
HAL Id: hal-01483887
https://hal.science/hal-01483887v1

Submitted on 6 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New evaluation scheme for software function
approximation with non-uniform segmentation

Justine Bonnot, Erwan Nogues, Daniel Menard

To cite this version:
Justine Bonnot, Erwan Nogues, Daniel Menard. New evaluation scheme for software function approxi-
mation with non-uniform segmentation. 24th European Signal Processing Conference (Eupisco 2016),
Aug 2016, Budapest, Hungary. pp.632 - 636, �10.1109/EUSIPCO.2016.7760325�. �hal-01483887�

https://hal.science/hal-01483887v1
https://hal.archives-ouvertes.fr


New Evaluation Scheme for Software Function
Approximation with Non-Uniform Segmentation

Justine Bonnot, Erwan Nogues, Daniel Menard
INSA Rennes

Rennes, France
Email: firstname.lastname@insa-rennes.fr

Abstract—Modern applications embed complex mathematical
processing based on composition of elementary functions. A good
balance between approximation accuracy, and implementation
cost, i.e. memory space requirement and computation time, is
needed to design an efficient implementation. From this point of
view, approaches working with polynomial approximation obtain
results of a monitored accuracy with a moderate implementation
cost. For software implementation in fixed-point processors,
accurate results can be obtained if the segment on which the
function is computed I is segmented accurately enough, to have
an approximating polynomial on each segment. Non-uniform
segmentation is required to limit the number of segments and then
the implementation cost. The proposed recursive scheme exploits
the trade-off between memory requirement and evaluation time.
The method is illustrated with the function exp(−

√
(x)) on the

segment [2−6; 25] and showed a mean speed-up ratio of 98.7
compared to math.h on the Digital Signal Processor C55x.

I. INTRODUCTION

The technological progress in microelectronics as well
as the Internet of Things era require that embedded appli-
cations integrate more and more sophisticated processing.
Most embedded applications incorporate complex mathemati-
cal processing based on composition of elementary functions.
The design challenge is to implement these functions with
enough accuracy without sacrificing the performances of the
application which are measured in terms of memory usage,
execution time and energy consumption. The targeted proces-
sors are Digital Signal Processors (DSP). To implement these
functions, several solutions can be used. Specific algorithms
can be adapted to a particular function [5] as for instance the
approximation by Tchebychev polynomials or by convergent
series. For a hardware implementation, numerous methods
have been proposed. Look-Up Tables (LUT), bi- or multi-
partite tables [2] are used. These tables contain the values
of the function on the targeted segment and are impossible
to include in embedded systems because it may take a lot of
memory space for a given precision.

For the time being, a few software solutions exist for
computing these functions. Libraries such as libm can be
used but target scientific computation. They offer an important
accuracy but are slow on the targeted architecture (DSP).
The implementation of the CORDIC (COordinate Rotation
DIgital Computer) algorithm that computes the values of
trigonometric, hyperbolic or logarithmic functions [6], can also
be used.

In this work, the software implementation of mathematical
functions in embedded systems is considered. Low cost and

low power processors are targeted. To achieve cost and power
constraints, no floating-point unit is considered available and
processing is carried-out with fixed-point arithmetic. Never-
theless, this arithmetic offers a limited dynamic range and
precision. Then, the polynomial approximation of a function
give a very accurate result in a few cycles if the segment I on
which the function is computed, is segmented precisely enough
to approximate the function by a polynomial on each segment.

To approximate the function, the Remez algorithm is used.
The degree of the approximating polynomials can be chosen
and impacts the number of segments needed to suit the
accuracy constraint as well as the computation time and the
memory required. Reducing the polynomial order increases
the approximation error. Thus, to obtain a given maximal
approximation error, the number of segments increases im-
plying an increasing number of polynomials and then a larger
memory footprint. On the contrary, for a given data-path word-
length, increasing the polynomial order raises the computa-
tion errors in fixed-point coding due to more mathematical
and scaling operations. Even though higher polynomial order
implies a smaller approximation error and consequently less
segments, a higher fixed-point computation error counteracts
this benefit. Thus, for fixed-point arithmetic, the polynomial
order is relatively low. Consequently, to obtain a low maximal
approximation error, the segment size is reduced. Accordingly,
non-uniform segmentation is required to limit the number of
polynomials to store in memory and to obtain a moderate
approximation error. Then, each segment has its own approxi-
mating polynomial and the coefficients of each polynomial are
stored in a single table P .

Consequently, the challenge of the polynomial approxi-
mation method is to find the accurate segmentation of the
segment I as well as the fastest computation of the index of
the polynomial in table P corresponding to the input value x.
In that paper, the computation of the index of the polynomial
associated to an input value x is considered. Different non-
uniform segmentations [4] associated to a hardware method
of indexation of the segmentation have been proposed, but
they target only harware implementations. Moreover, these
methods do not provide flexibility in terms of segmentation.
The segmentation used in the proposed method is a non-
uniform segmentation.

In this paper, a new indexing scheme for software function
evaluation, based on polynomial evaluation with non uniform
segmentation, is proposed. This recursive scheme enables ex-
ploring the trade-off between the memory size and the function
evaluation time. Besides, compared to Table-based methods,



our approach reduces significantly the memory footprint. The
proposed method is compared to an indexing method using
only conditional structures and shows a significant reduction
in the computation time. The determination of the best non-
uniform segmentation is not the scope of this paper.

The rest of the paper is organized as follows. First, the
related work is detailed in Section II. The evaluation scheme
using a non-uniform segmentation is detailed in Section III.
Finally, the experiment results as well as comparisons with
indexing method using conditional structures and table-based
method are given in Section IV.

II. RELATED WORK

To compute the value of a function, iterative methods
as the CORDIC algorithm [6] can be a software solution.
That algorithm computes approximations of trigonometric,
hyperbolic or logarithmic functions with a fixed precision.
Nevertheless, that algorithm is composed of a loop whose
number of iterations depends on the precision required and
may take too long to compute precise values. A table needs
to be stored too, whose size is the same as the number of
iterations. The asset of that method is the sole use of shifts
and additions that makes it particularly adapted to low cost
hardware solutions.

Numerous hardware methods have been developed for
polynomial approximation. Firstly, the LUT method consists
in approximating the function with 0-degree polynomials on
the segment I beforehand segmented so that the error criterion
is fulfilled on each segment. That method is the most efficient
in terms of computation time but the most greedy concerning
the memory space required since the segmentation is uniform.
Improvements of that method are the bi- or multi-partite
methods presented in [2]. The function f is approximated by
linear functions on the segment I prior segmented. Two tables
need to be stored: a table containing the initial values of each
segment obtained by the segmentation, and a table of offsets
to compute whichever value belonging to this segment. The
multi-partite method exploits the symmetry on each segment
and reduces significantly the size of the tables. That method
offers quick computations and reduced tables to store but is
limited to low-precision requirements and is implemented only
for hardware function evaluation.

Non-uniform segmentation followed by polynomial ap-
proximation is developed in [4] for hardware function eval-
uation. The initial segment is recursively segmented until the
error criterion is fulfilled on each segment. The segmentation is
done according to 4 predefined segmentation schemes limiting
the ability to fit onto the function evolution. Afterwards, AND
and OR gates are used to find the segment corresponding to
an input value x. LUT are used to store the coefficients of
the polynomials. Nevertheless, that method does not allow to
control the depth of segmentation of the initial segment. Finally
that method targets only hardware implementation.

III. PROPOSED METHOD

A. Non-uniform Segmentation

The function f is approximated by the Remez algorithm
as in the article [4]. That algorithm seeks the minimax, which

is the polynomial that approximates the best the function
according to the infinite norm on a given segment. The Remez
algorithm is based on several inputs: the function f , the
segment I = [a; b] on which f is approximated (f has to
be continuous on I), and the degree Nd of the approximating
polynomials. The Remez algorithm in the proposed method,
is called thanks to the Sollya tool [1].

The Remez approximation algorithm has an approximation
error εapp. That error cannot be controled by the Remez algo-
rithm but can be computed on the segment I . εapp is defined
as the infinite norm of the difference between the function f
and its approximating polynomial P , εapp = ||f − P ||∞. On
the segment I , the error of approximation can be greater than
the maximal error required by the user. The segmentation of I
allows to suit the error criterion provided by the user, on each
segment. The coefficients of the approximating polynomials
on each segment are saved in table P . Once the segmentation
is determined, the challenge is to index efficiently P . To ease
the addressing, the bounds of the segments obtained are sums
of powers of two.

The segmentation of I is modeled by a tree, as depicted in
figure 1. That tree is composed of nodes and edges. The root of
that tree contains the bounds of the segment I and the children
of the root contain the bounds of the segments obtained in
each level of segmentation. The leaves of the tree correspond
to the segments to which a polynomial is associated, i.e. the
segments on which the error criterion is verified. The depth
of the tree is a trade-off between the number of polynomials
and the computation time of the index of a polynomial. For
instance, the binary tree obtained by subdividing each segment
in two equal parts is the deepest: it leads to the minimum
number of polynomials but the computation of the index takes
the longest. On the contrary, the tree whose depth is 1 has the
greatest number of polynomials but the computation of the
index is the fastest. If the depth of the binary tree is N , then
the number of polynomials in the tree of depth 1 is 2N .

Fig. 1. Example of a tree obtained with a non-uniform segmentation

On the tree in figure 1, the segment I is segmented in 22

segments, that leads to 2 segments on which the error criterion
is fulfilled (leaves n10 and n12). The segment represented
by the node n11 has an approximating polynomial that does
not approximate accurately enough f , then that segment is
segmented in 21 segments represented by leave n21 and node
n22 that is segmented again in 21 segments. The segment
represented by the node n13 is segmented in 22 segments that



Fig. 2. Indexing Tables associated to the tree in figure 1

leads to 3 leaves (leaves n24, n25 and n27) and a last node to
segment, n26, in 22 segments.

B. Evaluation scheme

The main contribution of this paper is a new method
to index the polynomial coefficients table P in a minimum
time. Each line of this table represents a polynomial and
each column the coefficient of the degree i monomial. The
index corresponding to the input value x is the number of
the line of that table used to apply the function to x, i.e.
the segment in which the value x is. Once the non-uniform
segmentation is obtained, polynomial coefficients are saved in
P . The evaluation scheme, to approximate the function f , is
composed of two parts corresponding to index computation
and polynomial computation as presented in figure 3. The step
of index computation determines from the wm most significant
bits the index i used to address the polynomial table P . The
step of polynomial computation evaluates the polynomial Pi
with x.

Fig. 3. Evaluation scheme integrating index and polynomial computation.
Illustration for a three-level tree

1) Index Computation: The aim of this step is to determine
for an input value x the index associated to the segment in
which x is located to get the coefficients of the polynomial
approximating f on that segment. The problem is to find the
path associated to the segment in a minimal time. Timing
constraint discards solutions based on conditional structures

and requiring comparison, test and jump instructions, as shown
in Section IV. The proposed approach is based on the analysis
and interpretation of specific bits of x, formatted using fixed-
point coding. Thanks to the sum of powers of two segment
bounds, masking and shifting operations can be used to align
these bits on the LSB and select them.

Since the tree is not well balanced due to the non-uniform
segmentation, for any tree level, the number of bits to analyze
is not constant and depends on the considered node. Indeed, all
the nodes associated to a given level do not necessarily have
the same number of children. The indexing method uses a
table T which stores for each level, a structure for each node,
containing the mask, the shift and the offset to pass from a
level to the following, given the bits of x. A line of the table
T is associated to each tree level. Each line of T contains
Nnl elements, where Nnl is the number of total nodes in this
level l. At each intermediate node nlj (where l is the level
and j the node) a mask (T [l][j].M ) and a shift (T [l][j].s) are
associated and used to select the adequate bits of x to move
from node nlj to the next node nl+1j′ located at level l + 1.
Moreover, an offset (T [l][j].o) is used to compute the index
of the polynomial associated to the considered segment. The
number of information to store in the table T depends on the
depth of the tree, the number of polynomials, and the degree
of the approximating polynomials.

The pseudo code for the computation of the index of the
polynomial corresponding to an input value x, from the tables
detailed previously, is presented in Algorithm 1. For each node
nlj , an offset olj is provided and the index is obtained by
summing the offsets to the different ∆l, corresponding to the
result of the bit-masking at each level l:

i =

Nl−1∑
l=0

ol + ∆l (1)

The pseudo code to compute the index is compact and
composed of few operations: three memory readings, a shift,
a bitwise logic operation and two additions.

Algorithm 1 Indexing of the approximating polynomials
i = 0;
for l = 0 to Nl − 1 do

o := T [l][i].o
∆ := (x >> T [l][i].s)&T [l][i].M
i := i+ ∆ + o

end for
Return i

The value of the mask T [l][j].M associated to a node nlj
is obtained from the number of children NbCh(nlj) of that
node with the following expression:

T [l][j].M = NbCh(nlj)− 1 (2)

The value of the shift T [l][j].s corresponding to a node
nlj is obtained from the number of children NbCh(nlj) and
from the shift associated to node nl−1,j′′ corresponding to the
parent of node nlj with the following expression

T [l][j].s = T [l − 1][j′′].s− log2(NbCh(nlj)) (3)



The value of the offset T [l][j].o associated to a node nlj is
obtained from the number of children NbCh(nij) and from the
shift associated to node nl−1,j′′ corresponding to the parent of
node nlj with the following expression

T [l][j].o =

j−1∑
k=0

NbCh(nlk)− 1 (4)

For the considered example in figure 1, the tree is made-up of 3
levels leading levels in table T . As an example, let us consider,
the 16 bits value x with x[15..10] = 111001b. In the tree from
figure 1, in level 1, the 2 most significant bits x[15..14] are
tested. The index i1 = ∆0 = 3 and leads to node n13. Then,
due to the mask M1 for node n13, the bits x[13..12] are tested.
The index i2 = i1 +o1 +∆1 = 3+1+2 = 6 and leads to n26.
Finally, due to the mask M2 for node n26, the bits x[11..10]
are tested. The index i3 = i2 + o2 + ∆2 = 6 + 1 + 1 = 8 and
leads to node n38. The index of the polynomial associated to
x is 8. The polynomial associated is P8.

2) Polynomial Computation: To improve the speed perfor-
mances, fixed-point arithmetic is used to code the coefficients
of the polynomials approximating the function, and they are
stored in the bidimensional table P[i][j]. The term i is the
index of the segment and the coefficient is the one of the
j-degree monomial. Indeed, the computation of the value of
Pi(x), where Pi is the approximating polynomial on a segment
indexed by i, can be decomposed using the Horner rule,
reducing the computation errors. According to the Ruffini-
Horner algorithm [7], each polynomial Pi(x) = anx

n +
an−1x

n−1 + ...+ a1x+ a0 can be factored as:

Pi(x) = ((((anx+ an−1)x+ an−2)x+ ...)x+ a1)x+ a0

Using that rule, the calculation scheme can be decomposed
in a basic loop kernel presented in Algorithm 2.

Algorithm 2 Computation of the polynomial Pi in fixed-point.
IntDP z;
z := P[i][Nd − 1]
for d = Nd to 1 do

z := ((IntSP )z × x) >> D[i][d] + P[i][d]
end for

Taking into account the loop kernel, shifts are necessary
to compute the value of Pi(x) in fixed-point coding because
the output of the multiplier can be on a greater format than
necessary. By using arithmetic of intervals on each segment,
the real number of bits necessary for the integer part can be
adjusted with left shift operation.

A right shift operation can be necessary to put the two
adder operands on the same format. In our case, a quan-
tification from double (IntDP) to single precision (IntSP) is
done and creates a source of error εfxp. When the two shift
values have been computed, they can be both added to do a
single shift on the output of the multiplier and is stored in
the bidimensional table D[i][d] where d corresponds to the
iteration of the loop of Algorithm 2 and i is the index of the
segment.

Finally, since parameter Nd is known and constant for all
Pi on an approximation, the loop can be unrolled so as to
avoid overhead due to loop management.

IV. EXPERIMENTS

To illustrate the proposed method, the function
exp(−

√
(x)) is studied on segment [2−6; 25] and the

DSP C55x from Texas Instruments [3] is considered. The
considered maximum error is ε = 10−2. The trees for 1-
to 3-degree polynomials have been computed with depth
varying from the maximal depth (binary tree) to a depth
of 2. The evolution of the memory footprints Sn−poly and
Sn−tot is observed in figure 4 where Sn−poly is the memory
footprint for the polynomial coefficients (table P) and shifts
(table D for fixed-point computations) and Sn− tot is
Sn− poly added to the memory footprint for the indexing
table T in figure 4. The trees are computed with a maximal
error criterion for the approximation εapp equal to half of ε
(5 · 10−3). The data and coefficients are on single-precision
(16 bits), the coding of the input is Q6,10.

2 3 4 5 6 7 8 9 10
50

100

150

200

250

300

350

400

450

500

550

Number of levels in the tree

R
eq
ui
re
d
m
em
or
y
sp
ac
e
(b
yt
es
)

Sn−poly for Nd = 1
Sn−tot for Nd = 1
Sn−poly for Nd = 2
Sn−tot for Nd = 2
Sn−poly for Nd = 3
Sn−tot for Nd = 3

Fig. 4. Evolution of the memory footprints Sn−poly (tables P and D) and
Sn−tot (tables P , D and T ).

The less levels the tree has, the greatest number of poly-
nomials there is. Consequently, Sn−poly is high. Nevetheless,
since the tree has a reduced depth, few tables are needed. On
the contrary, the more levels the tree has, the less polynomials
there are and Sn−poly is low. However, the table T is the
biggest.

The total memory space can be characterized as a function
of the computation time for a given error. This performance
can be used as a Pareto curve during the system design
phase to select the configuration leading to a good trade-off.
The function exp(−

√
(x)) on the segment [2−6; 25] can be

approximated by a polynomial of degree from 1 to 4 with data
coded on 16 bits, requiring a maximal total error ε of 10−2.
The maximum values of the error of fixed-point coding are
presented in table I. A 5-degree polynomial does not suit this
approximation since the error obtained with fixed-point coding
is greater than εfxp. However, a 5-degree polynomial would
fulfill the error criterion with data coded in double-precision
but at the expense of a high increase in execution time.

The expression of the computation time t depending on the
degree Nd and the number of levels in the tree Nl in single-
precision with the provided code is:

t = 8 ·Nl + 3 ·Nd + 9 (5)



Degree εfxp
1 [−2.8 · 10−3; 0]

2 [−2.5 · 10−3; 0]

3 [−2.5 · 10−3; 0.3 · 10−3]

4 [−2.4 · 10−3; 1.5 · 10−3]

5 [−2.7 · 10−3; 35.2 · 10−3]

TABLE I. RANGE OF THE FIXED-POINT CODING ERROR DEPENDING
ON THE POLYNOMIAL DEGREE FOR THE APPROXIMATION OF exp(−

√
(x))

20 30 40 50 60 70 80 90 100
100

150

200

250

300

350

400

450

500

550

Computation times (cycles)

M
em
or
y
sp
ac
e
re
qu
ir
ed
(b
yt
es
)

Degree 1
Degree 2
Degree 3
Degree 4
Degree 5

Fig. 5. Pareto curves for approximating exp(−
√

(x)) on [2−6; 25])

Figure 5 provides the evolution of the total memory foot-
print Sn−tot and the computation time t. The tree with a
low number of levels implies a high memory footprint but
a minimum computation time. Then, the computation time
increases with the number of levels in the tree while the
required memory decreases until reaching a minimum. Finally,
the memory slightly increases with the computation time and
the number of levels due to the increase of the table T size.

The proposed method is compared to the standard solution
libm, to the LUT method and to an indexing method using
conditional structures. However, the proposed method cannot
be compared to the hardware implementation of bi- or multi-
partite tables since the method proposed is a software-based
method. The computation time obtained with our method
shows a mean speed-up of 98.7 compared to the implementa-
tion by Texas Instruments of libm on the DSP C55x [3]. Our
approach is compared to the method using only conditional
structures to index P . To find the segment in which an input
value x is, each segment is tested using if statements while
the right one has not been found. The computation time of
the index with that method is not constant and depends on
the segment containing x. To take into account this variability,
mean execution time is considered. The results are presented
for 1 to 3-degree approximating polynomials. Given that our
approach provides different trade-off, the minimal, the mean
and the maximal speed-ups are considered. The overhead in
memory size and execution time of the conditional indexing
method compared to our approach are presented in table II. The
segmentation and the conditions of approximation are the same
as in figure 5. Our approach requires more memory (overhead
lower than 1) due to table T storage, but reduces significantly
the execution time (overhead significantly greater than 1).

Finally, the memory space required by the proposed method

(Memprop) is compared in table III to the LUT method
(Memtab) for several approximations. The memory required is
given in bytes. Our approach reduces significantly the memory
footprint compared to LUT method.

Memory Execution time
Degree Min Mean Max Min Mean Max

1 0.21 0.45 0.66 3.73 23.28 104.82
2 0.11 0.30 0.49 3.93 8.52 17.41
3 0.06 0.21 0.38 3.78 10.24 25.53

TABLE II. OVERHEAD IN MEMORY SIZE AND EXECUTION TIME OF
THE CONDITIONAL INDEXING METHOD COMPARED TO OUR APPROACH

Function εtot [a; b] Memtab Memprop (mean)
exp(−

√
(x)) 10−2 [2−6; 25] 8192 206√

(− log(x)) 0.02 [2−5; 1] 256 169
sin(x) 10−2 [0; π2 ] 256 32

TABLE III. MEMORY REQUIREMENTS FOR THE PROPOSED METHOD
Memprop AND THE LUT METHOD Memtab

V. CONCLUSION

The method proposed in this paper enables system de-
signers to efficiently evaluate the cost of approximating a
function. Indeed, Pareto curves giving the memory footprint
depending on the computation time allow to choose a trade-
off between computation time and required memory space.
That trade-off is obtained thanks to the different degrees of
the approximating polynomials as well as the depth of the
tree storing the segmentation of the segment I on which the
function is computed. Besides, the new scheme of indexing the
table of polynomials shows a significant reduction in terms of
computation time and does not need a significant supplemen-
tary memory space compared to an indexing method using only
conditional structures. Compared to libm implementation, the
proposed method shows significant computation time reduction
for low-degree polynomials since the speed-up mean of the
proposed method on DSP C55x is 98.7.

REFERENCES

[1] S. Chevillard, M. Joldeş, and C. Lauter. Sollya: An environment for
the development of numerical codes. In K. Fukuda, J. van der Hoeven,
M. Joswig, and N. Takayama, editors, Mathematical Software - ICMS
2010, volume 6327 of Lecture Notes in Computer Science, pages 28–31,
Heidelberg, Germany, September 2010. Springer.

[2] F. de Dinechin and A. Tisserand. Multipartite table methods. IEEE
Transactions on Computers, 54(3):319–330, March 2005.

[3] Texas Instruments. C55x v3.x CPU Reference Guide. Dallas, June 2009.
[4] D.-U. Lee, R.C.C. Cheung, W. Luk, and J.D. Villasenor. Hierarchical

segmentation for hardware function evaluation. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 17(1):103–116, January
2009.

[5] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery. Numerical recipes in C (2nd ed.): the art of scientific
computing. Cambridge University Press New York, NY, USA, 1992.

[6] Jack E. Volder. The CORDIC trigonometric computing technique.
IRE Transactions on Electronic Computers, EC-8(3):330–334, September
1959.

[7] Edmund Taylor Whittaker and George Robinson. The calculus of
observations. Blackie London, 1924.


