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Conditional measures of generalized Ginibre point processes

Introduction

Outline of the main results

Let φ : C → R be a real function. Under some additional assumptions, one can assign to φ the generalized Fock space F φ of holomorphic functions on C, square integrable with respect to the measure dλ φ (z) = e -2φ (z) dλ (z), where dλ is the Lebesgue measure on C. The orthogonal projection operator Π : L 2 C, dλ φ → F φ induces a determinantal measure P Π on the space of configurations on C. For example, for φ (z) = |z| 2 one obtains the classical Ginibre point process of random matrix theory. In this paper we describe, for the point process P Π , conditional measures in a bounded domain B with respect to the fixed configuration in the exterior C \ B.

In Theorem 1.5 below, under some additional assumptions we show that these conditional measures are orthogonal polynomial ensembles of the form

Z -1 ∏ 1 i< j N z i -z j 2 • N ∏ i=1 ρ (z i ) dλ (z i ), (1.1) 
where Z is the normalization constant and the weight ρ is found explicitly as a function of the fixed configuration X \ B = X ∩ (C \ B). Theorem 1.5 is an analogue of the Gibbs property for our processes (see e.g. Sinai [START_REF] Ya | Theory of phase transitions, rigorous results[END_REF]).

In particular, if the function φ is radial, i.e., only depends on |z|, and the domain B contains 0, then we have

ρ(z) = ∏ x∈X \B 1 - z x 2 • dλ φ dλ (z),
where the product is taken over the fixed particles of our configuration X in C\B and understood in principal value, see Corollary 1.6 below. The proof of Theorem 1.5 follows the general scheme, developed in [START_REF] Bufetov | Quasi-Symmetries of Determinantal Point Processes[END_REF], [START_REF] Bufetov | Conditional measures of determinantal point processes[END_REF] for point processes on R, of the computation of conditional measures in intervals with respect to fixed exterior and relies on the results of [START_REF] Bufetov | Determinantal point processes associated with Hilbert spaces of holomorphic functions[END_REF] on Palm measures and quasi-symmetries of determinantal point processes corresponding to Hilbert spaces of holomorphic functions (see [START_REF] Bufetov | Quasi-Symmetries of Determinantal Point Processes[END_REF], [START_REF] Olshanski | The quasi-invariance property for the Gamma kernel determinantal measure[END_REF] for more background on quasi-symmetries of determinantal point processes). Regularization of multiplicative functionals requires extra effort in the complex case since we must work with the von Neumann-Schatten class C 3 instead of the space of Hilbert-Schmidt operators.

Π q (x, y) = Π(x, y) -Π(x, q)Π(q, y) Π(q, q) .

More generally, for an -tuple q = (q 1 , • • • , q ) of distinct points in C, we define Π q = (• • • (Π q 1 ) q 2 • • • ) q . The Shirai-Takahashi Theorem [START_REF] Shirai | Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes[END_REF] asserts that P q Π = P Π q . Throughout this paper, we fix a C 2 -function φ : C → R. We equip the complex plane C with the measure dλ φ (z) = e -2φ (z) dλ (z), where dλ is the Lebesgue measure. We always assume that there exist positive constants m, M > 0 such that

m ≤ ∆φ ≤ M, (1.2) 
where ∆ is the Euclidean Laplacian. Denote by F φ the generalized Fock space with respect to the weight e -2φ (z) and let Π be the reproducing kernel of F φ . Let P Π be the determinantal measure on Conf(C) corresponding to the kernel Π considered with respect to the reference measure dλ φ (z) on the phase space C ( see e.g. [START_REF] Bufetov | Quasi-Symmetries of Determinantal Point Processes[END_REF], [START_REF] Bufetov | Determinantal point processes associated with Hilbert spaces of holomorphic functions[END_REF], [START_REF] Macchi | The coincidence approach to stochastic point processes[END_REF], [START_REF] Shirai | Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes[END_REF], [START_REF] Shirai | Random point fields associated with certain Fredholm determinants. II. Fermion shifts and their ergodic and Gibbs properties[END_REF], [START_REF] Soshnikov | Determinantal random point fields[END_REF] for the background on spaces of configurations and determinantal point processes).

For any ∈ N and any two -tuples p = (p 1 , . . . , p ) and q = (q 1 , . . . , q ) of distinct points in C, we fix a positive number r p,q > 0, continuously depending on p, q and large enough in such a way that sup |z|≥r p,q zp i zq i 2 -1 ≤ 1/2 for all 1 ≤ i ≤ and sup Recall that the tail sigma-algebra consists of those Borel subsets of Conf(C) that, for any bounded Borel B, belong to the sigma-algebra F C\B .

|z|≥r p,q ∏ i=1 z -p i z -q i 2 -1 ≤ 1/2. ( 1 
Proposition 1.1. Let p = (p 1 , . . . , p ) and q = (q 1 , . . . , q ) be two -tuples of distinct points in C.

(i) The limit Ψ p,q (X ) = lim R→∞ exp r p,q ≤|z|≤R (κ(p, z)κ(q, z))Π(z, z)dλ φ (z)

∏ x∈X :|x|≤R ∏ i=1 x -p i x -q i 2 (1.6)
exists in L 1 (Conf(C), P q Π ). (ii) The Palm measures P p Π and P q Π are in the same measure class. The Radon-Nikodym derivative dP p Π /dP q Π is given by dP p Π dP q Π (X ) = Ψ p,q (X )

Conf(C)
Ψ p,q dP q Π .

(1.7)

Consequently, Ψ p,q (X ) is positive for P q Π -almost every configuration X . (iii) There exists a Borel subset W ⊂ Conf(C) belonging to the tail σ -algebra and satisfying P Π (W) = 1 such that for any bounded subset K ⊂ C, there exists a subsequence R n → ∞, along which the convergence in (1.6) takes place uniformly for all -tuples p, q of distinct points in K and X ∈ W. The mapping

(p, q) → Ψ p,q (X ) is continuous on C × (C \ X ) for every configuration X ∈ W. (iv) The function (p, q) → Conf(C) Ψ p,q dP q Π is continuous on C × C .
Corollary 1.2. Let W be as in item (iii) of Proposition 1.1. Assume that φ is radial and satisfies (1.2). Then for any two -tuples p = (p 1 , . . . , p ) and q = (q 1 , . . . , q ) of distinct points in C, the limit

Γ p,q (X ) = lim R→∞ ∏ x∈X :|x|≤R ∏ i=1 x -p i x -q i 2 (1.8)
exists for any X ∈ W and in L 1 (Conf(C), P q Π ) . Moreover, the function (p, q) → Γ p,q (X ) is continuous on C × (C \ X ) for every configuration X ∈ W.

For example, for p ∈ C, the limit

Γ p,0 (X ) = lim R→∞ ∏ x∈X :|x|≤R 1 - p x 2 (1.9)
exists for any X ∈ W and in L 1 (Conf(C), P 0 Π ).

Proof of Corollary 1.2. If φ : C → R is radial, then for any r satisfying 0 < r < R we have

r≤|z|≤R κ(p, z)Π(z, z)dλ φ (z) = r≤|z|≤R κ(q, z)Π(z, z)dλ φ (z) = 0.
Corollary 1.2 follows now from Proposition 1.1.

Theorem 1.3. Assume that φ is radial and satisfies (1.2). Then for any two -tuples p = (p 1 , . . . , p ) and q = (q 1 , . . . , q ) of distinct points in C, we have

E P q Π [Γ p,q ] = Conf(C) Γ p,q (X )dP q Π (X ) = det i, j=1 (Π(p i , p j ))
det i, j=1 (Π(q i , q j )) ∏ 1 i< j q iq j p ip j 2 .

(1.10)

Remark. Osada and Shirai [START_REF] Osada | Absolute continuity and singularity of Palm measures of the Ginibre point process[END_REF] obtained the results in Corollary 1.2 and Theorem 1.3 for the special case φ (z) = |z| 2 (corresponding to the standard Ginibre point process).

Definition 1.4. Define a positive function ρ Π : C → R by Conf(C) Ψ p,q (X )dP q Π (X ) = ρ Π (q) ρ Π (p) Π(p, p) Π(q, q) . (1.11)
In particular, for any p, q ∈ C, we have

dP p Π dP q Π (X ) = ρ Π (p) ρ Π (q)
Π(q, q) Π(p, p) Ψ p,q (X ).

Theorem 1.5. Let B ⊂ C be a bounded set. For P Π -almost every X ∈ Conf(C), the measure

P Π (•|X ; C \ B) has the form Z(B, X ) -1 ∏ 1≤i< j≤# B (X ) |z i -z j | 2 # B (X ) ∏ i=1 ρ B,X (z i )dλ φ (z i ), (1.12) 
where # B (X ) stand for the number of particles of X lying in B (which is measurable with respect to X | C\B ) ; Z(B, X ) is the normalization constant and the function ρ B,X satisfies, for any p, q ∈ B, the relation

ρ B,X (p) ρ B,X (q) = ρ Π (p) ρ Π (q) Ψ p,q (X | C\B ). (1.13)
An especially simple expression is obtained for radially-symmetric weights.

Corollary 1.6. Assume that φ is radial and that B contains the origin 0. Then for P Π -almost every X ∈ Conf(C), the measure

P Π (•|X ; C \ B) has the form Z(B, X ) -1 ∏ 1≤i< j≤# B (X ) |z i -z j | 2 # B (X ) ∏ i=1 Γ z i ,0 (X | C\B )dλ φ (z i ), (1.14) 
where the functions Γ z i ,0 are defined by (1.9).

Remark 1.7. Formulae (1.12) and (1.14) can be viewed as the analogue of the Dobrushin-Lanford-Ruelle equation in our situation. We are deeply grateful to the anonymous referee for suggesting to add this remark. We now recall, for our particular case, the Ghosh and Peres [START_REF] Ghosh | Determinantal processes and completeness of random exponentials: the critical case[END_REF], [START_REF] Ghosh | Rigidity and tolerance in point processes: Gaussian zeros and Ginibre eigenvalues[END_REF] definition of rigidity (see Holroyd-Soo [START_REF] Holroyd | Insertion and Deletion Tolerance of Point Processes[END_REF] and [START_REF] Bufetov | Rigidity of Determinantal Point Processes with the Airy, the Bessel and the Gamma Kernel[END_REF], [START_REF] Bufetov | Linear rigidity of stationary stochastic processes[END_REF] for further background and results on rigidity of point processes). Given a Borel subset W of C, write F P W for the P-completion of F W . A point process P on C is rigid if for any bounded Borel subset B ⊂ C the function # B is F P C\B -measurable. As established in [START_REF] Bufetov | Determinantal point processes associated with Hilbert spaces of holomorphic functions[END_REF], Proposition 1.2, our point process P Π is rigid in the sense of Ghosh and Peres. For a subset B ⊂ C and a natural number , we write Conf (B) for the space of -particle configurations on B; in other words, the space of all subsets of B of cardinality . Rigidity implies that for any precompact Borel set B ⊂ C and P-almost any X the conditional measure P(•|X ; C \ B) is supported on the subset Conf (B), where = # B (X ).

Next, we use the characterization of conditional measures in terms of Radon-Nikodym derivatives of Palm measures of the same order established in Proposition 3.1 in [START_REF] Bufetov | Conditional measures of determinantal point processes[END_REF]. Together with rigidity, Proposition 3.1 in [START_REF] Bufetov | Conditional measures of determinantal point processes[END_REF] implies that, for our point processes, the conditional measure P(•|X ;W ) has the form Z -1 (q 1 , . . . , q ) dP p 1 ,...,p dP q 1 ,...,q (X | W ) dρ (p 1 , . . . , p ),

where q 1 , . . . , q is almost any fixed -tuple, ρ is the -th correlation measure of P and Z(q 1 , . . . , q ) is the normalization constant. Item (ii) of Proposition 1.1 gives precisely the explicit expression for Radon-Nikodym derivatives of Palm measures of the same order, and, consequently, Proposition 1.1 immediately implies Theorem 1.5, Corollary 1.6. We proceed to the proof of Proposition 1.1.

Regularized multiplicative functionals

We first collect some results from [START_REF] Bufetov | Determinantal point processes associated with Hilbert spaces of holomorphic functions[END_REF].

Proposition 2.1. Let p = (p 1 , . . . , p ) and q = (q 1 , . . . , q ) be two -tuples of distinct points in C. Then (i) The limit

Ψ p,q (X ) = lim R→∞ exp -2 ∑ i=1 |z|≤R log z -p i z -q i Π q (z, z)dλ φ (z) ∏ x∈X :|x|≤R ∏ i=1 x -p i x -q i 2 (2.1)
exists in L 1 (Conf(C), P q Π ). (ii) The Palm measures P p Π and P q Π are in the same measure class. The Radon-Nikodym derivative dP p Π /dP q Π is given by The following lemma will be used in the proof of Proposition 1.1.

dP p Π dP q Π (X ) = Ψ p,q (X ) Conf(C) Ψ p,q dP q Π . Proof. Proposition 2.
Lemma 2.2. We have

log ∏ i=1 z -p i z -q i 2 = -(κ(p, z) -κ(q, z)) + O(1/|z| 3 ) as |z| → ∞,
where the estimate

O(1/|z| 3 ) is uniform as long as p 1 • • • , p , q 1 , • • • , q range over a bounded subset K ⊂ C. Proof. Using (1.3), we have log ∏ i=1 z -p i z -q i 2 = ∑ i=1 log 1 - p i -q i z -q i + ∑ i=1 log 1 - pi -qi z -qi = -∑ i=1 p i -q i z -q i -∑ i=1 1 2 
(p i -q i ) 2 (z -q i ) 2 -∑ i=1 pi -qi z -qi -∑ i=1 1 2 ( pi -qi ) 2 (z -qi ) 2 + O(1/|z| 3 ) as |z| → ∞.

Now write

p i -q i z -q i + 1 2 
(p i -q i ) 2 (z -q i ) 2 - p i -q i z + p 2 i -q 2 i 2z 2 = (p i -q i )q i z(z -q i ) + (p i -q i ) 2 z 2 -(p 2 i -q 2 i )(z -q i ) 2 2z 2 (z -q i ) 2 = (p i -q i )P i (z) z 2 (z -q i ) 2 ,
where P i is a polynomial of degree at most 2. The coefficient z 2 [P i ] of z 2 in P i is given by

z 2 [P i ] = q i + p i -q i -p i -q i 2 = 0.
It follows that deg P i ≤ 1 and

(p i -q i )P i (z) z 2 (z -q i ) 2 = O(1/|z| 3 ) as |z| → ∞.
Hence for any 1 ≤ i ≤ , we have

p i -q i z -q i + 1 2 
(p i -q i ) 2 (z -q i ) 2 = p i -q i z + p 2 i -q 2 i 2z 2 + O(1/|z| 3 ) as |z| → ∞, (2.2) 
and Lemma 2.2 follows.

Lemma 2.3. Recall the choice of r p,q in (1.3). We have

|z|≥r p,q 1 |z| 3 Π(z, z)dλ φ (z) < ∞ and |z|≥r p,q 1 |z| 3 Π q (z, z)dλ φ (z) < ∞.
Proof. Under the assumption (1.2) on φ , we have the following Christ's estimate (see [START_REF] Bufetov | Determinantal point processes associated with Hilbert spaces of holomorphic functions[END_REF]Theorem 3.1]): 

sup z∈C Π q (z, z)e -2φ (z) ≤ sup z∈C Π(z, z)e -2φ (z) < ∞.

It follows that

|z|≥r p,q 1 |z| 3 Π q (z, z)dλ φ (z) ≤ |z|≥r p,q 1 |z| 3 Π(z, z)dλ φ (z) = |z|≥r p,q 1 |z| 3 Π(z, z)e -2φ (z) dλ (z) ≤ sup z∈C Π(z, z)e -2φ (z) |z|≥r p,q 1 |z| 3 dλ (z) < ∞.
∑ i=1 |z|≥r p,q log z -p i z -q i 2 + (κ(p i , z) -κ(q i , z)) Π q (z, z)dλ φ (z) < ∞. (2.3) Therefore, the limit lim R→∞ exp -∑ i=1 |z|≤R log z -p i z -q i 2 Π q (z, z)dλ φ (z) exp r p,q ≤|z|≤R (κ(p, z) -κ(q, z))Π q (z, z)dλ φ (z) = exp -∑ i=1 |z|≤r p,q log z -p i z -q i 2 Π q (z, z)dλ φ (z) • lim R→∞ exp -∑ i=1 r p,q ≤|z|≤R log z -p i z -q i 2 Π q (z, z)dλ φ (z) exp r p,q ≤|z|≤R (κ(p, z) -κ(q, z))Π q (z, z)dλ φ (z)
exists and is positive. Since Π q is a finite rank perturbation of Π, we have

|z|≥r p,q |κ(p, z) -κ(q, z)| • |Π q (z, z) -Π(z, z)|dλ φ (z) < ∞
and hence the limit

lim R→∞ exp r p,q ≤|z|≤R (κ(p, z) -κ(q, z))Π q (z, z)dλ φ (z) exp r p,q ≤|z|≤R (κ(p, z) -κ(q, z))Π(z, z)dλ φ (z)
exists and is positive. Now items (i) and (ii) of Proposition 1.1 immediately follow from Proposition 2.1. We proceed with the proof of item (iii) of Proposition 1.1. To simplify notation, we let µ be an arbitrary fixed probability measure in the measure class determined by P p Π and P q Π . Let K ⊂ C be a fixed bounded subset. Let r > 0 be chosen large enough in such a way that r is larger than all r p,q for all -tuples p, q of distinct points in K.

In particular, K is contained in a disk {z ∈ C : |z| ≤ r -ε}. Denote H(R, X ; p, q) := r≤|z|≤R (κ(p, z) -κ(q, z))Π(z, z)dλ φ (z) + ∑ x∈X :|x|≤R log ∏ i=1 x -p i x -q i 2 . Then H(R, X ; p, q) = r≤|z|≤R (κ(p, z) -κ(q, z))Π(z, z)dλ φ (z) + ∑ x∈X :r≤|x|≤R (κ(q, z) -κ(p, z)) denoted by H 1 (R, X ; p, q) + ∑ x∈X :r≤|x|≤R log ∏ i=1 z -p i z -q i 2 + κ(p, z) -κ(q, z) denoted by H 2 (R, X ; p, q) + ∑ x∈X :|x|<r log ∏ i=1 x -p i x -q i 2 denoted by H 3 (X ; p, q)
. Note that for any fixed configuration X and fixed R > r, the functions (p, q) → H 1 (R, X ; p, q), (p, q) → H 2 (R, X ; p, q) and (p, q) → H 3 (X ; p, q) are continuous on C × (C \ X ) .

Fix any pair (p, q) of -tuples of distinct points. Item (i) implies that there exists a subsequence R n → ∞ such that the convergence (1.6) takes place for P q Π -almost every (equivalently for µ -almost every) configuration X . It follows that the following convergence

H(X ; p, q) := lim n→∞ H(R n , X ; p, q) = lim n→∞ H 1 (R n , X ; p, q) + H 2 (R n , X ; p, q) + H 3 (X ; p, q) (2.4)
takes place for µ -almost every configuration X . Lemma 2.3 implies that

E P q Π ∑ x∈X 1 |x| 3 1(|x| ≥ r) < ∞
and hence by Lemma 2.2, the limit

H 2 (X ; p, q)) = lim n→∞ H 2 (R n , X ; p, q) (2.5)
exists for P q Π -almost every (equivalently for µ -almost every) configuration X and moreover, for µ -almost every configuration X , the limit (2.5) converges uniformly as long as

p 1 , • • • , p , q 1 , • • • , q range over K. It follows that (p, q) → H 3 (X ; p, q) is continuous on K × K .
The convergences (2.4) and (2.5) together imply that the limit

H 1 (X ; p, q)) = lim n→∞ H 1 (R n , X ; p, q) (2.6)
exists for µ -almost every configuration X . Note that

H 1 (R n , X ; p, q) = 2ℜ ∑ i=1 (p i -q i ) • r≤|z|≤R n 1 z • Π(z, z)dλ φ (z) - ∑ x∈X :r≤|x|≤R n 1 x + ∑ i=1 (p 2 i -q 2 i ) • r≤|z|≤R n 1 2z 2 • Π(z, z)dλ φ (z) - ∑ x∈X :r≤|x|≤R n 1 2x 2 .
(2.7)

By choosing p = (p 1 , • • • , p ), q = (q 1 , • • • , q ) in such a way that q 1 = -p 1 = p and q i = p i , i = 2, • • • , , we get H 1 (R n , X ; p, q) = 4ℜ p • r≤|z|≤R n 1 z • Π(z, z)dλ φ (z) - ∑ x∈X :r≤|x|≤R n 1 x .
Choosing p = 1 or p = √ -1, from (2.6) we obtain that the limit

M 1 (X ) := lim n→∞ r≤|z|≤R n 1 z • Π(z, z)dλ φ (z) - ∑ x∈X :r≤|x|≤R n 1 x (2.8)
exists for µ -almost every configuration X . Consequently, using (2.7) and arguing as above, we conclude that the limit

M 2 (X ) := lim n→∞ r≤|z|≤R n 1 2z 2 • Π(z, z)dλ φ (z) - ∑ x∈X :r≤|x|≤R n 1 2x 2 (2.9)
exists for µ -almost every configuration X . Hence the limit (2.6) converges uniformly as long as p 1 , • • • , p and q 1 , • • • , q range over K. Moreover, we have

H 1 (X ; p, q) = 2ℜ ∑ i=1 (p i -q i )M 1 (X ) + ∑ i=1 (p 2 i -q 2 i )M 2 (X )
for µ -almost every configuration X . Hence (p, q) → H 1 (X ; p, q) is continuous on C × C . By the clear formula H(X ; p, q) = H 1 (X ; p, q) + H 2 (X ; p, q) + H 3 (X ; p, q), we see that for µ -almost every configuration X , the mapping (p, q) → H(X ; p, q) and hence the mapping

(p, q) → Ψ p,q (X ) = exp(H(X ; p, q))
is continuous on K × (K \ X ) . Since K is chosen arbitrarily, our functions are continuous on C × (C \ X ) for µ -almost every configuration X . We now take W to be the Borel subset of Conf(C) consisting of all configurations X such that the limits (2.8) and (2.9) converge and

∑ x∈X 1 |x| 3 1(|x| ≥ 1) < ∞.
Obviously, W belongs to the tail σ -algebra. By the argument used in the proof of item (iii), for any fixed configuration X ∈ W, the limit (1.6) exists and the function (p, q) → Ψ p,q (X ) is continuous on C × (C \ X ) . Hence it remains to prove that P Π (W) = 1. For this purpose, we take any bounded Borel subset B ⊂ C, and, using the definition of reduced Palm measure (cf. e.g., [START_REF] Bufetov | Determinantal point processes associated with Hilbert spaces of holomorphic functions[END_REF]Appendix]), write

Conf(C) ∑ x∈X 1 W (X )1 B (x)dP Π (X ) = C Π(p, p)dλ φ (p) Conf(C) 1 W (X ∪ {p})1 B (p)dP p Π (X ).
(2.10)

Since W belongs to the tail σ -algebra, we have 1 W (X ∪ {p}) = 1 W (X ). Moreover, by the proof of item (iii) above, we have P p Π (W) = 1. Hence (2.10) can be re-written as

W # B (X )dP Π (X ) = B Π(p, p)dλ φ (p) Conf(C) 1 W (X )dP p Π (X ) = B Π(p, p)dλ φ (p) = Conf(C) # B (X )dP Π (X ).
Since B ⊂ C is arbitrary, the above equality implies that P Π (W) = 1. Item (iii) is proved completely. The proof of item (iv) is postponed to Subsection 3.5.

Computation of normalization constant in the radial case

This section is devoted to the proof of Theorem 1.3.

Finite dimensional approximations

From now on, we fix two -tuples p = (p 1 , . . . , p ) and q = (q 1 , . . . , q ) of distinct points in C. Since φ is radial, we have

Π(z, w) = ∞ ∑ k=0 a 2 k (z w) k , where a k = 1 z k L 2 (C,dλ φ ) . (3.1)
Natural finite-dimensional approximations of Π are given by

Π n (z, w) = n-1 ∑ k=0 a 2 k (z w) k . (3.2)
For any n ≥ we then set Π q n := (Π n ) q and obtain natural finite-dimensional approximations Π q n of Π q . Our aim now is to show the left-hand side of (1.10) can indeed be computed by approximation.

Convergence of finite-dimensional approximations

In this subsection, Theorem 1.3 is reduced to Lemma 3.2, Proposition 3.3 and Proposition 3.4. Notation 3.1. Recall that r p,q > 0 is chosen in such a way that (1.3) holds. Let r > 0, R > 0 be any two positive numbers such that R > r > r p,q .

(i) We denote

χ ∞ r = 1(|z| ≥ r); χ r 0 = 1(0 ≤ |z| ≤ r); χ ∞ R = 1(|z| ≥ R); χ R 0 = 1(0 ≤ |z| ≤ R); χ R r = 1(r ≤ |z| ≤ R); g(z) = z -p i z -q i 2 ; h(z) = ∏ i=1 z -p i z -q i 2 -1; h ∞ r = hχ ∞ r ; h r 0 = hχ r 0 ; h ∞ R = hχ ∞ R ; h R 0 = hχ R 0 ; h R r = hχ R r . (3.3) 
(ii) For any n ≥ , we denote

T = sgn(h) |h|Π q |h|; T n = sgn(h) |h|Π q n |h|; T R = χ R 0 T χ R 0 = sgn(h R 0 ) |h R 0 |Π q |h R 0 |; T n,R = χ R 0 T n χ R 0 = sgn(h R 0 ) |h R 0 |Π q n |h R 0 |. (3.4)
Our first lemma, proved in §3.3 below, shows that our approximating operators belong to the trace class:

Lemma 3.2. The operators T n,R , T R and T n are all trace class. Moreover, T n,R converges to T R as n → ∞ and T n,R converges to T n as R → ∞, both convergences taking place in the space of trace class operators.

We next compute the limits of the expectations of our multiplicative functionals. The formulas are related to (4.3) in Osada-Shirai [START_REF] Osada | Absolute continuity and singularity of Palm measures of the Ginibre point process[END_REF]. For brevity, we write

∆(p) = ∏ 1 i< j (p j -p i ).
Proposition 3.3. For any n ≥ , we have the following equality:

lim R→∞ E Π q n ∏ x∈X :|x|≤R ∏ i=1 x -p i x -q i 2 = det i, j=1 (Π n (p i , p j )) det i, j=1 (Π n (q i , q j )) |∆(q)| 2 |∆(p)| 2 . (3.5)
Consequently, we have

lim n→∞ lim R→∞ E Π q n ∏ x∈X :|x|≤R ∏ i=1 x -p i x -q i 2 = det i, j=1 (Π(p i , p j )) det i, j=1 (Π(q i , q j )) |∆(q)| 2 |∆(p)| 2 . (3.6) Proposition 3.4. The order of limits in (3.6) is immaterial, that is, lim R→∞ lim n→∞ E Π q n ∏ x∈X :|x|≤R ∏ i=1 x -p i x -q i 2 = lim n→∞ lim R→∞ E Π q n ∏ x∈X :|x|≤R ∏ i=1 x -p i x -q i 2 .
Proposition 3.3 and Proposition 3.4 will be proved in §3.3 and in §3.4.

Proof of Theorem 1.3. We first claim that for any fixed R > 0,

lim n→∞ E Π q n ∏ x∈X :|x|≤R ∏ i=1 x -p i x -q i 2 = E Π q ∏ x∈X :|x|≤R ∏ i=1 x -p i x -q i 2 . (3.7)
Since T n,R and T R are both in trace class, the expectations of multiplicative functionals are given by corresponding Fredholm determinants:

E Π q n ∏ x∈X :|x|≤R ∏ i=1 x -p i x -q i 2 = det(1 + T n,R ); E Π q ∏ x∈X :|x|≤R ∏ i=1 x -p i x -q i 2 = det(1 + T R ). (3.8)
Now the convergence (3.7) follows immediately from Lemma 3.2. Applying Corollary 1.2, we obtain

E P q Π [Γ p,q ] = lim R→∞ E Π q ∏ x∈X :|x|≤R ∏ i=1 x -p i x -q i 2 = lim R→∞ lim n→∞ E Π q n ∏ x∈X :|x|≤R ∏ i=1 x -p i x -q i 2 .
(3.9)

An application of Proposition 3.3 and Proposition 3.4 yields the desired result (1.10). 

Proof of

A s = A * s and BAC s ≤ B • A s • C , (3.10) 
where • stands for the usual operator norm. The following Hölder inequalities for operators in von Neumann-Schatten s-classes will be frequently used:

AB s ≤ A θ s 0 • B 1-θ s 1 , if 1 s = θ s 0 + 1 -θ s 1 , θ ∈ (0, 1). (3.11)
We will need the following standard proposition. Recall that for two positive operators A, B on H , we write A ≤ B if A -B is a positive operator. In particular, if A, B are both orthogonal projections on H , then A ≤ B means that the range of A is contained in the range of B. where • is the operator norm. Indeed, if (3.13) does not hold, then by passing to a subsequence if necessary, we may assume that there exists ε > 0, such that AP -AP n > ε, for any n ∈ N. Obviously, AP k converges in strong operator topology to AP as k → ∞, hence AP k -AP n converges to in strong operator topology to AP -AP n as k → ∞ for any n ∈ N. It follows that for any n ∈ N,

ε < AP -AP n ≤ lim inf k→∞ AP k -AP n .
Consequently, we can find a subsequence

n 1 < n 2 < • • • of positive integers, such that AP n i+1 -AP n i > ε, for any i = 1, 2, • • • .
Then for any i ∈ N we can find a unit vector ξ i in the range Ran(P n i+1 -P n i ) of the projection P n i+1 -P n i such that Aξ i H > ε. Note that by construction, ξ i converges weakly in H to 0 as i goes to infinity. Using the compactness of the operator A, we get lim i→∞ Aξ i H = 0. This contradiction implies that we must have (3.13).

Now by applying [19, Theorem 2.17], we get the desired convergence (3.12).

Proof of Lemma 3.2. Note that T n and T n,R are both finite rank bounded linear operators, so they are in trace class. Now we prove that T R is in trace class. Since there exists C > 0 such that

Π q (z, z) ≤ C ∏ i=1 |z -q i | 2 if |z| ≤ R, the function |h(z)|Π q (z, z) is bounded on the disk {z ∈ C : |z| ≤ R}. Therefore, |z|≤R |h(z)|Π q (z, z)dλ φ (z) < ∞.
By using the inequality

|w|≤R |Π q (z, w)| 2 dλ φ (w) ≤ C |Π q (z, w)| 2 dλ φ (w) = Π q (z, z),
where the last equality is a consequence of the fact that Π q is an orthogonal projection, we immediately obtain

|h R 0 |Π q 2 HS = |z|≤R |w|≤R |h(z)||Π q (z, w)| 2 dλ φ (z)dλ φ (w) ≤ |z|≤R |h(z)|Π q (z, z)dλ φ (z) < ∞.
It follows that |h R 0 |Π q is Hilbert-Schmidt, hence |h R 0 |Π q |h R 0 | and T R are both in trace class. The assertions concerning convergences in C 1 (H ) are immediate from Proposition 3.5.

Proof of Proposition

3.3. By Lemma 3.2, T n,R converges to T n in C 1 (H ) as R → ∞, whence lim R→∞ det(1 + T n,R ) = det(1 + T n ), or, in other words, lim R→∞ E Π q n ∏ x∈X :|x|≤R ∏ i=1 x -p i x -q i 2 = E Π q n ∏ x∈X ∏ i=1 x -p i x -q i 2 .
Recall that P Π n is an orthogonal polynomial ensemble given by following probability measure on C n :

1 Z n (φ ) • ∏ 1 i< j n |z i -z j | 2 • n ∏ j=1 dλ φ (z i ).
The reduced Palm measure P q Π n = P Π q n is also an orthogonal polynomial ensemble, given by the following probability measure on C n-:

1 Z n (φ , q) • ∏ 1 i< j n- |z i -z j | 2 • n- ∏ j=1 ∏ k=1 |z j -q k | 2 dλ φ (z j ) .
By definition, the normalization constant Z n (φ , q) is given by the formula

Z n (φ , q) = C n- ∏ 1 i< j n- |z i -z j | 2 • n- ∏ j=1 ∏ k=1 |z j -q k | 2 dλ φ (z j ) . (3.14)
By the definition of -th order correlation function of P Π n (see, e.g., [21, formula (2.3)]), we have

det i, j=1 (Π n (q i , q j )) = n! (n -)! C n- 1 Z n (φ ) ∏ 1 i< j n- |z i -z j | 2 |∆(q)| 2 n- ∏ j=1 ∏ k=1 |z j -q k | 2 n- ∏ j=1 dλ φ (z i ).
(3.15)

It follows that

Z n (φ , q) = Z n (φ ) (n -)! n! det i, j=1 (Π n (q i , q j )) |∆(q)| 2 . (3.16)
On the other hand, we also have

E Π q n ∏ x∈X ∏ i=1 x -p i x -q i 2 = C n n- ∏ j=1 ∏ k=1 z j -p k z j -q k 2 1 Z n (φ , q) ∏ 1 i< j n- |z i -z j | 2 n- ∏ j=1 ∏ k=1 |z j -q k | 2 dλ φ (z j ) = C n 1 Z n (φ , q) ∏ 1 i< j n- |z i -z j | 2 n- ∏ j=1 ∏ k=1 |z j -p k | 2 dλ φ (z j ) .
Consequently, by using defining normalization constant Z n (φ , p) as in (3.14), we get

E Π q n ∏ x∈X ∏ i=1 x -p i x -q i 2 = Z n (φ , p) Z n (φ , q) .
Now by applying the formula (3.16) for Z n (φ , p) and Z n (φ , q), we arrive at the desired equality (3.5).

Proof of Proposition 3.4

The proof of Proposition 3.4 is quite involved. Technical difficulties arise since the function

h(z) = ∏ i=1 z -p i z -q i 2 -1, (3.17) 
that we used for computing Γ p,q and hence the Radon-Nikodym derivative

dP p Π dP q Π
, has poles and decays at infinity quite slowly. The key point is the factorization (3.21). Our argument can be summarized as follows.

Step 1. The expectations, with respect to the determinantal point processes P q Π n , of the multiplicative functionals Step 2. We represent the Fredholm determinant det(1 + T n,R ) as a product of the regularized Fredholm determinant and the regularization factor

det(1 + T n,R ) = det 3 (1 + T n,R ) regular part • exp tr(T n,R ) - 1 2 tr(T 2 n,R ) regularization part
. see Proposition 3.6. The definition of the regularized Fredholm determinant det 3 is recalled in §3.4.1.

Step 3. We further factorize the regularization part exp(tr(T n,R ) -1 2 tr(T 2 n,R )) or, equivalently, we decompose the integral

I(n, R) := tr(T n,R ) - 1 2 tr(T 2 n,R ) = C T n,R (z, z)dλ φ (z) - 1 2 C [T 2 n,R ](z, z)λ φ (z) (3.18)
into summands controlling, respectively, the contribution of the neighbourhood of the poles of the function h(z) (defined in (3.17)), the main contribution and the contribution at infinity. It is then much easier to control these summands separately. The contribution of the neighbourhoods of poles is controlled in Lemma 3.10, the main part is controlled in Lemmata 3.11, 3.12 and the contribution at infinity is controlled in Lemma 3.13.

The factorization formula

For stating the factorization formula (3.21), let us first briefly recall necessary material from the theory of regularized Fredholm determinants (see, e.g. Helemskii [START_REF] Ya | Lectures and exercises in functional analysis[END_REF], Simon [START_REF] Simon | Notes on infinite determinants of Hilbert space operators[END_REF]), which will be a crucial ingredient in this section.

For any n ∈ N, the regularized Fredholm determinant det n is defined as follows. If A ∈ C 1 (H ), then we define

det n (1 + A) = det(1 + A) • exp n-1 ∑ k=1 (-1) k k tr(A k ) , (3.19) 
where det(1

+ A) is classical Fredholm determinant. The map A → det n (1 + A) is continuous in the • n -norm.
Consequently, since C 1 (H ) is a dense subspace in C n (H ), the map A → det n (1 + A) defined by the formula (3. [START_REF] Simon | Trace ideals and their applications[END_REF]) is uniquely continuously extended onto C n (H ). Theorem 6.5 in Simon [START_REF] Simon | Notes on infinite determinants of Hilbert space operators[END_REF] states that for any n ∈ N, there exists γ n > 0 such that for any A, B ∈ C n (H ), we have

|det n (1 + A) -det n (1 + B)| ≤ A -B n exp[γ n ( A n + B n + 1) n ].
(3.20) Proposition 3.6 (Factorization). For any n ≥ , we have

E P q Πn ∏ x∈X :|x|≤R ∏ i=1 x -p i x -q i 2 = det(1 + T n,R ) = det 3 (1 + T n,R ) • exp 4 ∑ i=1 E i (n, R; r) , (3.21) 
with E 1 (n, R; r), E 2 (n, R; r), E 3 (n, R; r), E 4 (n, R; r) given by

E 1 (n, R; r) = tr(χ r 0 T n,R ) - 1 2 tr(χ r 0 T 2 n,R ) - 1 2 tr(h R r Π q n h r 0 Π q n ); E 2 (n, R; r) = r≤|z|≤R h(z) - h(z) 2 2 + (κ(p, z) -κ(q, z)) Π n (z, z)dλ φ (z); E 3 (n, R; r) = r≤|z|≤R h(z) - h(z) 2 2 (Π q n (z, z) -Π n (z, z))dλ φ (z); E 4 (n, R; r) = 1 4 [h R r , Π q n ] 2 HS ; where [h R r , Π q n ] = h R r Π q n -Π q n h R r is the commutator of h R r and Π q n .
(3.22)

Remark. Using the notation (3.18), we can write

I(n, R) = 4 ∑ i=1 E i (n, R; r). (3.23)
Let us explain more precisely the meaning of these terms E i (n, R; r) as the decomposition summands of the integral (3.18). The term E 1 (n, R; r) corresponds to the contribution of the neighbourhood of the poles of the function h(z); the terms E 2 (n, R; r) and E 3 (n, R; r) together correspond to the the main contribution and the term E 4 (n, R; r) corresponds to the contribution at infinity. The estimate of E 4 (n, R; r), the contribution at infinity, will use in a crucial way the radial assumption of the function φ and hence the radially-symmetric property of the kernel Π and also its finite approximations Π n . Note that for fixed n ≥ and R > r p,q , we have a family of decompositions (3.21) indexed by a real number r that ranges in the open interval (r p,q , R).

Proof of Proposition 3.6. We claim that for any n ≥ and any R > r, we have

tr((h R r Π q n ) 2 ) = r≤|z|≤R h(z) 2 Π q n (z, z)dλ φ (z) - 1 2 [Π q n , h R r ] 2 HS . (3.24)
Indeed, we may write

[Π q n , h R r ] 2 HS = Π q n h R r 2 HS + h R r Π q n 2 HS -2ℜ(tr(h R r Π q n • h R r Π q n )). (3.25)
Observe that for any bounded real function f on a measure space (Ω, µ) and any finite rank orthogonal projection P on L 2 (Ω, µ), we have tr( f P f P) ∈ R. Indeed, by using the identity f = f χ f ≥0f χ f <0 , it suffices to show that if f 1 , f 2 are two non-negative bounded functions, then tr( f 1 P f 2 P) ∈ R. But this follows from the clear equality tr(

f 1 P f 2 P) = tr( f 1/2 1 P f 2 P f 1/ 2 
1 ) ≥ 0. Now (3.25) can be written as

[Π q n , h R r ] 2 HS = 2 h R r Π q n 2 HS -2tr(h R r Π q n • h R r Π q n ) = 2 r≤|z|≤R h(z) 2 Π q n (z, z)dλ φ (z) -2tr((h R r Π q n ) 2 ), (3.26) 
and (3.24) follows. Now since T n,R ∈ C 1 (H ), the expectation of the corresponding multiplicative functional with respect to P q Π n is given by Fredholm determinant:

E P q Πn ∏ x∈X :|x|≤R ∏ i=1 x -p i x -q i 2 = det(1 + T n,R ) = det 3 (1 + T n,R ) exp tr(T n,R ) - 1 2 tr(T 2 n,R ) .
To prove Proposition 3.6, it suffices to prove that

tr(T n,R ) - 1 2 tr(T 2 n,R ) = 4 ∑ i=1 E i (n, R; r). (3.27)
To this end, we first write 1

= χ r 0 + χ ∞ r , whence tr(T n,R ) - 1 2 tr(T 2 n,R ) = tr(χ r 0 T n,R ) - 1 2 tr(χ r 0 T 2 n,R ) + tr(χ ∞ r T n,R ) - 1 2 tr(χ ∞ r T 2 n,R ). (3.28) Note the clear equality tr(χ ∞ r T n,R ) = r≤|z|≤R h(z)Π q n (z, z)dλ φ (z) = r≤|z|≤R h(z)Π n (z, z)dλ φ (z) + r≤|z|≤R h(z)(Π q n (z, z) -Π n (z, z))dλ φ (z).
(3.29)

Since tr(AB) = tr(BA), we obtain

tr(χ ∞ r T 2 n,R ) = tr(χ ∞ r T 2 n,R χ ∞ r ) = tr χ ∞ r sgn(h R 0 ) |h R 0 |Π q n h R 0 Π q n |h R 0 |χ ∞ r = tr(h R r Π q n h R 0 Π q n ).
Writing h R 0 = h r 0 + h R r and applying equality (3.24), we get

tr(χ ∞ r T 2 n,R ) = tr(h R r Π q n h R r Π q n ) + tr(h R r Π q n h r 0 Π q n ) = tr((h R r Π q n ) 2 ) + tr(h R r Π q n h r 0 Π q n ) = r≤|z|≤R h(z) 2 Π q n (z, z)dλ φ (z) - 1 2 [Π q n , h R r ] 2 HS + tr(h R r Π q n h r 0 Π q n ) = r≤|z|≤R h(z) 2 Π n (z, z)dλ φ (z) + r≤|z|≤R h(z) 2 (Π q n (z, z) -Π n (z, z))dλ φ (z) - 1 2 [Π q n , h R r ] 2 HS + tr(h R r Π q n h r 0 Π q n ).
(3.30)

Recall that since φ is radial we have

r≤|z|≤R (κ(p, z) -κ(q, z))Π n (z, z)dλ φ (z) = 0. (3.31)
The equalities (3.29), (3.30) and (3.31) together yield tr(χ ∞ r T n,R ) - Proposition 3.8. We have

1 2 tr(χ ∞ r T 2 n,R ) = r≤|z|≤R h(z) - h(z) 2 2 + (κ(p, z) -κ(q, z) Π n (z, z)dλ φ (z) + r≤|z|≤R h(z) - h(z) 2 2 (Π q n (z, z) -Π n (z, z))dλ φ (z) + 1 4 [Π q n , h R r ] 2 HS - 1 2 tr(h R r Π q n h r 0 Π q n ).
lim R→∞ det 3 (1 + T n,R ) = det 3 (1 + T n ); lim R→∞ det 3 (1 + T R ) = det 3 (1 + T ); lim n→∞ det 3 (1 + T n,R ) = det 3 (1 + T R ); lim n→∞ det 3 (1 + T n ) = det 3 (1 + T ).
In particular, we have lim

n→∞ lim R→∞ det 3 (1 + T n,R ) = lim R→∞ lim n→∞ det 3 (1 + T n,R ).
Lemma 3.7 and Proposition 3.8 will be proved in §3.4.2.

Recall the definition I(n, R) in (3.18) and the decomposition of I(n, R):

I(n, R) = E 1 (n, R; r) + E 2 (n, R; r) + E 3 (n, R; r) + E 4 (n, R; r),
where E 1 (n, R; r), E 2 (n, R; r), E 3 (n, R; r), E 4 (n, R; r) are given in Proposition 3.6. Recall also the choice of r p,q > 0 in (1.3). The regularization factor exp(tr(T n,R ) -1 2 tr(T 2 n,R )) is controlled as follows.

Proposition 3.9. Both the limits lim (3.33) Proposition 3.9 follows from Lemmata 3.10, 3.11 , 3.12 , 3.13, formulated below and proved in §3.4.3.

Lemma 3.10. For any r > r p,q , we have

lim R→∞ lim n→∞ E 1 (n, R; r) = lim n→∞ lim R→∞ E 1 (n, R; r) = tr(χ r 0 T χ r 0 ) - 1 2 tr(χ r 0 T 2 χ r 0 ) - 1 2 tr(h ∞ r Π q h r 0 Π q ).
Lemma 3.11. For any r > r p,q , we have

lim R→∞ lim n→∞ E 2 (n, R; r) = lim n→∞ lim R→∞ E 2 (n, R; r) = |z|≥r h(z) - h(z) 2 2 + (κ(p, z) -κ(q, z)) Π(z, z)dλ φ (z). (3.34) 
Lemma 3.12. For any ε > 0, there exists r ε > r p,q such that if r ≥ r ε , then

sup n≥ , R>r |E 3 (n, R; r)| ≤ ε. (3.35) 
Lemma 3.13. For any ε > 0, there exists r ε > r p,q such that if r ≥ r ε , then

sup n≥ , R>r |E 4 (n, R; r)| ≤ ε. (3.36) 
We now derive Proposition 3.9 from Lemmata 3.10, 3.11, 3.12, 3.13.

Proof of Proposition 3.9. First, by Propositions 3.3, 3.6, 3.8, the limit lim Now by Lemmata 3.10, 3.11, 3.12 and 3.13, for any ε > 0, there exists r ε > 0, such that we may write For any ε > 0, let us denote

I(n, R) = I 1 (n, R; ε) + I 2 (n, R; ε)
I 1 (ε) := lim n→∞ lim R→∞ I 1 (n, R; ε) = lim R→∞ lim n→∞ F 1 (n, R; ε). Then we have | lim n→∞ lim R→∞ I(n, R) -I 1 (ε)| ≤ ε and | lim R→∞ lim n→∞ I(n, R) -I 1 (ε)| ≤ ε.
Consequently, we obtain that lim

R→∞ lim n→∞ I(n, R) = lim n→∞ lim R→∞ I(n, R).
Proposition 3.9 is proved completely.

Proof of Proposition 3.4. By (3.21), we have

E Π q n ∏ x∈X :|x|≤R ∏ i=1 x -p i x -q i 2 = det 3 (1 + T n,R ) • exp[I(n, R)].
Now by Proposition 3.8 and Proposition 3.9, we may exchange the two limits as n → ∞ and as R → ∞ and get the desired equality

lim R→∞ lim n→∞ E Π q n ∏ x∈X :|x|≤R ∏ i=1 x -p i x -q i 2 = lim n→∞ lim R→∞ E Π q n ∏ x∈X :|x|≤R ∏ i=1 x -p i x -q i 2 .

Control of the regular part

In this section, we prove Lemma 3.7 and Proposition 3.8.

Lemma 3.14 ([5, Lemma 5.3]). For any r ≥ r p,q , we have

[h, χ ∞ r Πχ ∞ r ] 2 HS = C 2 |h(z) -h(w)| 2 |Π(z, w)| 2 χ ∞ r (z)χ ∞ r (w)dλ φ (z)dλ φ (w) < ∞; (3.38) [h ∞ r , Π] 2 HS = C 2 |h ∞ r (z) -h ∞ r (w)| 2 |Π(z, w)| 2 dλ φ (z)dλ φ (w) < ∞. (3.39) Proof. The inequality (3.38) is proved in [5, Lemma 5.3]. Since [h ∞ r , Π] 2 HS = |z|≤r w∈C |h ∞ r (w)| 2 |Π(z, w)| 2 dλ φ (z)dλ φ (w) + z∈C |w|≤r |h ∞ r (z)| 2 |Π(z, w)| 2 dλ φ (z)dλ φ (w) + |z|≥r |w|≥r |h(z) -h(w)| 2 |Π(z, w)| 2 dλ φ (z)dλ φ (w). (3.40) 
The first and the second integrals in (3.40) are equal and are majorated by

h ∞ r 2 ∞ |z|≤r w∈C |Π(z, w)| 2 dλ φ (z)dλ φ (w) ≤ h ∞ r 2 ∞ |z|≤r Π(z, z)dλ φ (z) < ∞.
The third integral in (3.40) is finite by (3.38).

Lemma 3.15. For any r ≥ r p,q , we have

[h, χ ∞ r Π q χ ∞ r ] 2 HS = C 2 |h(z) -h(w)| 2 |Π q (z, w)| 2 χ ∞ r (z)χ ∞ r (w)dλ φ (z)dλ φ (w) < ∞; (3.41) 
[h ∞ r , Π q ] 2 HS = C 2 |h ∞ r (z) -h ∞ r (w)| 2 |Π q (z, w)| 2 dλ φ (z)dλ φ (w) < ∞. (3.42) 
Proof. Since Π q is a finite rank perturbation of Π, the inequalities (3.41) and (3.42) follow from the inequality (3.38) and (3.39) respectively.

Proof of Lemma 3.7. It suffices to show that |h| 1/2 • Π q • |h| 1/2 ∈ C 3 (H ). We have

|h| 1/2 • Π q • |h| 1/2 3 = |h| 1/2 • Π q • |h| • Π q • |h| • Π q • |h| 1/2 .
It suffices to show that |h| 1/2 Π q |h|Π q is Hilbert-Schmidt. To this end, write

|h| 1/2 Π q |h|Π q = χ ∞ r |h| 1/2 Π q χ ∞ r |h|Π q + χ ∞ r |h| 1/2 Π q χ r 0 |h|Π q + χ r 0 |h| 1/2 Π q χ ∞ r |h|Π q + χ r 0 |h| 1/2 Π q χ r 0 |h|Π q .
Observe that

χ ∞ r |h| 1/2 Π q χ ∞ r |h|Π q -χ ∞ r |h| 1/2 hΠ q χ ∞ r sgn(h)Π q = χ ∞ r |h| 1/2 [χ ∞ r Π q χ ∞ r , h]sgn(h)Π q . (3.43)
Since χ ∞ r |h| 1/2 is bounded, we may apply Lemma 3.15 to conclude that

χ ∞ r |h| 1/2 [χ ∞ r Π q χ ∞ r , h]sgn(h)Π q ∈ C 2 (H ).
Note also that h(z) = O(1/|z|) as |z| → ∞, hence by Lemma 2.3, we have

χ ∞ r |h| 1/2 hΠ q 2 HS = |z|≥r |h(z)| 3 Π q (z, z)dλ φ (z) |z|≥r 1 |z| 3 Π q (z, z)dλ φ (z) < ∞.
It follows that χ ∞ r |h| 1/2 hΠ q χ ∞ r sgn(h)Π q is Hilbert-Schmidt. Consequently, by (3.43), the operator χ ∞ r |h| 1/2 Π q χ ∞ r |h|Π q , a sum of two Hilbert-Schmidt operators, is itself Hilbert-Schmidt. Now we show that Π q χ r 0 |h|Π q is Hilbert-Schmidt. Indeed, since there exists a constant C > 0 such that

|Π q (z, w)| ≤ C • ∏ i=1 |(z -q i )(w -q i )| for any |z| < r and |w| ≤ r, (3.44) 
we have

Π q χ r 0 |h|Π q 2 HS = χ r 0 |h| 1/2 Π q χ r 0 |h| 1/2 2 HS = |z|≤r |w|≤r |h(z)h(w)| • |Π q (z, w)| 2 dλ φ (z)dλ φ (w) < ∞.
Consequently, χ ∞ r |h| 1/2 Π q χ r 0 |h|Π q is Hilbert-Schmidt. We show also that χ r 0 |h| 1/2 Π q is Hilbert-Schmidt. Indeed,

χ r 0 |h| 1/2 Π q 2 HS = |z|≤r w∈C |h(z)| • |Π q (z, w)| 2 dλ φ (z)dλ φ (w) = |z|≤r |h(z)|Π q (z, z)dλ φ (z) < ∞,
where we used again (3.44) for z = w and |z| ≤ r. Now since χ ∞ r |h|Π q and χ r 0 |h|Π q are both bounded operator, we conclude that χ r 0 |h| 1/2 Π q χ ∞ r |h|Π q and χ r 0 |h| 1/2 Π q χ r 0 |h|Π q are both Hilbert-Schmidt. Lemma 3.7 is proved completely.

Proof of Proposition 3.8. By (3.20), it suffices to prove the corresponding convergences of operators in C 3 (H ). By Lemma 3.7 and Proposition 3.5, we have

T n,R in C 3 (K ) -----→ R→∞ T n ; T R in C 3 (K ) -----→ R→∞ T.
(3.45) By Lemma 3.7, we also have |h|Π q ∈ C 6 (H ). Applying Proposition 3.5 again and noting that |h|Π q n = |h|Π q • Π q n , we obtain

|h|Π q n in C 6 (K ) -----→ n→∞ |h|Π q .
The above convergence, combined with the Hölder inequalities (3.11) for operators in von Neumann-Schatten classes immediately yields the desired convergences in (3.45). Proposition 3.8 is proved completely.

Control of the regularization factor

Recall the notation introduced in (3.3) and (3.4).

1. Control of E 1 (n, R; r).
Proof of Lemma 3.10. Note that

E 1 (n, R; r) = tr(χ r 0 T n,R χ r 0 ) - 1 2 tr(χ r 0 T 2 n,R χ r 0 ) - 1 2 tr(h R r Π q n h r 0 Π q n ).
For proving Lemma 3.10, it suffices to prove that for any r ≥ r p,q , we have the following convergences in C 1 (H ):

lim R→∞ lim n→∞ χ r 0 T n,R χ r 0 = lim n→∞ lim R→∞ χ r 0 T n,R χ r 0 = χ r 0 T χ r 0 ; (3.46) lim R→∞ lim n→∞ χ r 0 T 2 n,R χ r 0 = lim n→∞ lim R→∞ χ r 0 T 2 n,R χ r 0 = χ r 0 T 2 χ r 0 ; (3.47) lim R→∞ lim n→∞ h R r Π q n h r 0 Π q n = lim n→∞ lim R→∞ h R r Π q n h r 0 Π q n = h ∞ r Π q h r 0 Π q . (3.48)
Let us check the convergences in (3.47). We may write

χ r 0 T 2 n,R χ r 0 = (χ r 0 sgn(h) |h|Π q • Π q n ) • (Π q |h|χ R 0 sgn(h) |h|Π q ) • (Π q n • Π q |h|χ r 0 ).
Since χ r 0 sgn(h) |h|Π q and Π q |h|χ r 0 are Hilbert-Schmidt, we may apply Proposition 3.5 to conclude that

χ r 0 sgn(h) |h|Π q • Π q n in C 2 (H ) -----→ n→∞ χ r 0 sgn(h) |h|Π q ; Π q n • Π q |h|χ r 0 in C 2 (H ) -----→ n→∞ Π q |h|χ r 0 .
It follows, by using also the fact that Π q |h|χ R 0 sgn(h) |h|Π q is bounded, that

χ r 0 T 2 n,R χ r 0 in C 1 (H ) -----→ n→∞ (χ r 0 sgn(h) |h|Π q ) • (Π q |h|χ R 0 sgn(h) |h|Π q ) • (Π q |h|χ r 0 ) = χ r 0 T 2 R χ r 0 .
Now by writing

χ r 0 T 2 R χ r 0 = (χ r 0 sgn(h) |h|Π q • Π q |h|)χ R 0 • χ R 0 (sgn(h) |h|Π q • Π q |h|χ r 0 ) ,
also by using the fact that χ r 0 sgn(h) |h|Π q • Π q |h| and sgn(h) |h|Π q • Π q |h|χ r 0 are both Hilbert-Schmidt, we may apply Proposition 3.5 to conclude that

χ r 0 T 2 R χ r 0 in C 1 (H ) -----→ R→∞ (χ r 0 sgn(h) |h|Π q • Π q |h|) • (sgn(h) |h|Π q • Π q |h|χ r 0 ) = χ r 0 T 2 χ r 0 .
Now we obtain the following convergence in C 1 (H ):

lim R→∞ lim n→∞ χ r 0 T 2 n,R χ r 0 = χ r 0 T 2 χ r 0 .
In a similar way, we obtain also the following convergence in C 1 (H ):

lim n→∞ lim R→∞ χ r 0 T 2 n,R χ r 0 = χ r 0 T 2 χ r 0 .
The convergences in (3.47) is proved completely. This argument also yields the convergences in (3.46) and (3.48).

2. Control of E 2 (n, R; r). Lemma 3.16. For any r ≥ r p,q , the following integrals are finite:

|z|≥r h(z) - h(z) 2 2 + (κ(p, z) -κ(q, z)) Π(z, z)dλ φ (z) < ∞; |z|≥r h(z) - h(z) 2 2 + (κ(p, z) -κ(q, z)) Π q (z, z)dλ φ (z) < ∞.
Proof. The second inequality follows immediately from the first one. By Lemma 2.3, it suffices to prove that

h(z) - h(z) 2 2 = (κ(q, z) -κ(p, z)) + O(1/|z| 3 ) as |z| → ∞.
To this end, we first write α i (z) = q i -p i z-q i and β i (z) = α i (z) + α i (z). Then we have

h(z) = ∏ i=1 |1 + α i (z)| 2 -1 = ∏ i=1 (1 + β i (z) + |α i (z)| 2 ) -1 = ∑ i=1 (β i (z) + |α i (z)| 2 ) + ∑ 1≤i< j≤ β i (z)β j (z) + O(1/|z| 3 ) as |z| → ∞. It follows that h(z) 2 = ∑ i=1 β i (z) 2 + 2 ∑ 1≤i< j≤ β i (z)β j (z) + O(1/|z| 3 ) = ∑ i=1 (α i (z) 2 + α i (z) 2 + 2|α i (z)| 2 ) + 2 ∑ 1≤i< j≤ β i (z)β j (z) + O(1/|z| 3 ) as |z| → ∞.
Consequently, we have

h(z) - h(z) 2 2 = ∑ i=1 β i (z) - 1 2 α i (z) 2 - 1 2 α i (z) 2 + O(1/|z| 3 ) as |z| → ∞. Equality (2.2) implies β i (z) - 1 2 α i (z) 2 - 1 2 α i (z) 2 = κ(q i , z) -κ(p i , z) + O(1/|z| 3 ) as |z| → ∞.
Combining the two equations, we complete the proof of Lemma 3.16.

Proof of Lemma 3.11. Recall that

E 2 (n, R; r) = r≤|z|≤R h(z) - h(z) 2 2 + (κ(p, z) -κ(q, z)) Π n (z, z)dλ φ (z)
Let n ≥ . On the one hand, since the function h

(z) -h(z) 2 2 + (κ(p, z) -κ(q, z)) Π n (z, z) is integrable on {z ∈ C : |z| ≥ r}, we have lim R→∞ E 2 (n, R; r) = |z|≥r h(z) - h(z) 2 2 + (κ(p, z) -κ(q, z)) Π n (z, z)dλ φ (z).
Taking into account Lemma 3.16, using the clear inequality Π n (z, z) ≤ Π(z, z) and the Dominated Convergence Theorem, we obtain

lim n→∞ lim R→∞ E 2 (n, R; r) = |z|≥r h(z) - h(z) 2 2 + (κ(p, z) -κ(q, z)) Π(z, z)dλ φ (z).
On the other hand, by the Dominated Convergence Theorem, we also have

lim n→∞ E 2 (n, R; r) = r≤|z|≤R h(z) - h(z) 2 2 + (κ(p, z) -κ(q, z)) Π(z, z)dλ φ (z). Hence lim R→∞ lim n→∞ E 2 (n, R; r) = |z|≥r h(z) - h(z) 2 2 + (κ(p, z) -κ(q, z)) Π(z, z)dλ φ (z).
Equality (3.34) is proved completely.

3. Control of E 3 (n, R; r).

Proof of Lemma 3.12. For any fixed n ≥ and any pair of positive numbers r, R satisfying R > r ≥ r p,q , we have

|E 3 (n, R; r)| = r≤|z|≤R h(z) - h(z) 2 2 (Π n (z, z) -Π q n (z, z))dλ φ (z) ≤ sup |z|≥r h(z) - h(z) 2 2 • C (Π n (z, z) -Π q n (z, z))dλ φ (z) = • sup |z|≥r h(z) - h(z) 2 2 .
it suffices to show that

lim r→∞ sup n≥ [h ∞ r , Π n ] HS = 0. (3.52)
To this end, by noting |Π q (z, w)| = |Π q (w, z)|, we have the following identity:

[h ∞ r , Π n ] 2 HS =2 |z|≤r |w|≥r |h(w)| 2 |Π n (z, w)| 2 dλ φ (z)λ φ (w) + |z|≥r |w|≥r |h(z) -h(w)| 2 |Π n (z, w)| 2 dλ φ (z)λ φ (w).
It follows from Lemma 3.17 and the elementary estimate |h(z

)| = O(1/|z|) as |z| → ∞, that there exists C > 0 such that [h ∞ r , Π n ] 2 HS ≤C(I 1 (n, r) + I 2 (n, r)), (3.53) 
where

I 1 (n, r) := |z|≤r |w|≥r 1 |w| 2 • |Π n (z, w)| 2 dλ φ (z)λ φ (w); I 2 (n, r) := |z|≥r |w|≥r 1 z - 1 w 2 |Π n (z, w)| 2 dλ φ (z)λ φ (w).
Similarly, let us denote Claim A. For any r ≥ r p,q , we have I 1 (n, r) ≤ I 1 (r).

I 1 (r) := |z|≤r |w|≥r 1 |w| 2 • |Π(z, w)| 2 dλ φ (z)λ φ (w);
Indeed, by using the expression (3.2) for Π n (z, w) and using the polar-coordinates system z = ρe iα , w = σ e iβ , we get

|Π n (ρe iα , σ e iβ )| 2 = n-1 ∑ k,m=0 a 2 k a 2 m (ρσ ) k+m e i(k-m)(α-β ) ; |Π(ρe iα , σ e iβ )| 2 = ∞ ∑ k,m=0 a 2 k a 2 m (ρσ ) k+m e i(k-m)(α-β ) .
It follows that

I 1 (n, r) = 4π 2 r 0 e -2φ (ρ) ρdρ ∞ r e -2φ (σ ) σ dσ • 1 σ 2 n-1 ∑ k=0 a 4 k (ρσ ) 2k ; I 1 (r) = 4π 2 r 0 e -2φ (ρ) ρdρ ∞ r e -2φ (σ ) σ dσ • 1 σ 2 ∞ ∑ k=0 a 4 k (ρσ ) 2k .
Hence we have I 1 (n, r) ≤ I 1 (r).

Claim B. For any r ≥ r p,q , we have I 2 (n, r) ≤ I 2 (r) + 1 r 2 . Indeed, by using the polar-coordinates system and by using the identity .

We can re-group the summands in S n (ρ, σ ) in such a way that in the new expression of S n (ρ, σ ), all summands are positive. Indeed, we have Remark. Note that radial symmetry of the weight of our Fock space has been used in the proof of Claims A,B.

Proof of item (iv) of Proposition 1.1

For any R > r p,q , denote Ψ (R) p,q (X ) = exp r p,q ≤|z|≤R (κ(p, z)κ(q, z))Π(z, z)dλ φ (z)

∏ x∈X :|x|≤R ∏ i=1
xp i xq i 2 .

Using Notation (3.1), we express the expectation E P q Π [Ψ p,q ] as follows.

Proposition 3.19. We have

E P q Π [Ψ p,q ] = det 3 (1 + T ) • exp 4 ∑ i=1 E i (r) ,
with E 1 (r), E 2 (r), E 3 (r), E 4 (r) given by E 1 (r) = tr(χ r 0 T ) -

1 2 tr(χ r 0 T 2 ) - 1 2 tr(h ∞ r Π q h r 0 Π q ); E 2 (r) = |z|≥r h(z) - h(z) 2 2
+ (κ(p, z)κ(q, z)) Π(z, z)dλ φ (z);

E 3 (r) = |z|≥r h(z) - h(z) 2 2
(Π q (z, z) -Π(z, z))dλ φ (z);

E 4 (r) = 1 4 [h ∞ r , Π q ] 2 HS .
Proof. It suffices to prove that we have the following factorization

E P q Π [Ψ (R) p,q ] = det 3 (1 + T R ) • exp 4 ∑ i=1 E i (R; r) , (3.59) 
with E 1 (R; r), E 2 (R; r), E 3 (R; r), E 4 (R; r) given by E 1 (R; r) = tr(χ r 0 T R ) -

1 2 tr(χ r 0 T 2 R ) - 1 2
tr(h R r Π q h r 0 Π q ); E 2 (R; r) = r≤|z|≤R h(z) -h(z) 2 2 + (κ(p, z)κ(q, z)) Π(z, z)dλ φ (z);

E 3 (R; r) = r≤|z|≤R h(z) - h(z) 2 2
(Π q (z, z) -Π(z, z))dλ φ (z);

E 4 (R; r) = 1 4 [h R r , Π q ] 2 HS .
The proof of factorization (3.59) is the same as that of the factorization in Proposition 3.6.

Proof of item (iv) of Proposition 1.1. The continuity of the mapping p → E P q Π [Ψ p,q ] is immediate from the factorization in Proposition 3.19 and the fact that r = r p,q depends continuously on p, q. Fix any q 0 = (q 0 1 , • • • , q 0 ) of distinct points of C. By the chain property of the Radon-Nikodym derivative, we have

dP p Π dP q Π (X ) = dP p Π dP q 0 Π (X ) • dP q Π dP q 0 Π (X ) -1
.

In other words, we have Ψ p,q (X ) E P q Π [Ψ p,q ] = Ψ p,q 0 (X )

E P q 0 Π [Ψ p,q 0 ] • E P q 0 Π [Ψ q,q 0 ]
Ψ q,q 0 (X ) .

Consequently, the continuity obtained in item (iii) of Proposition 1.1, together with the continuity of the mapping p → E P q Π [Ψ p,q ] implies the desired continuity of the mapping (p, q) → E P q Π [Ψ p,q ]. Item (iv) of Proposition 1.1 is proved completely.

. 3 )

 3 For any p ∈ C and z ∈ C * set κ(p, z) := p z -tuple p = (p 1 , . . . , p ) of distinct points in C write κ(p, z) := ∑ i=1 κ(p i , z). (1.5)

1. 3

 3 Derivation of Theorems 1.5 and Corollary 1.6 from Proposition 1.1.

1 is a combination of [ 5 ,

 5 Theorem 1.1, Theorem 4.1, Lemma 7.4 and Corollary 7.13].

Lemma 2 .

 2 3 is proved completely. Proof of Proposition 1.1. By Lemma 2.2 and Lemma 2.3, we have

  s 2 defined on [0, ∞). In particular, the von Neumann-Schatten 1-class coincides with the trace class while the von Neumann-Schatten 2-class coincides with the Hilbert-Schmidt class. The space C s (H ) can be equipped with the norm • s defined by A s = tr(|A| s ) 1/s . In particular, the norm • 2 coincides with the Hilbert-Schmidt norm, which we denote also by • HS . The von Neumann-Schatten s-class norm • s has the following properties:

Proposition 3 . 5 .

 35 Let s ∈ [1, ∞) and let A ∈ C s (H ). Suppose that P is an orthogonal projection on H and P n 's orthogonal projection on H such that P n ≤ P and P n ≤ P n+1 for any n ∈ N. If the sequence (P n ) n∈N converges to P in the strong operator topology, then lim n→∞ AP -AP n s = 0.(3.12)Proof. Let us first show that lim n→∞ AP -AP n = 0,(3.13) 

  Fredholm determinants det(1 + T n,R ), where T n,R is defined in (3.4). Although the operators T n,R are in trace class for any n ∈ N and R > 0, the limits lim n→∞ lim R→∞ T n,R and lim R→∞ lim n→∞ T n,R do not exist in the space C 1 (H ) of trace class operators. These limits do however exist in the space C 3 (H ), the von Neumann-Schatten 3-class, and are both equal to T (defined in (3.4)), see Lemma 3.7 and Lemma 3.8.

  32) into (3.28), we obtain the desired equality (3.27). Proposition 3.6 is proved completely.Recalling notation (3.4), for the regular factor det 3 (1 + T n,R ) we have Lemma 3.7. The operator T is in C 3 (H ).

  , R) and lim n→∞ lim R→∞ I(n, R) exist and we have lim R→∞ lim n→∞ I(n, R) = lim n→∞ lim R→∞ I(n, R).

  , R) exists and by the equality (3.9) and by Propositions 3.6, 3.8, the limit lim R→∞ lim n→∞ I(n, R) exists.

in such a way that lim n→∞ lim R→∞ I 1

 1 (n, R; ε) = lim R→∞ lim n→∞ I 1 (n, R; ε) and |I 2 (n, R; ε)| ≤ ε for any n ≥ and R > r ε .(3.37)

I 2 ( 2 |Π

 22 (z, w)| 2 dλ φ (z)λ φ (w). By Lemma 3.18, we have lim r→∞ I 1 (r) = 0 and lim r→∞ I 2 (r) = 0. (3.54)

  ) 2k+1 denoted by S n (ρ, σ )

2 ∑ k=0 a 4 0 ek+1 ρ k σ k+1 -a 2 k ρ k σ k- 1 ) 2 .I 2 ( 2 2 n- 1 = 4 ≤ a 2 n- 1 • 2π ∞ 0 ρr 2 a 2 n- 1 • 2π ∞ 0 ρ 2 . 2 .

 240122221421021022 2 + a 4 n-1 ρ 2n-2 σ 2n-4 + n-k+1 ρ 2k σ 2k+2 + a 4 k ρ 2k σ 2k-2 -2a 2 k a 2 k+1 (ρσ ) 2k =a 4 0 ρ -2 + a 4 n-1 ρ 2n-2 σ 2n-4 + n-2 ∑ k=0 (a 2 k+1 ρ k σ k+1a 2 k ρ k σ k-1 ) 2 .It follows thatI 2 (n, r) = 4π 2 r -2φ (ρ) ρdρ ∞ r e -2φ (σ ) σ dσ • a 4 0 ρ -2 + a 4 n-1 ρ 2n-2 σ 2n-4 + can express I 2 (r) in the following way: k+1 ρ k σ k+1a 2 k ρ k σ k-1 ) 2 . (3.56)Note that by definition, for any n ≥ 1,1 a z n-1 2 L 2 (C, dλ φ ) = 2π ∞ 0 ρ 2n-2 e -2φ (ρ) ρdρ. (σ ) σ dσ • a 4 n-1 ρ 2n-2 σ 2n-2n-2 e -2φ (ρ) ρdρ • 1 2n-2 e -2φ (ρ) ρdρ = 1 r55) and (3.56), taking (3.57) into account, we get the desired inequalityI 2 (n, r) ≤ I 2 (r) + 1 rFinally, an application of (3.53) yields thatsup n∈N [h ∞ r , Π n ] 2 HS ≤ C(I 1 (r) + I 2 (r) + 1 r 2 ).(3.58)The desired limit equality (3.52) now follows immediately from (3.54) and (3.58).

Lemma 3.2 and Proposition 3.3

  Let H denote the Hilbert space L 2 (C, dλ φ ). Write • H for the norm in L 2 (C, dλ

φ ). For any real number s ∈ [1, ∞), let C s (H ) denote the von Neumann-Schatten s-class on H , that is, the class of bounded linear operators A on H , such that tr(|A| s ) < ∞, where |A| s := (A * A) s 2 is the continuous functional calculus of the self-adjoint positive operator A * A under the function t → t
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Lemma 3.12 is proved completely.

4.

Control of E 4 (n, R; r).

Lemma 3.17. There exits a constant C > 0, such that

, if |z| ≥ r p,q and |w| ≥ r p,q .

(3.49)

Consequently, if |z| ≥ r p,q and |w| ≥ r p,q , then

The simple inequality sup |z|≥r p,q ,|w|≥r p,q

implies now the existence of C > 0 such that (3.49) holds. Lemma 3.18. For any r ≥ r p,q , we have

Moreover, the following limit holds: Proof of Lemma 3.13. By writing

Consequently, for proving Lemma 3.13, it suffices to prove that