (Z) is called cyclic in p β (Z) if the linear span of {(u n+k ) n∈Z , k ∈ Z} is dense in p β (Z).

We denote by T the circle R/2πZ. The Fourier transform of u ∈ p (Z) is given by u : t ∈ T → n∈Z u n e int and when u is continuous, we denote by Z( u) the zero set on T of u:

Z( u) = {t ∈ T, u(t) = 0}.
The case β = 0 was already studied by Wiener, Beurling, Salem and Newman. When p = 1 or p = 2, Wiener characterized the cyclic vectors u in p (Z) by the zeros of u, with the following theorem.

Theorem 1.1 ([16]). Let u ∈ p (Z).

(1) If p = 1 then u is cyclic in 1 (Z) if and only if u has no zeros on T. (2) If p = 2 then u is cyclic in 2 (Z) if and only if u is non-zero almost everywhere.

Lev and Olevskii showed that, for 1 < p < 2 the problem of cyclicity in p (Z) is more complicated even for sequences in 1 (Z). The following Theorem of Lev and Olevskii contradicts the Wiener conjecture.

Theorem 1.2 ([8]). If 1 < p < 2, there exist u and v in 1 (Z) such that Z( u) = Z( v), u is not cyclic in p (Z), and v is cyclic in p (Z).

So we can't characterize the cyclicity of u in p (Z) in terms of only Z( u), the zero set of u. However for u ∈ 1 (Z), Beurling, Salem and Newman gave both necessary conditions and sufficient conditions for u to be cyclic in p (Z). These conditions rely on the "size" of the set Z( u) in term of it's h-measure, capacity and Hausdorff dimension.

Given E ⊂ T and h a continuous function, non-decreasing and such that h(0) = 0, we define the h-measure of E by

H h (E) = lim δ→0 inf ∞ i=0 h(|U i |), E ⊂ ∞ i=0 U i , |U i | ≤ δ
where the U i are open intervals of T and where |U i | denotes the length of U i . The Hausdorff dimension of a subset E ⊂ T is given by dim(E) = inf{α ∈ (0, 1), H α (E) = 0} = sup{α ∈ (0, 1), H α (E) = ∞}, where H α = H h for h(t) = t α (see [START_REF] Kahane | Ensembles parfaits et séries trigonométriques[END_REF], pp. 23-30). Let µ be a positive measure on T and α ∈ [0, 1). We define the α-energy of µ by

I α (µ) = n≥1 | µ(n)| 2 (1 + |n|) 1-α .
The α-capacity of a Borel set E is given by C α (E) = 1/inf{I α (µ), µ ∈ M P (E)}, where M P (E) is the set of all probability measures on T which are supported on a compact subset of E. If α = 0, C 0 is called the logarithmic capacity. An important property which connects capacity and Hausdorff dimension is that (see [START_REF] Kahane | Ensembles parfaits et séries trigonométriques[END_REF], p. 34) dim(E) = inf{α ∈ (0, 1), C α (E) = 0} = sup{α ∈ (0, 1), C α (E) > 0}. (1.1) In the following theorem, we summarize the results of Beurling [START_REF] Beurling | On a closure problem[END_REF], Salem [START_REF] Salem | On singular monotonic functions whose spectrum has a given Hausdorff dimension[END_REF] (see also [START_REF] Kahane | Ensembles parfaits et séries trigonométriques[END_REF] pp. 106-110) and Newman [START_REF] Newman | The closure of translates in p[END_REF]. The Hölder conjugate of p = 1 is noted by q = p p-1 .

Theorem 1.3 ([2, 10, 15]). Let 1 ≤ p ≤ 2.

(1) If u ∈ 1 (Z) and dim(Z( u)) < 2/q then u is cyclic in p (Z).

(2) For 2/q < α ≤ 1, there exists

E ⊂ T such that dim(E) = α and every u ∈ 1 (Z) satisfying Z( u) = E is not cyclic in p (Z). (3) There exists E ⊂ T such that dim(E) = 1 and every u ∈ 1 (Z) satisfying Z( u) = E is cyclic in p (Z) for all p > 1.
In this paper we give a generalization of the results of Beurling, Salem and Newman to p β (Z) spaces. When βq > 1, we have an analogue of (1) in Wiener's Theorem 1.1: a vector u ∈ p β (Z) is cyclic if and only if u has no zeros on T. Indeed, p β (Z) is a Banach algebra if and only if βq > 1 (see [START_REF] El-Fallah | Estimates for resolvents in Beurling-Sobolev algebras[END_REF]). When p = 2, Richter, Ross and Sundberg gave a complete characterization of the cyclic vectors u in the weighted harmonic Dirichlet spaces 2 β (Z) by showing the following result:

Theorem 1.4 ([14]). Let 0 < β ≤ 1 2 and u ∈ 1 β (Z) . The vector u is cyclic in 2 β (Z) if and only if C 1-2β (Z( u)) = 0.
Our first main result is the following theorem.

Theorem A. Let 1 < p < 2, β > 0 such that βq ≤ 1. (1) If u ∈ 1 β (Z) and dim(Z( u)) < 2 q (1 -βq) then u is cyclic in p β (Z). (2) If u ∈ 1 β (Z) and dim(Z( u)) > 1 -βq then u is not cyclic in p β (Z). (3) For 2 q (1 -βq) < α ≤ 1, there exists a closed subset E ⊂ T such that dim(E) = α and every u ∈ 1 β (Z) satisfying Z( u) = E is not cyclic in p β (Z). (4) If p = 2k 2k-1 for some k ∈ N * there exists a closed subset E ⊂ T such that dim(E) = 1 -βq and every u ∈ 1 β (Z) satisfying Z( u) = E is cyclic in p β (Z).
Note that in order to prove (2) and (4) we show a stronger result (see Theorem 3.4).

We can summarize Theorem A by the following diagram:

dim(Z( u)) 0 | 2 q (1 -βq) | 1 -βq | 1 | (1) (3) and (4) (2)
The fourth propriety shows that the bound 1 -βq obtained in (2) is optimal in the sense that there is no cyclic vector such that dim(Z( u)) > 1 -qβ, and, we can find some cyclic vector u with dim(Z( u)) = 1 -βq. However this is only proved if p = 2k 2k-1 for some positive integer k. When p is not of this form, for all positive integer k, we still prove similar results but we loose the optimality because we fail to reach the bound 1 -βq.

The "equality case" dim(Z( u)) = 2 q (1 -βq) is not treated by the previous theorem. Newman gave a partial answer to this question when β = 0, by showing that, under some additional conditions on Z( u), dim(Z( u)) = 2 q implies that u is a cyclic vector (see [START_REF] Newman | The closure of translates in p[END_REF]Theorem 1]). We need the notion of strong α-measure, α ∈ (0, 1), to state Newman's Theorem in the equality case. For E a compact subset of T, we note (a k , b k ), k ∈ N its complementary intervals arranged in non-increasing order of lengths and set

r n = 2π - n k=0 (b k -a k ).
(1.2)

We will say that E has strong α-measure 0 if

lim n→∞ r n n 1 α -1 = 0.
Notice that if E has strong α-measure 0 then H α (E) = 0. The converse is true for some particular sets like Cantor sets but in general the converse is false (for some countable sets).

Theorem 1.5. Let 1 < p < 2 and u ∈ 1 (Z).

If Z( u) has strong α-measure 0 where α = 2 q then u is cyclic in p (Z). Moreover, in [START_REF] Newman | The closure of translates in p[END_REF], Newman asked the question :

For u ∈ 1 (Z), does H 2/q (Z( u)) = 0 imply that u is cyclic in p (Z) ?
A positive answer to this question would contain Theorem 1.1 and Theorem 1.3.(1). We are not able to answer this question completely. Nevertheless, we show that if we replace 2/q-measure by h-measure where h(t) = t 2/q ln(1/t) -γ with γ > 2 q then the answer is negative. Moreover we extend Newman's Theorem to p β (Z).

Theorem B. Let 1 < p < 2, β ≥ 0 such that βq < 1.

(1) If u ∈ 1 β (Z) and Z( u) has strong α-measure 0 where α = 2 q (1βq) then u is cyclic in p β (Z).

(2) For every γ > 2 q , there exists a closed subset E ⊂ T such that every u ∈ 1 β (Z) satisfying Z( u) = E is not cyclic in p β (Z) and such that H h (E) = 0 where h(t) = t α ln(e/t) -γ with α = 2 q (1 -βq) Note that the set E constructed in part (2) of Theorem B satisfy dim(E) = 2 q (1 -βq).

Preliminaries and lemmas

Let 1 ≤ p < ∞ and β ∈ R. We denote by D (T) the set of distributions on T and M(T) the set of measures on T. For S ∈ D (T), we denote by S = ( S(n)) n∈Z the sequence of Fourier coefficients of S and we write S = n S(n)e n , where e n (t) = e int . The space A p β (T) will be the set of all distributions S ∈ D (T) such that S belongs to p β (Z). We endow A p β (T) with the norm S A p β (T) = S p β . We will write A p (T) for the space A p 0 (T). Thus the Fourier transformation is an isometric isomorphism between p β (Z) and A p β (T). We prefer to work with A p β (T) rather than p β (Z). In this section we establish some properties of A p β (T) which will be needed to prove Theorems A and B.

For 1 ≤ p < ∞ and β ≥ 0 we define the product of f ∈ A 1 β (T) and S ∈ A p β (T) by

f S = n∈Z ( f * S)(n) e n = n∈Z   k∈Z f (k) S(n -k)   e n ,
and we see that

f S A p β (T) ≤ f A 1 β (T) S A p β (T) . Note that if S ∈ A p
-β (T) we can also define the product f S ∈ A p -β (T) by the same formula and obtain a similar inequality:

f S A p -β (T) ≤ f A 1 β (T) S A p -β (T) .
For p = 1, the dual space of A p β (T) can be identified with A q -β (T) (q = p p-1 ) by the following formula

S, T = n∈Z S(n) T (-n), S ∈ A p β (T), T ∈ A q -β (T).
We denote by P(T) the set of trigonometric polynomials on T. We rewrite the definition of cyclicity in the spaces A p β (T) for β ≥ 0 : S ∈ A p β (T) will be a cyclic vector if the set {P S, P ∈ P(T)} is dense in A p β (T). It's clear that the cyclicity of S in A p β (T) is equivalent to the cyclicity of the sequence S in p β (Z). Moreover for 1 ≤ p < ∞ and β ≥ 0, S is cyclic in A p β (T) if and only if there exists a sequence (P n ) of trigonometric polynomials such that

lim n→∞ 1 -P n S A p β (T) = 0. (2.1)
We need the following lemmas which gives us different inclusions between the

A p β (T) spaces. Lemma 2.1. Let 1 ≤ r, s < ∞ and β, γ ∈ R. (1) If r ≤ s then A r β (T) ⊂ A s γ (T) ⇔ γ ≤ β. (2) If r > s then A r β (T) ⊂ A s γ (T) ⇔ β -γ > 1 s -1 r . Proof. (1) : We suppose that r ≤ s. If γ ≤ β and S ∈ A r β (T), we have n∈Z | S(n)| s (1 + |n|) γs ≤ n∈Z | S(n)| s (1 + |n|) βs . Since • s ≤ • r , we obtain S ∈ A s γ (T) and so A r β (T) ⊂ A s γ (T). Now suppose γ > β. Let S ∈ D (T) be given by S(n)(1 + |n|) β = (1 + m) -2/r if |n| = 2 m 0 otherwise.
Then we have S ∈ A r β (T) \ A s γ (T).

(2) : Now suppose that r > s. If β -γ > 1 s -1 r , we have by Hölder's inequality,

S A s γ (T) ≤ S A r β (T)   n∈Z (1 + |n|) rs r-s (γ-β)   1-s/r , S ∈ A r β (T), so that A r β (T) ⊂ A s γ (T). Now suppose that β -γ < 1 s -1 r . Let ε > 0 such that β -γ + ε < 1 s -1 r , α = -1 s -γ + ε and let S ∈ D (T) be such that S(n) = n α . We have S ∈ A r β (T) \ A s γ (T). For the case β -γ = 1 s -1 r we take S ∈ D (T) such that S(n) r (1 + |n|) βr = 1 (1 + |n|) ln(1 + |n|) 1+ε with ε = r s -1 > 0. We can show that S ∈ A r β (T) \ A s γ (T) which proves that A r β (T) ⊂ A s γ (T).
For E ⊂ T, we denote by A p β (E) the set of S ∈ A p β (T) such that supp(S) ⊂ E, where supp(S) denotes the support of the distribution S. The following lemma is a direct consequence of the definition of capacity (see [START_REF] Kahane | Ensembles parfaits et séries trigonométriques[END_REF]) and the inclusion

A q -β (T) ⊂ A 2 α-1 2 (T) when q ≥ 2 and 0 ≤ α < 2 q (1 -βq). Lemma 2.2. Let E a Borel set, β ≥ 0 and q ≥ 2. If there exists α, 0 ≤ α < 2 q (1 -βq), such that C α (E) = 0 then A q -β (E) = {0}.
We obtain the first results about cyclicity for the spaces A p β (T), when A p β (T) is a Banach algebra. More precisely, we have (see [START_REF] El-Fallah | Estimates for resolvents in Beurling-Sobolev algebras[END_REF])

Proposition 2.3. Let 1 ≤ p < ∞ and β ≥ 0. A p β (T) is a Banach algebra if and only if βq > 1. Moreover when βq > 1, a vector f ∈ A p β (T) is cyclic in A p β (T) if and only if f has no zeros on T. Let f ∈ A 1 β (T) ans S ∈ D (T). We denote by Z(f ) the zero set of the function f . Recall that e n : t → e int . Lemma 2.4. Let 1 ≤ p < ∞ and β ≥ 0. Let f ∈ A 1 β (T) and S ∈ A p -β (T). If for all n ∈ Z, S, e n f = 0 then supp(S) ⊂ Z(f ). Proof. We have S, e n f = f S, e n = 0. Hence f S = 0. Let ϕ ∈ C ∞ (T) such that supp(ϕ) ⊂ T \ Z(f ). We claim that ϕ f ∈ A 1 β (T) ⊂ A q β (T) where q = p p-1 . So we obtain S, ϕ = f S, ϕ f = 0
which proves that supp(S) ⊂ Z(f ). Now we prove the claim. Let ε = min{|f (t)|, t ∈ supp(ϕ)} > 0 and P ∈ P(T) such that f -P A 1 β (T) ≤ ε/3. By the Cauchy-Schwarz and Parseval inequalities, for every g ∈ C 1 (T), we get

g A 1 β (T) ≤ g ∞ + 2 2 -2β 1 -2β g ∞ . (2.2)
Now, as in [START_REF] Newman | A simple proof of Wiener's 1/f theorem[END_REF], by applying (2.2) to ϕ P n we see that

ϕ f = n≥1 ϕ (P -f ) n-1 P n ∈ A 1 β (T),
which finishes the proof.

Proposition 2.5. Let 1 ≤ p < ∞ and f ∈ A 1 β (T) with β ≥ 0. We have (1) If f is not cyclic in A p β (T) then there exists S ∈ A q -β (T) \ {0} such that supp(S) ⊂ Z(f ). (2) If there exists a nonzero measure µ ∈ A q -β (T) such that supp(µ) ⊂ Z(f ) then f is not cyclic in A p β (T). Proof. (1) If f is not cyclic in A p β (T), by duality there exists S ∈ A q -β (T) \ {0} such that S, e n f = 0, ∀n ∈ Z.
Thus, by lemma 2.4, we have supp(S) ⊂ Z(f ).

(

) Let µ ∈ A q (T) ∩ M(T) \ {0} such that supp(µ) ⊂ Z(f ). Since µ is a measure on T we have µ, e n f = 0, for all n ∈ Z. So f is not cyclic in A p β (T). Recall that A 1 β (T) is a Banach algebra. Let I be a closed ideal in A 1 β (T) 2 
. We denote by Z I the set of common zeros of the functions of I,

Z I = f ∈I Z(f ).
We have the following result about spectral synthesis in A 1 β (T). Lemma 2.6. Let 0 ≤ β < 1/2. Let I be a closed ideal in A 1 β (T). If g is a Lipschitz function which vanishes on Z I then g ∈ I.

Proof. The proof is similar to the one given in [START_REF] Kahane | Ensembles parfaits et séries trigonométriques[END_REF] pp. 121-123. For the sake of completeness we give the important steps. Let I ⊥ be the set of all S in the dual space of A 1 β (T) satisfying S, f = 0 for all f ∈ I. Let g be a Lipschitz function which vanishes on Z I and S ∈ I ⊥ . By Lemma 2.4, supp(S) ⊂ Z I . For h > 0, we set

S h = S * ∆ h where ∆ h : t → -|t| h 2 + 1 h if t ∈ [-h, h] and 0 otherwise. We have ∆ h (0) = 1/2π and ∆ h (n) = 1 2π 4 sin(nh/2) 2 (nh) 2 for n = 0. Since S is in the dual of A 1 β (T), S h ∈ A 1 (T). Moreover we have supp(S h ) ⊂ supp(S) + supp(∆ h ) ⊂ Z h I := Z I + [-h, h]. We have | S h , g | 2 = Z h I \Z(g) S h (x)g(x)dx 2 ≤   n∈Z | S(n) ∆ h (n)| 2   Z h I \Z(g) |g(x)| 2 dx ≤ C   n∈Z S(n) 2 n 2   |Z h I \ Z(g)|
where C is a positive constant and where |E| denotes the Lebesgue measure of E. So lim h→0 S h , g = 0. By the dominated convergence theorem, we obtain that

lim h→0 S h , g = lim h→0 n∈Z S h (n) g(-n) = 1 2π n∈Z S(n) g(-n) = 1 2π S, g .
So S, g = 0. Therefore g ∈ I.

We also need the following lemma which is a consequence of Lemma 2.6. Newman gave a proof of this when β = 0 (see [START_REF] Newman | The closure of translates in p[END_REF]Lemma 2]).

Lemma 2.7. Let 0 ≤ β < 1/2 and a closed set E ⊂ T. There exists (f n ) a sequence of Lipschitz functions which are zero on E and such that

lim n→∞ f n -1 A p β (T) = 0 if and only if every f ∈ A 1 β (T) satisfying Z(f ) = E is cyclic in A p β (T).

Proof of Theorem A

Before proving Theorem A, let us recall Salem's Theorem (see [START_REF] Salem | On singular monotonic functions whose spectrum has a given Hausdorff dimension[END_REF] and [START_REF] Kahane | Ensembles parfaits et séries trigonométriques[END_REF] pp. 106-110).

Theorem 3.1. Let 0 < α < 1 and q > 2 α . There exists a compact set E ⊂ T which satisfies dim(E) = α and there exists a positive measure µ ∈ A q (T) \ {0} such that supp(µ) ⊂ E.

To prove Theorem A, we also need the following result. The case β = 0 was considered by Newman in [START_REF] Newman | The closure of translates in p[END_REF]. For k ∈ N and E ⊂ T, we denote

k × E = E + E + ... + E = k n=1 x n , x n ∈ E . Theorem 3.2. Let 1 < p < 2 and β > 0 such that βq ≤ 1, and let f ∈ A 1 β (T). (a) Let k ∈ N * be such that k ≤ q/2. If C α (k × Z(f )) = 0 for some α < 2 q (1 -βq)k, then f is cyclic in A p β (T). (b) Let k ∈ N * be such that q/2 ≤ k ≤ 1/(2β). If C α (k × Z(f )) = 0 where α = 1 -2kβ, then f is cyclic in A p β (T). Proof. Let k ∈ N * . Suppose that f is not cyclic in A p β (T)
. Then there exists L ∈ A q -β (T), the dual of A p β (T), such that L(1) = 1 and L(P f ) = 0, for all P ∈ P(T).

Since β < 1 2 , by (2.2), we get C 1 (T) ⊂ A 1 β (T) ⊂ A p β (T), and by [START_REF] Newman | Some results in spectral synthesis[END_REF] (see also [START_REF] Newman | The closure of translates in p[END_REF]Lemma 5]), there exists φ ∈ L 2 (T) such that

L(g) = T g (x)φ(x) + g(x) dx, ∀g ∈ C 1 (T).
Since L ∈ A q -β (T) which implies (L(e n )) n∈Z ∈ q -β (Z), we obtain

n∈Z |n φ(n)| q (1 + |n|) -βq < ∞. (3.1) 
Moreover we have,

T (e n f ) (x)φ(x) + (e n f )(x) dx = 0, n ∈ Z,
and so φ -1, e n f = 0 where φ is defined in terms of distribution. By (3.1), φ -1 ∈ A q -β (T), so by lemma 2.4, we get supp(φ -1) ⊂ Z(f ). For m ∈ N, we denote by φ * m the result of convolving φ with itself m times. Using the fact that S * T = S * T and 1 * S = 0 for any distributions S and T , we have

(φ -1) * φ * (m-1) (m-1) + (-1) m-1 = (φ * m ) (m) + (-1) m .
So we can show by induction on m ≥ 1 and by the formula supp(T * S) ⊂ supp(T ) + supp(S) that

supp (φ * m ) (m) + (-1) m ⊂ m × Z(f ), ∀m ≥ 1. (3.2) Note that (φ * k ) (k) (n) = i k n k φ(n) k for k ≥ 1 and n ∈ Z.
(a) : Suppose that 0 < k ≤ q/2 and C α (k × Z(f )) = 0 for some α < 2 q (1 -βq)k. We rewrite (3.1) as

n∈Z |n φ(n)| k q k (1 + |n|) -q k βk < ∞.
So, if we set q = q k ≥ 2 and β = βk, we have φ * k (k) ∈ A q -β (T). By (3.2) and by Lemma 2.2 we obtain that φ * k (k) = (-1) k-1 . This contradicts the fact that (φ * k ) (k) (0) = 0.

(b) : Now suppose that k ≥ q/2 and C α (k × Z(f )) = 0 where α = 1 -2kβ. Since q ≤ 2k, we have by (3.1),

n∈Z |n φ(n)| 2k (1 + |n|) -2kβ < ∞. So φ * k (k) ∈ A 2 -kβ (T) and φ * k (k) = (-1) k-1 . Again this is absurd since (φ * k ) (k) (0) = 0.
We need to compute the capacity of the Minkowski sum of some Cantor type subset of T. We denote by [x] the integer part of x ∈ R. For λ ∈ [0, 1] and k ∈ N * , we define

K k λ = {m ∈ N, ∃j ∈ N, m ∈ [2 j , 2 j (1 + λ + 1/j) -k + 1]} and we set in R/Z [0, 1[, S k λ = x = ∞ i=0 x i 2 i+1 , (x i ) ∈ {0, 1} N such that i ∈ K k λ ⇒ x i = 0 .
We denote K λ = K 1 λ and S λ = S 1 λ . To prove (4) of Theorem A we need the following lemma.

Lemma 3.3. For all

k ≥ 1, we have (1) k × S λ ⊂ S k λ ; (2) C α (S k λ ) = 0 if and only if α ≥ 1-λ 1+λ ; (3) dim(k × S λ ) = 1-λ 1+λ and C1-λ 1+λ (k × S λ ) = 0.
Proof. (1) : We prove this by induction. If k = 1 we have S λ = S 1 λ . We suppose the result true for k -1 for some k ≥ 2 and we will show

k × S λ ⊂ S k λ . We have k × S λ ⊂ (k -1) × S λ + S λ ⊂ S k-1 λ + S λ . Let x ∈ S k-1
λ , y ∈ S λ and z = x + y. Denote by (x i ), (y i ) and (z i ) their binary decomposition. Let m ∈ K k λ . There exists

j ∈ N such that m ∈ [2 j , 2 j (1 + λ + 1/j) -k + 1]. Since m ∈ K k λ , m and m + 1 are contained in K k-1 λ ⊂ K λ , we have x m = y m = x m+1 = y m+1 = 0. Therefore we write z = x + y = m-1 i=0 x i + y i 2 i+1 + ∞ i=m+2 x i + y i 2 i+1 .
Note that for infinitely many i ≥ m + 2, x i + y i < 2, so we see that

∞ i=m+2 x i + y i 2 i+1 < 1 2 m+1 .
Therefore, we obtain by uniqueness of the decomposition that z m = 0. This proves that x + y ∈ S k λ and k × S λ ⊂ S k λ .

(2) : We will study the capacity of S k λ by decomposing it. First we show that the set S k λ is a generalized Cantor set in the sense of [START_REF] Ya | Capacities of Generalized Cantor Sets[END_REF][START_REF] Ohtsuka | Capacité d'ensembles de Cantor généralisés[END_REF].

Let ν j = [2 j (1 + λ + 1/j) -k + 1] + 1 and N 0 (depending only on k and λ) such that for all j ≥ N 0 , 2 j < ν j < 2 j+1 . We set for N ≥ N 0 ,

l N = ∞ j=N 1 2 ν j - 1 2 2 j+1 . Since 2 j (1 + λ + 1/j) -k + 1 < ν j ≤ 2 j (1 + λ + 1/j) -k + 2, we have ∞ j=N 1 2 2 j (1+λ+ 1 j ) 1 2 2-k - 1 2 2 j (1-λ-1 j ) ≤ l N ≤ ∞ j=N 1 2 2 j (1+λ+ 1 j ) 1 2 1-k - 1 2 2 j (1-λ-1 j )
On one hand, there exists C ≥ 1 such that for all j ≥ N ,

1 C ≤ 1 2 2-k - 1 2 2 j (1-λ-1 j ) ≤ 1 2 1-k - 1 2 2 j (1-λ-1 j ) ≤ C. On the other hand, for N ≥ N 0 , 1 2 2 N (1+λ+ 1 N ) ≤ ∞ j=N 1 2 2 j (1+λ+ 1 j ) ≤ 1 2 2 N (1+λ+ 1 N ) + ∞ j=0 1 2 2 N +1 (1+λ) 2 j ≤ 1 2 2 N (1+λ+ 1 N ) + ∞ j=0 1 2 2 N +1 (1+λ) j+1 ≤ 1 2 2 N (1+λ+ 1 N ) + 2 2 2 N +1 (1+λ) ≤ 3 2 2 N (1+λ+ 1 N ) .
Hence we obtain that l N is comparable to 2 -2 N (1+λ+1/N ) , that is:

1

C2 2 N (1+λ+ 1 N ) ≤ l N ≤ 3C 2 2 N (1+λ+ 1 N ) . (3.3)
Moreover we have

l N = 1 2 ν N - ∞ j=N +1 1 2 2 j - 1 2 ν j < 1 2 ν N ≤ 1 2 2 N . (3.4)
We set

E N =    2 N -1 i=0 x i 2 i+1 + l N z, z ∈ [0, 1], x i ∈ {0, 1}, i ∈ K k λ ⇒ x i = 0    .
We can see E N as a union of disjoint intervals by writing

E N = (x i )∈{0,1} 2 N i∈K k λ ⇒x i =0 E (x i ) N ,
where

E (x i ) N = 2 N -1 i=0 x i 2 i+1 + l N [0, 1].
Note that the intervals E

(x i ) N are disjoint since by (3.4), l N < 1 2 2 N . For fixed N ≥ N 0 , let (x i ) 0≤i≤2 N -1 ∈ {0, 1} 2 N and (y i ) 0≤i≤2 N +1 -1 ∈ {0, 1} 2 N +1 . Claim : E (y i ) N +1 ⊂ E (x i ) N if and only if x i = y i for all 0 ≤ i < 2 N and y i = 0 for all 2 N ≤ i < ν N . Indeed, suppose that E (y i ) N +1 ⊂ E (x i ) N and let u ∈ E (y i ) N +1 . We have u = 2 N -1 i=0 x i 2 i+1 + l N z 1 = 2 N +1 -1 i=0 y i 2 i+1 + l N +1 z 2 ,
where z 1 and z 2 are in [0, 1]. By (3.4), l N < 1 2 ν N , and using the uniqueness of the binary representation, we obtain x i = y i for all 0 ≤ i < 2 N and y i = 0 for all 2 N ≤ i < ν N . Now suppose x i = y i for all 0 ≤ i < 2 N and y i = 0 for all 2

N ≤ i < ν N . Let u ∈ E (y i ) N +1 . We write u = 2 N -1 i=0 x i 2 i+1 + 2 N +1 -1 i=ν N y i 2 i+1 + l N +1 z, where z ∈ [0, 1]. Note that 2 N +1 -1 i=ν N 1 2 i+1 + l N +1 = 1 2 ν N - 1 2 2 N +1 + l N +1 = l N . (3.5)
So we have

2 N -1 i=0 x i 2 i+1 ≤ 2 N -1 i=0 x i 2 i+1 + 2 N +1 -1 i=Z N y i 2 i+1 + l N +1 z ≤ 1 2 2 N -1 i=0 x i 2 i + l N ,
and u ∈ E

(x i )
N . This conclude the proof of the claim.

By the claim, for fixed (x i ) and for N ≥ N 0 , we have the following properties :

(i) the interval E

(x i ) N contains precisely p N = #{(y i ) ν N ≤i≤2 N +1 -1 : y i ∈ {0, 1}} = 2 2 N +1 -ν N intervals of the form E (y i ) N +1 , (ii) the intervals of the form E (y i ) N +1 contained in E (x i ) N
are equidistant intervals of length l N +1 : the distance of two consecutive intervals of the form E

(y i ) N +1 is equal to 1 2 2 N +1 -l N +1 , (iii) if we denote E (x i ) N = [a, b] then there exist (y i ) and (z i ) such that E (y i ) N +1 = [a, a + l N +1 ] and E (z i ) N +1 = [b -l N +1 , b]. Finally we can write S k λ as S k λ = N ≥N 0 E N .
This shows that S k λ is a generalized Cantor set in the sense of [START_REF] Ya | Capacities of Generalized Cantor Sets[END_REF][START_REF] Ohtsuka | Capacité d'ensembles de Cantor généralisés[END_REF]. So, by [START_REF] Ya | Capacities of Generalized Cantor Sets[END_REF][START_REF] Ohtsuka | Capacité d'ensembles de Cantor généralisés[END_REF], we have for 0

< α < 1 that C α (S k λ ) = 0 if and only if ∞ N =N 0 1 (p N 0 • • • p N -1 )l α N = ∞. Since 2 (k-2)(N -N 0 )+(2 N -2 N 0 )(1-λ)-σ N ≤ p N 0 • • • p N -1 ≤ 2 (k-1)(N -N 0 )+(2 N -2 N 0 )(1-λ)-σ N ,
where

σ N = N -1 j=N 0 2 j j ,
we have, by

(3.3), C α (S k λ ) = 0 if and only if ∞ N =N 0 2 2 N (α(1+λ)-(1-λ))+α2 N /N +σ N -(k-1)(N -N 0 )+2 N 0 (1-λ) = ∞. Therefore C α (S k λ ) = 0 if and only if α ≥ 1-λ 1+λ .
(3) immediately follows from ( 1) and ( 2) by the capacity property (1.1).

We are ready to prove Theorem A. The following Theorem is a reformulation of Theorem A in A p β (T) spaces. Theorem 3.4. Let 1 < p < 2, β > 0 such that βq ≤ 1.

(1

) If f ∈ A 1 β (T) and dim(Z(f )) < 2 q (1 -βq) then f is cyclic in A p β (T). (2) If f ∈ A 1 β (T) and C 1-βq (Z(f )) > 0 then f is not cyclic in A p β (T). (3) For 2 q (1 -βq) < α ≤ 1, there exists a closed set E ⊂ T such that dim(E) = α and every f ∈ A 1 β (T) satisfying Z(f ) = E is not cyclic in A p β (T). (4) Let k = [q/2]. For all ε > 0, there exists a closed set E ⊂ T such that dim(E) ≥ max 2 q (1 -βq)k -ε, 1 -2(k + 1)β
and such that every

f ∈ A 1 β (T) satisfying Z(f ) = E is cyclic in A p β (T). Furthermore, if p = 2k 2k-1 for some k ∈ N * , E can be chosen such that dim(E) = 1 -βq. Proof. (1) : Note that, by (1.1), dim(Z(f )) < 2 q (1 -βq) if and only if there exists α < 2 q (1 -βq) such that C α (Z(f )) = 0. If C α (Z(f )) = 0, by Lemma 2.2, there is no S ∈ A q -β (T) \ {0} such that supp(S) ⊂ Z(f ) . So, by Proposition 2.5 (1), f is cyclic in A p β (T).
(2) : Suppose that C 1-βq (Z(f )) > 0. There exists a probability measure µ of energy

I 1-βq (µ) < ∞, such that supp(µ) ⊂ Z(f ) . So µ ∈ A 2 -βq/2 (T) \ {0}. Since | µ(n)| ≤ 1 
for all n ∈ Z and q ≥ 2, we have µ ∈ A q -β (T). By proposition 2.5 (2), f is not cyclic in A p β (T).

(3) : Let 2 q (1-βq) < α ≤ 1. There exists ε > 0 such that 2 q (1-βq)+ε < α. Let q such that 2 q -2β + ε = 2 q . Since β > 1 q -1 q , by Lemma 2.1, A q (T) ⊂ A q -β (T). By Theorem 3.1, as q satisfies q > 2 α , there exists a closed subset E ⊂ T such that dim(E) = α and a non zero positive measure µ ∈ A q (T) 

⊂ A q -β (T) such that supp(µ) ⊂ E. Now (3) follows from proposition 2.5.(2). ( 4 
) : Let k = [q/2]. Suppose first 2 q (1 -βq)k > 1 -2(k + 1)β and let 0 < ε < ε satisfying 1 -2(k + 1)β ≤ 2 q (1 -βq)k -ε . Consider the set S λ where λ verifies 2 q (1 -βq)k -ε < 1 -λ 1 + λ < 2 q (1 -βq)k. By Lemma 3.3.(3) we have dim(S λ ) = 1-λ 1+λ and C1-λ 1+λ (k × S λ ) = 0. Therefore by Theorem 3.2.(a), every f ∈ A 1 β (T) such that Z(f ) = S λ is cyclic in A p β (T). Now suppose 2 q (1 -βq)k ≤ 1 -2(k +
f ∈ A 1 β (T) such that Z(f ) = S λ is cyclic in A p β (T).
Suppose now that p = 2k 2k-1 for some k ∈ N * . As before, we consider S λ where 1-λ 1+λ = 1 -2kβ = 1 -βq. So again by Theorem 3.2.(b), every

f ∈ A 1 β (T) such that Z(f ) = S λ is cyclic in A p β (T).
Note that the set E which is considered in 3.4.( 4) verifies C α (E) = 0 where

α ≥ max 2 q (1 -βq)k -ε, 1 -2(k + 1)β .

Proof of Theorem B

In this section we investigate the sharpness of the constant 2 q (1 -βq) in Theorem A.

Before proving Theorem B, we need the following two results. The following Lemma is an extension of Newman's Lemma 3 (see [START_REF] Newman | The closure of translates in p[END_REF] pp 654-655). 

f A p β (T) ≤ C 1 p f 3 2 -1 p -β A 2 (T) ( f A 2 (T) + f A 2 (T) ) 1 p -1 2 +β .
Proof. It suffices to show that there exists C > 0 such that for all sequences (c n )

∈ C N * , ∞ n=1 |c n | p (1 + |n|) pβ ≤ C ∞ n=1 |c n | 2 3 4 p-1 2 -βp 2 ∞ n=1 n 2 |c n | 2 1 2 -p 4 + βp 2 .
Then we apply this inequality to (

f (n)) n≥1 and ( f (-n)) n≥1 . Let x 2 = n≥1 |c n | 2 and x 2 y 2 = n≥1 n 2 |c n | 2 .
Note that y ≥ 1. On one hand, by the Hölder inequality,

1≤n≤y |c n | p (1 + n) pβ ≤ y n=1 |c n | 2 p/2 y n=1 (1 + n) 2pβ 2-p 1-p/2 ≤ x 2 p 2 y(1 + y) 2pβ 2-p 1-p 2 ≤ 2 βp x p y 1-p 2 +pβ .
On the other hand we set γ = 2p(1-β) 2-p . Since βq ≤ 1, γ > 1 and again by the Hölder inequality we obtain,

n>y |c n | p (1 + n) pβ ≤ 2 p   ∞ n>y n 2 |c n | 2   p 2   ∞ n>y (1 + n) 2p(β-1) 2-p   1-p 2 ≤ 2 p x 2 y 2 p 2 1 γ -1 1-p/2 y 1-γ 1-p 2 ≤ 2 p 1 γ -1 1-p/2 x p y 1-p 2 +pβ
So the conclusion of the Lemma holds with

C = max   2 βp , 2 p 1 γ -1 1-p/2  
which is a positive constant depending only on p and β.

The following theorem is due to Körner (see [START_REF] Körner | On the theorem of ivašev-musatov iii[END_REF]Theorem 1.2]).

Theorem 4.2. Let

h : [0, ∞) → [0, ∞) be an increasing continuous function with h(0) = 0 and let φ : [0, ∞) → [0, ∞) be a decreasing function. Suppose that (1) ∞ 1 φ(x) 2 dx = ∞; (2) there exist K 1 , K 2 > 1 such that for all 1 ≤ x ≤ y ≤ 2x, K 1 φ(2x) ≤ φ(x) ≤ K 2 φ(y);
(3) there exists γ > 0 such that

lim x→∞ x 1-γ φ(x) = ∞;
(4) there exist 0 < K 2 < K 3 < 1 such that for all t > 0,

K 2 h(2t) ≤ h(t) ≤ K 3 h(2t).
Then there exists a probability measure µ with support of Hausdorff h-measure zero such that

| µ(n)| ≤ φ 1 h(|n| -1 ) ln 1 h(|n| -1 ) 1/2 , ∀n = 0.
Recall Theorem B reformulated in A p β (T) space. Theorem 4.3. Let 1 < p < 2 and β ≥ 0 such that βq < 1.

(1) If f ∈ A 1 β (T) and Z(f ) has strong α-measure 0 where α = 2 q (1 -βq) then f is cyclic in A p β (T).

(2) For every γ > 2 q , there exists a closed subset E ⊂ T such that every

f ∈ A 1 β (T) satisfying Z(f ) = E is not cyclic in A p β (T) and such that H h (E) = 0 where h(t) = t α ln(e/t) γ with α = 2 q (1 -βq). Note that in (2), H h is closed to H α .
Proof. (1) : The proof of this result holds by using arguments analogous to those of Newman for β = 0 (see [START_REF] Newman | The closure of translates in p[END_REF]Theorem 1]). Denote by (a k , b k ) the complementary intervals of Z(f ) arranged in non-increasing order of lengths and set

r n = 2π - n k=0 (b k -a k ).
The set Z(f ) has strong α-measure 0 where α = 2 q (1 -βq) so lim

n→∞ r n n 1 α -1 = 0.
Let ε > 0 and n ∈ N such that r n < εn 1-1 α and εn -1 α < 1. Let the function ψ be given by

ψ(x) = max 1 - n 1 α ε ρ(x), 0 , x ∈ T, where 
ρ(x) = dist x, T \ n k=1 ]a k , b k [ . Then ψ 2 A 2 (T) = T\ n k=1 ]a k ,b k [ ψ(t) 2 dt + n k=1 b k a k ψ(t) 2 χ {ρ(x)≤εn -1 α } (t) dt ≤ r n + n k=1 2εn -1 α ≤ 3εn 1-1 α . Moreover ψ 2 A 2 (T) = T ψ (t) 2 dt = n k=1 b k a k ψ (t) 2 χ {ρ(x)≤εn -1 α } (t) dt ≤ n k=1   n 1 α ε   2 2εn -1 α ≤ 2 n 1+ 1 α ε . Since εn -1 α < n 1 α ε and α = 2 q (1 -βq), by Lemma 4.1, ψ A p β (T) ≤ C 1 p 3εn 1-1 α 3 4 -1 2p -β 2   5 n 1+ 1 α ε   1 2p -1 4 + β 2 ≤ C ε 1-1 p -β
where C and C depend only on β and p. Note that 1 -ψ is a Lipschitz function and Z(f ) ⊂ Z(1 -ψ). We conclude by Lemma 2.7.

(2) : Let α = 2 q (1 -βq) and γ > 2 q . By Theorem 4.2 with φ(t) = (t ln(et)) -1/2 for t ≥ 1 and h(t) = t α ln(e/t) γ for t ∈ [0, ∞), there exists a probability measure µ with support of Hausdorff h-measure zero such that

| µ(n)| ≤ φ 1 h(|n| -1 ) ln 1 h(|n| -1 ) 1/2 ≤ (|n| α ln(e|n|) γ ) -1/2 , for n = 0. So n =0 | µ(n)| q (1 + |n|) -βq ≤ C n =0 |n| -αq/2-βq ln(e|n|) -γq/2 ≤ C n =0 1 |n| ln(e|n|) γq/2 < ∞ with C a positive constant. Hence µ ∈ A q -β (T).
We set E = supp(µ). By lemma 2.5 the result is proved.

Remarks

We say that (ω n ) ∈ R Z is a weight if w n ≥ 1 and ω n+k ≤ Cω n ω k for all k, n ∈ Z and C a positive constant. For ω a weight and 1 ≤ p < ∞ we set (1) If f ∈ A 1 ω (T) and dim(Z(f )) < 2 q then f is cyclic in A p ω (T).

A p ω (T) =    f ∈ C(T), f p A p ω (T) = n∈Z | f (n)| p ω p n < ∞    . Note that f S A p ω (T) ≤ f A 1 ω (T) S A p ω (T) for f ∈ A 1 ω (T)
(2) For 2 q < α ≤ 1, there exists a closed subset E ⊂ T such that dim(E) = α and every f ∈ A 1 ω (T) satisfying Z(f ) = E is not cyclic in A p ω (T).

(3) For all 0 < ε < 1, there exists a closed subset E ⊂ T such that dim(E) = 1 -ε and every f ∈ A 1 ω (T) satisfying Z(f ) = E is cyclic in A p ω (T). Proof. (1) : Let f ∈ A 1 ω (T) such that dim(Z(f )) < 2 q . There exists 0 < δ < 1/2 such that dim(Z(f )) < 2 q (1 -δq). By Theorem 3. 2)), there exists a closed set E ⊂ T such that dim(E) = α and every f ∈ A 1 (T) satisfying Z(f ) = E is not cyclic in A p (T). Let f ∈ A 1 ω (T) such that Z(f ) = E . Since f ∈ A 1 (T), f is not cyclic in A p (T). However • A p (T) ≤ • A p ω (T) therefore f is not cyclic in A p ω (T). (3) : Let 0 < ε < 1 and β > 0 such that 1 -2([q/2] + 1)β ≥ 1 -ε. By Theorem 3.4.( 4), there exists a closed set E ⊂ T such that dim(E) ≥ 1 -2([q/2] + 1)β ≥ 1 -ε and such that every f ∈ A 1 β (T) satisfying Z(f ) = E is cyclic in A p β (T). Since A p β (T) ⊂ A p ω (T), we obtain, by Lemma 2.7, that every f ∈ A 1 ω (T) satisfying Z(f ) = E is cyclic in A p ω (T).

When p > 2 the search for cyclic vectors in A p (T) seems extremely difficult. Newman in [START_REF] Newman | The closure of translates in p[END_REF] shows that for all α < 2π there exists E ⊂ T which has a Lebesgue measure |E| > α and such that every f ∈ A 1 (T) satisfying Z(f ) = E is cyclic in A p (T). See also [START_REF] Newman | The closure of translates in p[END_REF]Theorem 6] for the existence of non cyclic functions under some conditions. We also have a characterization of the cyclic vectors in term of the zeros of the Fourier transform when p > 2 but it's not very effective : A function f ∈ A 1 (T) is cyclic in A p (T) if and only if Z(f ) does not support any non-zero function g ∈ A q (T) where q = p p-1 .

When ω n = log(e + |n|) β where 0 < β < 1, for all p > 2 1-β and for all α < 2π, Nikolskii shows in [START_REF] Nikolskii | Lectures on the shift operator IV[END_REF]Corollary 6], there exists E ⊂ T which has a Lebesgue measure |E| > α and such that every f ∈ A 1 β (T) satisfying Z(f ) = E is cyclic in A p β (T).

  1)β. We consider S λ where 1-λ 1+λ = 1 -2(k + 1)β. By lemma 3.3.(3) we have dim(S λ ) = 1-λ 1+λ = 1 -2(k + 1)β and C1-λ 1+λ ((k + 1) × S λ ) = 0. So by Theorem 3.2.(b), every

Lemma 4 . 1 .

 41 Let p ∈ [1, 2[, β ≥ 0 such that βq ≤ 1.There exists C > 0 such that for all f ∈ A 2 1 (T),

Theorem 5 . 1 .

 51 and S ∈ A p ω (T). So we have the same result as (2.1) to characterize cyclicity in A p ω (T) by norm.Whenω n = O((1 + |n|) ε) for all ε > 0, for example ω n = ln(e + |n|) β where β ≥ 0, we can show the same result as Lemma 2.7. So by noting that for all p ≥ 1 and δ > 0,A p δ (T) ⊂ A p ω (T) ⊂ A p (T)we obtain by Theorem A the following result: Let 1 < p < 2 and ω = (ω n ) n∈Z a weight satisfying ω n = O((1 + |n|) ε ) for all ε > 0.

  4.(1), every g∈ A 1 δ (T) satisfying Z(g) = Z(f ) is cyclic in A p δ (T). Therefore by Lemma 2.7, there exist (f n ) a sequence of Lipschitz functions which are zero on Z(f ) and such that limn→∞ f n -1 A p δ (T) = 0. Moreover ω n = O((1 + |n|) δ ) so lim n→∞ f n -1 A p ω (T) = 0. Again by Lemma 2.7 in A p ω (T), we obtain that f is cyclic in A p ω (T). (2) : By the theorem of Salem (see Theorem 3.1 and Theorem 1.3.(
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