Linear rigidity of stationary stochastic processes - Archive ouverte HAL
Article Dans Une Revue Ergodic Theory and Dynamical Systems Année : 2018

Linear rigidity of stationary stochastic processes

Résumé

We consider stationary stochastic processes $\{X_n : n \in Z\}$ such that $X_0$ lies in the closed linear span of $\{X_n : n = 0\}$; following Ghosh and Peres, we call such processes linearly rigid. Using a criterion of Kolmogorov, we show that it suffices, for a stationary stochastic process to be linearly rigid, that the spectral density vanish at zero and belong to the Zygmund class $\Gamma^*(1)$. We next give sufficient condition for stationary determinantal point processes on $\mathbb{Z}$ and on $\mathbb{R}$ to be linearly rigid. Finally, we show that the determinantal point process on $\mathbb{R}^2$ induced by a tensor square of Dyson sine-kernels is not linearly rigid.
Fichier principal
Vignette du fichier
1507.00670.pdf (161.99 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01483619 , version 1 (06-03-2017)

Identifiants

Citer

Alexander I. Bufetov, Yoann Dabrowski, Yanqi Qiu. Linear rigidity of stationary stochastic processes. Ergodic Theory and Dynamical Systems, 2018, 38 (7), pp.2493-2507. ⟨10.1017/etds.2016.140⟩. ⟨hal-01483619⟩
492 Consultations
128 Téléchargements

Altmetric

Partager

More