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SUPPLEMENT TO “POST HOC CONFIDENCE BOUNDS
ON FALSE POSITIVES USING REFERENCE FAMILIES”

By Gilles Blanchard, Pierre Neuvial and Etienne Roquain

This supplement provides proofs of results of the main paper, as
well as additional material: detailed discussion of relation to previ-
ous work (augmentation procedures of van der Laan et al. (2004),
inversion method of Genovese and Wasserman, 2006, closed testing
of Goeman and Solari, 2011, higher criticism of Donoho and Jin,
2004); complements on JER control based on Simes and Hommel
inequalities; general properties of templates and reference families;
algorithmic details concerning Monte-Carlo and permutation-based
calibration and additional numerical experiments.
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SUPPLEMENT TO “POST HOC BOUNDS USING REFERENCE FAMILIES” 3

This supplement is organized as follows. In Section S-1, we elaborate
on the connection between JER control and previous work, more specifi-
cally the confidence envelope approach of Genovese and Wasserman (2004,
2006), Meinshausen and Bühlmann (2005), Meinshausen (2006) as well as
the closed testing approach of Goeman and Solari (2011) to user-agnostic
inference. We provide complements on JER control based on Simes and
Hommel inequalities in Sections S-2, and on the properties of linear and
balanced templates in Section S-3. In Section S-4, we study the optimality
of the linear and balanced reference families in terms of detection power
under sparsity assumptions; in doing so we identify connections between
the linear reference family and the FDR controlling procedure of Benjamini
and Hochberg (1995), and between the balanced reference family and the
higher criticism procedure of Donoho and Jin (2004). Section S-5 establishes
the validity of assumption (Rand) in permutation-based two-sample multi-
ple testing problems. In Section S-6, we explain how to approximate the
balanced thresholds under known dependence using a Monte-Carlo method.
Finally, Section S-7 gathers the proofs of the results stated in the main paper
and in this supplement.

S-1. Relation to previous work on confidence envelopes and
user-agnostic bounds. The present work was inspired in particular by
the seminal works of Genovese and Wasserman (2006) (GW06 below for
short) and Goeman and Solari (2011) (GS11 below for short), both of which
provide confidence bounds on the number of false positives |H0 ∩ R| uni-
formly over any rejection region R, and thus a user-agnostic control of the
number (or proportion) of false discoveries. Such bounds are called “confi-
dence envelopes” by GW06 and “post hoc bounds” by GS11. As stated in
the introduction, related ideas where used by Meinshausen and Bühlmann
(2005), Meinshausen (2006) when the coverage was restricted to selection
sets R that are p-value level sets, that is of the form R = {i : pi ≤ t}, for
some t ∈ [0, 1]. In this section, we elucidate the relation to these works, first
between each other, then to ours.

To give an overview, following the terminology used by GW06 we first
need to introduce a distinction between

• “Inversion procedures”, based on family of local tests for all intersec-
tion hypotheses, which also form the basis over which GS11 is built;
• “Augmentation procedures”, based on the control of the k-family-wise

error rate on a specific set Rk, and an “interpolation” from this control
to all possible rejection sets.

In a nutshell, we argue that the JER approach advocated in the present pa-
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per suppresses this distinction and encompasses both approaches as particu-
lar cases. More precisely, the inversion procedure can be seen as a particular
case of the bound V ∗, and the bound V can be seen as an extension of the
augmentation principle.

We organize this section as follows. We start with a comparison with aug-
mentation procedures and approaches based on uniform confidence bounds
on the distribution function of null p-values in Section S-1.1. We then turn
to the comparison to inversion procedures based on local intersection tests,
which are presented in detail in Section S-1.2. There we remark that the
closed testing approach of GS11 is essentially equivalent to GW06’s inver-
sion procedure1. In the following sections, we discuss connections between
these approaches and ours. In Section S-1.3, we show that the probabilistic
guarantee derived from the inversion procedure of GW06 or closed testing
in GS11 can be equivalently obtained by JER control of a specific form com-
bined with the optimal bound V ∗. Finally, in Section S-1.4, we prove that the
shortcut bound obtained by GS11 for certain Simes-type local tests can be
obtained equivalently by our approach via JER control using a Simes-type
template with ζk = k − 1.

S-1.1. Augmentation procedures and confidence envelopes on p-value lev-
els sets. The “augmentation procedure” of Genovese and Wasserman (2006,
Theorems 1,2,3) is based on a single reference set Rk with controlled k-
family-wise error rate (extending an idea due to van der Laan et al. 2004,
initially considered for k = 1). These authors then propose the bound (called
confidence envelope) V aug(R) = max(|R \Rk|+ (k− 1), |R|), which is a par-
ticular case of our bound V (R) given by (8), when the reference family only
consists of one element (Rk, ζk = k − 1). Obviously, with a larger reference
family enjoying joint error rate control, our bound V (R) is obtained by tak-
ing the minimum of all possible such augmentation bounds over elements of
the reference family.

The term confidence envelope was also used in relation to bounds based on
a uniform upper confidence bound over the empirical distribution function of
null p-values (Genovese and Wasserman, 2004; Meinshausen and Bühlmann,
2005; Meinshausen, 2006) (also called “quantile bounding function” in the
two latter references). The principle is the following: let us denote p-value
level sets as R̃t = {i : pi ≤ t} and assume we have at hand a bound B(t)
such that

P
(
∀t ∈ [0, 1] : |H0 ∩ R̃t| ≤ B(t)

)
≥ 1− α.

1We express our thanks to Aaditya Ramdas for first pointing out this fact to us.
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SUPPLEMENT TO “POST HOC BOUNDS USING REFERENCE FAMILIES” 5

Such a bound can be obtained under the independence assumption by classi-
cal inequalities for i.i.d. uniform variables (Genovese and Wasserman, 2004),
or by permutation approaches in the case of general dependence (Mein-
shausen and Bühlmann, 2005; Meinshausen, 2006). Meinshausen (2006) es-
tablishes that a simultaneous bound over the false discoveries all (R̃t)s is
given by

V
Mein

(R̃t) = |R̃t| − max
0≤τ≤t

(|R̃τ | −B(τ)).

This can be interpreted in our setting as follows. We consider the reference
family (R̃τ , ζτ = B(τ))0≤τ≤1 (it is formally an uncountable family, but in
practice B(t) is a piecewise constant function and this can be equivalently
represented as a finite family). The hypothesis on B(t) implies that this
reference family enjoys JER control. Then our bound from (8) is given in
this case by

V (R̃t) = min
0≤τ≤1

(|R̃t \ R̃τ |+B(τ)) ∧ |R̃t|,

and since |R̃t \ R̃τ | = |R̃t| − |R̃τ | for τ ≤ t, we have V (R̃t) ≤ V
Mein

(R̃t),
with equality under the natural assumptions that B(τ) is nondecreasing and
satisfies B(τ) ≤ |R̃τ |. Hence this is also a particular instance of our general
setting.

Finally, note that reference families based on k-FWER controlled sets
(Rk = {i : pi ≤ tk} , ζk = k − 1)1≤k≤m and on regular level sets (R̃τ =
{i : pi ≤ τ} , ζτ = min {k : tk ≥ τ} − 1)0≤τ≤1 are equivalent in the sense
that they contain the same information and give rise to identical bounds.
However, strict equivalence breaks down when considering fixed subranges
{k ≤ Kmax}, resp. {τ ≤ τmax} which are more relevant in practice; and from
that point of view, we argue that the parametrization by the maximal num-
ber of false discoveries Kmax is more natural and convenient.

S-1.2. Local intersection tests setting. The “inversion procedure” of GW06
as well as the closed testing approach of GS11 are based on the notion of
local intersection tests: For any subset I ⊂ Nm, define the associated inter-
section hypothesis as H0,I =

⋂
i∈I H0,i. Therefore, H0,I is true iff P ∈ H0,i

for all i ∈ I, or equivalently iff I ⊂ H0(P ). We will often informally identify
the index subset I with the corresponding intersection hypothesis H0,I in
the text to simplify statements. Assume that for any index subset I, the
intersection null H0,I can be tested by a so-called local test φI(X) ∈ {0, 1}
of (individual) level α. Let V denote the collection of individually rejected
intersection hypotheses and U its complement (non rejected intersection hy-
potheses).
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The inversion procedure of GW06 returns the bound

V
GW

(R) = max
J∈U
|R ∩ J | .

To see why this is a valid bound uniformly over R it suffices to remark that
ΦH0(X) = 0 holds with probability 1− α, and on this event H0 ∈ U . (This
is indeed a form of the general duality between test and confidence regions,
hence the name.)

The closed testing-based procedure of GS11 first applies the classical
closed testing principle (Marcus et al., 1976) to the family of local inter-
section tests. In effect, this steps extracts from the set of rejected intersec-
tion hypotheses V a subcollection Ṽ, namely only the rejected intersection
hypotheses I such that all I ′ ⊃ I are also rejected. After this step, the
remaining family Ṽ of rejected intersection hypotheses, now stable by the
superset operation, has family-wise error rate controlled at level α, i.e. de-
noting Ũ the complement of Ṽ (non rejected intersection hypotheses after
extraction step), it holds:

(S-1) PX∼P
(
∀I ⊂ H0(P ), I ∈ Ũ

)
≥ 1− α.

The justification is the same as above: it suffices that the single event
ΦH0(X) = 0 (of probability 1− α) is satisfied to ensure that any null inter-
section hypothesis (which is necessarily a subset of H0) is also not rejected
after the extraction step. The procedure of GS11 then returns the bound

(S-2) V
GS

(R) = max
J∈Ũ
|R ∩ J | = max{|J | : J ∈ Ũ , J ⊂ R}

(the second equality holds because Ũ is stable by the subset operation).

We observe that the two bounds V
GW

and V
GS

are in fact identical. Since
U ⊂ Ũ , the closed testing bound must be larger than or equal to the inversion
bound. On the other hand, the closed testing procedure is indeed a closure
operation: Ũ contains exactly all intersection hypotheses of U and all their
subsets. But adding all subsets does not increase the bound. Hence the two
bounds are identical (and the closed testing step is actually not necessary
for the GS11 bound).

Finally, note that the NP-hardness result of Proposition 2.2 also applies
to the computation of the GS11 bound (S-2) in the following sense: even if
the set Ũ can be represented in a compact way via the family of its minimal
sets W as Ũ = superset(W) = {I ⊃ J, J ∈ W}, the computation of (S-2) is
NP-hard with respect to the size ofW. This is because the reference families
used in the proof of Proposition 2.2 have the specific form ζk = |Rk|−1 and
can therefore as well be interpreted as the family W above.
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SUPPLEMENT TO “POST HOC BOUNDS USING REFERENCE FAMILIES” 7

S-1.3. Equivalence between JER control and closed testing/inversion bounds.
We discuss a formal equivalence between the JER control approach and post
hoc inversion bounds based on local tests of GS11 (S-2) (and therefore equiv-
alently the GW06 bound); in the sense that each approach can be formally
represented as an instance of the other.

For this, consider the reference family R = Ṽ = (R1, . . . , RK) returned by
the closed testing procedure as in Section S-1.2. The closed testing principle
inplies that R is closed by the superset operation, i.e., I ∈ R implies ∀J ⊃ I,
J ∈ R. Now let ζk := |Rk| − 1, 1 ≤ k ≤ K. Finally, we have{

∀I ⊂ H0(P ), I ∈ Ũ
}c

=

{
∃I ⊂ H0(P ), I ∈ R

}
=

{
H0(P ) ∈ R

}
=

{
∃k ∈ {1, . . . ,K} : |H0(P ) ∩Rk| = |Rk|

}
=

{
∃k ∈ {1, . . . ,K} : |H0(P ) ∩Rk| > ζk

}
;

hence (S-1) is indeed the same as the JER control (4)-(5) for this choice of
(Rk, ζk)1≤k≤K . Concerning the post hoc bound itself, note that

A(R) = {A ⊂ Nm : ∀k ∈ NK , |Rk ∩A| ≤ ζk}
= {A ⊂ Nm : ∀k ∈ NK , |Rk ∩A| ≤ |Rk| − 1}
= {A ⊂ Nm : ∀k ∈ NK , Rk 6⊂ A}

= Rc = Ũ ,

where we have used the fact that R is closed by superset operation. Hence

V ∗R(R) = max
A∈A(R)

|R ∩A| = max
A∈Ũ
|R ∩A| = max

A∈Ũ ,A⊂R
|A| = V

GS
(R) ,

since Ũ is closed by subset operation.
Conversely, our setting of JER control based on a reference family R can

be embedded as a particular case of the local intersection test framework.
Namely, construct the local tests ΦI as ΦI(X) = 0 iff I ∈ A(R). With
this representation, it is obvious that the bound obtained via our approach
V ∗R(R) or via the inversion procedure of GW06 coincide (observe namely
U = A(R) with this construction). This remark thus generalizes GW06’s
Theorem 4, which only considered the case of a single reference set with
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controlled FWER (R1, ζ1 = 0). Similarly, our Proposition 2.5 on the equiv-
alence of V ∗ and V for nested reference families can be interpreted, via the
above representation, as a non-trivial extension of GW06’s Theorem 5 about
the equivalence of augmentation and inversion in specific circumstances.

Is there any interest in the JER approach if it is formally equivalent to
the local test inversion bound? Statistically speaking, the equivalence shown
above suggests that there is no difference. But we argue that the local test
representation can be quite wasteful, and an advantage of the JER control
approach is that it allows one to summarize the available information with
the reference family alone, while the intersection test setting requires in prin-
ciple to compute the output of the (2m−1) local tests in the first place. Also,
even if computation of the optimal bound V ∗(R) is possibly hard, the easily
computable upper approximation V (R) from (8) is always available. Other
approximations, e.g. ṼR(R) (11), can be considered as well. To summarize,
the JER point of view allows one to introduce a flexible structure, which
in favorable cases (e.g. the reference family is of limited size, and/or has
some structural properties such as nestedness, or tree-structure considered
by Durand et al., 2018) allows for more transparent representation of the
available information and computation of the bounds, features that might
be lost when considering the local test equivalent.

In some cases, depending on the specific structure of local tests, so-called
shortcuts (exact or approximate) are available for the closed testing approach
of GS11, allowing to reduce considerably the bulk of computations. In the
next section, we analyze a specific shortcut proposed by GS11, and show
that it can equivalently be seen as an approximation of the form V (R) in
our JER-based setting.

S-1.4. Shortcut as using a particular reference family. As noted by GS11,
computation of the closed testing output R is (in general) not feasible when
m is larger than a few dozens. In certain situations, so-called shortcuts can
be available for specific choices of the local tests, providing a direct (but pos-
sibly approximate and conservative) computation of the closed testing. For
instance, it is well-known that Hommel’s step-down procedure is a shortcut
for Bonferroni local tests, and Hochberg’s step-up a shortcut for Simes local
tests (Huang and Hsu, 2007).

Even if R can be computed, we have shown that the calculation of the
post hoc bound (S-2) is itself NP-hard in a generic setting. To circumvent
this complexity issue, a less time-consuming conservative “shortcut” of the
bound (S-2) has been proposed by GS11 for Simes-type local tests:

(S-3) φI(X) = 1
{
∃i ∈ {1, . . . , |I|} : p(i:I) ≤ c

|I|
i

}
, I ⊂ Nm,
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SUPPLEMENT TO “POST HOC BOUNDS USING REFERENCE FAMILIES” 9

with the assumptions c`i ≤ cki , for ` ≥ k and c`i ≤ c`j , for i ≤ j. The
corresponding bound is defined as:

(S-4) V
GS
Simes(R) = |R| − (1 + max{Sr, 1 ≤ r ≤ |R|}) ∨ 0,

where Sr = max{0 ≤ s ≤ r − 1 : p(r:R) ≤ cmr−s} (with max ∅ = −∞). We
argue below in Lemma S-1.2 that this bound is in fact equivalent to the post
hoc bound V R(R) defined in (8), for the family R = (Rk, ζk := k− 1)1≤k≤m
defined by

Rk = {i ∈ Nm : pi ≤ cmk }, 1 ≤ k ≤ m.
The next lemma establishes that JER control holds for this family:

Lemma S-1.1. Assume that the tests (φI)I⊂Im form a family of local
tests at level α for the considered model, i.e., for any P ∈ H0,I , it holds
PX∼P (φI(X) = 1) ≤ α. Then joint control of the k-FWER of Rk at level
α, uniformly over k ∈ Nm, holds; in other words, equation (4) holds for the
reference family R = (Rk, ζk := k − 1)1≤k≤m.

Proof. For any given distribution P in the model, we have for I = H0 =
H0(P ) the local test control

PX∼P
[
∃k ≤ m0 : p(k:H0) ≤ c

m0
k

]
≤ α ,

implying by the monotonicity assumption c`i ≤ c
j
i for ` ≥ j:

PX∼P
[
∃k ≤ m0 : p(k:H0) ≤ c

m
k

]
≤ α .

As we argued in Section 2.4, this is equivalent to JER(R, P ) ≤ α for the
threshold-based reference family R = (Rk, k − 1)1≤k≤m using thresholds
tk := cmk , k ∈ Nm, see (2).

Now, we establish the equivalence of the two bounds:

Lemma S-1.2. For any R ⊂ Nm, V R(R) = V
GS
Simes(R).

Proof. The result comes from

max{Sr, 1 ≤ r ≤ |R|}
= max{s ≥ 0 : ∃r s.t. 1 ≤ r ≤ |R| and 0 ≤ s ≤ r − 1 and p(r:R) ≤ cmr−s}
= max{s ≥ 0 : ∃r s.t. s+ 1 ≤ r ≤ |R| and |Rr−s ∩R| ≥ r}
= max{s ≥ 0 : ∃r ≤ m s.t. s+ 1 ≤ r ≤ |Rr−s ∩R|}
= max{s ≥ 0 : ∃k ≤ m s.t. 1 ≤ k ≤ |Rk ∩R| − s}
= max{|Rk ∩R| − k, 1 ≤ k ≤ m},

by letting k = r − s.
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A consequence is that using this GS11 shortcut reduces to the post hoc
bound studied in this paper. (A remark pointing in that direction is also
mentioned at the end of Section 4.2 of GS11.) In particular, for cmk = αk/m,
the reference family reduces to the Simes reference family R0 (S-7), and the

bound V
GS
Simes(R) has the simple equivalent form given by (S-8).

S-2. JER control based on classical inequalities. In this section,
we present an elementary approach where JER control (4) is derived from
probabilistic inequalities that are well-known in multiple testing literature.

Proposition S-2.1 (Simes and Hommel inequalities). Let (pi(X))i∈Nm
be a p-value family for the null hypotheses (H0,i)i∈Nm, satisfying the charac-
teristic property

(S-5) ∀P ∈ P,∀i ∈ H0(P ), ∀t ∈ [0, 1], PX∼P (pi(X) ≤ t) ≤ t.

Then it holds that ∀P ∈ P,

(S-6) PX∼P
(
∃k ∈ {1, . . . ,m0} : p(k:H0) ≤

αk

m0cm

)
≤ α ,

where:

(i) cm = Cm :=
∑m

i=1 1/i under arbitrary dependency of the p-value fam-
ily;

(ii) cm = 1 if for all P ∈ P, the p-value family is positive regression
dependent on each element of the subset H0(P ) (in short, PRDS on
H0(P )).

Moreover, (S-6) is an equality (with cm = 1) when the pi, i ∈ H0(P ), are
i.i.d. U(0, 1).

The inequalities corresponding to items (i) and (ii) are often referred to
as the Hommel inequality (Hommel, 1983) and the Simes inequality (Simes,
1986), respectively. We refer to Benjamini and Yekutieli (2001) for a formal
definition of the PRDS property. We recall that in the Gaussian model
defined in Section 3.1 (one-sided), the PRDS assumption is valid if Σi,j ≥ 0
for all i, j ∈ Nm.

In view of (2), inequality (S-6) implies that the JER control (4) is satisfied
for K = m (under the appropriate conditions) by the Simes reference family
R0 = (R0

1(X), . . . , R0
m(X)) given by

(S-7) R0
k(X) =

{
i ∈ Nm : pi <

αk

mcm

}
, 1 ≤ k ≤ m.
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SUPPLEMENT TO “POST HOC BOUNDS USING REFERENCE FAMILIES” 11

Above, we have upper-bounded m0 by m because m0 is generally unknown.
The associated post hoc bound

V R0(R) = min
k∈{1,...,m}

{∑
i∈R

1 {pi(X) ≥ αk/m}+ k − 1

}
, R ⊂ Nm(S-8)

corresponds to the bound (3) for the choice tk = αk/m.
The Hommel bound shares some similarity with the procedure introduced

in Genovese and Wasserman (2006, Theorem 10), that is designed to work
under arbitrary dependence and for which the uniformity in α is solved
by an union bound. However, these procedures are generally conservative:
for instance, the Hommel bound is achieved in a very unrealistic negative
dependent case, see, e.g., Lehmann and Romano (2005).

Remark S-2.2 (π0-adaptive version of the Simes bound). A consequence
of the Simes bound (S-8) is that m̂0 = V R0(Nm) satisfies m̂0 ≥ m0 on the
event described in (S-6). Therefore, the bound

min
k∈{1,...,m̂0}

{∑
i∈R

1 {pi(X) ≥ αk/m̂0}+ k − 1

}

for R ⊂ Nm, which is obtained by replacing m by m̂0 = V R0(Nm) in the
Simes bound (S-8), is a slight but uniform improvement of (S-8). A closely
related bound based on Hommel (1988) has recently been proposed by Goe-
man et al. (2016).

S-3. Properties of linear and balanced procedures.

S-3.1. Magnitude of λ(α,Nm). Consider the case of known dependence
(therefore, with a λ-calibration given by (19)) in the equi-correlated Gaus-
sian one-sided location model for simplicity.

Linear template. Let us discuss the magnitude of λL(α,Nm). First, for
K = m and in the independent case, that is Σ = Im , we have λL(α,Nm) = α
by Proposition S-2.1, which means that RL reduces to the Simes reference
family R0 (S-7). Under dependence, Figure S-1 displays λL(α,Nm) in the
(one-sided) Gaussian ρ-equi-correlated setting, for different values of ρ. The
influence of the size K is also illustrated. In a nutshell, we see that the
influence of K and ρ is moderate for, say, ρ ≤ 0.2 (a somewhat realistic
range for the dependency strength). The lack of sensitivity with respect to
K is not surprising because for the linear template, only the very first k
are be important inside the probability of relation (19), as already noted in
Section 4.1.
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Fig S-1. Influence of the equi-correlation level ρ on the adjustment factor λL(α,Nm) for
linear template. Different values of K are used. m = 1, 000; α = 0.2; π0 = 1. λL(α,Nm)
was estimated based on B = 104 Monte-Carlo samples of the joint null distribution.

Balanced template. Let us discuss the magnitude of λB(α,Nm). Since F̄ is
continuous, each of the Fk

(
q(k:m)

)
is uniformly distributed on (0, 1), and a

simple union bound argument provides the following bounds:

(S-9) α/K ≤ λB(α,Nm) ≤ α.

Under independence and for K = m, the following Lemma provides a more
accurate upper bound for m large enough:

Lemma S-3.1. In the framework of Proposition S-3.3, consider λB(α) =
λB(α,Nm) for K = m (see Section 5.2). Then for m large enough, we have

(S-10) λB(α,Nm) ≤ 1/(logm)1/4.

In particular, λB(α) tends to zero as m grows to infinity. However, when
the sizeK is kept fixed, sayK = 10, (S-9) ensures that λB(α,Nm) is bounded
away from zero. Figure S-2 shows the influence of ρ and K on the value of
λB(α,Nm) under (one-sided) Gaussian ρ-equi-correlated dependence. Com-
pared to the linear template, we see the sensitivity of λB(α,Nm) w.r.t. K
and ρ is more substantial. When ρ = 0, the value of λB(α,Nm) is small
for K = m and increases as K becomes smaller, which supports the above
theoretical statements. Also, even moderate values of ρ (say, ρ ≤ 0.2) have
a large impact on the value of λB(α,Nm).
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Fig S-2. Influence of the equi-correlation level ρ on the adjustment factor λB(α,Nm)
for the balanced template. Different values of K are used. m = 1, 000; α = 0.2; π0 =
1. λB(α,Nm) was estimated based on B = 104 Monte-Carlo samples of the joint null
distribution.

S-3.2. Effects of step-down algorithm. We focus on the known depen-
dence case, with an independent Gaussian one-sided location model for sim-
plicity. Recall that the rationale behind our proposed step-down algorithm
is that, when π0 = m0/m is smaller than 1, some of the hypotheses will
be rejected at each step, which will improve the value of the λ-adjustement
by replacing λ(α,Nm) by λ(α, Â) for Â smaller than Nm. How large is the
magnitude of the improvement under independence (and K = m) ? It turns
out that the step-down refinement has a stronger influence for the balanced
template than for the linear template.

For the linear reference family, we have λ(α,Nm) = α and the family
reduces to the Simes family in this case. From (S-6), the achieved upper
bound (18) on the JER is

P
(
∃k ∈ {1, . . . ,m0} : q(k:H0) < αk/m

)
= π0α.

As a consequence, the criterion has a linear dependence w.r.t. π0. The best
improvement that the step-down algorithm can provide is thus λ = α/π0.

By contrast, for the balanced reference family, the influence of π0 is more
substantial. The next lemma shows that using the substitute λB(α,Nm)
instead of λB(α,H0) for the balanced template (in the caseK = m) results in
a JER tending asymptotically to 0 with m if π0 is bounded away from 1. This
justifies the importance of trying to use some kind of adaptive procedure,
such as the step-down.
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Lemma S-3.2. Consider λB(α) = λB(α,Nm) for K = m and qi, i ∈ Nm,
i.i.d. U(0, 1) variables. Let m0 = π0m for some π0 ∈ (0, 1) fixed with m.
Then, for m large enough,

(S-11) P
(
∃k ∈ {1, . . . ,m0} : q(k:m0) < tk

(
λB(α)

))
≤ C(π0)

(logm)1/8
,

where C(π0) = 1 + 64
(1−π0)2

(
1− e−

(1−π0)
2

32

)−1
.

This shows that the influence of π0 < 1 on the achieved JER is substantial
and makes the potential improvement of the step-down algorithm all the
more important. Of course, the amplitude of this phenomenon decreases as
π0 gets closer to 1, but our numerical experiments suggest that it still exists
for cases where π0 ≈ 1 (sparsity). This is a new feature of step-down type
algorithms to the best of our knowledge.

S-3.3. Properties of the balanced template under independence. The fol-
lowing result gathers some of the properties of the balanced template under
independence.

Proposition S-3.3. In the location model (13) under independence, let-
ting tBk (λ) be the threshold given by (24), we have:

(i) for all k ∈ {1, . . . ,m} and λ ∈ [0, 1], tBk (λ) is the λ-quantile of the
distribution Beta(k,m+ 1− k).

(ii) for any λ ≤ 0.5,

tBk (λ) ≤ k

m+ 1
;

tBk (λ) ≥ k

m+ 1
−
{

k

m+ 1

(
1− k

m+ 1

)}1/2(4 log 1/λ

m

)1/2

;(S-12)

(iii) for all m0 ∈ {1, . . . ,m} and k ∈ {1, . . . ,m0}, for all λ ≤ 0.5,

P
(
p(k:m0) ≤ t

B
k (λ)

)
≤ exp

(
− k

32

(
1− m0

m

)2)
.(S-13)

(iv) for all k ∈ {1, . . . ,m} and α ≤ 0.5,

P
(
p(k:m) ≤ α

k

m

)
≤ exp

(
−k

4

(
1− α− 1

m+ 1

)2
)
.(S-14)
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S-4. Relation to higher criticism and detection power optimal-
ity. In a nutshell, we show in this section that, as a detection procedure,
RB shares some similarities with the calibration of the higher criticism (HC
for short) method of Donoho and Jin (2004), DJ04 for short. By contrast,
RL (with K = m), which is equal to R0 in the setting of this section, is con-
nected to the procedure of Benjamini and Hochberg (1995), BH for short.
This induces specific power properties. We evaluate the power of a reference
family through its ability of detection of any false null hypothesis:

(S-15) Pow?(R, P ) = P(SR(Nm) ≥ 1) = P (∃k ∈ {1, . . . ,K} : |Rk| ≥ k) .

Note that this can be seen as the power of the single test rejecting the
null H0: “∀i ∈ Nm, H0,i is true” if there exists k ∈ {1, . . . ,m} such that
|Rk| ≥ k. We show that in a special regime, RB is optimal with respect to
this criterion, while RL is suboptimal.

Note that the step-down algorithm cannot provide any improvement in
terms of detection power: the step-down can potentially make the sets Rk in
the reference family larger in comparison to the single-step procedure, but
by construction such an improvement can only take place if |R1| ≥ 1 in the
first place for the single-step procedure (which is the first iteration of the
step-down). Hence, we focus on the single-step versions in this section.

S-4.1. Framework. We consider the location model (13) in the Gaus-
sian independent one-sided framework, with the special setting considered
in DJ04 where the true/false status of the null hypotheses is randomized
with a distribution belonging to some sparse regime. Specifically, we con-
sider the hierarchical model where Hi are i.i.d. B(π1,m) and the p-values are
independent conditionally on the Hi’s, with

• pi(X) |Hi = 0 ∼ U(0, 1) ;

• pi(X) |Hi = 1 has for c.d.f. F1,m(t) = Φ(Φ
−1

(t)− µm).

Hence, overall, the p-values (pi, i ∈ Nm) are i.i.d. and of common c.d.f.
G1,m(t) = π0,mt + π1,mF1,m(t), where π0,m = 1 − π1,m. The parameters
π1,m, µm are taken in the asymptotic range where π1,m = m−β and µm =√

2r logm for two parameters β ∈ (1/2, 1) and r ∈ (0, 1).
Let us also recall the optimal asymptotic detection boundary defined by

DJ04:

(S-16) ρ?(β) =

{
β − 1/2 if β ∈ (1/2, 3/4];

(1−
√

1− β)2 if β ∈ (3/4, 1).

This is an optimal detection boundary in the following sense: for r < ρ?(β),
any detection procedure will have a risk (type I error rate plus type II error
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rate) tending to 1, while for r > ρ?(β), there exists a detection procedure
that has a risk tending to 0. DJ04 showed that HC achieves this property.

Note that for all β ∈ (1/2, 3/4], the range where β − 1/2 ≤ r ≤ (1 −√
1− β)2 is usually referred to as sparse/weak, that is, with sparsity and

low signal strength. The sparse and weak regime is of interest because DJ04
showed that, in this situation, BH has asymptotically no detection power
while HC has full asymptotic power. In particular, this shows that BH does
not attain the optimal detection boundary.

S-4.2. Test statistic of the balanced detection procedure. By definition,
RB makes a detection if there exists k such that p(k:m) < tBk (λB(α)). Fur-
thermore, from (S-9) and (S-12), we have the lower bound
(S-17)

tBk (λB(α)) ≥ k

m+ 1
−
{

k

m+ 1

(
1− k

m+ 1

)}1/2

m−1/2 (4 log(K/α))1/2 .

Hence, RB makes a detection whenever the test statistic

max
1≤k≤K

m1/2
k

m+1 − p(k:m){
k

m+1

(
1− k

m+1

)}1/2


exceeds (4 log(K/α))1/2. This is close to the higher criticism procedure of
DJ04.

Remark S-4.1. Note that in the definition of Higher Criticism consid-
ered in DJ04, the authors have similarly restricted the range of the indices
considered to {1, . . . , α0m}, that is, α0m plays a similar role to K here. This
is useful to tune the power detection ability, as explained in Section S-4.4.

S-4.3. Optimality results. By adapting the proof of DJ04, we can show
the following result (proved in Section S-7.4):

Theorem S-4.2. In the asymptotic setting of Section S-4.1, we have:

(i) Consider any family R with thresholds tk, 1 ≤ k ≤ m, that controls
the JER at level α in the sense

P(∃k ∈ {1, . . . ,m} : U(k:m) < tk) ≤ α,

for Ui, i ∈ Nm i.i.d. uniformly distributed on (0, 1). Then we have

lim sup
m

Pow?(R, P ) ≤ α
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SUPPLEMENT TO “POST HOC BOUNDS USING REFERENCE FAMILIES” 17

whenever P is such that r < ρ?(β).

(ii) For the balanced family RB with K = m, we have Pow?(RB, P ) → 1
whenever P is such that r > ρ?(β).

By contrast, the family RL is sub-optimal, as we show now. This family
makes a detection if there exists k such that p(k:m) < αk/m, that is, if
the Benjamini-Hochberg procedure rejects at least one null hypothesis. The
following result is in fact a reformulation of Theorem 1.4 in Donoho and Jin
(2004); its proof is given in Section S-7.4 for completeness.

Theorem S-4.3. Consider the asymptotic setting of Section S-4.1. Then
the linear reference family RL satisfies the following:

(i) for r > (1−
√

1− β)2, lim Pow?(RL, P ) = 1;
(ii) for r < (1−

√
1− β)2, lim sup Pow?(RL, P ) ≤ α.

Intuitively, the threshold is αk/m = k/m− (1− α)k/m, so the deviation
term is not of the correct order. This implies a lack of detection power which
makes this procedure miss the optimal boundary.

Let us finally emphasize that the domination of the balanced family/HC
w.r.t. the linear family/BH in terms of detection power is less obvious for
a moderate value of m, as illustrated in the numerical experiments below
where m = 1, 000. This suggests that the asymptotical regime described in
Theorems S-4.2 and S-4.3 is not fully reached for such a value of m (while
it seems reached for m = 106 in DJ04).

S-4.4. Numerical experiments for detection power. We consider the in-
dependent case, and we calibrate the parameter µ and π0 according to the
above-defined regime: π0 = 1−m−β and µ =

√
2r logm, for two parameters

β (sparsity) and r (signal strength) taken in the range β ∈ {0.5, 0.6, 0.8, 1}
and r ∈ {0.05, 0.1, 0.2, 0.5, 1}. Note that, however, we do not consider an
i.i.d. p-value mixture here, but stick to the framework defined in Section 6.
For each setting, we estimate detection power by its empirical counterpart,
the proportion q̂ of 1, 000 simulation runs for which at least one of the
subsets Rk of the collection R contains more than k elements. Our ex-
periments have been made for a range of values of the target JER level
α ∈ {0.01, 0.02, 0.05, 0.10, 0.15, 0.20, 0.25}. To summarize the results, we plot
in Figure S-3 (top) the empirical detection power q̂ as a function of α for
each method.

The parameter configurations (β, r) for which the signal is below the
asymptotically optimal detection boundary identified by Donoho and Jin
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Fig S-3. Top: detection power of JER controlling procedures for independent test statistics
in the sparsity range for 4 × 5 parameter configurations for (β, r) in the sparsity range
[1/2, 1]×[0, 1]. Bottom: these 4×5 configurations are positioned with respect to the detection
boundaries identified in Donoho and Jin (2004).
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SUPPLEMENT TO “POST HOC BOUNDS USING REFERENCE FAMILIES” 19

(2004) are represented by blue squares in the bottom panel of Figure S-3.
As expected from the theory, in such configurations all procedures are pow-
erless, in the sense that the detection power is very close to the JER. Let us
focus on the parameter configurations for which detection is asymptotically
feasible (green circles and red triangles in the bottom panel of Figure S-3).
In such configurations, as expected, K has little influence on detection power
for the linear template. For the balanced template, the detection power is
substantially higher for K = 10 than for K = m. This influence of K is
consistent with our comments for JER control in Section 6. Overall, the
balanced template with K = m has better detection power than the linear
template for moderate sparsity (β ∈ {0.5, 0.6}) and signal (r ≤ 1). However,
for sparser settings (β ∈ {0.8, 1}) the linear template performs better than
the balanced template with K = m, and even than the balanced template
with K = 10 in very sparse scenarios. These numerical results provide a
useful complement to the asymptotic statements of the preceding Section;
for a finite m, the balanced template/HC is not always superior to the lin-
ear template/FWER/FDR. Moreover, in the sparse/weak setting, which is
illustrated here by the configurations β = 0.5, r = 0.05 and β = 0.6, r = 0.1,
the balanced template is only marginally superior to the linear template as
a detection procedure; we suspect that the asymptotics of Theorem S-4.2
(and of Donoho and Jin, 2004) are quite slow to kick in and not yet reached
for m = 1000.

S-5. Two-sample testing. We describe how assumption (Rand) is
met in permutation-based two-sample multiple testing problems. This can
be seen as a reformulation of Example 5 in Romano and Wolf (2005). Let
us consider a two-sample framework where

X = (X(1), . . . , X(n1), X(n1+1), . . . , X(n1+n2)) ∈ (Rm)n

is composed of n = n1 +n2 independent m-dimensional real random vectors
with X(j), 1 ≤ j ≤ n1, i.i.d. (case) and X(j), n1 + 1 ≤ j ≤ n, i.i.d. (control).

Then we aim at testing the null hypotheses H0,i : “D(X
(1)
i ) = D(X

(n1+1)
i )”,

simultaneously in 1 ≤ i ≤ m, without knowing the dependencies between the
coordinates of the X(j)’s. Consider any individual p-values pi(X) function of

the line (X
(j)
i )1≤j≤n (e.g., based on the Mann-Whitney test statistics). Note

that pH0(X) is thus a measurable function of (X
(j)
i )i∈H0,1≤j≤n. Now, the

group G of the permutation of {1, . . . , n} is naturally acting on X = (Rm)n

via the permutation of the columns: for all σ ∈ G,

σ.X = (X(σ(1)), . . . , X(σ(n1)), X(σ(n1+1)), . . . , X(σ(n))).
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This entails that pH0(σ.X) is a measurable function of (X
(σ(j))
i )i∈H0,1≤j≤n.

As a result, the assumption (Rand) is satisfied as soon as

(S-18)
(

(X
(1)
i )i∈H0 , . . . , (X

(n)
i )i∈H0

)
is an exchangeable vector. However, in the general setting, the latter is not
necessarily true, because i.i.d. marginals do not imply an exchangeable joint
distribution.

The assumption (Rand) can be covered by making an appropriate ad-
ditional semi-parametric assumption. Assume that X(1) ∼ Q(θ(1), η) and
X(n1+1) ∼ Q(θ(2), η) for some distribution Q(θ, η) on Rm only depending on
a parameter θ ∈ Rm and on some general nuisance parameter η. Assume
the functional Q(·, ·) is such that for all A ⊂ Nm, θ and η, the restriction
of Q(θ, η) to the indices of A is only depending on A, (θi)i∈A and η. As a

consequence, the null hypotheses can be rewritten as H0,i : “θ
(1)
i = θ

(2)
i ”,

1 ≤ i ≤ m, and it is now clear that the vector (S-18) is i.i.d. and thus
exchangeable. A typical instance for such a functional Q(·, ·) is given by
Q(θ, η) = N (θ, η) where η is some (unknown) covariance matrix.

S-6. Monte-Carlo approximation for balanced reference family.
We consider the balanced reference family RB,sd given in Section 5.2. We ex-
plain here in detail the construction of the reference thresholds tBk (λB(α, Â)),
1 ≤ k ≤ K in the case of known dependence, using a Monte-Carlo approxi-
mation.

1. Draw q(1), . . . , q(B) i.i.d. according to the distribution νm (on [0, 1]m),
and define the matrix

M0 =


q
(1)
1 q

(1)
2 . . . q

(1)
m

q
(2)
1 q

(2)
2 . . . q

(2)
m

...
...

...

q
(B)
1 q

(B)
2 . . . q

(B)
m

 ;

2. Define for all A ⊂ {1, . . . ,m} (denoting a := |A|), the matrix

M(A) =


q
(1)
(1:A) q

(1)
(2:A) . . . q

(1)
(a:A)

q
(2)
(1:A) q

(2)
(2:A) . . . q

(2)
(a:A)

...
...

...

q
(B)
(1:A) q

(B)
(2:A) . . . q

(B)
(a:A)


by ordering the rows of the submatrix of M0 whose row indices are in
A.
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3. Consider M(A) for A = Nm and approximate Fk(x) by F̃k(x) =

B−1
∑B

b=1 1
{
q
(b)
(k:m) ≤ x

}
. For each λ, approximate tBk (λ) by t̃Bk (λ),

defined as the λ-quantile of the sample(
q
(1)
(k:m), . . . , q

(B)
(k:m)

)
.

4. Consider the matrix of “ranks”

Z(A) =


Z1,1(A) Z1,2(A) . . . Z1,a(A)
Z2,1(A) Z2,2(A) . . . Z2,a(A)

...
...

...
ZB,1(A) ZB,2(A) . . . ZB,a(A)


where we let Zb,k(A) = F̃k(q

(b)
(k:A)), for 1 ≤ k ≤ K ∧ a and 1 ≤ b ≤ B.

5. Build the vector

U =

(
min

1≤k≤K∧a
{Z1,k(A)}, . . . , min

1≤k≤K∧a
{ZB,k(A)}

)
,

by taking the minimum within each line of Z(A). Approximate now
λB(α,A) by λ̃B(α,A) = U(dαBe), i.e., the α empirical quantile of the
sample U = (U1, . . . , UB).

6. Use Algorithm 1 with t̃Bk and λ̃B instead of tBk and λB, respectively,

to obtain Ã.

Note that in the above construction, it is only required to calculate the first
K ∧ a elements instead of the first a elements.

Remark S-6.1. Although JER control by λ-calibration for the balanced
reference family under unknown dependence is not guaranteed by Proposi-
tion 4.8, we have also implemented this λ-calibration. Formally, the con-

struction is identical, using q
(b)
k = pk(gb.X) for b = 1 . . . B and k ∈ Nm. In

this case, we have F̃k = Fk, t̃k = tk, and λ̃B = λB.

S-7. Proofs.

S-7.1. Proofs for Section 2.

Proof of Proposition 2.1. Let A be any subset of Nm. Point 1 of the
purported equivalence is ∀k ∈ NK : |Rk ∩A| ≤ ζk. Obviously this is equiva-
lent to point 2: A ∈ A(R) by the definition (6) of A(R). We prove a circular
implication of the statements 2 to 4 in the statement of the proposition. The
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implication from point 2 to point 3 is obvious from the definition (7) of V ∗R,
and further the implication to point 4 by specializing to R := A. Finally,
point 4 and the definition of V ∗R imply that there must exist A′ ∈ A(R) with
A ⊂ A′ , but since any subset of an element of A(R) also belongs to A(R) ,
we conclude A ∈ A(R) .

Concerning the final statement of the proposition about optimality, let
V : P(Nm)→ N be a function such that for any A ⊂ Nm, A ∈ A(R) implies
that ∀R ⊂ Nm, |R ∩ A| ≤ V (R). By definition of V ∗R, for any R ⊂ Nm
there exists B ∈ A(R) such that V ∗R(R) = |R ∩ B| ≤ V (R), where the last
inequality comes from the assumed implication.

Proof of Proposition 2.3. Again, we show a circular implication of
the three points. First, for 1 ≤ k ≤ K, |Rk ∩ A| ≤ ζk, implies that for any
R ⊂ Nm,

|A ∩R| = |A ∩R ∩Rk|+ |A ∩R ∩Rck|
≤ |R ∩Rk|+ |A ∩Rck|
≤ ζk + |A \Rk|.

which entails |A ∩R| ≤ V (R) by taking a minimum over all possible values
of k. Secondly, specializing the above inequality to R := A, we obtain |A| ≤
V (A). Finally, if the latter is satisfied, it implies that for all k, |A \Rk|+ζk ≥
|A|, and thus |A∩Rk| ≤ ζk. The fact that V ∗(R) ≤ V (R) for all R is a direct
consequence of the optimality of V ∗ from Proposition 2.1.

Proof of Proposition 2.2. We prove that the specific subproblem of
computing V ∗R(R) under the following restrictions is already NP-hard:

• |Rk| = 2 for all k ;
• ζk = 1 for all k ;
• R = Nm .

Namely, we can formally embed as an instance of this setting the well-known
NP-complete problem of finding a maximal independent set of vertices in
an arbitrary graph G , in the following way: let K be the number of edges
in the graph; construct the family of sets by associating to each edge e of G
the set Re containing the two vertices it joins, and ζe = 1. Then elements
of A(R) are exactly the subsets of independent vertices of G, that is, the
subsets that do not contain a pair of vertices connected by an edge. Taking
R = Nm, computing V ∗(R) = maxA∈A(R) |A| is then equivalent to finding
the maximal size of an independent vertex set in G.
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Proof of Proposition 2.4. Obviously, ζ̃k ≤ ζk and thus V
R̃

(R) ≤
V R(R). Let us prove the reverse inequality:

V
R̃

(R) = min
k∈{1,...,K}

(
|R \Rk|+ min

j∈{1,...,K}
(|Rk \Rj |+ ζj) ∧ |Rk|

)
∧ |R|

= min
j,k∈{1,...,K}

(|R \Rk|+ |Rk \Rj |+ ζj) ∧ |R|

≥ min
j∈{1,...,K}

(|R \Rj |+ ζj) ∧ |R|,

where we used |E \ F |+ |F \G| ≥ |E \G|.

Proof of Proposition 2.5. For convenience, we recall the notation

A(R) := {A ⊂ Nm : ∀k = 1, . . . ,K, |Rk ∩A| ≤ ζk}

in the definition of V ∗. Let R ⊂ Nm ; it is straightforward to check that
V ∗R(R) ≤ V R(R), since V ∗ is optimal; in fact for all A ∈ A and k ∈
{1, . . . ,K}, we have |R ∩A| ≤ |R ∩A ∩Rk|+|R ∩A ∩Rck| ≤ (ζk+|R ∩Rck|)∧
|R|. We now prove the reverse inequality, by showing that there exists a set
A ∈ A(R) such that A ⊂ R and |A| ≥ V R(R) . For this, let ζ̃k be defined as
in (9) applied to the family (Rk ∩R, ζk), 1 ≤ k ≤ K. Formally,

ζ̃k = min
1≤j≤K

{|(Rk ∩R) \ (Rj ∩R)|+ ζj} ∧ |Rk ∩R|, 1 ≤ k ≤ K ,

which means that (9) is satisfied and in particular

ζ̃k − ζ̃k−1 ≤ |(Rk ∩R) \ (Rk−1 ∩R)| , 1 ≤ k ≤ K,

with the conventions ζ̃0 = 0 and R0 = ∅. Now construct a set A by picking
ζ̃k − ζ̃k−1 elements in each (Rk ∩ R) \ (Rk−1 ∩ R) for 1 ≤ k ≤ K (which
is possible by the latter display) and add the elements of R \ (RK ∩ R).
We now check that A satisfies the constraints ensuring A ∈ A(R) , using
the nestedness assumption and the fact that A ⊂ R by construction, for all
k ∈ {1 . . .K},

|Rk ∩A| = |Rk ∩R ∩A| =
k∑
j=1

|(Rj ∩R ∩A) \ (Rj−1 ∩R ∩A)| = ζ̃k ≤ ζk .

Moreover, by Proposition 2.4, V R(R) ≤ |R \ (RK ∩R)| + ζ̃K . Therefore,
V R(R) ≤ |R \ (RK ∩R)|+ |RK ∩R ∩A| = |A|, and the result is proved.
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S-7.2. Proofs for Section 4.

Proof of Proposition 4.5. Consider the event Ω for which

(S-19) ∀k ∈ {1, . . . ,K}, p(k:H0)(X) ≥ tk(λ(α,H0)),

which occurs with probability at least 1−α by (19). Now, since t1(λ(α, ·)) is
a non-increasing function on the subsets of Nm, we have on Ω, for all j ≥ 0,

H0 ⊂ A(j−1) ⇒ p(1:H0)(X) ≥ t1(λ(α,A(j−1))) ⇒ H0 ⊂ A(j),

and thus H0 ⊂ Â, which itself entails

∀k ∈ {1, . . . ,K}, p(k:H0)(X) ≥ tk(λ(α, Â)).

Since Ω is of probability at least 1− α, the result is proved.

First proof of Theorem 4.8. We denote in this proof λ(α,X,H0) in-
stead of λ(α,H0) to underline the dependence of this functional w.r.t. the
data X. By Propositions 4.4 and 4.5, it sufficient to prove that λ(·) is a valid
λ-calibration, that is, satisfies the requirement of Definition 4.3. Since the
monotonic property is clearly satisfied, it remains to establish (17). For this,
write

P
(

min
1≤k≤K∧m0

{
t−1k
(
p(k:H0)(X)

)}
< λ(α,X,H0)

)
= P (Ψ(X,H0) < λ(α,X,H0))

≤ P
(
B−1

B∑
j=1

1 {Ψ(gj .X,H0) ≤ Ψ(X,H0)} ≤ α
)

= P
(
B−1

B∑
j=1

1 {Yj ≤ Y1} ≤ α
)
,

where we have used in the inequality the definition of λ(α,X,H0) (see (20))
and we have let Yj = Ψ(gj .X,H0), 1 ≤ j ≤ m. Now, by (Rand), we easily
check that (Y1, . . . , YB) is an exchangeable random vector: for any g0 uni-
formly distributed on G (and drawn independently of the other variables),

(Y1, . . . , YB) ∼ (Ψ(g1.g0.X,H0), . . . ,Ψ(gB.g0.X,H0))

∼
(
Ψ(g′1.X,H0), . . . ,Ψ(g′B.X,H0)

)
,

where g′j , 1 ≤ j ≤ B, are i.i.d. uniform in G (independent of X). Above,
the first equality in distribution holds because it is true conditionally on
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{g1, . . . , gB}, and the second one holds because it is true conditionally on
X. Since the variables Ψ(g′j .X,H0), 1 ≤ j ≤ m, are i.i.d. conditionally on X,
we deduce that (Y1, . . . , YB) is an exchangeable random vector. Hence, for
any independent variable U uniformly distributed on {1, . . . , B}, we obtain

P
(
B−1

B∑
j=1

1 {Yj ≤ Y1} ≤ α
)

= P
(
B−1

B∑
j=1

1 {Yj ≤ YU} ≤ α
)
.

Let σ any permutation (independent of U) such that Yσ(1) ≤ · · · ≤ Yσ(B).

Since
∑B

j=1 1 {Yj ≤ YU} =
∑B

j=1 1
{
Yσ(j) ≤ YU

}
and U and σ(U) have the

same distribution conditionally on Y , we have

P
(
B−1

B∑
j=1

1 {Yj ≤ YU} ≤ α | Y
)

= P
(
B−1

B∑
j=1

1
{
Yσ(j) ≤ Yσ(U)

}
≤ α | Y

)

≤ P
(
B−1

B∑
j=1

1 {j ≤ U} ≤ α | Y
)

= P (U ≤ αB | Y ) =
bαBc
B
≤ α.

Another argument is possible for this proof using a device recently pro-
posed by Hemerik and Goeman (2017).

Second proof of Theorem 4.8. Let G′ = (g1, g2, . . . , gB). We denote
in this proof λ(α,X,H0,G′) instead of λ(α,H0) to underline the dependence
of this functional w.r.t. the data X and the subset G′ = (g1, g2, . . . , gB). By
the previous proof, it is sufficient to prove

(S-20) P
(

Ψ(X,H0) < λ(α,X,H0,G′)
)
≤ α.

We use here an elegant technique recently proposed by Hemerik and Goe-
man (2017). Consider an independent variable U ∈ {1, . . . , B} uniformly
distributed. We easily check that, for any j ∈ {1, . . . , B}, G′.g−1j has the
same distribution as G′ (up to permutation of the elements), which entails
that G′.g−1U has the same distribution as G′ (up to permutation of the ele-
ments). Now, since the functional λ(α,X,H0, ·) is invariant by permutation,
λ(α,X,H0,G′.g−1U ) has the same distribution as λ(α,X,H0,G′) (condition-
ally on X). As a consequence, the LHS of (S-20) is equal to

P
(

Ψ(X,H0) < λ(α,X,H0,G′.g−1U )

)
= P

(
Ψ(gU .X,H0) < λ(α,X,H0,G′)

)
,
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where we used that, by (Rand),(
pH0(X), pH0(g1.g

−1
U .X), pH0(g2.g

−1
U .X), . . . , pH0(gB.g

−1
U .X))

)
∼ (pH0(gU .X), pH0(g1.X), pH0(g2.X), . . . , pH0(gB.X))) ,

because it is true conditionally on G′ and U . Now, the result follows because

P
(

Ψ(gU .X,H0) < λ(α,X,H0,G′)
∣∣∣∣X,G′)

= B−1
B∑
j=1

1
{

Ψ(gj .X,H0) < λ(α,X,H0,G′)
}
≤ α

by definition of λ(α,X,H0,G′).

S-7.3. Proofs for Section S-3.

Proof of Lemma S-3.1. Let λ0 = 1/(logm)1/4 and consider U1, . . . , Um
i.i.d. ∼ U(0, 1). By definition of λB(α), it is sufficient to prove that for m
large enough, the probability P(∃k ∈ {1, . . . ,m} : U(k:m) < tk(λ0)) is larger
than α. For this, use the lower bound (S-12) to write for a large m,

P(∃k ∈ {1, . . . ,m} : U(k:m) < tk(λ0))

= P(∃k ∈ {1, . . . ,m} : U(k:m) ≤ tk(λ0))

≥ P
(
∃k ∈ {1, . . . ,m} : U(k:m) ≤

k

m+ 1
−
{

k

m+ 1

(
1− k

m+ 1

)}1/2

m−1/2 (4 log(1/λ0))
1/2
)

= P
(
Zm ≥ (4 log(1/λ0))

1/2
)
,

where we let

Zm = max
1≤k≤m

 m1/2{
k

m+1

(
1− k

m+1

)}1/2

(
k

m+ 1
− U(k:m)

) .

Since (4 log(1/λ0))
1/2 = (log logm)1/2, we conclude by applying Lemma S-

8.2.
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Proof of Lemma S-3.2. Let N ∈ {1, . . . ,m0 − 1} be some integer to
be chosen later. By a union bound argument, we have

P
(
∃k ∈ {1, . . . ,m0} : q(k:m0) < tk

(
λB(α)

))
≤

N∑
k=1

P
(
q(k:m0) < tk

(
λB(α)

))
+

m0∑
k=N+1

P
(
q(k:m0) < tk

(
λB(α)

))
.

For the first term, since q(k:m) is stochastically smaller than q(k:m0), we have

N∑
k=1

P
(
q(k:m0) < tk

(
λB(α)

))
≤ NλB(α) ≤ N/(logm)1/4,

by Lemma S-3.1. For the second term, by (S-13) (λB(α) begin smaller than

0.5 for large enough m by S-10) and letting r = e−
(1−π0)

2

32 , we have for large
enough m:

m0∑
k=N+1

P
(
q(k:m0) < tk

(
λB(α)

))

≤
m0∑

k=N+1

rk ≤ (1− r)−1rN ≤ (1− r)−1 32

N(1− π0)2
,

because e−u ≤ 1/u for all u > 0. Choosing N = b(logm)1/8c yields the
desired result.

Proof of Proposition S-3.3. Item (i) just follows from the definition.
The proof of item (ii) is straightforward from a classical bound for the Beta
distribution, see relation (S-23) and Lemma S-8.3 in Section S-8. For item
(iii), we use item (ii) and m/(m+1) ≥ 1/2 and m0/(m0 +1) ≥ 1/2, to write

P
[
p(k:m0) ≤ tk(λ)

]
≤ P

[
p(k:m0) ≤

k

m+ 1

]
= P

[
m

1/2
0

(
p(k:m0) −

k

m0 + 1

)
≤ −(k)1/2(km0)

1/2

(
1

m0 + 1
− 1

m+ 1

)]
≤ P

[
m

1/2
0

(
p(k:m0) −

k

m0 + 1

)
≤ −

{
k

m0 + 1

}1/2

(k/2)1/2
(
m−m0

m+ 1

)]

≤ P

[
m

1/2
0

(
p(k:m0) −

k

m0 + 1

)
≤ −

{
k

m0 + 1

}1/2

(k/2)1/2
(

1− m0

m

)
/2

]
,
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and we conclude by using (S-23). For (iv), the reasoning is similar, using

P
[
p(k:m) ≤ α

k

m

]
= P

[
m1/2

(
p(k:m) −

k

m+ 1

)
≤ −

{
k

m

}1/2√
k

((
1− 1

m+ 1

)
− α

)]
.

S-7.4. Proofs for Section S-4.

Proof of Theorem S-4.2. For proving (i), we note that any family R
with thresholds tk, 1 ≤ k ≤ m, controlling the JER at level α induces a
test ϕ = 1

{
∃k : p(k) < tk

}
of level α of H0 :“µm = 0” (i.e., pi, i ∈ Nm

are all i.i.d. uniform) against H1: “µm =
√

2r logm”. Hence, it will have
less power than the likelihood ratio test (LRT) of level α. Now, as claimed
in Section 1.1 of Donoho and Jin (2004) (itself referring to Ingster, 1999),
the null hypothesis and the alternative hypothesis merge asymptotically
whenever r < ρ?(β). Hence, the asymptotic power of the LRT is less than
α.

Now consider the balanced family RB
α and prove (ii). Write tk for tBk (λB(α))

for simplicity. The basic inequality for our proof is the following: for any
k ∈ {1, . . . ,m},

Pow?(RB
α , P ) ≥ P

(
U(k:m) ≤ π0,mtk + π1,mF1,m(tk)

)
.(S-21)

From (S-17), now write for any k ∈ {1, . . . ,m},

Pow?(RB
α , P ) ≥ P

(
U(k:m) ≤

k

m+ 1

−
{

k

m+ 1

(
1− k

m+ 1

)}1/2(4 log(m/α)

m

)1/2

+ π1,m (F1,m(tk)− tk)
)

≥ P

(
max

1≤k≤m

m1/2
U(k:m) − k

m+1{
k

m+1

(
1− k

m+1

)}1/2

(S-22)

≤ − (4 log(m/α))1/2 + π1,m
F1,m(tk)− tk
k1/2/(m+ 1)

)
,
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because k1/2/(m + 1) ≥
{

k
m+1

(
1− k

m+1

)}1/2
m−1/2. Let rk > 0 such that

Φ
−1

(tk) =
√

2rk logm. Then, choosing k = bm1−q logmc for some q ∈ (0, 1),
we have rk → q as m tends to infinity. To see this, first note that λB(α)→ 0
by Lemma S-3.1, and that λB(α) ≥ α/m by (S-9). Therefore, (S-12) in

Proposition S-3.3 entails that tk ∼ k/m. Then, recalling that Φ
−1

(u) ∼√
2 log 1/u as u→ 0, our choice of rk yields rk → q. Furthermore, denoting

by φ the density of the standard gaussian distribution, we have for q > r:

π1,mF1,m(tk) = m−βΦ
(

Φ
−1

(tk)−
√

2r logm
)

= m−βΦ
(
r
1/2
k − r1/2)

√
2 logm

)
∼ Dm−βφ

(
(q1/2 − r1/2)

√
2 logm

)
/
√

logm

∼ D′m−β−(q1/2−r1/2)2/
√

logm,

for some constants D,D′ > 0. This entails

π1,m
F1,m(tk)− tk
k1/2/(m+ 1)

∼ D′m
1+q
2
−β−(q1/2−r1/2)2/logm,

Let f(q) = 1+q
2 − β − (q1/2 − r1/2)2. Since f(q0) > 0 for q0 = (4r) ∧ 1 and

r > ρ?(β), by continuity of f there exists q ∈ (0, 1) such that f(q) > 0. Now,
(ii) comes from (S-22) and the fact that the sequence of random variables

max
1≤k≤m

m1/2
U(k:m) − k

m+1{
k

m+1

(
1− k

m+1

)}1/2

 /(log logm)1/2

is tight (see Lemma S-8.2).

Proof of Theorem S-4.3. Let us first prove (i). For any k ∈ {1, . . . ,m},

Pow?(R0
α, P ) ≥ P

(
U(k:m) ≤

k

m
(π0,mα+mπ1,mF1,m(αk/m)/k)

)
Let rk > 0 such that Φ

−1
(αk/m) =

√
2rk logm, so that when k = blogmc,

rk → 1 as m tends to infinity. Then we have for some universal constant
D > 0,

mπ1,mF1,m(αk/m)/k ∼ Dm1−β−(1−r1/2)2/(logm)3/2,
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and thus the latter tends to infinity. Hence, for any M > 0, for m large
enough, we have

Pow?(R0
α, P ) ≥ P

(
U(k:m) ≤M

k

m

)
.

Then (i) is proved because mU(k:m)/k tends to 1 in probability. Now, let us
show (ii). We have

Pow?(R0
α, P ) = P

(
∃k ∈ {1, . . . ,m} : U(k:m) ≤ α

k

m

(
π0,m + π1,m

F1,m(αk/m)

αk/m

))
≤ P

(
∃k ∈ {1, . . . ,m} : U(k:m) ≤ α

k

m

(
π0,m + π1,m

F1,m(α/m)

α/m

))
because F1,m(x)/x is decreasing. Now, we have

π1,m
F1,m(α/m)

α/m
∼ Dm1−β−(1−r1/2)2/(logm)1/2,

for some universal constant D > 0, and thus the latter tends to zero as soon
as r < (1−

√
1− β)2. Hence, for any ε ∈ (0, 1), for m large enough,

Pow?(R0
α, P ) ≤ P

(
∃k ∈ {1, . . . ,m} : U(k:m) ≤ α

k

m
(1 + ε)

)
≤ α(1 + ε),

by applying the Simes inequality. The result comes by making ε tends to
zero.

S-8. Some properties of the Beta distribution. We recall the fol-
lowing result (Shorack and Wellner, 1986, p.454-455):

Lemma S-8.1. for U1, . . . , Un i.i.d. ∼ U(0, 1), any ` ∈ {1, . . . , n} and
x ≥ 1, we have

P

(
n1/2

(
U(`:n) −

`

n+ 1

)
≤ −

{
`

n+ 1

(
1− `

n+ 1

)}1/2

x

)
≤ e−x2/4

(S-23)

Here is another lemma, which is a consequence of (24) in (Shorack and
Wellner, 1986, p.601):
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Lemma S-8.2. Let U1, U2, . . . i.i.d. ∼ U(0, 1) and consider

Zn = max
1≤`≤n

n1/2
`

n+1 − U(`:n){
`

n+1

(
1− `

n+1

)}1/2

 ,

then we have, as n grows to infinity,

(S-24) P((log log n)1/2 ≤ Zn ≤ 2(log log n)1/2)→ 1

Lemma S-8.3. Let U1, U2, . . . i.i.d. ∼ U(0, 1), then, for all m ≥ 2, for
all k ∈ {1, . . . ,m},

(S-25) P(U(k:m) ≤ (k + 1)/m) ≥ 0.5.

Proof. We can assume k ≤ m− 1. Now, by considering Z ∼ B(m, (k +
1)/m), we have

P(U(k:m) ≤ (k + 1)/m) = P(Z ≥ k) = P(Z ≥ (k + 1)− 1) ≥ 0.5,

where we used that for any binomial distribution, the median and the mean
are at a distance at most 1 (see, e.g., Kaas and Buhrman, 1980).
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UMR 5219, Université de Toulouse, CNRS
UPS IMT, F-31062 Toulouse Cedex 9, France
E-mail: pierre.neuvial@math.univ-toulouse.fr
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