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We consider stationary stochastic processes {X n : n ∈ Z} such that X 0 lies in the closed linear span of {X n : n = 0}; following Ghosh and Peres, we call such processes linearly rigid. Using a criterion of Kolmogorov, we show that it suffices, for a stationary stochastic process to be linearly rigid, that the spectral density vanish at zero and belong to the Zygmund class Λ * (1). We next give sufficient condition for stationary determinantal point processes on Z and on R to be linearly rigid. Finally, we show that the determinantal point process on R 2 induced by a tensor square of Dyson sine-kernels is not linearly rigid.

window is measurable with respect to the completion of the sigma-algebra describing the configurations outside that finite window. Their argument is spectral: they construct, for any small ε, a compactly supported smooth function ϕ ε , such that ϕ ε equals 1 in a fixed finite window and the linear statistic corresponding to ϕ ε has variance smaller than ε.

In the same spirit, we consider general stationary stochastic processes (in broad sense) {X n : n ∈ Z} such that X 0 lies in the closed linear span of X n , n = 0; following Ghosh and Peres, we call such processes linearly rigid. In 1941 Kolmogorov [START_REF] Kolmogoroff | Interpolation und Extrapolation von stationaeren zufaelligen Folgen[END_REF], [START_REF] Kolmogorov | Stationary sequences in Hilbert space[END_REF] gave a sufficient condition for linear rigidity: namely, that the spectral density of our process vanish at zero and the integral of the inverse of the spectral density diverge. Such a condition is easy to verify for example for the sine-process, since the spectral density ω in the neighbourhood of zero has the form ω(θ) = |θ|. More generally, in order that a stationary stochastic process be rigid, we check that it suffices that the spectral density vanish at zero and belong to the Zygmund class Λ * [START_REF] Bufetov | Rigidity of Determinantal Point Processes with the Airy, the Bessel and the Gamma Kernel[END_REF]. We next give sufficient condition for stationary determinantal point processes on Z and on R to be rigid. Finally, we show that the determinantal point process on R 2 induced by a tensor square of Dyson sinekernel is not linearly rigid.

We now turn to more precise statements. Let X = {X n : n ∈ Z d } be a multidimensional time stationary stochastic process of real-valued random variables defined on a probability space (Ω, P). Let H(X) ⊂ L 2 (Ω, P) denote the closed subspace linearly spanned by {X n : n ∈ Z d } and let Ȟ0 (X) denote the one linearly spanned by {X n : n ∈ Z d \ {0}}.

Definition 1.1. The stochastic process X is said to be linearly rigid if X 0 ∈ Ȟ0 (X).

(

Let Conf(R d ) be the set of locally finite configurations on R d . For a bounded Borel subset B ⊂ R d , we denote N B : Conf(R d ) → N ∪ {0} the function defined by

N B (X) := the cardinality of B ∩ X .
The space Conf(R d ) is equipped with the Borel σ-algebra which is the smallest σ-algebra making all N B 's measurable. Recall that a point process with phase space R d is, by definition, a Borel probability measure on the space Conf(R d ). For the background on point process, the reader is referred to Daley and Vere-Jones' book [START_REF] Daley | An introduction to the theory of point processes[END_REF].

Given a stationary point process on R d and λ > 0, we introduce the stationary stochastic process

N (λ) = (N (λ) n ) n∈Z d by the formula N (λ) n (X) := the cardinality of X ∩ nλ + [-λ/2, λ/2) d . ( 2 
)
Definition 1.2. A stationary point process P on R d is called linearly rigid, if for any λ > 0, the stationary stochastic process

N (λ) = (N (λ) n ) n∈Z d is linearly rigid, i.e., N (λ) 0 ∈ Ȟ0 (N (λ) ).
The above definition is motivated by the definition due to Ghosh and Peres of rigidity of point processes on R d , see [START_REF] Ghosh | Determinantal processes and completeness of random exponentials: the critical case[END_REF] and [START_REF] Ghosh | Rigidity and tolerance in point processes: Gaussian zeros and Ginibre eigenvalues[END_REF]. Given a Borel subset C ⊂ R d , we will denote A linear rigid stationary point process on R d is of course rigid in the sense of Ghosh and Peres. Observe that proofs for rigidity in [START_REF] Ghosh | Determinantal processes and completeness of random exponentials: the critical case[END_REF], [START_REF] Ghosh | Rigidity and tolerance in point processes: Gaussian zeros and Ginibre eigenvalues[END_REF] and [START_REF] Bufetov | Rigidity of Determinantal Point Processes with the Airy, the Bessel and the Gamma Kernel[END_REF] in fact establish linear rigidity. We would like also to mention a notion of insertion-deletion tolerance studied by Holroyd and Soo in [START_REF] Holroyd | Insertion and deletion tolerance of point processes[END_REF], which is in contrast to the notion of rigidity property.

F C = σ({N B : B ⊂ C, B bounded

The Kolmogorov criterion for linear rigidity

In this note, the Fourier transform of a function f : R d → C is defined as

f (ξ) = R d f (x)e -i2πx•ξ dx.

Denote by

T d = R d /Z d the d-dimensional torus.
In what follows, we identify T d with [-1/2, 1/2) d . The Fourier coefficients of a measure µ on T d are given, for any k ∈ Z d , by the formula

μ(k) = T d e -i2πk•θ dµ X (θ), where k • θ := k 1 θ 1 + • • • + k d θ d .
Denote by µ X the spectral measure of X, i.e.,

∀k ∈ Z d , E(X 0 X k ) = E(X n X n+k ) = T d e -i2πk•θ dµ X (θ) = μX (k).
(

) 3 
Recall that we have the following natural isometric isomorphism

H(X) ≃ L 2 (T d , µ X ), (4) 
by assigning to X n ∈ H(X) the function θ → e i2πn•θ ∈ L 2 (T d , µ X ).

Let µ X = µ a +µ s be the Lebesgue decomposition of µ X with respect to the normalized Lebesgue measure m(dθ) = dθ 1 • • • dθ d on T d , i.e., µ a is absolutely continuous with respect to m and µ s is singular to m. Set ω X (θ) := dµ a dm (θ).

Lemma 2.1 (The Kolmogorov Criterion ). We have

dist(X 0 , Ȟ0 (X)) = T d ω -1 X dm -1/2
, where by dist(X 0 , Ȟ0 (X)) we mean the least L 2 -distance between the random variable X 0 and the linear space Ȟ0 (X) and the right side is to be interpreted as zero if

T d ω -1 X dm = ∞.
Corollary 2.2. The stationary stochastic process X = (X n ) n∈Z d is linearly rigid if and only if

T d ω -1 X dm = ∞.
Lemma 2.1 is due to Kolmogorov [START_REF] Kolmogoroff | Interpolation und Extrapolation von stationaeren zufaelligen Folgen[END_REF], [START_REF] Kolmogorov | Stationary sequences in Hilbert space[END_REF]. For the reader's convenience, we include its proof.

Proof of Lemma 2.1. We follow the argument of Lyons-Steif [START_REF] Lyons | Stationary determinantal processes: phase multiplicity, Bernoullicity, entropy, and domination[END_REF]. By the Lebesgue decomposition of µ, we may take a subset A ⊂ T d of full Lebesgue measure m(A) = 1, such that µ a (A) = 1 and µ s (A) = 0.

Denote L 0 = span L 2 (T d ,µ X ) [e i2πn•θ : n = 0].
By the isometric isomorphism (4), it suffices to show that

dist(1, L 0 ) = T d ω -1 X dm -1/2 , ( 5 
)
where 1 is the constant function taking value 1. Write

1 = p + h, such that p ⊥ L 0 , h ∈ L 0 .
Modifying, if necessary, the values of p and h on a µ-negligible subset, we may assume that

1 = p(θ) + h(θ) for all θ ∈ T d .
Since p ⊥ L 0 , we have

0 = p, e i2πn•θ L 2 (dµ) = T d p(θ)e -i2πn•θ dµ(θ), for any n ∈ Z d \ {0}. (6) Let ξ ∈ C denote ξ = T d p(θ)dµ(θ).
Then by ( 6), all the Fourier coefficients of the complex measure p • dµ coincide with the corresponding Fourier coefficients of ξdm (the multiple of Lebesgue measure dm by ξ), consequently, we have p • dµ = ξdm.

It follows that p must vanish almost everywhere with respect to the singular component µ s of µ, and p(θ)ω X (θ) = ξ for m-almost every θ ∈ T d . Thus we have

p L 2 (dµ) = p L 2 (dµa) , (7) 
and

h(θ) = 1 -ξω X (θ) -1 for m-almost every θ ∈ T d . ( 8 
)
Case 1:

T d ω -1 X dm < ∞. Define a function f : T d → C by f = ω -1 X χ A . Then f ∈ L 2 (dµ) ⊖ L 0 . Indeed, f 2 L 2 (dµ) = T d ω -2 X χ A dµ = T d ω -2 X dµ a = T d ω -1 X dm < ∞.
And, for all n ∈ Z d \ 0,

f, e i2πn•θ L 2 (dµ) = T d ω X (θ) -1 χ A (θ)e -i2πn•θ dµ(θ) = T d e -i2πn•θ dm(θ) = 0. It follows that f ⊥ h, i.e., 0 = h, f L 2 (dµ) = T d hω -1 X χ A dµ = T d hdm.
By (8), we get

T d (1 -ξω -1 X )dm = 0,
and hence ξ =

T d ω -1 X dm -1
.

It follows that dist(1, L 0 ) 2 = p 2 L 2 (dµ) = p 2 L 2 (dµa) = ξ 2 T d ω -2 X ω X dm = ξ.
This shows the desired equality (5).

Case 2: T d ω -1 X dm = ∞. We claim that ξ = 0. If the claim were verified, then we would get the desired identity in this case dist(1, L 0 ) = 0.

So let us turn to the proof of the claim. We argue by contradiction. If ξ = 0, then p = 0 and

p 2 L 2 (dµ) = p 2 L 2 (dµa) = ξ 2 ω -1 X 2 L 2 (dµa) = ξ 2 T d ω -1 X dm = ∞.
This contradicts the fact that p ∈ L 2 (dµ).

Remark 2.1. If the spectral measure µ X is absolutely continuous and given by µ X (dz) = ω(z)dm(z), then for any n ∈ N, the following are equivalent:

(i) n l=-n X l ∈ span H(X) {X k : k ∈ Z, |k| ≥ n + 1}. (i) ′ n l=-n z l ∈ span L 2 ω {z l : k ∈ Z, |k| ≥ n + 1}. (ii) For any w 1 , w 2 , . . . , w n ∈ C \ {1}, T n l=1 |(z -w l )(z -wl )| 2 ω(z) dm(z) = ∞.
(ii) ′ For any w 1 , w 2 , . . . , w n ∈ T \ {1},

T n l=1 |(z -w l )(z -wl )| 2 ω(z) dm(z) = ∞.
Indeed, (i) and (i)

′ are equivalent. Assume (i) ′ is satisfied, let us show (ii). If (ii) is violated, then there exist w 1 , w 2 , . . . , w n ∈ C \ {1}, such that T n l=1 |(z -w l )(z -wl )| 2 ω X (z) dm(z) < ∞. Define h(z) := n l=1 (z -w l )(z -wl ) z n ω X (z) = n l=-n a l z l ω X (z) . Then h ∈ L 2 ω (T) ⊖ span L 2 ω {z k : k ∈ Z, |k| ≥ n + 1}. We have n l=-n z l , h(z) L 2 ω = n l=-n a l = n l=1 |1 -w l | 2 = 0. This contradicts (i) ′ , hence (i) ′ implies (ii).
Conversely, let us assume (ii) and show (i) ′ . If (i) ′ is not satisfied, then there exists a function g ∈ L 2 ω ⊖ span L 2 ω {z l : k ∈ Z, |k| ≥ n + 1}, such that g = 0 and the scalar product ( n l=-n z l , g) L 2 ω = 0. We have

0 = T g(z)z k ω(z)dm(z), for any k ∈ Z, |k| ≥ n + 1.
This implies that there exists (c -n , . . . , c n ) such that

g(z)ω(z) = n -n c l z l . Hence g(z) = n -n c l z l ω(z)
and

n -n c l = g, n -n z l L 2 ω = 0.
Since ω(z) = ω(z -1 ), if we denote ǧ(z) := g(z -1 ), then ǧ ∈ L 2 ω (T). Thus ℜ(g + ǧ) and ℑ(g + ǧ) are functions in L 2 ω (T). We have

ℜ(g + ǧ)(z) = n -n ℜ(c l )(z l + z -l ) ω(z) and ℑ(g + ǧ)(z) = n -n ℑ(c l )(z l + z -l ) ω(z) .
Since n -n c l = 0, we may assume without loss of generality that n -n ℜ(c l ) = 0. Define P (z) the polynomial given by P (z) = z n n -n ℜ(c l )(z l + z -l ) and let m = deg P ≤ m then there exist w 1 , . . . , w m such that

P (z) = ℜ(c m ) m l=1 (z -w l )(z -wl ).
Since P (1) = n -n ℜ(c l ) = 0, we know that w 1 , . . . , w m are all different from 1. Now using the fact ℜ(g + ǧ) ∈ L 2 ω , we deduce that

T m l=1 |(z -w l )(z -wl )| 2 ω(z) < ∞,
which of course violates (ii). This contradiction shows that (ii) implies (i) ′ . The equivalence between (ii) and (ii) ′ is obvious.

Denote by Cov(U, V ) the covariance between two random variables U and V :

Cov(U, V ) = E(UV ) -E(U)E(V ). If X = (X n ) n∈Z d is a stochastic process such that n∈Z d |Cov(X 0 , X n )| < ∞, (9) 
then we may define a continuous function on T d by the formula

ω X (θ) := n∈Z d Cov(X 0 , X n )e i2πn•θ . ( 10 
)
Lemma 2.3. Let X = (X n ) n∈Z d be a stationary stochastic process satisfying condition [START_REF] Kolmogoroff | Interpolation und Extrapolation von stationaeren zufaelligen Folgen[END_REF]. Then we have the following explicit Lebesgue decomposition of µ X :

µ X = (EX 0 ) 2 • δ 0 + ω X • m, ( 11 
)
where δ 0 is the Dirac measure on the point 0 ∈ T d and ω X is the function on T d defined by [START_REF] Kolmogorov | Stationary sequences in Hilbert space[END_REF].

Proof. Note that, under the assumption (9), the function ω X (θ) is well-defined and continuous on T d . For proving the decomposition [START_REF] Lyons | Determinantal probability measures[END_REF], it suffices to show that the Fourier coefficients of µ X coincide with those of ν X := (EX 0

) 2 • δ 0 + ω X • m. But if n ∈ Z d , then νX (n) = (EX 0 ) 2 + Cov(X 0 , X n ) = E(X 0 X n ) = μX (n).
The lemma is completely proved.

A sufficient condition for linear rigidity

Theorem 3.1. Let X = (X n ) n∈Z be a stationary stochastic process. If

sup N ≥1   N |n|≥N |Cov(X 0 , X n )|   < ∞, (12) 
and n∈Z Cov(X 0 , X n ) = 0. ( 13 
)
Then X is linearly rigid.

Remark 3.1. The condition ( 12) is a sufficient condition such that the spectral density ω X is a function in the Zygmund class Λ * (1), see below for definition. The condition [START_REF] Macchi | The coincidence approach to stochastic point processes[END_REF] implies in particular that ω X vanishes at the point 0 ∈ T.

We shall apply a result of F. Móricz [START_REF] Móricz | Absolutely convergent Fourier series and function classes[END_REF]Thm. 3] on absolutely convergent Fourier series and Zygmund class functions. Recall that a continuous 1-periodic function ϕ defined on R is said to be in the Zygmund class Λ * (1), if there exists a constant C such that

|ϕ(x + h) -2ϕ(x) + ϕ(x -h)| ≤ Ch (14) 
for all x ∈ R and for all h > 0.

Theorem 3.2 (Móricz,[START_REF] Móricz | Absolutely convergent Fourier series and function classes[END_REF]).

If {c n } n∈Z ∈ C is such that sup N ≥1   N |n|≥N |c n |   < ∞, (15) 
then the function ϕ(θ) = n∈Z c n e i2πnθ is in the Zygmund class Λ * (1).

Proof of Theorem 3.1. First, in view of (10), our assumption (13) implies ω X (0) = 0.

Next, by Theorem 3.2, under the assumption (12), we have

ω X ∈ Λ * (1).
Since all Fourier coefficients of ω X are real, we have

ω X (θ) = ω X (-θ).
Consequently, there exists C > 0, such that

ω X (θ) = ω X (θ) + ω X (-θ) 2 = ω X (θ) + ω X (-θ) -2ω X (0) 2 ≤ C|θ|, whence T ω -1 X dm = ∞,
and the stochastic process X = (X n ) n∈Z is linearly rigid by the Kolmogorov criterion.

Applications to stationary determinantal point processes

In this section, we first give a sufficient condition for linear rigidity of stationary determinantal point processes on R and then give an example of a very simple stationary, but not linearly rigid, determinantal point process on R 2 . We briefly recall the main definitions.

Let B ⊂ R d be a bounded Borel subset. Let K B : L 2 (R d ) → L 2 (R d
) be the operator of convolution with the Fourier transform χ B of the indicator function χ B . In other words, the kernel of K B is

K B (x, y) = χ B (x -y). (16) 
In particular, if d = 1 and B = (-1/2, 1/2), then we find the well-known Dyson sine kernel K sine (x, y) = sin(π(x -y)) π(x -y) .

Note that we always have K B (x, x) = K B (0, 0). Denote by P K B the determinantal point process induced by K B . For the background on the determinantal point processes, the reader is referred to [START_REF] Hough | Determinantal processes and independence[END_REF], [START_REF] Lyons | Determinantal probability measures[END_REF], [START_REF] Macchi | The coincidence approach to stochastic point processes[END_REF], [START_REF] Soshnikov | Determinantal random point fields[END_REF]. Proposition 4.1. Let P K B be the stationary determinantal point process on R d induced by the kernel K B in [START_REF] Soshnikov | Determinantal random point fields[END_REF]. For any λ > 0, denote by N (λ) = (N (λ) n ) n∈Z d the stationary stochastic process associated to P K B as in [START_REF] Costin | Gaussian fluctuation in random matrices[END_REF]. Then

n∈Z d |Cov(N (λ) 0 , N (λ) n )| < ∞ ( 17 
)
and

n∈Z d Cov(N (λ) 0 , N (λ) n ) = 0. ( 18 
)
Proof. Fix a number λ > 0, for simplifying the notation, let us denote

N (λ) n by N n . Denote for any n ∈ Z d , Q n = nλ + [-λ/2, λ/2) d .
By definition of a determinantal point process, we have

E(N n ) = E(N 0 ) = Q 0 K B (x, x)dx = λ d K B (0, 0).
If n = 0, we have

E(N 0 N n ) = χ Q 0 (x)χ Qn (y) K B (x, x) K B (x, y) K B (y, x) K B (y, y) dxdy = λ 2d K B (0, 0) 2 - Q 0 ×Qn |K B (x, y)| 2 dxdy, whence Cov(N 0 , N n ) = - Q 0 ×Qn |K B (x, y)| 2 dxdy. ( 19 
)
We also have

E(N 2 0 ) = E x,y∈X χ Q 0 (x)χ Q 0 (y) = E x∈X χ Q 0 (x) + E x,y∈X,x =y χ Q 0 (x)χ Q 0 (y) = Q 0 K B (x, x)dx + χ Q 0 (x)χ Q 0 (y) K B (x, x) K B (x, y) K B (y, x) K B (y, y) dxdy = λ d K B (0, 0) + λ 2d K B (0, 0) 2 - Q 0 ×Q 0 |K B (x, y)| 2 dxdy, whence 
Cov(N 0 , N 0 ) = Var(N 0 ) = λ d K B (0, 0) - Q 0 ×Q 0 |K B (x, y)| 2 dxdy. ( 20 
)
Now recall that K B is an orthogonal projection. Thus we have

K B (0, 0) = K B (x, x) = |K B (x, y)| 2 dy = n∈Z d Qn |K B (x, y)| 2 dy. ( 21 
)
The identities ( 19), ( 20) and ( 21) imply that

n∈Z d Cov(N 0 , N n ) = λ d K B (0, 0) - Q 0 dx n∈Z d Qn |K B (x, y)| 2 dy = λ d K B (0, 0) -λ d K B (0, 0) = 0.
Moreover, the above series converge absolutely. Proposition 4.1 is completely proved.

Corollary 4.2. The spectral density ω N (λ) of the stochastic process

N (λ) = (N (λ) n ) n∈Z d is a continuous non-negative function on T d = [-1 2 , 1 2 ] d and vanishes only at (0, • • • , 0).
Proof. By Lemma 2.3, the spectral density ω N (λ) of the stochastic process N (λ) is given by

ω N (λ) (θ 1 , • • • , θ d ) = n∈Z d Cov(N (λ) 0 , N (λ) n )e i2π(n 1 θ 1 +•••+n d θ d ) . (22) 
By ( 17), the series in ( 22) converges uniformly and absolutely on T d . It follows that ω N (λ) is a continuous function on T d . Now the equality (18) implies that ω

N (λ) (0, • • • , 0) = 0. Moreover, for any θ = (θ 1 , • • • , θ d ) ∈ T d \ {(0, • • • , 0)}, we have | n∈Z d \{0} Cov(N (λ) 0 , N (λ) n )e i2π(n 1 θ 1 +•••+n d θ d ) | < n∈Z d \{0} |Cov(N (λ) 0 , N (λ) n )|.
By (19), we have

|Cov(N (λ) 0 , N (λ) n )| = -Cov(N (λ) 0 , N (λ) n )for any n ∈ Z d \ {0}. Note that if θ = (θ 1 , • • • , θ d ) = (0, • • • , 0), then ω N (λ) (θ 1 , • • • , θ d ) ≥ Cov(N (λ) 0 , N (λ) 0 ) -| n∈Z d \{0} Cov(N (λ) 0 , N (λ) n )e i2π(n 1 θ 1 +•••+n d θ d ) | > Cov(N (λ) 0 , N (λ) 0 ) - n∈Z d \{0} |Cov(N (λ) 0 , N (λ) n )| = n∈Z d Cov(N (λ) 0 , N (λ) n ) = 0.
This shows that ω N (λ) vanishes only at (0, • • • , 0).

Stationary determinantal point processes on

R Theorem 4.3. Assume that B ⊂ R satisfies sup R>0 R |ξ|≥R | χ B (ξ)| 2 dξ < ∞. ( 23 
)
Then the stationary determinantal point process P K B is linearly rigid.

Proof. By definition of linear rigidity, we need to show that for any λ > 0, the stochastic process

N (λ) = (N (λ)
n ) n∈Z is linearly rigid. As in the proof of Proposition 4.1, we denote

N (λ)
n by N n . By Theorem 3.1, it suffices to show that

sup N ≥1   N |n|≥N |Cov(N 0 , N n )|   < ∞, (24) 
and

n∈Z Cov(N 0 , N n ) = 0. (25) 
By Proposition 4.1, the identity (25) holds in the general case. It remains to prove (24). By (19), we have

sup N ≥1   N |n|≥N |Cov(N 0 , N n )|   = sup N ≥1 N x∈Q 0 y∈ |n|≥N Qn | χ B (x -y)| 2 dxdy = sup N ≥1 N λ/2 -λ/2 |y|≥(N -1/2)λ | χ B (x -y)| 2 dxdy ≤ sup N ≥1 N λ/2 -λ/2 |ξ|≥(N -1)λ | χ B (ξ)| 2 dxdy = sup N ≥1 λN |ξ|≥(N -1)λ | χ B (ξ)| 2 dξ < ∞,
where in the last inequality, we used our assumption (23). Theorem 4.3 is proved completely.

Remark 4.1. When B is a finite union of finite intervals on the real line, the rigidity of the stationary determinantal point process P K B is due to Ghosh [START_REF] Ghosh | Determinantal processes and completeness of random exponentials: the critical case[END_REF].

Tensor product of sine kernels

In higher dimension, the situation becomes quite different. Let

S = I × I = (-1/2, 1/2) × (-1/2, 1/2) ⊂ R 2 .
Then the associate kernel K S has a tensor form: K S = K sine ⊗ K sine , that is, for x = (x 1 , x 2 ) and y = (y 1 , y 2 ) in R 2 , we have

K S (x, y) = K sine (x 1 , y 1 )K sine (x 2 , y 2 ) = sin(π(x 1 -y 1 )) π(x 1 -y 1 ) sin(π(x 2 -y 2 )) π(x 2 -y 2 ) .
Proposition 4.4. The determinantal point process P K S is not linearly rigid. More precisely, let N (1) = (N

n ) n∈Z 2 be the stationary stochastic process given as in Definition 1.2, then N

(1) 0 / ∈ Ȟ0 (N (1) ).

To prove the above result, we need to introduce some extra notation. First, we define the multiple Zygmund class Λ * as follows. A continuous function ϕ(x, y) periodic in each variable with period 1 is said to be in the multiple Zygmund class Λ * (1, 1) if for the double difference difference operator ∆ 2,2 of second order in each variable, applied to ϕ, there exists a constant C > 0, such that for all x = (x 1 , x 2 ) ∈ (-1/2, 1/2) × (-1/2, 1/2) and h 1 , h 2 > 0, we have

|∆ 2,2 ϕ(x 1 , x 2 ; h 1 , h 2 )| ≤ Ch 1 h 2 , (26) 
where

∆ 2,2 ϕ(x 1 , x 2 ; h 1 , h 2 ) := ϕ(x 1 + h 1 , x 2 + h 2 ) + ϕ(x 1 -h 1 , x 2 + h 2 ) + ϕ(x 1 + h 1 , x 2 -h 2 ) + ϕ(x 1 -h 1 , x 2 -h 2 ) -2ϕ(x 1 + h 1 , x 2 ) -2ϕ(x 1 -h 1 , x 2 ) -2ϕ(x 1 , x 2 + h 2 ) -2ϕ(x 1 , x 2 -h 2 ) + 4ϕ(x 1 , x 2 ).
The following result is due to Fülöp and Móricz [4, Thm 2.1 and Rem. 2.3] Theorem 4.5 (Fülöp-Móricz).

If {c jk } j,k∈Z ∈ C is such that sup N ≥1,M ≥1   MN |j|≥N,|k|≥M |c jk |   < ∞, ( 27 
)
then the function ϕ(θ 1 , θ 2 ) = j,k∈Z c jk e i2π(jθ 1 +kθ 2 )
is in the Zygmund class Λ * (1, 1).

Let us turn to the study of the density function ω N (1) .

Lemma 4.6.

There exists c > 0, such that for any θ 1 , θ 2 ∈ [-1/2, 1/2], we have

ω N (1) (θ 1 , θ 2 ) ≥ c(|θ 1 | + |θ 2 |). ( 28 
)
Proof. To make notation lighter, in this proof we simply write ω for ω N (1) . For any n = (n 1 , n 2 ) ∈ Z 2 , let us denote S n = S × (n + S) where

n + S := (-1/2 + n 1 , 1/2 + n 1 ) × (-1/2 + n 2 , 1/2 + n 2 ).
By the same argument as in the proof of Proposition 4.1, we obtain that for any n =

(n 1 , n 2 ) ∈ Z 2 \ {0}, ω(n) = - Sn |K S (x, y)| 2 dxdy, (29) 
and

ω(0) = K S (0, 0) - S 0 |K S (x, y)| 2 dxdy.
The following properties can be easily checked.

• n∈Z 2 ω(n) = 0. • ω(ε 1 n 1 , ε 2 n 2 ) = ω(n 1 , n 2 ), where ε 1 , ε 2 ∈ {±1}. • there exist c, C > 0, such that c (1 + n 2 1 )(1 + n 2 2 ) ≤ | ω(n 1 , n 2 )| ≤ C (1 + n 2 1 )(1 + n 2 2 )
.

For instance, n∈Z 2 ω(n) = 0 follows from Proposition 4.1. These properties combined with Theorem 4.5 yield that

• ω(0, 0) = 0.

•

ω(ε 1 θ 1 , ε 2 θ 2 ) = ω(θ 1 , θ 2 ) for any ε 1 , ε 2 ∈ {±1} and θ 1 , θ 2 ∈ (-1/2, 1/2).
• the function ω(θ 1 , θ 2 ) is in the multiple Zygmund class Λ * (1, 1).

Hence there exists C > 0, such that

|ω(θ 1 , θ 2 ) -ω(θ 1 , 0) -ω(0, θ 2 )| ≤ C|θ 1 θ 2 |. (30) 
Lemma 4.7. There exists c 1 > 0, such that

ω(θ 1 , 0) ≥ c 1 |θ 1 | and ω(0, θ 2 ) ≥ c 1 |θ 2 |. (31) 
Let us postpone the proof of Lemma 4.7 and proceed to the proof of Lemma 4.6. The inequalities (30) and (31) imply that

ω(θ 1 , θ 2 ) ≥ c 1 (|θ 1 | + |θ 2 |) -C|θ 1 θ 2 |. Now if |θ 1 | is small enough such that 2C|θ 1 | ≤ c 1 , then we have ω(θ 1 , θ 2 ) ≥ c 1 2 (|θ 1 | + |θ 2 |). If 2C|θ 1 | ≥ c 1 , by Corollary 4.2, the function ω(θ 1 , θ 2 ) is continuous on [-1 2 , 1 2 
] 2 and vanishes only at (0, 0). Consequently,

inf |θ 1 |≥c 1 /2C ω(θ 1 , θ 2 ) = c 2 > 0.
It follows, by using the elementary fact that |θ

1 | + |θ 2 | ≤ 1, that inf |θ 1 |≥c 1 /2C ω(θ 1 , θ 2 ) = c 2 ≥ c 2 2 (|θ 1 | + |θ 2 |). Taking c = min( c 1 2 , c 1 
2 ), we get the desired inequality (28). Now let us turn to the proof of Lemma 4.7.

Proof of Lemma 4.7. By symmetry, it suffices to prove that there exists c > 0, such that ω(θ 1 , 0) ≥ c|θ 1 |. To this end, let us denote ω 1 (θ 1 ) := ω(θ 1 , 0). Then ω 1 (0) = 0 and there exists c > 0 such that if k = 0, then

ω 1 (k) < 0 and | ω 1 (k)| ≥ c/(1 + k 2 ).
Indeed, we have If k = 0, then by (29), we have ω(k, n 2 ) < 0 and hence

| ω 1 (k)| = n 2 ∈Z | ω(k, n 2 )| ≥ n 2 ∈Z c (1 + n 2 2 )(1 + k 2 ) ≥ c ′ 1 + k 2 . ( 32 
)
We claim that ω 1 (0) = 0. Indeed, by definition, we have The inequality (32) implies that there exists c ′′ > 0, such that | ω 1 (2j -1)| ≥ c ′′ (2j-1) 2 , hence we obtain that The proof of Lemma 4.7 is complete.

Proof of Proposition 4.4. By Lemma 2.1, it suffices to show that

T 2 ω -1 N (1) dm < ∞. (33) 
By Lemma 4.6, the inequality (33) follows from the following elementary inequality

|θ 1 |<1/2,|θ 2 |<1/2 1 |θ 1 | + |θ 2 | dθ 1 dθ 2 < ∞.

ω 1 (θ 1 ) = k∈Z n 2

 12 ∈Z ω(k, n 2 )e i2πkθ 1 .

ω 1 (0) = k∈Z n 2

 12 ∈Z ω(k, n 2 ) = ω(0, 0) = 0,where in the last equality, we used Corollary 4.2 that claims ω(0, 0) = 0. Now we havek∈Z ω 1 (k) = ω 1 (0) = 0. It follows that ω 1 (θ 1 ) = k∈Z ω 1 (k)e i2πkθ 1 = k∈Z ω 1 (k)( e i2πkθ 1 + e -i2πkθ 1 2 -1) = k∈Z,k =0 -ω 1 (k)(1 -cos(2πkθ 1 )) = k∈Z,k =0| ω 1 (k)|(1 -cos(2πkθ 1 )).

Since | ω 1 | ω 1

 11 (k)|(1 -cos(2πkθ 1 )) is non-negative for any k ∈ Z, we haveω 1 (θ 1 ) ≥ ∞ j=1 (2j -1)|(1 -cos(2π(2j -1)θ 1 )).

ω 1 (θ 1 )

 11 ≥ c ′′ ∞ j=1 1 (2j -1) 2 (1 -cos(2π(2j -1)θ 1 )).Combining with the Fourier series of the absolutely value function (the Fourier coefficient of the absolute value function on (-1 2 , 1 2 ) can be computed explicitly): (2j -1)α) (2j -1)2 , for α ∈ (-1/2, 1/2);

  Borel}) the σ-algebra generated by all random variables of the form N B where B ⊂ C ranges over all bounded Borel subsets of C. Let P be a point process on R, i.e., P is a Borel probability on Conf(R d ), and denote F P

C for the P-completion of F C . Definition 1.3 (Ghosh [5], Ghosh-Peres [6]). A point process P on R d is called number rigid, if for any bounded Borel set B ⊂ R d with Lebesgue-negligible boundary ∂B, the random variable N B is F P R d \B -measurable. Remark 1.1. Of course, in the above definition, it suffices to take Borel sets B of the form [-γ, γ) d for γ > 0, cf. [6].
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