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This supplement is organized as follows. In Section S-1, we elaborate on the
connection between JER control and the approach to user-agnostic inference
via closed testing. Section S-2 gives complements on the properties of linear and
balanced templates. In Section S-3, we study the optimality of the linear and
balanced reference families in terms of detection power under sparsity assump-
tions; in doing so we identify connections between the linear reference family and
the FDR controlling procedure of Benjamini and Hochberg (1995), and between
the balanced reference family and the higher criticism procedure of Donoho
and Jin (2004). Section S-4 establishes the validity of assumption (Rand) in
permutation-based two-sample multiple testing problems. In Section S-5, we
explain how to approximate the balanced thresholds under known dependence
using a Monte-Carlo method. Finally, Section S-6 gathers the proofs of the re-
sults stated in the main paper and in this supplement.

S-1. Relation to Goeman and Solari (2011)

To the best of our knowledge, the only existing user-agnostic post hoc approach
to multiple testing is the method of Goeman and Solari (2011) (GS11 below
for short), which inspired for the present work. This method is based on closed
testing (Marcus et al., 1976), which relies, in principle, on testing all 2m−1 pos-
sible intersections between m hypotheses. In this section, we discuss connections
between that work and ours. First, we show that the probabilistic guarantee de-
rived from closed testing in GS11 can be obtained by JER control for the specific
choice ζk = |Rk| − 1. Then we prove that the shortcut obtained by GS11 for
Simes-type local tests can be interpreted as the JER control for a Simes-type
template with ζk = k − 1, which implies that the post hoc bound derived by
this shortcut is identical to the bound we derive from JER control.

S-1.1. Closed testing principle and GS approach

We come back to the general setting of Section 2.1. For any subset I ⊂ Nm,
define the associated intersection hypothesis as H0,I =

⋂
i∈I H0,i. Therefore,

H0,I is true iff P ∈ H0,i for all i ∈ I, or equivalently iff I ⊂ H0(P ). We will
often informally identify the index subset I with the corresponding intersec-
tion hypothesis H0,I in the text to simplify statements. Assume that for any
index subset I, the intersection null H0,I can be tested by a so-called local test
φI(X) ∈ {0, 1} of (individual) level α. From the collection of intersection hy-
potheses that are rejected by their respective local tests, the classical closed
testing principle (Marcus et al., 1976) extracts a subcollection1 R of subsets of
Nm, such that rejecting all intersection hypotheses of the collection R has now
controlled family-wise error rate at level α.

1The rejected collection R is the maximal subcollection of hypotheses H0,I rejected by
their local test that is closed by the superset operation on their indices. In other words, the
index set I corresponding to intersection hypothesis H0,I is selected to be included in the
rejected collection R by the closed testing principle iff φI(X) = 1, as well as all φI′ (X) = 1
for all I ⊂ I′.
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Equivalently, the complementary A = Rc, i.e. the collection of intersection
hypotheses not rejected by the closed testing procedure, satisfies for all P ∈ P:

PX∼P
(
∀I ⊂ H0(P ), I ∈ A

)
≥ 1− α. (S-1)

From this, GS11 construct a user-agnostic post hoc bound in the following way:
on the event (S-1), for any arbitrary R ⊂ {1, . . . ,m}, I0 = R∩H0(P ) is a subset
of H0(P ) and thus must be included in the collection A. This entails that (PHα)
is satisfied with

V
GS

(R) = max{|I| : I ∈ A, I ⊂ R}. (S-2)

S-1.2. Closed testing bound as a particular case of JER control

We now justify that the inequality (S-1) resulting from closed testing can be
seen as a JER control. As a result, the GS11 post hoc bound (S-2) can be seen
as a particular case of the JER post hoc approach developed here, and more
precisely a particular case of the optimal bound V ∗ defined in (6).

For this, consider R = (R1, . . . , RK) returned by the closed testing procedure
as in Section S-1.1. The closed testing principle inplies that R is closed by the
superset operation, i.e., I ∈ R implies ∀J ⊃ I, J ∈ R. Now let ζ(k) := |Rk| − 1,
1 ≤ k ≤ K. Finally, we have{

∀I ⊂ H0(P ), I ∈ A

}c
=

{
∃I ⊂ H0(P ), I ∈ R

}
=

{
H0(P ) ∈ R

}
=

{
∃k ∈ {1, . . . ,K} : |H0(P ) ∩Rk| = |Rk|

}
=

{
∃k ∈ {1, . . . ,K} : |H0(P ) ∩Rk| > ζ(k)

}
= E(R,H0)c.

Concerning the post hoc bounds, note that

A(R) = {A ⊂ Nm : ∀k ∈ NK |Rk ∩A| ≤ ζk}
= {A ⊂ Nm : ∀k ∈ NK |Rk ∩A| ≤ |Rk| − 1}
= {A ⊂ Nm : ∀k ∈ NK Rk 6⊂ A}
= Rc = A,

where we have used the fact that R is closed by superset operation. Hence

V ∗R(R) = max
A∈A(R)

|R ∩A| = max
A∈A
|R ∩A| = max

A∈A,A⊂R
|A| = V

GS
(R) ,

since A is closed by subset operation.
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S-1.3. Shortcut as using a particular reference family

As noted by GS11, computation of the closed testing output R is (in general)
not feasible when m is larger than a few dozens. In certain situations, so-called
shortcuts can be available for specific choices of the local tests, providing a
direct (but possibly approximate and conservative) computation of the closed
testing. For instance, it is well-known that Hommel’s step-down procedure is a
shortcut for Bonferroni local tests, and Hochberg’s step-up a shortcut for Simes
local tests (Huang and Hsu, 2007).

Even if R can be computed, we have shown that the calculation of the post
hoc bound (S-2) is itself NP-hard in a generic setting. To circumvent this com-
plexity issue, a less time-consuming conservative “shortcut” of the bound (S-2)
has been proposed by GS11 for Simes-type local tests:

φI(X) = 1
{
∃i ∈ {1, . . . , |I|} : p(i:I) ≤ c

|I|
i

}
, I ⊂ Nm, (S-3)

with the assumptions c`i ≤ cki , for ` ≥ k and c`i ≤ c`j , for i ≤ j. The corresponding
bound is defined as:

V
GS

Simes(R) = |R| − (1 + max{Sr, 1 ≤ r ≤ |R|}) ∨ 0, (S-4)

where Sr = max{0 ≤ s ≤ r − 1 : p(r:R) ≤ cmr−s} (with max ∅ = −∞). We
argue below in Lemma S-1.2 that this bound is in fact equivalent to the post
hoc bound V R(R) defined in (7), for the family R = (Rk, ζk := k − 1)1≤k≤m
defined by

Rk = {i ∈ Nm : pi ≤ cmk }, 1 ≤ k ≤ m.

The next lemma establishes that JER control holds for this family:

Lemma S-1.1. Assume that the tests (φI)I⊂Im form a family of local tests at
level α for the considered model, i.e., for any P ∈ H0,I , it holds PX∼P (φI(X) =
1) ≤ α. Then joint control of the k-FWER of Rk at level α, uniformly over
k ∈ Nm, holds; in other words, equation (3) holds for the reference family R =
(Rk, ζk := k − 1)1≤k≤m.

Proof. For any given distribution P in the model, we have for I = H0 = H0(P )
the local test control

PX∼P
[
∃k ≤ m0 : p(k:H0) ≤ c

m0

k

]
≤ α ,

implying by the monotonicity assumption c`i ≤ c
j
i for ` ≥ j:

PX∼P
[
∃k ≤ m0 : p(k:H0) ≤ c

m
k

]
≤ α .

As we argued in Section 2.4, this is equivalent to JER(R, P ) ≤ α for the
threshold-based reference family R = (Rk, k − 1)1≤k≤m using thresholds tk :=
cmk , k ∈ Nm, see (1).

Now, we establish the equivalence of the two bounds:
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Lemma S-1.2. For any R ⊂ Nm, V R(R) = V
GS

Simes(R).

Proof. The result comes from

max{Sr, 1 ≤ r ≤ |R|}
= max{s ≥ 0 : ∃r s.t. 1 ≤ r ≤ |R| and 0 ≤ s ≤ r − 1 and p(r:R) ≤ cmr−s}
= max{s ≥ 0 : ∃r s.t. s+ 1 ≤ r ≤ |R| and |Rr−s ∩R| ≥ r}
= max{s ≥ 0 : ∃r ≤ m s.t. s+ 1 ≤ r ≤ |Rr−s ∩R|}
= max{s ≥ 0 : ∃k ≤ m s.t. 1 ≤ k ≤ |Rk ∩R| − s}
= max{|Rk ∩R| − k, 1 ≤ k ≤ m},

by letting k = r − s.

A consequence is that using this GS11 shortcut reduces to the post hoc bound
studied in this paper. (A remark pointing in that direction is also mentioned
at the end of Section 4.2 of GS11.) In particular, for cmk = αk/m, the reference

family reduces to the Simes reference family R0 (17), and the bound V
GS

Simes(R)
has the simple equivalent form given by (18).

S-2. Properties of linear and balanced procedures

S-2.1. Magnitude of λ(α,Nm)

Consider the case of known dependence (therefore, with a λ-calibration given
by (24)) in the equi-correlated Gaussian one-sided location model for simplicity.

Linear template Let us discuss the magnitude of λL(α,Nm). First, for K =
m and in the independent case, that is Σ = Im , we have λL(α,Nm) = α
by Theorem 4.1, which means that RL reduces to the Simes reference family
R0 (17). Under dependence, Figure S-1 displays λL(α,Nm) in the (one-sided)
Gaussian ρ-equi-correlated setting, for different values of ρ. The influence of the
size K is also illustrated. In a nutshell, we see that the influence of K and ρ
is moderate for, say, ρ ≤ 0.2 (a somewhat realistic range for the dependency
strength). The lack of sensitivity with respect to K is not surprising because for
the linear template, only the very first k are be important inside the probability
of relation (24), as already noted in Section 4.3.

Balanced template Let us discuss the magnitude of λB(α,Nm). Since F̄
is continuous, each of the Fk

(
q(k:m)

)
is uniformly distributed on (0, 1), and a

simple union bound argument provides the following bounds:

α/K ≤ λB(α,Nm) ≤ α. (S-5)

Under independence and for K = m, the following Lemma provides a more
accurate upper bound for m large enough:
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Fig S-1. Influence of the equi-correlation level ρ on the adjustment factor λL(α,Nm) for
linear template. Different values of K are used. m = 1, 000; α = 0.2; π0 = 1. λL(α,Nm) was
estimated based on B = 104 Monte-Carlo samples of the joint null distribution.

Lemma S-2.1. In the framework of Proposition S-2.3, consider λB(α) = λB(α,Nm)
for K = m (see Section 6.2). Then for m large enough, we have

λB(α,Nm) ≤ 1/(logm)1/4. (S-6)

In particular, λB(α) tends to zero as m grows to infinity. However, when the
size K is kept fixed, say K = 10, (S-5) ensures that λB(α,Nm) is bounded away
from zero. Figure S-2 shows the influence of ρ and K on the value of λB(α,Nm)
under (one-sided) Gaussian ρ-equi-correlated dependence. Compared to the lin-
ear template, we see the sensitivity of λB(α,Nm) w.r.t. K and ρ is more sub-
stantial. When ρ = 0, the value of λB(α,Nm) is small for K = m and increases
as K becomes smaller, which supports the above theoretical statements. Also,
even moderate values of ρ (say, ρ ≤ 0.2) have a large impact on the value of
λB(α,Nm).

S-2.2. Effects of step-down algorithm

We focus on the known dependence case, with an independent Gaussian one-
sided location model for simplicity. Recall that the rationale behind our proposed
step-down algorithm is that, when π0 = m0/m is smaller than 1, some of the
hypotheses will be rejected at each step, which will improve the value of the
λ-adjustement by replacing λ(α,Nm) by λ(α, Â) for Â smaller than Nm. How
large is the magnitude of the improvement under independence (and K = m)
? It turns out that the step-down refinement has a stronger influence for the
balanced template than for the linear template.

For the linear reference family, we have λ(α,Nm) = α and the family reduces
to the Simes family in this case. From (16), the achieved upper bound (23) on
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Fig S-2. Influence of the equi-correlation level ρ on the adjustment factor λB(α,Nm) for the
balanced template. Different values of K are used. m = 1, 000; α = 0.2; π0 = 1. λB(α,Nm)
was estimated based on B = 104 Monte-Carlo samples of the joint null distribution.

the JER is
P
(
∃k ∈ {1, . . . ,m0} : q(k:H0) < αk/m

)
= π0α.

As a consequence, the criterion has a linear dependence w.r.t. π0. The best
improvement that the step-down algorithm can provide is thus λ = α/π0.

By contrast, for the balanced reference family, the influence of π0 is more
substantial. The next lemma shows that using the substitute λB(α,Nm) instead
of λB(α,H0) for the balanced template (in the case K = m) results in a JER
tending asymptotically to 0 with m if π0 is bounded away from 1. This justifies
the importance of trying to use some kind of adaptive procedure, such as the
step-down.

Lemma S-2.2. Consider λB(α) = λB(α,Nm) for K = m and qi, i ∈ Nm, i.i.d.
U(0, 1) variables. Let m0 = π0m for some π0 ∈ (0, 1) fixed with m. Then, for m
large enough,

P
(
∃k ∈ {1, . . . ,m0} : q(k:m0) < tk

(
λB(α)

))
≤ C(π0)

(logm)1/8
, (S-7)

where C(π0) = 1 + 64
(1−π0)2

(
1− e−

(1−π0)2

32

)−1
.

This shows that the influence of π0 < 1 on the achieved JER is substantial
and makes the potential improvement of the step-down algorithm all the more
important. Of course, the amplitude of this phenomenon decreases as π0 gets
closer to 1, but our numerical experiments suggest that it still exists for cases
where π0 ≈ 1 (sparsity). This is a new feature of step-down type algorithms to
the best of our knowledge.
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S-2.3. Properties of the balanced template under independence

The following result gathers some of the properties of the balanced template
under independence.

Proposition S-2.3. In the location model (14) under independence, letting
tBk (λ) be the threshold given by (29), we have:

(i) for all k ∈ {1, . . . ,m} and λ ∈ [0, 1], tBk (λ) is the λ-quantile of the distri-
bution Beta(k,m+ 1− k).

(ii) for any λ ≤ 0.5,

tBk (λ) ≤ k

m+ 1
;

tBk (λ) ≥ k

m+ 1
−
{

k

m+ 1

(
1− k

m+ 1

)}1/2(
4 log 1/λ

m

)1/2

; (S-8)

(iii) for all m0 ∈ {1, . . . ,m} and k ∈ {1, . . . ,m0}, for all λ ≤ 0.5,

P
(
p(k:m0) ≤ t

B
k (λ)

)
≤ exp

(
− k

32

(
1− m0

m

)2)
. (S-9)

(iv) for all k ∈ {1, . . . ,m} and α ≤ 0.5,

P
(
p(k:m) ≤ α

k

m

)
≤ exp

(
−k

4

(
1− α− 1

m+ 1

)2
)
. (S-10)

S-3. Relation to higher criticism and detection power optimality

In a nutshell, we show in this section that, as a detection procedure, RB shares
some similarity with the calibration of the higher criticism (HC for short)
method of Donoho and Jin (2004), DJ04 for short. By contrast, RL (with
K = m), which is equal to R0 in the setting of this section, is connected to
the procedure of Benjamini and Hochberg (1995), BH for short. This induces
specific power properties. We evaluate the power of a reference family through
its ability of detection of any false null hypothesis:

Pow?(R, P ) = P(SR(Nm) ≥ 1) = P (∃k ∈ {1, . . . ,K} : |Rk| ≥ k) . (S-11)

Note that this can be seen as the power of the single test rejecting the null H0:
“∀i ∈ Nm, H0,i is true” if there exists k ∈ {1, . . . ,m} such that |Rk| ≥ k. We
show that in a special regime, RB is optimal with respect to this criterion, while
RL is suboptimal.

Note that the step-down algorithm cannot provide any improvement in terms
of detection power: the step-down can potentially make the sets Rk in the refer-
ence family larger in comparison to the single-step procedure, but by construc-
tion such an improvement can only take place if |R1| ≥ 1 in the first place for
the single-step procedure (which is the first iteration of the step-down). Hence,
we focus on the single-step versions in this section.
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S-3.1. Framework

We consider the location model (14) in the Gaussian independent one-sided
framework, with the special setting considered in DJ04 where the true/false
status of the null hypotheses is randomized with a distribution belonging to
some sparse regime. Specifically, we consider the hierarchical model where Hi

are i.i.d. B(π1,m) and the p-values are independent conditionally on the Hi’s,
with

• pi(X) |Hi = 0 ∼ U(0, 1) ;

• pi(X) |Hi = 1 has for c.d.f. F1,m(t) = Φ(Φ
−1

(t)− µm).

Hence, overall, the p-values (pi, i ∈ Nm) are i.i.d. and of common c.d.f. G1,m(t) =
π0,mt+π1,mF1,m(t), where π0,m = 1−π1,m. The parameters π1,m, µm are taken
in the asymptotic range where π1,m = m−β and µm =

√
2r logm for two pa-

rameters β ∈ (1/2, 1) and r ∈ (0, 1).
Let us also recall the optimal asymptotic detection boundary defined by DJ04:

ρ?(β) =

{
β − 1/2 if β ∈ (1/2, 3/4];

(1−
√

1− β)2 if β ∈ (3/4, 1).
(S-12)

This is an optimal detection boundary in the following sense: for r < ρ?(β), any
detection procedure will have a risk (type I error rate plus type II error rate)
tending to 1, while for r > ρ?(β), there exists a detection procedure that has a
risk tending to 0. DJ04 showed that HC achieves this property.

Note that for all β ∈ (1/2, 3/4], the range where β−1/2 ≤ r ≤ (1−
√

1− β)2 is
usually referred to as sparse/weak, that is, with sparsity and low signal strength.
The sparse and weak regime is of interest because DJ04 showed that, in this sit-
uation, BH has asymptotically no detection power while HC has full asymptotic
power. In particular, this shows that BH does not attain the optimal detection
boundary.

S-3.2. Test statistic of the balanced detection procedure

By definition, RB makes a detection if there exists k such that p(k:m) < tBk (λB(α)).
Furthermore, from (S-5) and (S-8), we have the lower bound

tBk (λB(α)) ≥ k

m+ 1
−
{

k

m+ 1

(
1− k

m+ 1

)}1/2

m−1/2 (4 log(K/α))
1/2

.

(S-13)
Hence, RB makes a detection whenever the test statistic

max
1≤k≤K

m1/2
k

m+1 − p(k:m){
k

m+1

(
1− k

m+1

)}1/2


exceeds (4 log(K/α))

1/2
. This is close to the higher criticism procedure of DJ04.
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Remark S-3.1. Note that in the definition of Higher Criticism considered in
DJ04, the authors have similarly restricted the range of the indices considered
to {1, . . . , α0m}, that is, α0m plays a similar role to K here. This is useful to
tune the power detection ability, as explained in Section S-3.4.

S-3.3. Optimality results

By adapting the proof of DJ04, we can show the following result (proved in
Section S-6.4):

Theorem S-3.2. In the asymptotic setting of Section S-3.1, we have:

(i) Consider any family R with thresholds tk, 1 ≤ k ≤ m, that controls the
JER at level α in the sense

P(∃k ∈ {1, . . . ,m} : U(k:m) < tk) ≤ α,

for Ui, i ∈ Nm i.i.d. uniformly distributed on (0, 1). Then we have

lim sup
m

Pow?(R, P ) ≤ α

whenever P is such that r < ρ?(β).

(ii) For the balanced family RB with K = m, we have Pow?(RB , P ) → 1
whenever P is such that r > ρ?(β).

By contrast, the family RL is sub-optimal, as we show now. This family makes
a detection if there exists k such that p(k:m) < αk/m, that is, if the Benjamini-
Hochberg procedure rejects at least one null hypothesis. The following result is
in fact a reformulation of Theorem 1.4 in Donoho and Jin (2004); its proof is
given in Section S-6.4 for completeness.

Theorem S-3.3. Consider the asymptotic setting of Section S-3.1. Then the
linear reference family RL satisfies the following:

(i) for r > (1−
√

1− β)2, lim Pow?(RL, P ) = 1;
(ii) for r < (1−

√
1− β)2, lim sup Pow?(RL, P ) ≤ α.

Intuitively, the threshold is αk/m = k/m−(1−α)k/m, so the deviation term
is not of the correct order. This implies a lack of detection power which makes
this procedure miss the optimal boundary.

Let us finally emphasize that the domination of the balanced family/HC w.r.t.
the linear family/BH in terms of detection power is less obvious for a moderate
value of m, as illustrated in the numerical experiments below where m = 1, 000.
This suggests that the asymptotical regime described in Theorems S-3.2 and S-
3.3 is not fully reached for such a value of m (while it seems reached for m = 106

in DJ04).
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S-3.4. Numerical experiments for detection power

We consider the independent case, and we calibrate the parameter µ and π0
according to the above-defined regime: π0 = 1 − m−β and µ =

√
2r logm,

for two parameters β (sparsity) and r (signal strength) taken in the range
β ∈ {0.5, 0.6, 0.8, 1} and r ∈ {0.05, 0.1, 0.2, 0.5, 1}. Note that, however, we do
not consider an i.i.d. p-value mixture here, but stick to the framework defined
in Section 7. For each setting, we estimate detection power by its empirical
counterpart, the proportion q̂ of 1, 000 simulation runs for which at least one
of the subsets Rk of the collection R contains more than k elements. Our
experiments have been made for a range of values of the target JER level
α ∈ {0.01, 0.02, 0.05, 0.10, 0.15, 0.20, 0.25}. To summarize the results, we plot
in Figure S-3 (top) the empirical detection power q̂ as a function of α for each
method.

The parameter configurations (β, r) for which the signal is below the asymp-
totically optimal detection boundary identified by Donoho and Jin (2004) are
represented by blue squares in the bottom panel of Figure S-3. As expected from
the theory, in such configurations all procedures are powerless, in the sense that
the detection power is very close to the JER. Let us focus on the parameter
configurations for which detection is asymptotically feasible (green circles and
red triangles in the bottom panel of Figure S-3). In such configurations, as ex-
pected, K has little influence on detection power for the linear template. For
the balanced template, the detection power is substantially higher for K = 10
than for K = m. This influence of K is consistent with our comments for JER
control in Section 7. Overall, the balanced template with K = m has better
detection power than the linear template for moderate sparsity (β ∈ {0.5, 0.6})
and signal (r ≤ 1). However, for sparser settings (β ∈ {0.8, 1}) the linear tem-
plate performs better than the balanced template with K = m, and even than
the balanced template with K = 10 in very sparse scenarios. These numerical
results provide a useful complement to the asymptotic statements of the preced-
ing Section; for a finite m, the balanced template/HC is not always superior to
the linear template/FWER/FDR. Moreover, in the sparse/weak setting, which
is illustrated here by the configurations β = 0.5, r = 0.05 and β = 0.6, r = 0.1,
the balanced template is only marginally superior to the linear template as a
detection procedure; we suspect that the asymptotics of Theorem S-3.2 (and
of Donoho and Jin, 2004) are quite slow to kick in and not yet reached for
m = 1000.

S-4. Two-sample testing

We describe how assumption (Rand) is met in permutation-based two-sample
multiple testing problems. This can be seen as a reformulation of Example 5 in
Romano and Wolf (2005). Let us consider a two-sample framework where

X = (X(1), . . . , X(n1), X(n1+1), . . . , X(n1+n2)) ∈ (Rm)n
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Fig S-3. Top: detection power of JER controlling procedures for independent test statistics in
the sparsity range for 4×5 parameter configurations for (β, r) in the sparsity range [1/2, 1]×
[0, 1]. Bottom: these 4×5 configurations are positioned with respect to the detection boundaries
identified in Donoho and Jin (2004).
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is composed of n = n1 + n2 independent m-dimensional real random vectors
with X(j), 1 ≤ j ≤ n1, i.i.d. (case) and X(j), n1 + 1 ≤ j ≤ n, i.i.d. (control).

Then we aim at testing the null hypotheses H0,i : “D(X
(1)
i ) = D(X

(n1+1)
i )”,

simultaneously in 1 ≤ i ≤ m, without knowing the dependencies between the
coordinates of the X(j)’s. Consider any individual p-values pi(X) function of

the line (X
(j)
i )1≤j≤n (e.g., based on the Mann-Whitney test statistics). Note

that pH0
(X) is thus a measurable function of (X

(j)
i )i∈H0,1≤j≤n. Now, the group

G of the permutation of {1, . . . , n} is naturally acting on X = (Rm)n via the
permutation of the columns: for all σ ∈ G,

σ.X = (X(σ(1)), . . . , X(σ(n1)), X(σ(n1+1)), . . . , X(σ(n))).

This entails that pH0
(σ.X) is a measurable function of (X

(σ(j))
i )i∈H0,1≤j≤n. As

a result, the assumption (Rand) is satisfied as soon as(
(X

(1)
i )i∈H0

, . . . , (X
(n)
i )i∈H0

)
(S-14)

is an exchangeable vector. However, in the general setting, the latter is not
necessarily true, because i.i.d. marginals do not imply an exchangeable joint
distribution.

The assumption (Rand) can be covered by making an appropriate additional
semi-parametric assumption. Assume that X(1) ∼ Q(θ(1), η) and X(n1+1) ∼
Q(θ(2), η) for some distribution Q(θ, η) on Rm only depending on a parameter
θ ∈ Rm and on some general nuisance parameter η. Assume the functional Q(·, ·)
is such that for all A ⊂ Nm, θ and η, the restriction of Q(θ, η) to the indices of
A is only depending on A, (θi)i∈A and η. As a consequence, the null hypotheses

can be rewritten as H0,i : “θ
(1)
i = θ

(2)
i ”, 1 ≤ i ≤ m, and it is now clear that

the vector (S-14) is i.i.d. and thus exchangeable. A typical instance for such
a functional Q(·, ·) is given by Q(θ, η) = N (θ, η) where η is some (unknown)
covariance matrix.

S-5. Monte-Carlo approximation for balanced reference family

We consider the balanced reference family RB,sd given in Section 6.2. We explain
here in detail the construction of the reference thresholds tBk (λB(α, Â)), 1 ≤ k ≤
K in the case of known dependence, using a Monte-Carlo approximation.

1. Draw q(1), . . . , q(B) i.i.d. according to the distribution νm (on [0, 1]m),
and define the matrix

M0 =


q
(1)
1 q

(1)
2 . . . q

(1)
m

q
(2)
1 q

(2)
2 . . . q

(2)
m

...
...

...

q
(B)
1 q

(B)
2 . . . q

(B)
m

 ;
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2. Define for all A ⊂ {1, . . . ,m} (denoting a := |A|), the matrix

M(A) =


q
(1)
(1:A) q

(1)
(2:A) . . . q

(1)
(a:A)

q
(2)
(1:A) q

(2)
(2:A) . . . q

(2)
(a:A)

...
...

...

q
(B)
(1:A) q

(B)
(2:A) . . . q

(B)
(a:A)


by ordering the rows of the submatrix of M0 whose row indices are in A.

3. ConsiderM(A) forA = Nm and approximate Fk(x) by F̃k(x) = B−1
∑B
b=1 1

{
q
(b)
(k:m) ≤ x

}
.

For each λ, approximate tBk (λ) by t̃Bk (λ), defined as the λ-quantile of the
sample (

q
(1)
(k:m), . . . , q

(B)
(k:m)

)
.

4. Consider the matrix of “ranks”

Z(A) =


Z1,1(A) Z1,2(A) . . . Z1,a(A)
Z2,1(A) Z2,2(A) . . . Z2,a(A)

...
...

...
ZB,1(A) ZB,2(A) . . . ZB,a(A)


where we let Zb,k(A) = F̃k(q

(b)
(k:A)), for 1 ≤ k ≤ K ∧ a and 1 ≤ b ≤ B.

5. Build the vector

U =

(
min

1≤k≤K∧a
{Z1,k(A)}, . . . , min

1≤k≤K∧a
{ZB,k(A)}

)
,

by taking the minimum within each line of Z(A). Approximate now λB(α,A)

by λ̃B(α,A) = U(dαBe), i.e., the α empirical quantile of the sample U =
(U1, . . . , UB).

6. Use Algorithm 1 with t̃Bk and λ̃B instead of tBk and λB , respectively, to

obtain Ã.

Note that in the above construction, it is only required to calculate the first
K ∧ a elements instead of the first a elements.

Remark S-5.1. Although JER control by λ-calibration for the balanced reference
family under unknown dependence is not guaranteed by Proposition 5.8, we
have also implemented this λ-calibration. Formally, the construction is identical,

using q
(b)
k = pk(gb.X) for b = 1 . . . B and k ∈ Nm. In this case, we have F̃k = Fk,

t̃k = tk, and λ̃B = λB .

S-6. Proofs

S-6.1. Proofs for Section 2

Proof of Proposition 2.1. The result is more natural to prove in terms of true
positives (|R∩H1|) that false positives (|R∩H0|), so we introduce the notation
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S∗(R) = |R| − V ∗(R) and S(R) := |R| − V (R). Let us equivalently establish

E(R,H0) =
{
∀R ⊂ Nm, |R ∩H1| ≥ S(R)

}
=
{
S(H0) = 0

}
(S-15)

= {∀R ⊂ Nm, |R ∩H1| ≥ S∗(R)} = {S∗(H0) = 0} . (S-16)

We show a circular inclusion of the events in (S-15), starting with E(R,H0) .
First, for 1 ≤ k ≤ K, |Rk ∩H0| ≤ ζk, implies that for any R,

|R ∩H1|+ ζk ≥ |R ∩H1|+ |Rk ∩H0| ≥ |R ∩Rk| ,

which entails |R ∩H1| ≥ S(R) by taking a maximum over all possible values of
k. Secondly, if ∀R, |R ∩ H1| ≥ S(R), then for R = H0, we obtain S(H0) = 0.
Finally, S(H0) = 0 implies that for all k, |H0 ∩Rk| − ζk ≤ 0.

Similarly for (S-16), the event E(R,H0) is by definition equivalent to H0 ∈
A(R) . This implies for any R: |R ∩ H1| = |R \ H0| ≥ S∗(R). Specializing for
R = H0 as above, this entails S∗(H0) = 0. Finally, the latter event implies in
turn that there must exist A ∈ A(R) with H0 ⊂ A , but since any subset of an
element of A(R) also belongs to A(R) , we conclude H0 ∈ A(R) .

Proof of Proposition 2.3. We prove that the specific subproblem of computing
V ∗R(R) under the following restrictions is already NP-hard:

• |Rk| = 2 for all k ;
• ζk = 1 for all k ;
• R = Nm .

Namely, we can formally embed as an instance of this setting the well-known
NP-complete problem of finding a maximal independent set of vertices in an
arbitrary graph G , in the following way: let K be the number of edges in the
graph; construct the family of sets by associating to each edge e of G the set
Re containing the two vertices it joins, and ζe = 1. Then elements of A(R) are
exactly the subsets of independent vertices of G, that is, the subsets that do
not contain a pair of vertices connected by an edge. Taking R = Nm, computing
V ∗(R) = maxA∈A(R) |A| is then equivalent to finding the maximal size of an
independent vertex set in G.

Proof of Proposition 2.4. Obviously, ζ̃k ≤ ζk and thus V R̃(R) ≤ V R(R). Let us
prove the reverse inequality:

V R̃(R) = min
k∈{1,...,K}

(
|R \Rk|+ min

j∈{1,...,K}
(|Rk \Rj |+ ζj) ∧ |Rk|

)
∧ |R|

= min
j,k∈{1,...,K}

(|R \Rk|+ |Rk \Rj |+ ζj) ∧ |R|

≥ min
j∈{1,...,K}

(|R \Rj |+ ζj) ∧ |R|,

where we used |E \ F |+ |F \G| ≥ |E \G|.
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Proof of Proposition 2.5. For convenience, we recall the notation

A(R) := {A ⊂ Nm : ∀k = 1, . . . ,K, |Rk ∩A| ≤ ζk}

in the definition of V ∗. Let R ⊂ Nm ; it is straightforward to check that V ∗R(R) ≤
V R(R), since V ∗ is optimal; in fact for all A ∈ A and k ∈ {1, . . . ,K}, we have
|R ∩A| ≤ |R ∩A ∩Rk| + |R ∩A ∩Rck| ≤ (ζk + |R ∩Rck|) ∧ |R|. We now prove
the reverse inequality, by showing that there exists a set A ∈ A(R) such that
A ⊂ R and |A| ≥ V R(R) . For this, let ζ̃k be defined as in (10) applied to the
family (Rk ∩R, ζk), 1 ≤ k ≤ K. Formally,

ζ̃k = min
1≤j≤K

{|(Rk ∩R) \ (Rj ∩R)|+ ζj} ∧ |Rk ∩R|, 1 ≤ k ≤ K ,

which means that (12) is satisfied and in particular

ζ̃k − ζ̃k−1 ≤ |(Rk ∩R) \ (Rk−1 ∩R)| , 1 ≤ k ≤ K,

with the conventions ζ̃0 = 0 and R0 = ∅. Now construct a set A by picking
ζ̃k − ζ̃k−1 elements in each (Rk ∩ R) \ (Rk−1 ∩ R) for 1 ≤ k ≤ K (which is
possible by the latter display) and add the elements of R \ (RK ∩ R). We now
check that A satisfies the constraints ensuring A ∈ A(R) , using the nestedness
assumption and the fact that A ⊂ R by construction, for all k ∈ {1 . . .K},

|Rk ∩A| = |Rk ∩R ∩A| =
k∑
j=1

|(Rj ∩R ∩A) \ (Rj−1 ∩R ∩A)| = ζ̃k ≤ ζk .

Moreover, by Proposition 2.4, V R(R) ≤ |R \ (RK ∩R)|+ζ̃K . Therefore, V R(R) ≤
|R \ (RK ∩R)|+ |RK ∩R ∩A| = |A|, and the result is proved.

S-6.2. Proofs for Section 5

Proof of Proposition 5.5. Consider the event Ω for which

∀k ∈ {1, . . . ,K}, p(k:H0)(X) ≥ tk(λ(α,H0)), (S-17)

which occurs with probability at least 1− α by (24). Now, since t1(λ(α, ·)) is a
non-increasing function on the subsets of Nm, we have on Ω, for all j ≥ 0,

H0 ⊂ A(j−1) ⇒ p(1:H0)(X) ≥ t1(λ(α,A(j−1))) ⇒ H0 ⊂ A(j),

and thus H0 ⊂ Â, which itself entails

∀k ∈ {1, . . . ,K}, p(k:H0)(X) ≥ tk(λ(α, Â)).

Since Ω is of probability at least 1− α, the result is proved.
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Second proof of Theorem 5.8. Let G′ = (g1, g2, . . . , gB). We denote in this proof
λ(α,X,H0,G′) instead of λ(α,H0) to underline the dependence of this functional
w.r.t. the data X and the subset G′ = (g1, g2, . . . , gB). By Section A, it is
sufficient to prove

P
(

Ψ(X,H0) < λ(α,X,H0,G′)
)
≤ α. (S-18)

We use here an elegant technique recently proposed by Hemerik and Goeman
(2017). Consider an independent variable U ∈ {1, . . . , B} uniformly distributed.
We easily check that, for any j ∈ {1, . . . , B}, G′.g−1j has the same distribution

as G′ (up to permutation of the elements), which entails that G′.g−1U has the
same distribution as G′ (up to permutation of the elements). Now, since the
functional λ(α,X,H0, ·) is invariant by permutation, λ(α,X,H0,G′.g−1U ) has the
same distribution as λ(α,X,H0,G′) (conditionally on X). As a consequence, the
LHS of (S-18) is equal to

P
(

Ψ(X,H0) < λ(α,X,H0,G′.g−1U )

)
= P

(
Ψ(gU .X,H0) < λ(α,X,H0,G′)

)
,

where we used that, by (Rand),(
pH0

(X), pH0
(g1.g

−1
U .X), pH0

(g2.g
−1
U .X), . . . , pH0

(gB .g
−1
U .X))

)
∼ (pH0

(gU .X), pH0
(g1.X), pH0

(g2.X), . . . , pH0
(gB .X))) ,

because it is true conditionally on G′ and U . Now, the result follows because

P
(

Ψ(gU .X,H0) < λ(α,X,H0,G′)
∣∣∣∣X,G′)

= B−1
B∑
j=1

1 {Ψ(gj .X,H0) < λ(α,X,H0,G′)} ≤ α

by definition of λ(α,X,H0,G′).

S-6.3. Proofs for Section S-2

Proof of Lemma S-2.1. Let λ0 = 1/(logm)1/4 and consider U1, . . . , Um i.i.d.
∼ U(0, 1). By definition of λB(α), it is sufficient to prove that for m large
enough, the probability P(∃k ∈ {1, . . . ,m} : U(k:m) < tk(λ0)) is larger than α.
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For this, use the lower bound (S-8) to write for a large m,

P(∃k ∈ {1, . . . ,m} : U(k:m) < tk(λ0))

= P(∃k ∈ {1, . . . ,m} : U(k:m) ≤ tk(λ0))

≥ P
(
∃k ∈ {1, . . . ,m} : U(k:m) ≤

k

m+ 1
−
{

k

m+ 1

(
1− k

m+ 1

)}1/2

m−1/2 (4 log(1/λ0))
1/2
)

= P
(
Zm ≥ (4 log(1/λ0))

1/2
)
,

where we let

Zm = max
1≤k≤m

 m1/2{
k

m+1

(
1− k

m+1

)}1/2

(
k

m+ 1
− U(k:m)

) .

Since (4 log(1/λ0))
1/2

= (log logm)1/2, we conclude by applying Lemma S-7.2.

Proof of Lemma S-2.2. Let N ∈ {1, . . . ,m0 − 1} be some integer to be chosen
later. By a union bound argument, we have

P
(
∃k ∈ {1, . . . ,m0} : q(k:m0) < tk

(
λB(α)

))
≤

N∑
k=1

P
(
q(k:m0) < tk

(
λB(α)

))
+

m0∑
k=N+1

P
(
q(k:m0) < tk

(
λB(α)

))
.

For the first term, since q(k:m) is stochastically smaller than q(k:m0), we have

N∑
k=1

P
(
q(k:m0) < tk

(
λB(α)

))
≤ NλB(α) ≤ N/(logm)1/4,

by Lemma S-2.1. For the second term, by (S-9) (λB(α) begin smaller than 0.5

for large enough m by S-6) and letting r = e−
(1−π0)2

32 , we have for large enough
m:

m0∑
k=N+1

P
(
q(k:m0) < tk

(
λB(α)

))

≤
m0∑

k=N+1

rk ≤ (1− r)−1rN ≤ (1− r)−1 32

N(1− π0)2
,

because e−u ≤ 1/u for all u > 0. Choosing N = b(logm)1/8c yields the desired
result.
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Proof of Proposition S-2.3. Item (i) just follows from the definition. The proof
of item (ii) is straightforward from a classical bound for the Beta distribution,
see relation (S-21) and Lemma S-7.3 in Section S-7. For item (iii), we use item
(ii) and m/(m+ 1) ≥ 1/2 and m0/(m0 + 1) ≥ 1/2, to write

P
[
p(k:m0) ≤ tk(λ)

]
≤ P

[
p(k:m0) ≤

k

m+ 1

]
= P

[
m

1/2
0

(
p(k:m0) −

k

m0 + 1

)
≤ −(k)1/2(km0)1/2

(
1

m0 + 1
− 1

m+ 1

)]
≤ P

[
m

1/2
0

(
p(k:m0) −

k

m0 + 1

)
≤ −

{
k

m0 + 1

}1/2

(k/2)1/2
(
m−m0

m+ 1

)]

≤ P

[
m

1/2
0

(
p(k:m0) −

k

m0 + 1

)
≤ −

{
k

m0 + 1

}1/2

(k/2)1/2
(

1− m0

m

)
/2

]
,

and we conclude by using (S-21). For (iv), the reasoning is similar, using

P
[
p(k:m) ≤ α

k

m

]
= P

[
m1/2

(
p(k:m) −

k

m+ 1

)
≤ −

{
k

m

}1/2√
k

((
1− 1

m+ 1

)
− α

)]
.

S-6.4. Proofs for Section S-3

Proof of Theorem S-3.2. For proving (i), we note that any family R with thresh-
olds tk, 1 ≤ k ≤ m, controlling the JER at level α induces a test ϕ =
1
{
∃k : p(k) < tk

}
of level α of H0 :“µm = 0” (i.e., pi, i ∈ Nm are all i.i.d.

uniform) against H1: “µm =
√

2r logm”. Hence, it will have less power than the
likelihood ratio test (LRT) of level α. Now, as claimed in Section 1.1 of Donoho
and Jin (2004) (itself referring to Ingster, 1999), the null hypothesis and the
alternative hypothesis merge asymptotically whenever r < ρ?(β). Hence, the
asymptotic power of the LRT is less than α.

Now consider the balanced family RB
α and prove (ii). Write tk for tBk (λB(α))

for simplicity. The basic inequality for our proof is the following: for any k ∈
{1, . . . ,m},

Pow?(RB
α , P ) ≥ P

(
U(k:m) ≤ π0,mtk + π1,mF1,m(tk)

)
. (S-19)
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From (S-13), now write for any k ∈ {1, . . . ,m},

Pow?(RB
α , P ) ≥ P

(
U(k:m) ≤

k

m+ 1

−
{

k

m+ 1

(
1− k

m+ 1

)}1/2(
4 log(m/α)

m

)1/2

+ π1,m (F1,m(tk)− tk)
)

≥ P

(
max

1≤k≤m

m1/2
U(k:m) − k

m+1{
k

m+1

(
1− k

m+1

)}1/2

 (S-20)

≤ − (4 log(m/α))
1/2

+ π1,m
F1,m(tk)− tk
k1/2/(m+ 1)

)
,

because k1/2/(m + 1) ≥
{

k
m+1

(
1− k

m+1

)}1/2

m−1/2. Let rk > 0 such that

Φ
−1

(tk) =
√

2rk logm. Then, choosing k = bm1−q logmc for some q ∈ (0, 1),
we have rk → q as m tends to infinity. To see this, first note that λB(α) → 0
by Lemma S-2.1, and that λB(α) ≥ α/m by (S-5). Therefore, (S-8) in Proposi-

tion S-2.3 entails that tk ∼ k/m. Then, recalling that Φ
−1

(u) ∼
√

2 log 1/u as
u → 0, our choice of rk yields rk → q. Furthermore, denoting by φ the density
of the standard gaussian distribution, we have for q > r:

π1,mF1,m(tk) = m−βΦ
(

Φ
−1

(tk)−
√

2r logm
)

= m−βΦ
(
r
1/2
k − r1/2)

√
2 logm

)
∼ Dm−βφ

(
(q1/2 − r1/2)

√
2 logm

)
/
√

logm

∼ D′m−β−(q
1/2−r1/2)2/

√
logm,

for some constants D,D′ > 0. This entails

π1,m
F1,m(tk)− tk
k1/2/(m+ 1)

∼ D′m
1+q
2 −β−(q

1/2−r1/2)2/logm,

Let f(q) = 1+q
2 − β − (q1/2 − r1/2)2. Since f(q0) > 0 for q0 = (4r) ∧ 1 and

r > ρ?(β), by continuity of f there exists q ∈ (0, 1) such that f(q) > 0. Now,
(ii) comes from (S-20) and the fact that the sequence of random variables

max
1≤k≤m

m1/2
U(k:m) − k

m+1{
k

m+1

(
1− k

m+1

)}1/2

 /(log logm)1/2

is tight (see Lemma S-7.2).
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Proof of Theorem S-3.3. Let us first prove (i). For any k ∈ {1, . . . ,m},

Pow?(R0
α, P ) ≥ P

(
U(k:m) ≤

k

m
(π0,mα+mπ1,mF1,m(αk/m)/k)

)
Let rk > 0 such that Φ

−1
(αk/m) =

√
2rk logm, so that when k = blogmc,

rk → 1 as m tends to infinity. Then we have for some universal constant D > 0,

mπ1,mF1,m(αk/m)/k ∼ Dm1−β−(1−r1/2)2/(logm)3/2,

and thus the latter tends to infinity. Hence, for any M > 0, for m large enough,
we have

Pow?(R0
α, P ) ≥ P

(
U(k:m) ≤M

k

m

)
.

Then (i) is proved because mU(k:m)/k tends to 1 in probability. Now, let us
show (ii). We have

Pow?(R0
α, P ) = P

(
∃k ∈ {1, . . . ,m} : U(k:m) ≤ α

k

m

(
π0,m + π1,m

F1,m(αk/m)

αk/m

))
≤ P

(
∃k ∈ {1, . . . ,m} : U(k:m) ≤ α

k

m

(
π0,m + π1,m

F1,m(α/m)

α/m

))
because F1,m(x)/x is decreasing. Now, we have

π1,m
F1,m(α/m)

α/m
∼ Dm1−β−(1−r1/2)2/(logm)1/2,

for some universal constant D > 0, and thus the latter tends to zero as soon as
r < (1−

√
1− β)2. Hence, for any ε ∈ (0, 1), for m large enough,

Pow?(R0
α, P ) ≤ P

(
∃k ∈ {1, . . . ,m} : U(k:m) ≤ α

k

m
(1 + ε)

)
≤ α(1 + ε),

by applying the Simes inequality. The result comes by making ε tends to zero.

S-7. Some properties of the Beta distribution

We recall the following result (Shorack and Wellner, 1986, p.454-455):

Lemma S-7.1. for U1, . . . , Un i.i.d. ∼ U(0, 1), any ` ∈ {1, . . . , n} and x ≥ 1,
we have

P

(
n1/2

(
U(`:n) −

`

n+ 1

)
≤ −

{
`

n+ 1

(
1− `

n+ 1

)}1/2

x

)
≤ e−x

2/4 (S-21)
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Here is another lemma, which is a consequence of (24) in (Shorack and Well-
ner, 1986, p.601):

Lemma S-7.2. Let U1, U2, . . . i.i.d. ∼ U(0, 1) and consider

Zn = max
1≤`≤n

n1/2
`

n+1 − U(`:n){
`

n+1

(
1− `

n+1

)}1/2

 ,

then we have, as n grows to infinity,

P((log log n)1/2 ≤ Zn ≤ 2(log log n)1/2)→ 1 (S-22)

Lemma S-7.3. Let U1, U2, . . . i.i.d. ∼ U(0, 1), then, for all m ≥ 2, for all
k ∈ {1, . . . ,m},

P(U(k:m) ≤ (k + 1)/m) ≥ 0.5. (S-23)

Proof. We can assume k ≤ m − 1. Now, by considering Z ∼ B(m, (k + 1)/m),
we have

P(U(k:m) ≤ (k + 1)/m) = P(Z ≥ k) = P(Z ≥ (k + 1)− 1) ≥ 0.5,

where we used that for any binomial distribution, the median and the mean are
at a distance at most 1 (see, e.g., Kaas and Buhrman, 1980).
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