SUR LA CONTINUITE
DES HOMOMORPHISMES D'ALGEBRES

M. EL AZHARI

Résumé. Nous donnons un théorème de continuité automatique (théorème II.1) dont la démonstration repose essentiellement sur la généralisation de la technique de D.O.Sin.Sya. Comme conséquence, nous obtenons deux théorèmes de T.Rusain et S.B.Ng (théorème 1 de [2] et théorème 1 de [3]).

I. Préliminaires

Soit E une algèbre sur le corps K ($= \mathbb{R}$ ou \mathbb{C}), on dit souvent que E est une K-algèbre. Si E est munie d'une topologie $	au$ compatible avec sa structure d'espace vectoriel et pour laquelle la multiplication est séparément continue, on dit que (E, τ) est une algèbre topologique.

Une algèbre localement convexe (en abrégé a.l.c) est une algèbre topologique munie d'une topologie d'espace localement convexe.

Soit (E, τ) une algèbre topologique. On dit que (E, τ) est une algèbre localement multiplicativement convexe (en abrégé a.l.m.c) si τ est définie par une famille $(\tau_\lambda)_\lambda$ de semi-normes d'espace vectoriel vérifiant en outre $\tau_\lambda(xy) \leq \tau_\lambda(x) \tau_\lambda(y)$ pour tout λ et tous x, y de A.

II. Résultats.

Théorème II.1. Soient A, B deux IR-espaces vectoriels topologiques, A étant métrisable et complet. Soient $s : A \to A$, $h : B \to B$ deux fonctions tel que s est continue et $s(0) = 0$. Considérons $I_h = \{g \in B^* : g(h(x)) = g(x)^2$ pour tout x de $B\}$
(B* dual algébrique de B) et supposons que Iₙ est non vide.

On suppose que B satisfait à la condition
(F) pour toute suite \(\{y_n\} \subset B \), \(y_n \neq 0 \), \(y_n \xrightarrow{\varepsilon} 0 \) il existe \(f \in Iₙ \) tel que \(f(y_n) \xrightarrow{\varepsilon} 0 \)

alors toute application linéaire T de A dans B telle que \(T(s(x)) = h(Tx) \)
pour tout x de A, est continue.

Preuve : Supposons que T n'est pas continue. Il existe une suite
\(\{x_n\}_{n \geq 1} \subset A \), \(x_n \xrightarrow{\varepsilon} 0 \) mais \(Tx_n \xrightarrow{\varepsilon} 0 \). On peut supposer que \(x_n \neq 0 \)
et \(Tx_n \neq 0 \) pour tout \(n \geq 1 \). Par hypothèse, il existe \(f \in Iₙ \) tel que
\(f(Tx_n) \xrightarrow{\varepsilon} 0 \). On peut construire à partir de la suite \((x_n)_{n \geq 1} \), une suite
\((a_m)_{m \geq 0} \) telle que \(\inf_{m} f(Ta_m) = \varepsilon > 0 \).

On a \(\varepsilon^{-1}a_m \xrightarrow{\varepsilon} 0 \) ainsi \(s(\varepsilon^{-1}a_m) \xrightarrow{\varepsilon} 0 \) car s est continue.

Posons \(y_m = s(\varepsilon^{-1}a_m) \) pour tout \(m \geq 1 \).

Alors
\[
 f(Ty_m) = f(T(s(\varepsilon^{-1}a_m))) = f(h(T(\varepsilon^{-1}a_m))) = f(T(\varepsilon^{-1}a_m))^2 \geq 1 \] pour tout \(m \geq 1 \)

On définit \(g_k : A^{k+1} \xrightarrow{\varepsilon} A \) pour \(k \geq 0 \)
\[
 g_0(b_1) = b_1 \\
 g_1(b_1, b_2) = b_1 + s(b_2) \\
 \vdots \\
 g_k(b_1, \ldots, b_{k+1}) = g_1(b_1, g_{k-1}(b_2, \ldots, b_{k+1}))
\]

En utilisant la même construction faite dans [5], on peut définir une sous-
suite \((y_m)_{m \geq 1} \) de \((y_m)_{m \geq 1} \) tel que pour tout \(k \geq 0 \)
\((g_{p-k}(z_1, \ldots, z_p))_{p \geq k} \) est une suite de Cauchy.
Soit \(c_k = \lim_{p \to \infty} g_{p-k}(z_k, \ldots, z_p) \)

par définition \(g_{p-k}(z_k, \ldots, z_p) = z_k + s(g_{p-(k+1)}(z_{k+1}, \ldots, z_p)) \)

On obtient \(c_k = z_k + s(c_{k+1}) \)

ainsi \(Tc_k = Tz_k + T(s(c_{k+1})) \)

On a

\[
\begin{align*}
 f(Tc_k) &= f(Tz_k) + f(T(s(c_{k+1}))) \\
 &= f(Tz_k) + f(h(Tc_{k+1})) \\
 &= f(Tz_k) + (f(Tc_{k+1}))^2 \\
 &\geq 1 + f(Tc_{k+1})^2
\end{align*}
\]

pour tout \(k \geq 0 \)

d'où

\[
\begin{align*}
 f(Tc_0) &\geq 1 + f(Tc_1)^2 \\
 &\geq 2 + f(Tc_2)^2 \\
 &\vdots \\
 &\geq k + f(Tc_k)^2
\end{align*}
\]

i.e. \(f(Tc_0) \geq k \) pour tout \(k \geq 0 \)

ce qui est absurde.

Comme conséquence, on a :

Théorème II.2. Soient \(A, B \) deux \(\mathbb{R} \)--algèbres topologiques, \(A \) métrisable et complète. On suppose que \(B \) satisfait à la condition (D) pour toute suite \(\{y_n\} \subset B, y_n \neq 0, y_n \xrightarrow{n} 0 \) il existe un caractère \(f \) de \(B \) tel que \(f(y_n) \xrightarrow{n} 0 \).

Alors toute application linéaire \(T : A \to B \) vérifiant \(T(x^2) = (Tx)^2 \)

pour tout \(x \) de \(A \), est continue.

Preuve. On considère \(s : A \to A \) et \(h : B \to B \)

\[
\begin{align*}
 x &\mapsto x^2 \\
 x &\mapsto x^2
\end{align*}
\]

remarquons que \(f \) de la condition (D) est dans \(\mathbb{I}_h \). On applique alors le théorème II.1.
Théorème II.3. Soit A une IR-a.l.m.c. séquentiellement complète.
Soit B une IR-algèbre topologique satisfaisant à la condition (D) du
théorème II.2. Alors toute application linéaire T de A dans B vérifiant
$T(x^2) = (Tx)^2$, $x \in A$, est bornée.

Preuve. On applique le théorème II.2 et le théorème de structure de
M.Akkar ([1]) affirmant que si A est une a.l.m.c. séquentiellement
complète, alors A est bornologiquement limite inductive d'a.l.m.c.
métrisables et complètes.

Remarques 1. Les théorèmes II.2 et II.3 sont des améliorations des théorèmes
1 de [2] et 1 de [3].

2. Dans l'énoncé du théorème II.1, on peut remplacer IR par un
corps archimédiens.

3. E est une IR-algèbre de Banach, mais E ne satisfait pas à la
condition (D) car le seul caractère réel de E est l'application nulle de E
dans IR.

4. On peut remplacer B dans les théorèmes II.2 et II.3 par IR ;
c'est une IR-algèbre de Banach qui satisfait à la condition (D).

Remerciements. Je remercie Messieurs les Professeurs M.Akkar et M.Oudadess
pour l'aide précieuse qu'ils m'ont apportées durant l'élaboration de ce travail.
Références

Ecole Normale Supérieure
Avenue Oued Akreuch
Takaddoum, Rabat
B.P. 5118, Maroc.