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POST HOC CONFIDENCE BOUNDS ON FALSE
POSITIVES USING REFERENCE FAMILIES

By Gilles Blanchard, Pierre Neuvial and Etienne Roquain

We follow a post-hoc, “user-agnostic” approach to false discovery
control in a large-scale multiple testing framework, as introduced by
Genovese and Wasserman (2006), Goeman and Solari (2011): the
statistical guarantee on the number of correct rejections must hold for
any set of candidate items, possibly selected by the user after having
seen the data. To this end, we introduce a novel point of view based on
a family of reference rejection sets and a suitable criterion, namely the
joint-family-wise-error rate over that family (JER for short). First, we
establish how to derive post hoc bounds from a given JER control and
analyze some general properties of this approach. We then develop
procedures for controlling the JER in the case where reference regions
are p-value level sets. These procedures adapt to dependencies and to
the unknown quantity of signal (via a step-down principle). We also
show interesting connections to confidence envelopes of Meinshausen
(2006); Genovese and Wasserman (2006), the closed testing based
approach of Goeman and Solari (2011) and to the higher criticism of
Donoho and Jin (2004). Our theoretical statements are supported by
numerical experiments.

1. Introduction. Large-scale multiple inference with a rigorous statis-
tical guarantee has become a topic of ever increasing relevance with the
advent of very high-dimensional data in numerous application areas. Classi-
cal multiple testing procedures prescribe a rejection set based on the amount
of false positives that the user might tolerate (e.g., false discovery rate con-
trol at level 5%). However, if the result does not correspond to what the
user expected, they may tend to “snoop” in the data, possibly concentrat-
ing only on a set R of hypotheses that appear promising to them. Even when
motivated by plausible justifications, any such approach will invalidate stan-
dard statistical guarantee because of the selection effect. This is illustrated
on Figure 1, where only “noisy” measurements have been generated: within
the selected set (in blue), 5 points stand out. However, this is only due to
the selection effect: the blue data set comes from a larger data set (green)
where these 5 measures are just the 5 maximum (noisy) measurements. As
a consequence, while building a statistical guarantee on the selected set R,

AMS 2000 subject classifications: Primary 62G10; secondary 62H15
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the overall size of the data set should be considered. This is the aim of the
so-called “post-selection” (or post hoc) inference.
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Fig 1. Illustration of the post hoc selection effect. Right: virtual data set with 1000 mea-
surements. Left: data set of 55 measurements selected from the right dataset. Measures
have been generated as i.i.d. absolute values of N (0, 1).

A particular case of post hoc inference is faced when the selected set R
is obtained by a pre-specified selection method, with a statistical guarantee
holding either conditionally on the selection (Fithian et al., 2014; Belloni
et al., 2014; Taylor and Tibshirani, 2015; Lee et al., 2016) or unconditionally
(Benjamini and Yekutieli, 2005). Other approaches diminish the selection
effect by using sample splitting, see, e.g., Bühlmann and Mandozzi (2014);
Dezeure et al. (2015) and references therein.

However, in these approaches, since the selection step is fixed, this does
not allow for arbitrary “data snooping” or ad hoc selection rules often used
in exploratory research. More generally, elaborate selection rules possibly
consisting in several stages and involving user-fixed tuning constants are
commonly used in a variety of contexts, for instance:

• in neural activity detection from brain imaging data, cluster-extent
approaches (Woo et al., 2014) select voxels by a two-stage process, first
building groups of contiguous voxels whose activity levels all pass a
user-defined threshold, then performing a correction to select a subset
of clusters. The second stage only ensures that each cluster contains
at least one truly active voxel, but there is no additional statistical
guarantee about the proportion of active voxels among the selected.
• in the context of gene or protein activity change detection, a two-

sample rank test might be used to detect activity changes, while re-
quiring that the log-ratio of average observed activities of the two
samples (“fold change”) is larger than a certain user-specified level,
see Li (2012). In other words, for each hypothesis a statistic T1 is used
for constructing a standard test, but a different statistic T2 is used for
screening, with the two statistics not being independent.

A point of view argued in several papers in various statistical contexts
(Goeman and Solari, 2011; Berk et al., 2013; Bachoc et al., pear) is that in
absence of precise information of the user’s selection strategy, it is desirable
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POST HOC BOUNDS USING REFERENCE FAMILIES 3

to provide a statistical guarantee simultaneously for any possible selected
set. In this paper, we adopt this view and focus on simultaneous upper
bounds on the number of false positives on the selected set, as proposed in
the seminal papers Genovese and Wasserman (2006) and Goeman and Solari
(2011). More formally, our goal is to build a functional V (·) defined on all
subsets of hypotheses, such that the following uniform guarantee holds:

(1) P(∀R ⊂ {1, . . . ,m} : |H0 ∩R| ≤ V (R)) ≥ 1− α,

where m is the number of null hypotheses to be tested (identified with their
respective index) and H0 ⊂ {1, . . . ,m} corresponds to the (unknown) set of
true null hypotheses. This general principle is “user-agnostic”, in the sense
that the provided inference is “ready for any selected set” (the “for all R”
being inside the probability). Observe that a bound V (·) satisfying the above
guarantee can also inform the choice of the final rejected set R; for example,
the user is allowed to optimize some function of V (R), possibly subject to
geometrical or data-dependent constraints on R.

Note that providing such a bound V (·) is equivalent to build a uni-
form upper-bound on the false discovery proportion (FDP) |H0 ∩ R|/|R|
by considering V (R)/|R|, which was the initial formulation of Genovese and
Wasserman (2006). Such confidence envelopes for the FDP have also been
considered in Genovese and Wasserman (2004, Section 6), as well as Mein-
shausen and Bühlmann (2005), Meinshausen (2006) when the coverage is
restricted to selection sets R that are p-value level sets, that is, of the form
R = {i : pi ≤ t}, for some t ∈ [0, 1].

The main idea of our method is to build a reference family (Rk)1≤k≤K of
rejection sets for which the guarantee (1) is ensured to hold (in restriction to
that family) for some ζk = V (Rk). This will induce a post hoc bound, valid
for any R, by an interpolation principle. Calibrating such a family brings
new challenges, which can be formulated in terms of controlling a multiple
testing criterion that we call “joint (family-wise) error rate” (JER for short).
While we formulate the latter in a very general way, let us first discuss as
an introductive example the situation where the reference family consists of
p-value level sets Rk = {i : pi ≤ tk} and ζk = k − 1. In that case, the JER
of T = (tk)1≤k≤K is related to the distribution of p(k:H0), the k-th smallest
value in the set {pi, i ∈ H0} as follows:

(2) JER(T ) = P
(
∃k ∈ {1, . . . ,K ∧m0} : p(k:H0) < tk

)
,

where m0 = |H0| is the number of true null hypotheses. A general intu-
ition is that the threshold tk should be chosen as an appropriate quantile

imsart-aos ver. 2014/10/16 file: AOS1847.tex date: April 8, 2019



4

of the distribution of p(k:H0), with some extra slack to take into account for
uniformity in k. We establish that if JER(T ) ≤ α holds, then the functional

V (R) = min
k∈{1,...,K}

{∑
i∈R

1 {pi(X) ≥ tk}+ k − 1

}
, R ⊂ {1, . . . ,m}(3)

is a valid post hoc bound.
The threshold family tk = αk/m, 1 ≤ k ≤ K = m, is referred to as

the Simes family throughout the paper. It satisfies JER(T ) ≤ α when the
family of p-value is positive regression dependent on each element of the
subset H0 (in short, PRDS), as defined in Benjamini and Yekutieli (2001).
The corresponding post hoc bound (3) is called the Simes post hoc bound,
and will be a baseline for our work.

The bound V (R) given by (3) has a simple graphical interpretation, based
on the expression |R| − V (R) = min{u ∈ {0, . . . , |R| − 1} : ∀v ∈ {u +
1, . . . , |R|} : p(v:R) ≥ tv−u}. Two examples are displayed in Figure 2, for
the Simes family, and another family based on the quantiles of the Beta
distribution. The latter will be one of the new contributions of this paper,
see Section 5.2. This already illustrates that an improvement is achievable
when the sorted p-value curve has a specific shape.

Simes Balanced
tk = αk/m tk = λ(α)-quantile of Beta(k + 1,m− k + 1)
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Fig 2. Sorted p-values of a subset R of {1, . . . ,m} (dots). Thresholds k ∈ {u+1, . . . , |R|} 7→
tk−u for u ∈ {0, . . . , |R| − 1} (in red for u = |R| − V (R), in light gray otherwise). The
post hoc bound V (R) (3) corresponds the length of the bold line on the X-axis. K = m,
|R| = 20, m = 50, α = 0.5. For the balanced threshold (right), the functional λ(α) is
defined in Section 5.2 (single step, independence).

Remark 1.1. Note that the simple version (2) of the JER control was
already implicitly defined by Meinshausen (2006). Also, the bound (3) can be
seen as an extension of the “augmentation procedure” of van der Laan et al.
(2004) and Genovese and Wasserman (2006); see Section 2 of the present
paper for a proof in a more general context. Finally, the bound (3) and in
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POST HOC BOUNDS USING REFERENCE FAMILIES 5

particular the formula leading to the interpretation1 of Figure 2 turns out
to coincide with the post hoc bound proposed in Goeman and Solari (2011)
as a “shortcut” of the closed testing bound in the specific context of local
tests, see Section S-1.4 for more details.

The main contributions of the present work are the following:

• We introduce a general and flexible framework to build post hoc bounds
from reference rejection families. The confidence coverage of such a
post hoc bound is ensured by showing that the reference family con-
trols a JER criterion. We establish some fundamental properties of
this method and of the resulting bounds (Section 2).
• We develop JER controlling procedures of the more specific form given

by (2), with adaptivity to known or unknown dependence and to the
proportion of true null hypotheses (Sections 3 to 5).
• We explore connections of our work to confidence envelopes (Genovese

and Wasserman, 2004, 2006; Meinshausen and Bühlmann, 2005; Mein-
shausen, 2006), closed testing (Goeman and Solari, 2011) and higher
criticism (Donoho and Jin, 2004) (Supplementary material).
• These procedures are implemented in an open-source R (R Core Team,

2017) package (Blanchard et al., 2018a). This package was used to
perform numerical experiments (Section 6) to illustrate our theoretical
statements.

The paper is organized as follows. In Section 2, we expose the general
approach, with an emphasis on the computability of the obtained bound.
We propose a low-complexity conservative proxy and analyze when it co-
incides with the optimal bound. In the following sections, we specifically
focus on the JER control of the form (2), in some exemplary models under
known or unknown dependence structure. The models are presented in Sec-
tion 3. In Section 4, after briefly discussing the shortcomings of the basic
JER control obtained using the classical Simes inequality, we present im-
provements to this basic case by considering more general threshold families
called templates; incorporating adaptation to noise dependence structure,
and to the proportion of null hypotheses using a step-down principle. Two
specific examples of such templates combined with this improved method-
ology are developed in Section 5. In Section 6, we present the results of
numerical simulations illustrating and comparing the developed methods.
We conclude with a discussion of various points in Section 7. Due to space
constraints, proofs as well as some additional results are postponed to the

1The idea for the graphical presentation used in Figure 2 originates from J. Goeman.
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supplementary material Blanchard et al. (2018b). The sections of this sup-
plement are referred to with an additional symbol “S-” in the numbering.

2. JER control: principle and properties. In this section, we in-
troduce the framework (Section 2.1) for post hoc multiple testing inference,
and propose a general approach to tackle this problem based on a reference
family of rejection sets (Section 2.2). Proceeding from the general to the par-
ticular, we first study and discuss some generic properties of this approach
(Section 2.3) before focusing on more specific choices for the reference family
leading to (2) and (3) (Section 2.4). Formal proofs for theoretical claims in
this section are found in Section S-7.1.

2.1. Aim. Formally, let X denote observed data generated from a sta-
tistical model (X ,X, P ), P ∈ P, and assume we want to test a collection of
null hypotheses H0,i ⊂ P indexed by i ∈ Nm := {1, . . . ,m}. For any P ∈ P,
we denote by H0(P ) the set of (indices of) true null hypotheses satisfied by
P , that is, H0(P ) = {i ∈ Nm : P ∈ H0,i}, and by m0(P ) its cardinality (or
H0, m0 for short). We denote by π0 = m0/m the proportion of true nulls.
We also let H1(P ) = Nm\H0(P ) be the set of (indices of) false nulls and
m1(P ) = m−m0(P ) its cardinality (or H1, m1 for short).

Our main objective in this paper is to find a function V (X,R) (denoted
by V (R) for short) satisfying

(PHα) for all P ∈ P, PX∼P
(
∀R ⊂ Nm, |R∩H0(P )| ≤ V (R)

)
≥ 1−α.

If the above is satisfied, V (R) gives a level 1 − α confidence bound for the
number of false rejections in a set R of (indices of) rejected hypotheses that
is uniformly valid over all possible choices of R. Letting S(R) = |R|−V (R),
the property (PHα) equivalently provides the following simultaneous lower
bound on |R ∩H1(P )|, that is, evidence of signal in R:

for all P ∈ P, PX∼P
(
∀R ⊂ Nm, |R ∩H1(P )| ≥ S(R)

)
≥ 1− α .

As the the above bounds are uniformly valid over all possible choice of
R, they will apply (with probability at least 1 − α) to any arbitrary data-
dependent choice of R made by the user, including choices made after looking
at the value of the bound itself for different candidates for R. For instance,
R can be chosen as maximizing |R̂| among those R̂ satisfying S(R̂)/|R̂| ≥
0.5 (more than half of signal in R̂ with high probability). Obviously, the
theoretical guarantees for R̂ also hold because the bounds are uniform in
R ⊂ Nm.
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POST HOC BOUNDS USING REFERENCE FAMILIES 7

2.2. General principle. The question of how to obtain a control of the
general form (PHα) is statistical as well as computational in nature, since
it is not practically feasible to consider individually all 2m possibilities for
candidate rejection sets R as soon as m exceeds a couple of dozens. Pro-
vided that the statistical guarantee holds, we would ideally wish that the
bound V (R) is computable efficiently for any candidate R (or family thereof)
suggested by the user.

In this section, we consider a general approach to the problem based on
a reference family with a controlled Joint family-wise Error Rate (JER).
The basic argument is illustrated by Figure 3. Imagine that a subset A of
hypotheses is guaranteed to contain less than 5 true nulls, that is, |A ∩
H0(P )| ≤ 5. Then this also provides information on other subsets R ⊂ Nm
with R 6= A. Namely, for any R ⊂ Nm, |R∩H1(P )| ≥ |R∩A|−5. Of course,
while this information is useful for R if |R ∩ A| ≥ 6, it is not if |R ∩ A| ≤
5 (nonpositive bound), as in Figure 3. Next, if we want to improve the
bound, we can consider another set B (here including A) with the property
|B∩H0(P )| ≤ 7 (say). In the situation pictured in Figure 3, this ensures that
R contains at least one element which is in H1(P ). Similarly, adding another
set C (here disjoint from A and B) with the property |C∩H0(P )| ≤ 1 (say),
ensures that R contains at least two elements which are in H1(P ).

R

A

B
.

=⇒.⇒
[5]

B [7]

C[1]
.

Fig 3. Toy example: use of a reference family with three subsets A, B and C to build a
post hoc bound on the number of true positives in an arbitrary candidate rejection set R.
In brackets, a known bound on the number of false positives in each set.

More generally, let us assume that we have at hand R = ((R1(X), ζ1(X)),
. . . , (RK(X), ζK(X))) a data-dependent collection of subsets Rk of Nm and
integer numbers ζk (we will often omit the dependence in X to ease nota-
tion), such that, with probability larger than 1−α, the set Rk(X) does not
contain more than ζk(X) elements of H0(P ), uniformly over k, that is,

(4) For all P ∈ P, JER(R, P ) ≤ α,
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where we have denoted

(5) JER(R, P ) := PX∼P (∃k ∈ NK : |Rk(X) ∩H0| > ζk(X)) .

We see R as a reference family of rejection sets for which a statistical guar-
antee on the number of false rejections is ensured, and based on which we
will build a post hoc bound. The cardinality (or size) K of the reference fam-
ily is also allowed to be data-dependent in the most general form, although
this dependence is not acknowledged for in our notation for simplicity.

How can we “interpolate” from the control on a reference family (4) to a
control on all possible rejection sets (PHα)? On the event where ∀k ∈ NK ,
|Rk(X)∩H0| ≤ ζk(X), the only available information on the unknown subset
H0 is that it is an element of the collection of subsets

A(R) = {A ⊂ Nm : ∀k ∈ NK , |Rk ∩A| ≤ ζk} .(6)

As a result, the best we can do to bound |R∩H0| for any proposed rejection
set R is a worst-case bound under this constraint:

(7) V ∗R(R) := max
A∈A(R)

|R ∩A| , R ⊂ Nm .

The next result formalizes the link between JER control and the associated
post hoc bound. It is a purely deterministic result, analyzing the information
available under JER control.

Proposition 2.1. Let R = (Rk, ζk)k∈NK
be a collection of subsets Rk ⊂

Nm and of integers ζk . Then for any A ⊂ Nm, the following statements are
equivalent:

1. ∀k ∈ NK : |Rk ∩A| ≤ ζk; 2. A ∈ A(R);
3. ∀R ⊂ Nm, |R ∩A| ≤ V ∗R(R); 4. |A| ≤ V ∗R(A).

Furthermore, if a function V : P(Nm) → N satisfies that for any A ⊂ Nm,
point 1 implies point 3 (wherein V ∗R is replaced by V ), then for all R ⊂ Nm,
it holds V ∗R(R) ≤ V (R).

Note that point 1 of the above proposition is the complement of the event
appearing in (5) ((Rk, ζk)k∈NK

is a reference family and A is taken equal to
H0) while point 2 is the event appearing in (1) (V ∗R is a post hoc bound). The
last part of the proposition establishes the optimality of V ∗R in this context.

An important problem is that V ∗(R) (we will sometimes drop the index R
for simplicity) can be hard to compute. In fact, the next proposition shows
that it is, in full generality, an NP-hard problem:
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POST HOC BOUNDS USING REFERENCE FAMILIES 9

Proposition 2.2. The problem of computing V ∗R(R) given any arbitrary
reference family R = (Rk, ζk)1≤k≤K (with Rk ⊂ Nm, ζk ∈ N ), and R ⊂ Nm ,
is NP-hard.

Naturally, Proposition 2.2 does not imply that computing the optimal
bound V ∗(R) is always infeasible: depending on the choice of the reference
family, we might be in a particular case where this can be done efficiently
We will discuss precisely such a situation below when the regions are nested.

2.3. A computable upper bound for V ∗ and its properties. We introduce
the following coarser but simpler bound:

(8) V R(R) := min
k∈NK

(|R \Rk|+ ζk) ∧ |R| , R ⊂ Nm .

Given the reference family and R, the bound V is computable in time
O(mK). The next proposition is a counterpart of Proposition 2.1 for V .

Proposition 2.3. Let R = (Rk, ζk)k∈NK
be a collection of subsets Rk ⊂

Nm and of integers ζk . Then for any A ⊂ Nm, the following statements are
equivalent:

1. ∀k ∈ NK : |Rk ∩A| ≤ ζk; 2. ∀R ⊂ Nm, |R ∩A| ≤ V R(R);

3. |A| ≤ V R(A).

For all R ⊂ Nm, it holds V ∗R(R) ≤ V R(R).

Observe that V (R) is also non-decreasing in the sense that R ⊂ R′ implies
V (R) ≤ V (R′). We turn to studying further properties.

Self-consistency. Given some reference family R = (Rk, ζk)1≤k≤K , on the
large probability event for which the control |Rk ∩H0(P )| ≤ ζk, 1 ≤ k ≤ K
holds, V R provides a bound for |Rk ∩H0(P )| itself, namely

(9) ζ̃k := V R(Rk) = min
j∈NK

(|Rk \Rj |+ ζj) ∧ |Rk|, 1 ≤ k ≤ K.

Obviously, ζ̃k ≤ ζk, with a possible strict inequality. Nevertheless, the next
proposition shows that there is no advantage in “iterating” the post hoc
bound V with ζ replaced by ζ̃, thus showing a form of self-consistency of
the bound V R.

Proposition 2.4. For any reference family R = (Rk, ζk)1≤k≤K , define

(ζ̃k)1≤k≤K by (9). Denoting R̃ = (Rk, ζ̃k)1≤k≤K , we have

V R(R) = min
k∈NK

(
|R \Rk|+ ζ̃k

)
∧ |R| = V

R̃
(R) , R ⊂ Nm .(10)
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Optimality under nestedness assumption. In the situation where the sets
(Rk)1≤k≤K are nested, it holds that V = V ∗, that is, the formula for V
provides a computationally efficient way to compute the optimal bound in
this case.

Proposition 2.5. For any reference family R = (Rk, ζk)1≤k≤K such
that Rk ⊂ Rk′ whenever k ≤ k′, we have V R(R) = V ∗R(R) .

Remark 2.6. The bound V (R) was introduced in Genovese and Wasser-
man (2006) in the particular case K = 1, ζ1 = 0, with a reference to the
augmentation procedure of van der Laan et al. (2004). The latter builds a
k-FWER controlling procedure by adding k− 1 arbitrary hypotheses to the
rejection set of a given FWER controlling procedure. Genovese and Wasser-
man (2006), noting that fixing any single value of k is suboptimal in terms
of power, also put forward the principle of taking the minimum obtained for
several values of k via a union bound principle. See an extended discussion
on this point in Section S-1.1. Also, since any one-element family is nested,
Proposition 2.5 encompasses Theorem 5 of Genovese and Wasserman (2006)
(K = 1, ζ1 = 0), extending it to the case of a whole nested reference family.

Remark 2.7. The results of the paper can equivalently be stated in
terms of false positives using V , V ∗ and V or in terms of true positives S, S∗

and S, where for any R ∈ Nm S∗(R) := |R|−V ∗(R) and S(R) := |R|−S(R).
For simplicity we have chosen to focus on V .

2.4. From general reference families to specific instances.

Specific instances. We have developed post hoc bounds for reference fam-
ilies R in a very general form. Specific cases can be considered, recovering
in particular previous literature:

(A) ζk = k − 1 for all k: in this case, each individual rejection region Rk
has controlled k-FWER, and the control is uniform over the regions.
In the standard case discussed in the introduction where these regions
are p-value level sets Rk = {i : pi ≤ tk}, nestedness holds and thus the
bound V given by (8) is optimal by Proposition 2.5.

(B) ζk = |Rk|−1 for all k: adopting a different point of view, let us associate
to each R ⊂ Nm the intersection hypothesis H0,R :=

⋂
i∈RH0,i. In

this view, each R corresponds to a hypothesis rather than a collection
of hypotheses. The statement (4) is interpreted as saying that with
high probability, each individual rejection region Rk contains at least
one true rejection. Consequently, rejecting all intersection hypotheses
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POST HOC BOUNDS USING REFERENCE FAMILIES 11

H0,Rk
, k = 1 . . . ,K can be done without committing any error. This

corresponds to an overall FWER control over this family of hypotheses.

From Section 3 onwards, we will focus on case (A) (ζk = k−1 and nested-
ness) and on how to obtain JER control then. In situation (B), JER control
can in particular be obtained by defining a test for each local hypothesis
H0,R, thus recovering the setting of Genovese and Wasserman (2006); Goe-
man and Solari (2011), see Section S-1 for a more detailed discussion.

References families of different types can be considered and be useful in
other situations as well. For instance, consider the setting where the reference
regions Rk have little or no overlap to each other. In such cases, the bound
V R is a poor proxy for V ∗R and other approximations should be considered,
as for example

ṼR(R) :=

 ∑
k∈{1,...,K}

|R ∩Rk| ∧ ζk +

∣∣∣∣∣R \
K⋃
k=1

Rk

∣∣∣∣∣
 ∧ |R| , R ⊂ Nm .(11)

It is not difficult to see that ṼR(·) = V ∗R(·) when the reference sets Rk are
disjoint. This setting is in particular useful if the signal is spatially struc-
tured, see Durand et al. (2018) for a detailed analysis of the JER approach
in this case, and further corresponding developments.

Focus of the next sections. For the remainder of this paper, we focus on
the common situation where a test statistic Ti(X) is available for each null
hypothesis H0,i, which in turn is transformed into a p-value pi(X), for all
i ∈ Nm, and we choose a reference family by p-value thresholding:

(12) Rk(X) = {i ∈ Nm : pi(X) < tk} , k ∈ {1, . . . ,K},

where the tk ∈ R, 1 ≤ k ≤ K, are associated thresholds, possibly depending
on X (K being deterministic). We easily check that the simpler expressions
(2) and (3) announced in the introduction hold in that context.

3. Model assumptions. Properties of the p-value process (pi(X), i ∈
Nm) depend on the underlying model assumptions. In this paper, we distin-
guish between two general situations, depending on whether the dependence
structure is known or not.

3.1. Location model. To give some intuition behind the general assump-
tions of the next section, we start by considering a specific location model

(13) Xi = µi + εi, i ∈ Nm ,
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where the εi are identically distributed with a common known marginal
distribution which is assumed to be continuous, integrable and symmetric.
We denote F (x) = P(ε1 ≥ x), x ∈ R. We consider the one-sided (resp. two-
sided) testing problem with null hypotheses H0,i : “µi ≤ 0” (resp. H0,i :“µi =
0”) versus the alternative hypotheses H1,i :“µi > 0” (resp. H1,i :“µi 6=
0”) for all i ∈ Nm. Classical p-values are then given by pi(X) = F (Xi)
(resp. pi(X) = 2F (|Xi|)). As many procedures of multiple testing theory,
our results will rely on the (joint) distribution of (pi(X))i∈H0(P ) or some
approximation/bound of it.

Known dependence. In the case where the (joint) distribution of ε is known,
we can consider “least favorable” p-values qi(X) = F (Xi−µi) (qi = 2F (|Xi−
µi|). While the qi(X)’s are not observed, they can be used purely as a tech-
nical device. Interestingly, these variables satisfy the following point-wise
property: for all i ∈ H0, pi(X) ≥ qi(X), both in the one-sided and two-sided
case. In addition, their joint distribution, that is, νm = D((qi(X))1≤i≤m),
is assumed to be known. For instance, under independence of the εi’s,
νm = U(0, 1)⊗m.

Unknown dependence. In the case where the (joint) distribution of ε is un-
known, so is νm and the above least favorable p-values cannot be generated.
In this situation, we focus on the two-sided situation, and assume that we
have at hand n i.i.d. copies (Xi,j)i∈Nm ∈ Rm, j ∈ Nn, where each (Xi,j)i∈Nm

follows the location model (13). The p-values are assumed to be given by
pi(X) = G (|T (Xi,j , 1 ≤ j ≤ n)|), where T (Xi,j , 1 ≤ j ≤ n) is some statistic,
and the (known) function G is given by G(x) = P(|T (εj , 1 ≤ j ≤ n)| ≥ x),
x ≥ 0, for n i.i.d. copies εj , 1 ≤ j ≤ n of ε1. Then, by a standard argument
(see, e.g., Arlot et al., 2010), the joint distribution of (pi(X))i∈H0(P ) can be
approximated by random sign-flipping: let G = {−1, 1}n denote the group
of signs s ∈ {−1, 1}n that acts on the observed X in the following way:

(s.X)i,j = sjXi,j , i ∈ Nm, j ∈ Nn.

Then, if i ∈ H0, by symmetry, the distribution of pi(X) is equal to the one of
pi(s.X), for some random sign s uniformly generated in G. As a consequence,
the distribution of (pi(s.X))i∈H0(P ) conditionally on X can act as proxy for
the distribution of (pi(X))i∈H0(P ). This “randomization property” will be
formalized in detail in the next section.

Both known and unknown situations can be met in the simple Gaussian lo-
cation model for which ε ∼ N (0,Σ) with some covariance matrix Σ (assum-
ing Σi,i = 1 for i ∈ Nm for simplicity). On the one hand, the known depen-
dence case corresponds to the case where Σ is known (with νm = N (0,Σ)). It
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can be met in practice in a standard Gaussian linear model or in marginal re-
gression, see Fan et al. (2012). On the other hand, the unknown dependence
case corresponds to the general situation where we have no information on
Σ. A suitable statistic is then T (Xi,j , 1 ≤ j ≤ n) = n−1/2

∑n
j=1Xi,j , for

which G(x) = 2 P(Z ≥ x), x ≥ 0, Z ∼ N (0, 1).
Also, mainly for illustrative purposes, we will use throughout the paper

the ρ-equi-correlated covariance matrix for which Σi,j = ρ for 1 ≤ i 6= j ≤ m,
for some ρ ∈ [0, 1] (either known or not).

3.2. General framework and assumptions. Now that we have a concrete
example in mind, we go beyond the location model by presenting general
assumptions on the p-value family (pi(X), i ∈ H0).

Known dependence. We assume that there exists a family of “least favor-
able” variables (qi(X))1≤i≤m such that for all P ∈ P,

(LeastFavor)

{
∀i ∈ H0(P ), pi(X) ≥ qi(X) P -a.s.
νm = D((qi(X))1≤i≤m) does not depend on P .

While (LeastFavor) is satisfied in particular in the location model (with
known dependence), it encompasses some other models (e.g., scaling model).

Unknown dependence. A classical way to adapt to unknown dependence in
a multiple testing setting is to use resampling-based procedures, as intro-
duced in Westfall and Young (1993) and reviewed in Dudoit and van der
Laan (2008) for instance. However, establishing a rigorous non-asymptotic
control is challenging and the seminal work of Romano and Wolf (2005) has
paved the way for this by using randomization strategies. We follow this
approach by assuming the existence of a finite transformation group G act-
ing onto the observation set X . Next, by denoting pH0(x) the null p-value
vector (pi(x))i∈H0(P ) for x ∈ X , we assume that the joint distribution of the
transformed null p-values is invariant under the action of any g ∈ G, that is,

(Rand) ∀P ∈ P, ∀g ∈ G, (pH0(g′.X))g′∈G ∼ (pH0(g′.g.X))g′∈G ,

where g.X denotes X that has been transformed by g. This assumption has
been introduced in Hemerik and Goeman (2017) and is slightly weaker than
the so-called randomization hypothesis of Romano and Wolf (2005). It is easy
to check that (Rand) is satisfied in the location model (with unknown depen-
dence) for the above-mentioned sign-flipping group G = {−1, 1}n, by using
the symmetry of the noise. Assumption (Rand) is also met in permutation-
based two-sample multiple testing problems, as described in Section S-5.
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4. Methodology for adaptive JER control.

4.1. Limitations of JER control based on Simes inequalities. A particular
form of JER control (2) may be obtained directly from the Simes inequality
(Simes, 1986): denoting by p(k:m) the k-th smallest p-value,

(14) PX∼P
(
∃k ∈ {1, . . . ,m} : p(k:m) <

αk

m

)
≤ α ,

provided that the p-value family is PRDS. A straightforward consequence is
that (2) is satisfied for the choice tk = αk/m, k ∈ NK , for any choice of K.
This is described in more details in Section S-2. However, the corresponding
reference family, called Simes reference family in the sequel, suffers from
several limitations, which are briefly described in the next two paragraphs.

Sharpness and conservativeness. We carried out a simulation study in the
Gaussian equi-correlated model where the one-sided test statistics follow the
distribution N (0,Σ) with Σii = 1 and Σij = ρ for i 6= j, for some ρ ≥ 0. This
p-value family is PRDS. We consider a white setting (m0 = m = 1, 000). In
Table 1, we quantify the conservativeness of JER control in this model as
the ratio of the JER actually achieved (estimated from 1, 000 simulations)
to the target JER level α (for α = 0.2). While the JER actually achieved by
the Simes reference family is α for ρ = 0 (a consequence of the sharpness of
the Simes inequality under independence), it is less than α/2 for ρ = 0.4.

Equi-correlation level: ρ 0 0.1 0.2 0.4 0.8

Achieved JER ×α−1 1.00 0.89 0.73 0.46 0.39
Table 1

Conservativeness of JER control based on Simes inequality in the Gaussian
equi-correlated model. Here, m0 = m = 1, 000 and α = 0.2.

Unbalancedness. Let us consider a “favorable” case for the Simes proce-
dure, for which the p-values are i.i.d. uniform on (0, 1). In this case, the
Simes inequality (14) is an equality. However, we argue that the errors in
the event described in (14) are not balanced w.r.t. the parameter k. As an
illustration, P(p(1:m) < α/m) = 1 −

(
1− α

m

)m
= α + o(α), hence the prob-

ability of the event in (14) is already almost exhausted for k = 1. More
generally, some values of the function k 7→ P(p(k:m) < αk/m) are given in
Table 2 for m = 1, 000, where p(k:m) ∼ Beta(k,m + 1 − k). As a conse-
quence, the Simes family seems to favor some of the k’s when controlling
the JER. In addition, the structure of this unbalancedness is somewhat arbi-
trary, and imposed to the user of the procedure, which may be undesirable.
This phenomenon is quantified more formally in Section S-3.3, see (S-14).
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k 1 2 5 10 100
P(p(k:m) ≤ αk/m) 4.9× 10−2 4.7× 10−3 6.6× 10−6 1.6× 10−10 5.8× 10−93

Table 2
P(p(k:m) < αk/m) when p(k:m) ∼ Beta(k,m+ 1− k), m = 1, 000 and α = 0.05.

In order to address these limitations, we aim in the rest of Section 4
at building a thresholding-based reference family R for which the quantity
JER(R, P ) is as close as possible to α, for a wide spectrum of distributions
P . To this end, we combine two approaches:

• incorporating the dependence structure of the noise (either known or
unknown);
• using a step-down algorithm to adapt to the unknown set H0.

4.2. Threshold templates. We start with considering a reference fam-
ily Rλ of the form (12), parametrized by λ ∈ [0, 1] and itself based on a
parametrized family of thresholds tk(λ) which we call template. The second
step will be to to choose λ = λ(α) so that the JER control (4) is satisfied,
which we call λ-calibration.

Definition 4.1. A one-parameter threshold template (simply referred to
as template in the sequel for short) is a family of functions tk(λ), λ ∈ [0, 1],
1 ≤ k ≤ K, such that K ∈ {1, . . . ,m} and for all k ∈ {1, . . . ,K}, tk(0) = 0
and tk(·) is non-decreasing and left-continuous on [0, 1]. The parameter K
is called the size of the template.

In general, a template is allowed to depend on the observation X. For
a given template and fixed λ, we refer to tk(λ), 1 ≤ k ≤ K, as thresholds
and denote by Rλ the associated reference family given by (12). Several
choices of template are possible as we will see in Section 5. Here, we work
with a generic, fixed template tk(λ), λ ∈ [0, 1], 1 ≤ k ≤ K. We denote the
generalized inverse of tk(·) by t−1k (y) = max{x ∈ [0, 1] : tk(x) ≤ y}, for any
y ∈ R ∪ {−∞,+∞}.

Since tk(·) is monotonic, for any p-value family {pi, i ∈ Nm}, we have
tk(λ) > p(k:H0) if and only if λ > t−1k (p(k:H0)). Hence, in view of (2), we
obtain

JER(Rλ, P ) = PX∼P
(
∃k ∈ {1, . . . ,K ∧m0} : p(k:H0) < tk(λ)

)
= PX∼P

(
∃k ∈ {1, . . . ,K ∧m0} : t−1k

(
p(k:H0)

)
< λ

)
.
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This proves the following result.

Lemma 4.2. Consider a general p-value model and any (possibly data-
dependent) template tk(λ), λ ∈ [0, 1], 1 ≤ k ≤ K. Then, for any λ ∈ [0, 1],
the error rate (5) of the reference family Rλ given by (12) can be written as
follows: for any P ∈ P,

JER(Rλ, P ) = PX∼P
(

min
1≤k≤K∧m0

{
t−1k
(
p(k:H0)(X)

)}
< λ

)
.(15)

4.3. Single-step and step-down procedures by λ-calibration. The JER con-
trol (4) can now be achieved by choosing λ in an appropriate way.

Definition 4.3. Given a threshold template tk(λ), λ ∈ [0, 1], 1 ≤ k ≤
K, a (possibly data-dependent) functional λ(α,A), α ∈ (0, 1), A ⊂ Nm, is
called a λ-calibration if it is non-increasing in A, that is,

(16) ∀α ∈ (0, 1), ∀A,A′ ⊂ {1, . . . ,m}, with A ⊂ A′, λ(α,A′) ≤ λ(α,A),

and satisfies ∀α ∈ (0, 1), ∀P ∈ P,

(17) PX∼P
(

min
1≤k≤K∧m0

{
t−1k
(
p(k:H0(P ))(X)

)}
< λ(α,H0(P ))

)
≤ α.

Two examples of possible λ-calibrations will be provided in Sections 4.4
and 4.5. In the remainder of Section 4.2, we consider that some λ-calibration
is given.

The dependence of the calibration on the set A adds extra flexibility
which will allow us to apply a step-down principle and get a more accurate
procedure. A consequence of Lemma 4.2 is that the procedure Rλ(α,H0) has
a controlled JER (given a template and a calibration), in other words taking
A = H0 provides an “oracle” calibration, but since H0 is unknown, λ(α,H0)
cannot be used. However, a consequence of (16) is that λ(α,Nm) ≤ λ(α,H0),
so that λ(α,Nm) can be used as a (single-step) conservative substitute for
λ(α,H0). This provides the following result.

Proposition 4.4. In the framework of Lemma 4.2, consider λ(α) =
λ(α,Nm) for some λ-calibration as in Definition 4.3. Then the procedure
Rλ(α) controls the JER criterion at level α in the sense of (4).

Above, the fact that λ(α,Nm) is smaller than λ(α,H0) induces a loss in
the JER control. This loss can sometimes be substantial, as illustrated with
numerical experiments in Section 6; this effect is further studied theoretically
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in Section S-3.2. This loss can be reduced by using λ(α, Â), where Â is the
output of the the following step-down algorithm.

Algorithm 1: General step-down algorithm

j ← 0 ;

A(0) ← Nm;
repeat

j ← j + 1 ;

λj ← λ(α,A(j−1)) ;

A(j) ← {i ∈ Nm : pi(X) ≥ t1(λj)} ;

until A(j) = A(j−1);

return A(j);

While the update of A(j) only depends on t1(·) in Algorithm 1, Â may
depend on all the tk’s through the functional λ(α, ·). The following result is
proved in Section S-7.2.

Proposition 4.5. In the framework of Lemma 4.2, consider any λ-
calibration as in Definition 4.3 and compute Â by Algorithm 1. Then the
procedure R

λ(α,Â)
controls the JER at level α in the sense of (4).

Remark 4.6. When we choose K = 1, Algorithm 1 reduces to the usual
FWER controlling step-down algorithm (see, e.g., Romano and Wolf, 2005).

4.4. Valid λ-calibration for known dependence. Let us focus on the sit-
uation where the dependence is known, see Section 3.2. The template is
assumed to be deterministic in this section. Assumption (LeastFavor) (with
νm defined therein) and Lemma 4.2 thus give

JER(Rλ, P ) ≤ Pq∼νm
(

min
1≤k≤K∧m0

{
t−1k
(
q(k:H0)

)}
< λ

)
,(18)

which provides the following valid λ-calibration: for all A ⊂ {1, . . . ,m},

λ(α,A) = max

{
λ ≥ 0 : Pq∼νm

(
min

1≤k≤K∧|A|

{
t−1k
(
q(k:A)

)}
< λ

)
≤ α

}
.

(19)

Property (16) can be easily checked. Note that λ(α, ·) depends on νm and
on the template, although it is not explicit from the notation for short. We
have proved the following result.
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Theorem 4.7 (λ-calibration for known dependence). Consider any p-
value family satisfying (LeastFavor), a deterministic template and the asso-
ciated reference family Rλ. Then the (deterministic) functional λ(·, ·) defined
by (19) is a λ-calibration in the sense of Definition 4.3 and thus Rλ(α,Nm)

and R
λ(α,Â)

both control the JER at level α.

4.5. Valid λ-calibration for unknown dependence. Let us consider now
the case where the dependence is unknown, see Section 3.2. The template is
still assumed to be deterministic in this section. We use the notation defined
therein and in particular assumption (Rand). Let us consider a (random)
B−tuple (g1, g2, . . . , gB) of G (for some B ≥ 2), where g1 is the identity
element of G and g2, . . . , gB have been drawn (independently of the other
variables) as i.i.d. variables, each being uniformly distributed on G.

Let us consider some template tk(·), 1 ≤ k ≤ K, and, for short, denote
for all A ⊂ Nm, Ψ(X,A) = min1≤k≤K∧|A|

{
t−1k
(
p(k:A)(X)

)}
. Now introduce

the (data-dependent) λ-calibration

λ(α,A) = max

{
λ ≥ 0 : B−1

B∑
j=1

1 {Ψ(gj .X,A) < λ} ≤ α
}
.(20)

In practice, we can compute this functional easily as λ(α,A) = Ψ(bαBc+1)

where Ψ(1) ≤ Ψ(2) ≤ · · · ≤ Ψ(B) denote the ordered sample (Ψ(gj .X,A), 1 ≤
j ≤ B). Then the following result holds and is proved in Section S-7.2.

Theorem 4.8 (λ-calibration for unknown dependence). Consider any p-
value family satisfying (Rand), a deterministic template and the associated
reference family Rλ. Then the (data-dependent) functional λ(·, ·) defined
by (20) is a λ-calibration in the sense of Definition 4.3 and Rλ(α,Nm) and
R
λ(α,Â)

both control the JER at level α

A related idea has been proposed independently by Hemerik et al. (pear)
to build confidence envelopes for the false discovery proportion.

5. Application : two examples of template-based reference fam-
ilies. In this section, we apply the methodology presented in the previous
section for two particular instances of templates. Throughout this section,
the λ-calibration functional λ(α,A) is either given by (19) (known depen-
dence) or by (20) (unknown dependence).

5.1. Linear template. Motivated by the Simes inequality (see (14)), we
define the linear template (of size K) by

(21) tLk (λ) = λk/m, λ ∈ [0, 1], 1 ≤ k ≤ K.
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Hence we have (tLk )−1(u) = 1 ∧ (mk u) which corresponds to a specific λ-
calibration denoted by λL(α,A). For each K, this gives rise to two new
reference families:

• The single-step linear reference family (of size K), denoted RL, is given
by RL = (RL1 (X), . . . , RLK(X)), where

(22) RLk (X) =

{
i ∈ Nm : pi < λL(α,Nm)

k

m

}
, 1 ≤ k ≤ K.

• The step-down linear reference family (of size K), denoted RL,sd, is

given by RL,sd = (RL,sd1 (X), . . . , RL,sdK (X)), where

(23) RL,sdk (X) =

{
i ∈ Nm : pi < λL(α, Â)

k

m

}
, 1 ≤ k ≤ K,

where Â is derived from Algorithm 1, used with λ(·) = λL(·) and
t1(·) = tL1 (·).

Theorems 4.7 and 4.8 ensure that the reference families RL and RL,sd

control the JER at level α both in the known and unknown dependence
case.

There exists also distribution free calibrations of the type λ(α) = α/cm
that are valid under arbitrary dependence. First, the Hommel bound corre-
sponding to cm =

∑m
i=1 1/i (see Section S-2.1). Second, a union bound argu-

ment can be used to give cm = K, as suggested in Genovese and Wasserman
(2006) (see the sentence before Equation (24) therein). By contrast, the ad-
vantage of our proposed λ-calibrations is their adaptivity to the dependence
structure. The magnitude of λL(α,Nm) is studied numerically in Section S-
3.1 in the case of known dependence, while the numerical experiments in
Section 6 illustrate the sharpness of the associated JER control.

5.2. Balanced template. Considering a linear template is not always ap-
propriate: as mentioned in Section 4.1, under independence and K = m,
the Simes reference family suffers from a kind of unbalancedness. Ideally, a
balanced reference family Rk would have the property that P(|Rk ∩H0| ≥ k)
is a constant not depending on k = 1, . . . ,K. While strict balancedness
seems out of reach, since these probabilities depend on H0, we can ensure
balancedness under the full null configuration (Nm = H0) by calibrating
the template as a quantile at a common level for all k, as follows. For each
k ∈ Nm, let us define{

Fk(x) = Pq∼νm(q(k:m) ≤ x) (known dep.)

Fk(x) = B−1
∑B

j=1 1
{
p(k:m)(gj .X) ≤ x

}
(unknown dep.)

, x ∈ [0, 1].
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The balanced template (of size K) is then given by

(24) tBk (λ) = F−1k (λ) = min{x ∈ [0, 1] : Fk(x) ≥ λ}, with k ∈ {1, . . . ,K}.

From an intuitive point of view, for each k, the threshold tBk (λ) corresponds
to a procedure controlling the k-FWER at level λ. It is straightforward to
check that tBk (·) fulfills the requirements of Definition 4.1 while (tBk )−1(x) =
Fk(x) for all x ∈ [0, 1]. This corresponds to a specific λ-calibration denoted
by λB(α,A). For each K, this gives rise to two new reference families:

• The single-step balanced reference family (of size K), denoted RB, is
given by RB = (RB1 (X), . . . , RBK(X)), where

(25) RBk (X) =
{
i ∈ Nm : pi < tBk (λB(α,Nm))

}
, 1 ≤ k ≤ K.

• The step-down balanced reference family (of size K), denoted RB,sd, is

given by RB,sd = (RB,sd1 (X), . . . , RB,sdK (X)), where

(26) RB,sdk (X) =
{
i ∈ Nm : pi < tBk (λB(α, Â))

}
, 1 ≤ k ≤ K,

where Â is derived from Algorithm 1, used with λ(·) = λB(·) and
t1(·) = tB1 (·).

We give in section Section S-6 a detailed construction of the reference fami-
lies RB and RB,sd. Theorem 4.7 ensures that both of these reference families
control the JER at level α in the case of a known dependence.

However, for unknown dependence, Theorem 4.8 cannot be directly ap-
plied to the balanced template. Indeed, although this is not acknowledged
by the notation for simplicity, Fk and thus tBk (λ) depends on the observation
X. Our proof does not generalize easily to such a data-dependent rejection
template, although the numerical experiments of Section 6 suggest that the
JER control is also valid in that situation.

Remark 5.1. The step-down refinement can be substantial for a bal-
anced template, as illustrated in the numerical experiments of Section 6,
and further discussed in Section S-3.2.

Remark 5.2. Under independence, the balanced template tBk (·) corre-
sponds to using quantiles of a Beta distribution, which was proposed in
Genovese and Wasserman (2006). However, these authors address uniformity
with respect to k through a union bound argument, which corresponds to
divide the confidence level by the family cardinal K, while our λ-calibration
method divides the level by a factor at most (logm)1/4, see Lemma S-3.1.
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Remark 5.3. By considering the two-sample setting with unknown de-
pendency structure (see Section S-5) our balanced procedure is related to
the work of Meinshausen (2006), where permutations are used to build FDP
confidence envelopes. However, there appears to be a gap in the theoretical
analysis justifying the validity of such an approach (Theorem 1 of Mein-
shausen, 2006, more specifically Equation (12) therein), which seems to have
been overlooked so far. The reason is similar to the one making our proof
not cover the case of a data-dependent template tk(X,λ): the fact that for
all λ and g ∈ G , (tk(g.X, λ))1≤k≤K = (tk(X,λ))1≤k≤K and (pi(g.X))i∈H0 ∼
(pi(X))i∈H0 , does not imply (in general) equality of the joint distributions
((tk(X,λ))1≤k≤K , (pi(X))i∈H0) and ((tk(g.X, λ))1≤k≤K , (pi(g.X))i∈H0).

6. Numerical experiments. We report numerical experiments per-
formed in the two-sided location model (13) described in Section 3.1 in the
case of an unknown dependence. The observations (Xi,j)i∈Nm ∈ Rm, j ∈ Nn
are distributed as ρ-equi-correlated, and the test statistics for i ∈ Nm is
T (Xi,j , 1 ≤ j ≤ n) = n−1/2

∑n
j=1Xi,j . We use sign-flipping (as described in

that section) to approximate the joint distribution of the test statistics un-
der the null. The location parameter is set to µi = n−1/2µ1 {i ∈ H1}, where
µ > 0 quantifies the signal-to-noise ratio (SNR). We have also performed
experiments in the same model but assuming known dependence, in order to
illustrate Theorem 4.7. The results of these experiments are quite similar to
those reported here for unknown dependence.

6.1. JER control. The target JER level is set to α = 0.25, and the simu-
lation parameters are: m = n = 1, 000, ρ ∈ {0, 0.2, 0.4}, π0 ∈ {0.8, 0.9, 0.99}
(corresponding to m1 ∈ {200, 100, 10}), and µ ∈ {0, 1, 2, 3, 4, 5}. For each
setting, we report the empirical JER achieved, that is, the proportion of sim-
ulation runs (out of a total of 10, 000 runs) for which |Rk(X) ∩H0(P )| > k
for at least one k ∈ {1, . . . ,K}. The results are summarized by Figure 4
for the linear template, and by Figure 5 for the balanced template. Each
figure is a matrix of panels, where each row corresponds to one value of
the sparsity parameter π0, and each column corresponds to one value of the
equi-correlation parameter ρ. In each panel, the empirical JER achieved by
several procedures is displayed as a function of the signal-to-noise ratio pa-
rameter µ. The target JER level α is represented by a horizontal dashed line,
and for the linear template, the level π0α is represented by a horizontal dot-
ted line. In both figures, each color corresponds to a different λ-calibration:

single-step Step down Oracle

λ(α,Nm) λ(α, Â) λ(α,H0)
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Additionally, for the linear template, “Simes” corresponds to λ = α (no λ-
calibration). Figure 4 illustrates that the JER is controlled at the target level
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Fig 4. JER control based on the linear template for equi-correlated test statistics.

α in all situations for the linear template, which is expected according to
Proposition 4.8. Oracle calibration yields exact JER control, up to sampling
fluctuations. As discussed in Section 4.1, the Simes reference family with
parameter α yields JER equal to π0α under independence (ρ = 0), while
it is more conservative under positive dependence ρ > 0. Single-step λ-
calibration addresses this conservativeness by adapting to the (unknown)
dependence: it yields JER control at π0α in all settings considered. Finally,
as the signal-to-noise ratio µ gets larger, the step-down λ-calibration yields a
JER closer to the nominal level α in non-sparse situations (π0 ∈ {0.8, 0.9}).
In a sparse situation (π0 = 0.99), corresponding to m1 = 10, the single-step
procedure is already quite sharp and essentially indistinguishable from its
Oracle counterpart, so we decided to omit this setting from Figure 4.

The results for the balanced template are summarized by Figure 5. First,
the JER is empirically controlled at the target level α in all situations. This is
worth noting because as discussed in the preceding section, our results do not
cover the case of unknown dependence for the balanced template. Looking
at the (brown) curves corresponding to K = m, single-step λ-calibration
leads to a much more conservative JER control than for the linear template,
especially under independence or for small values of ρ, even when π0 is close
to one. For example, when π0 = 0.99 (m1 = 10 out of m = 1, 000), the JER
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Fig 5. JER control based on the balanced template for equi-correlated test statistics, with
K = m and K = 10.

achieved by the single-step λ-calibration of the balanced family is of the
order of α/2(� π0α). When the signal-to-noise ratio is large, our proposed
step-down adjustment catches up with the target JER level. This effect is
further discussed and formalized in Section S-3.2.

Interestingly, the JER control offered by the balanced family with K = 10
(green curves in Figure 5) is much less conservative than with K = m,
even for the single-step λ-calibration. The magnitude of the λ-adjustment is
further discussed in Section S-3.1, and the question of how to choose K is
discussed in Section 7.1.

Additional numerical experiments. The experiments reported here are car-
ried out only in the equi-correlated setting and assuming that the mean
signal under the alternative is constant: µi = µ for all i ∈ H1. We have
performed other experiments, where µi is uniformly distributed between 0
and µ, and/or where the test statistics have a Toeplitz covariance, for which
Σi,j = |i− j|θ, where θ ∈ {−2,−1,−0.5,−0.2} controls the range of depen-
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dency. The results obtained for both types of signals and for both types of
dependency are qualitatively similar, so we have only reported the results
for the parameter combination: constant signal/equi-correlated dependency.

6.2. Power. In the preceding section, the quality of a JER controlling
procedure is quantified by the tightness of its JER control. We now compare
some JER controlling procedures in terms of power. This comparison is
made under independence for simplicity. We focus on the step-down linear
reference family (23) with K = m, and the step-down balanced reference
family (26) with K ∈ {10, 2m1,m}. We consider a notion of power, referred
to as “averaged power”, that takes into account the amplitude of the lower
bound SR(·). Let us define for some selected set R ⊂ Nm (possibly data
dependent),

(27) Pow(R, P,R) = E
(

SR(R)

|R ∩H1(P )|

∣∣∣∣ |R ∩H1(P )| > 0

)
,

where we recall that SR(R) = |R| − V R(R). The following selected sets
R ⊂ Nm are considered:

(a) R = Nm. In this case, the averaged power Pow(R, P,R) measures the
(relative) performance of SR(Nm) as an estimator of m1(P ) = |H1(P )|;

(b) R0 = {i ∈ Nm : pi ≤ 0.05}, and R is a random selection of half
of the items of R0. Each hypothesis is given a selection probability
proportional to the rank of its p-value;

(c) Same as (b) with R0 corresponding to the rejections of the BH proce-
dure at level 0.05.

In (b)-(c) above, the sets R are thought to be typical possible choices for
the user. We chose to give non-uniform selection probabilities in order to
favor sets enriched in lower p-values. The parameter π0 is taken in the range
π0 ∈ {0.8, 0.9, 0.99}. We set µ =

√
−4 log(1− π0) in order to specifically

focus on situations where the signal strength lies just above the estimation
boundary, which would correspond to µ =

√
−2 log(1− π0), see Donoho and

Jin (2004).
The results are displayed in Figure 6. The average power of the Simes

family (light green) and of the reference families obtained by single-step
and step-down λ-calibration of the linear template (dark green) are almost
identical. This is consistent with the results displayed in the first column
of Figure 4, where the three families achieve very similar JER levels for
µ ≤

√
−4 log(1− π0); this value of µ is shown by a dashed gray vertical

line. Overall, the averaged power obtained from the balanced template is
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substantially larger than the averaged power obtained from the linear tem-
plate. While neither template uniformly dominates the other one, the only
situation where the linear template is more powerful is under the most sparse
scenario (π0 = 0.99), for the two user-defined rejection sets (b) and (c). In
particular, the first row of panels in Figure 6 indicates that, except for a very
low target JER (α ≤ 0.02), the bound SR(Nm) obtained from the balanced
template provides a better estimator of m1(P ) = |H1(P )| than the linear
template. These experiments also show that, as expected, the choice of K
can improve the performance of the balanced procedure. Some suggestions
for choosing K are discussed below.
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Fig 6. Averaged power of JER controlling procedures for independent test statistics.

7. Discussion.
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7.1. Choosing the size K. While the choice K = m seems a priori nat-
ural, we have shown throughout this paper that it induces some conserva-
tiveness (via the λ-calibration): choosing a smaller value for K can yield a
tighter post hoc bound. This effect is particularly marked in the case of the
balanced template when p-values are close to independent (see Figure 5).
The choice of K is therefore quite important in practice. We underline the
following plausible scenarios:

• if the user has an a priori maximum amount of tolerated false dis-
coveries, then K can be set taken equal to that value. This comes
from the following fact: let K0 ∈ N and assume R = (Ri(X))1≤i≤K
is a reference family (using ζi = i − 1) satisfying JER control. Con-
sider any set R ⊂ Nm such that V R(R) ≤ K0 < K. Then we have
V R(R) = V R(K0)(R), where R(K0) = (Ri(X))1≤i≤K0+1. In words, if
the user is only interested in rejected sets R where the bound on the
number of false positives is less than K0, then the family size K can
safely be taken equal to K0 + 1.
• if the user has some upper bound m1 on the number of false hypotheses

as prior information, it seems reasonable to take K0 = m1 above (a
larger number of false discoveries would mean that more than 50%
of the hypotheses in the rejected set are false discoveries). The case
K = 2m1 considered in our numerical experiments can be interpreted
as such a scenario (assuming a known prior rough upper bound m1 =
2m1).

Designing a theoretically founded data-dependent choice of K is an interest-
ing direction for future efforts. Let us also mention that an alternative to the
choice of K is to introduce some smooth decay in the violation probability
P(|Rk| ≥ k) as k grows.

7.2. Step-down algorithm. The principle of the step-down Algorithm 1 is
to approach the oracle value λ(α,H0) by iterative approximations λ(α, Â).
Here the template tk(·) is fixed once for all. A seemingly natural extension
is to allow the template tk(·, A) to also depend on subsets A ⊂ Nm and to
apply the step-down algorithm to the template as well as λ, that is, consider
at each step tk(·, Â), then apply the λ-calibration step. For instance, for
the balanced rejection template, one could define tBk (λ,A) as the λ-quantile
of qk:A. From a theoretical point of view, however, it turns out that the
corresponding combined threshold (depending onH0 both through tk and λ)
loses the monotonicity property with respect toH0. Hence, our current proof
does not extend to that situation and we do not know if the corresponding
JER is controlled at level α. This is an interesting (but challenging) issue.
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7.3. Choice of the reference family. In the general setting presented in
Section 2, although the aim is to obtain a uniform guarantee for any possi-
ble rejected set, a tradeoff is implicitly present in the choice of the reference
family. The post hoc bounds (7), (8) can be understood as interpolation
bounds relating an arbitrary R to sets of the reference family R, so that
generally speaking they will be more accurate for rejection sets that are
“well approximated” by sets of the reference family. From the definition of
the JER control (4), it is clear that there is a tradeoff between the cardi-
nality of the reference family and the conservativeness of the bound, which
requires a uniform control over the family. Depending on the specific appli-
cation, reference families corresponding to different expected tradeoffs can
be considered. In the running example considered in this paper, the choice of
K (discussed above) represents precisely such a tradeoff; so does the choice
of the template, as we have already argued. Adequate choice of reference
families for specific applications and goals, and an appropriate notion of
which sets well approximated by the reference family, remains an important
avenue to explore. The specific case of a spatially-structured signal is studied
in Durand et al. (2018).

7.4. Principled use of user-agnostic bounds and admissible sets. This
point stems from an insightful remark by an anonymous reviewer. If there
are no constraints on the rejected set R selected by the user, and a post
hoc bound V (·) is available, it seems sensible to require that one should
not be able to add hypotheses to the rejected set without increase of the
bound on false discoveries, nor exclude hypotheses from it without decrease
of the bound on true discoveries; otherwise the choice of R would obviously
be suboptimal given the information given by the bound. Formally, call R
admissible with respect to bound V (·) if

(i) ∀R′ ) R, V (R′) > V (R);
(ii) ∀R′ ( R, S(R′) < S(R).

We leave to the reader to check the following result: the only sets admissible
with respect to V R (of (8)) belong to the reference family. (In particular,
for nested reference families, only the reference sets are admissible with re-
spect to the optimal post hoc bound V ∗R). This property emphasizes the role
played by the choice of reference family — while also putting into question to
allow rejection sets not belonging to it in the first place. Concerning this last
point, we argue that additional constraints (sometimes only implicitly de-
fined by the selection procedure used) often restrict the rejection sets under
consideration of the user (this is the case in the two exemplary applications
mentioned in the introduction). In such a situation, the reference sets might
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not satisfy the constraints, which justifies the interest of a bound for more
general Rs. One may in this case adapt the above definition of admissible
sets by restricting comparisons to sets satisfying the constraints; which sets
are then admissible would have to be investigated in specific situations.

In any case, introducing flexibility in the bound to allow for arbitrary
rejection sets should not be interpreted as absolving the user of any respon-
sibility: they should still expose the selection protocol they used — even if
only heuristically motivated — in a convincing manner.

7.5. Optimality in detection power. Numerical experiments of Section 6.2
show that, while the balanced post hoc bound seems to improve over the
Simes bound in many cases, neither bound uniformly outperforms the other
in terms of averaged power (27). By contrast, consider the detection power,
defined as the probability that the bound, applied to the entire set of hy-
potheses Nm, is non trivial and indicates at least a non-null hypothesis
(see (S-15)). We show in Section S-4 that the Simes post hoc bound is always
more conservative than the balanced one in a certain asymptotic regime. In
a nutshell, the reason is that the balanced post hoc bound is related to
the higher criticism method described in Donoho and Jin (2004) (optimal
for detection), while the Simes post hoc bound is related to the Benjamini-
Hochberg procedure of Benjamini and Hochberg (1995) (sub-optimal for
detection). While the detection power is certainly a somewhat coarse way
to measure the quality of a post hoc bound, this once more underlines the
potential advantage of the balanced bound over the Simes one. It is also of
interest to note that while providing much more detailed information than
mere detection, the post hoc bound retains optimal detection power in the
considered setting.

7.6. Further perspective. In recent work of Katsevich and Ramdas (2018),
false positive bounds are established uniformly over paths of rejection sets
induced by several standard multiple testing procedures. Interestingly, they
proved that the price to pay for this uniformity is generally quite low. This
can be fruitfully combined to the bounds in the current paper to obtain
user-agnostic bounds (note that the rejection paths are usually naturally
nested).
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