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Abstract: We introduce a general methodology for post hoc inference in a large-scale multi-
ple testing framework. The approach is called “user-agnostic” in the sense that the statistical
guarantee on the number of correct rejections holds for any set of candidate items selected
by the user (after having seen the data). This task is investigated by defining a suitable
criterion, named the joint-family-wise-error rate (JER for short). We propose several pro-
cedures for controlling the JER, with a special focus on incorporating dependencies while
adapting to the unknown quantity of signal (via a step-down approach). We show that our
proposed setting incorporates as particular cases a version of the higher criticism as well as
the closed testing based approach of Goeman and Solari (2011). Our theoretical statements
are supported by numerical experiments.
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1. Introduction

A major challenge in modern high-dimensional statistics is that of large-scale multiple inference
with a rigorous statistical guarantee. Classical multiple testing procedures prescribe a rejection
set based on the amount of false positives that the user might tolerate (e.g., false discovery rate
control at level 5%). However, if the result does not correspond to what the user expected, then
they may tend to “snoop” in the data, which will invalidate the statistical guarantee because of
the selection effect. This is illustrated on Figure 1, where only “noisy” measurements have been
generated: within the selected set (in blue), 5 points look like significant measurements. However,
this is only due to the selection effect: the blue data set comes from a larger data set (green) where
these 5 measures are just the 5 maximum (noisy) measurements. As a consequence, while building
a statistical guarantee on the selected set R, the overall size of the data set should be considered.
This is the aim of the so-called “post-selection inference”.

A particular case of post hoc inference is faced when the selection step R is a pre-specified se-
lection method, see Lockhart et al. (2014), Fithian et al. (2014), Bühlmann and Mandozzi (2014),
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Fig 1. Illustration of the post hoc selection effect. Right: virtual data set with 1000 measurements. Left: data set of
55 measurements selected from the right dataset. Measures have been generated as i.i.d. absolute values of N (0, 1).

Belloni et al. (2014) and Taylor and Tibshirani (2015), among others. In this case, the significance
is established conditionally on the fact that the items have been previously selected in the first
round. However, this does not allow fully for “data snooping”, since the selection step is fixed.

By contrast, at a pure exploratory research step, many kinds of selection procedure R can be
employed by the user, possibly many times, and it is desirable to provide a statistical guarantee
simultaneously on any of them. This point of view has been proposed in several papers for various
statistical guarantees, e.g., Benjamini and Yekutieli (2005); Goeman and Solari (2011); Berk et al.
(2013). In this paper, we focus on simultaneous upper bounds on the number of false positives
on the selected set, as proposed in the seminal paper Goeman and Solari (2011). We like to think
to this general principle as “user-agnostic” or in omnia paratus, because the provided inference is
“ready for any selected set”.

Maybe at a more technical level, another inspiration for our work is the criterion that we call
“joint family wise error rate” (joint error rate, JER, in short), which was implicitly defined in
Meinshausen (2006) (in a less general form) for building false discovery proportion confidence en-
velopes (see also Genovese and Wasserman, 2004, 2006 for more details on this topic).

In a nutshell, the contributions of our work are listed as follows:

• we provide a general framework for obtaining post hoc bounds, that generalizes the method
of Goeman and Solari (2011) and does not rely on closed testing but on JER control;

• new procedures controlling the JER are introduced, by incorporating the (known) depen-
dence of the data, by introducing an additional parameter K and by defining a devoted
step-down algorithm. Combining some of these three factors makes the obtained post hoc
bounds potentially much sharper;

• we provide power optimality theoretical statements for detection purpose;
• our theoretical statements and the advantages of the new proposed procedures are illustrated

with extensive numerical experiments.

In addition, this study unifies former (a priori unrelated) concepts, as the higher criticism of
Donoho and Jin (2004), the confidence envelopes of Meinshausen (2006) and the closed testing-
based method of Goeman and Solari (2010).

2. JER control: principle and properties

In this section, we introduce the framework (Section 2.1) for post hoc multiple testing inference,
and propose a general approach to tackle this problem based on a reference family of rejection
sets (Section 2.2). Proceeding from the general to the particular, we will first study and discuss
some generic properties of this approach (Section 2.3) before focusing on more specific choices for
the reference family (Section 2.4). Formal proofs for theoretical claims in this section are found in
Appendix B.1.
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2.1. Aim

Formally, let X denote observed data generated from a statistical model (X ,X, P ), P ∈ P, and
assume we want to test for a collection of null hypotheses H0,i ⊂ P indexed by i ∈ Nm :=
{1, . . . ,m}. For any P ∈ P, we denote by H0(P ) the set of (indices of) true null hypotheses
satisfied by P , that is, H0(P ) = {i ∈ Nm : P ∈ H0,i}, and by m0(P ) its cardinality (or H0, m0

for short). We denote by π0 = m0/m the proportion of true nulls. We also let H1 = Nm\H0 be
the set of (indices of) false nulls and m1 = m−m0 its cardinality.

Our main objective in this paper is to find a function V (X,R) (denoted by V (R) for short)
satisfying

For all P ∈ P PX∼P
(
∀R ⊂ Nm, |R ∩H0(P )| ≤ V (R)

)
≥ 1− α. (PHα)

or, equivalently, a function S(R)(= |R| − V (R)) satisfying

For all P ∈ P PX∼P
(
∀R ⊂ Nm, |R ∩H1(P )| ≥ S(R)

)
≥ 1− α, (PH′α)

where H1(P ) = Nm\H0(P ).
If the above is satisfied, V (R) gives a level 1 − α confidence bound for the number of false

rejections in a set R of (indices of) rejected hypotheses that is uniformly valid over all possible
choices of R. In particular, this bound will apply (with probability at least 1−α) to any arbitrary
data-dependent choice of R made by the user (including of course choosing after looking at the
value of the bound itself for different candidates for R).

2.2. General principle

The question of how to obtain a control of the general form (PHα) is statistical as well as compu-
tational in nature, since it is not practically feasible to consider individually all 2m possibilities for
candidate rejection sets R as soon as m exceeds a couple of dozens. Provided that the statistical
guarantee holds, we would ideally wish that the bound V (R) is computable efficiently for any
candidate R (or family thereof) suggested by the user.

In this section, we consider a general approach to the problem based on a reference family
with controlled joint Family-Wise Error Rate. The basic argument is illustrated by Figure 2.
Imagine that a subset A of hypotheses is guaranteed to contain less than 5 true nulls, that is,
|A ∩ H0(P )| ≤ 5. Then this also provides information on other subsets R ⊂ Nm with R 6= A.
Namely, for any R ⊂ Nm, |R∩H1(P )| ≥ |R∩A|−5. Of course, while this information is useful for
R if |R ∩A| ≥ 6, it is not if |R ∩A| ≤ 5 (nonpositive bound), as in the scheme below. Next, if we
want to improve the bound, we can consider another set B (here including A) with the property
|B∩H0(P )| ≤ 7 (say). In the situation pictured in the scheme below, this ensures that R contains
at least one element which is in H1(P ).

More generally, let us assume that we have at hand R = ((R1(X), ζ1(X)), . . . , (RK(X), ζK(X)))
a data-dependent collection of subsets Rk of Nm and integer numbers ζk (we will often omit the
dependence in X to ease notation), such that, with probability larger than 1− α, the set Rk(X)
does not contain more than ζk(X) elements of H0(P ), uniformly over k, that is,

For all P ∈ P, JER(R, P ) ≤ α, (1)

where we have denoted
JER(R, P ) := 1− PX∼P (E(R,H0(P ))) , (2)

with the event
E(R,H0) := {∀k = 1, . . . ,K, |Rk(X) ∩H0| ≤ ζk(X)} . (3)

We see R as a reference family of rejection sets for which a statistical guarantee on the number
of false rejections is ensured, and based on which we will build a post hoc bound. The cardinality
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R

A

B
.

=⇒.⇒
Fig 2. Toy example: use of a reference family with two subsets A and B for the construction of post hoc bounds
on the number of true positives in an arbitrary candidate rejection set R.

(or size) K of the reference family is also allowed to be data-dependent in the most general form.
Different choices are possible for R, allowing to recover as particular cases settings considered in
previous literature. Let us mention two important cases concerning the bounds ζk:

• ζk = |Rk| − 1 for all k: in this case, we if we associate to each R ⊂ Nm the intersection hy-
pothesis H0,R :=

⋂
i∈RH0,i, the statement (1)-(3) can be equivalently interpreted as follows:

if we reject all intersection hypotheses H0,Rk , k = 1, . . . ,K, then the corresponding family-
wise error is controlled at level α . Rejecting certain intersection hypotheses with controlled
family-wise error is the principle underlying closed testing, see Section 8 for a more detailed
discussion.

• ζk = k − 1 for all k: in this case, taken individually, each rejection set Rk has controlled
k-FWER, and the above corresponds to a joint control of the error related to k-FWER,
uniformly for all k ∈ {1, . . . ,K} .

We will mainly focus on the second situation ζk = k − 1 in the rest of the paper, and therefore
assume this setting by default unless otherwise specified. However, in the present section and the
next one, we analyze principles and properties that hold in relation to (1) in its general form.

How can we “interpolate” from the control on a reference family (1) to a control on all possible
rejection sets (PHα)? If our only available information is that event (3) is satisfied, then the best
we can do to bound |R∩H0| for a proposed rejection set R is a worst-case bound given the known
constraints:

V ∗R(R) := max
A∈A(R)

|R ∩A| , R ⊂ Nm , (4)

S∗R(R) = |R| − V ∗R(R) := min
A∈A(R)

|R \A| , R ⊂ Nm , (5)

where

A(R) := {A ⊂ Nm : E(R, A) holds } = {A ⊂ Nm : ∀k = 1, . . . ,K, |Rk ∩A| ≤ ζk}

is the collection of all possible configurations for H0 that are compatible with the event E(R,H0).
Obviously, V ∗R(R) is then the largest number of false rejections (resp. S∗R(R) the smallest number
of correct rejections) in the set R that are compatible with this event.

A significant problem is that V ∗(R), S∗(R) (we will sometimes drop the index R for simplicity)
may not be easy to compute in general (see Proposition 2.2 below). We therefore introduce the
following coarser but simpler bounds:

V R(R) := min
k∈{1,...,K}

(|R \Rk|+ ζk) ∧ |R| , R ⊂ Nm ; (6)

SR(R) = |R| − V R(R) := max
k∈{1,...,K}

(|R ∩Rk| − ζk) ∨ 0 , R ⊂ Nm . (7)
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Observe that V (R) and S(R) lie in {0, . . . , |R|} and their sum is |R| . Also, both of these
functions are non-decreasing in the sense that R ⊂ R′ implies V (R) ≤ V (R′) as well as S(R) ≤
S(R′). The next result, proved in Section B.1, formalizes the link between JER control and the
associated post hoc bounds.

Proposition 2.1. Let R = (Rk(X), ζk(X))1≤k≤K be a data-dependent collection of subsets Rk of
Nm and of integers ζk . Then for any H0 ⊂ Nm, H1 = Nm \H0 , the following events are identical:

E(R,H0) =
{
∀R ⊂ Nm, |R ∩H1| ≥ S(R)

}
=
{
S(H0) = 0

}
(8)

= {∀R ⊂ Nm, |R ∩H1| ≥ S∗(R)} = {S∗(H0) = 0} . (9)

In particular, R satisfies the JER control (1) if and only if S(R) or S∗(R) satisfies (PH′α) (or,
equivalently, if and only if V (R) or V ∗(R) satisfies (PHα)).

Proposition 2.1 shows that the probability of violating the post hoc statement (using either the
bounds V ∗, S∗ or V , S) is exactly equal to the JER criterion (3). To this extent, the main aim
of the rest of the paper will be to find a suitable reference family R (which may be seen as the
“procedure”) that controls the joint family-wise error rate at some pre-specified level α.

2.3. General properties

In this section, we further discuss general properties of the obtained post hoc bounds.
The JER control gives rise to the post hoc upper-bound V (resp. lower-bound S), which we

can see as approximations of the optimal bounds V ∗, S∗ . A first legitimate question is whether
approximations of the optimal bounds are necessary in the first place, and then whether these
approximations possess favorable properties. In this section, we provide arguments in this direction.

Computing the optimal bounds is NP-hard. The claim that computing the optimal bounds
V ∗, S∗ is computationally difficult in general is supported by the following NP-hardness result:

Proposition 2.2. The problem of computing V ∗(R) given an arbitrary reference family R =
(Rk, ζk)1≤k≤K (with Rk ⊂ Nm, ζk ∈ N ), and R ⊂ Nm , is NP-hard.

Naturally, Proposition 2.2 does not imply that computing the optimal bound V ∗(R) is always
infeasible: depending on the choice of the reference family, we might be in a particular case where
this can be done efficiently — in fact, we will discuss precisely such a situation below. On the other
hand, it is worth noting that the proof of the above result establishes NP-hardness for the the more
specific case ζk = |Rk|−1 , where the reference family is interpreted as tests of certain intersection
hypotheses. We show in Section 8 that in this case, the bounds V ∗, S∗ coincide with those derived
from the closed testing approach of Goeman and Solari (2011). In general, it is therefore sensible
in practice to look for computable approximations of V ∗, S∗. We turn to general properties of the
proposed bounds V , S .

Self-consistency of V , S. A first desirable property is self-consistency. Given some reference
family R = (Ri, ζi)1≤i≤K , on the large probability event (8) for which the control |Rk ∩H0(P )| ≤
ζk, 1 ≤ k ≤ K holds, V R provides a bound for |Rk ∩H0(P )| itself, namely

ζ̃k := V R(Rk) = min
j∈{1,...,K}

(|Rk \Rj |+ ζj) ∧ |Rk|, 1 ≤ k ≤ K. (10)

Obviously, ζ̃k ≤ ζk, with a possible strict inequality. Nevertheless, the next proposition shows that
there is no advantage in “iterating” the post hoc bound V with ζ replaced by ζ̃.

Proposition 2.3. For any collection R = (Ri, ζi)1≤i≤K , define (ζ̃i)1≤i≤K by (10). Denoting

R̃ = (Ri, ζ̃i)1≤i≤K , we have

V R(R) = min
k∈{1,...,K}

(
|R \Rk|+ ζ̃k

)
∧ |R| = V R̃(R) , R ⊂ Nm . (11)
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In particular, this implies that the ζ̃ks satisfy the following “self-consistency” equation:

ζ̃k = min
j∈{1,...,K}

(
|Rk \Rj |+ ζ̃j

)
∧ |Rk|, 1 ≤ k ≤ K. (12)

Optimality under nestedness assumption. In the situation where the sets (Rk)1≤k≤K are
nested, it holds that V = V ∗ and S = S∗ , that is, the formulas for V and S provide a computa-
tionally efficient way to compute the optimal bounds in this case:

Proposition 2.4. For any collection R = (Rk, ζk)1≤k≤K such that Rk ⊂ Rk′ whenever k ≤ k′,
we have V R(R) = V ∗R(R) .

2.4. Thresholding-based reference family

A variety of choices are possible for the reference family. In this paper, we focus on the common
situation where a test statistic Ti(X) is available for each null hypothesis H0,i, which in turn is
transformed into a p-value pi(X), for all i ∈ Nm. As announced earlier, we will also always choose
ζk = k − 1, 1 ≤ k ≤ K from now on (“joint k-FWER control” setting) and therefore omit the
ζs and use the simplified notation R = (R1(X), . . . , RK(X)) for the reference family (also called
“procedure”). We will also assume that K is non-random and has been fixed in advance. In this
situation, a simple way to build a reference family is to use p-value thresholding:

Rk(X) = {i ∈ Nm : pi(X) < tk} , k ∈ {1, . . . ,K}, (13)

where the tk ∈ R, 1 ≤ k ≤ K, are associated thresholds. The corresponding post hoc bounds are
given by:

V R(R) = min
k∈{1,...,K}

{∑
i∈R

1 {pi(X) ≥ tk}+ k − 1

}
, R ⊂ Nm ;

SR(R) = max
k∈{1,...,K}

{∑
i∈R

1 {pi(X) < tk} − (k − 1)

}
, R ⊂ Nm .

The JER control is related to the distribution of p(k:H0), the k-th smallest value in the set
{pi(X), i ∈ H0(P )}:

JER(R, P ) = PX∼P
(
∃k ∈ {1, . . . ,K ∧m0} : p(k:H0) < tk

)
. (14)

Hence, a general intuition is that the threshold tk should be chosen as an appropriate quantile of
the distribution of p(k:H0), with some extra slack to take into account uniformity in k.

2.5. Location model

Throughout the paper, we consider as a concrete testbed the location model

Xi = µi + εi, i ∈ Nm , (15)

where the εi are identically distributed, centered, and have a known joint distribution. We con-
sider the one-sided (resp. two-sided) testing problem with null hypotheses H0,i : “µi ≤ 0”
(resp. H0,i :“µi = 0”) versus the alternative hypotheses H1,i :“µi > 0” (resp. H1,i :“µi 6= 0”)
for all i ∈ Nm. The p-values are given by pi(X) = F (Xi), where F (x) = P(ε1 ≥ x) (resp.
F (x) = P(|ε1| ≥ |x|)). We denote also by qi(X) = F (εi) the “null-shifted p-values” in which the
signal has been removed. While the quantities qi(X) are not observed and will be used purely as a
technical device, note that their joint distribution is known (i.e. it is the p-value distribution under
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the full null). This joint distribution will be denoted by νm. The qi’s have U(0, 1) marginals when-
ever F is continuous, which we will assume in the sequel for simplicity. Hence, under independence
of the εi’s, the qi’s are i.i.d. U(0, 1).

A simple particular case is the Gaussian location model for which ε ∼ N (0,Σ) for some known
covariance matrix Σ with Σi,i = 1 for i ∈ Nm. This instance arises in a standard Gaussian linear
model or in marginal regression, see Fan et al. (2012). Also, mainly for illustrative purposes, we
will use throughout the paper the ρ-equi-correlated covariance matrix for which Σi,j = ρ for
1 ≤ i 6= j ≤ m, for some ρ ∈ [0, 1]. Finally, we note that our approach is not restricted to models
of the form (15), as we discuss in Section 9.

3. JER control based on classical inequalities

In this section, we present an elementary approach where JER control (1) is derived from proba-
bilistic inequalities that are well-known in multiple testing literature.

3.1. Simes reference family

Proposition 3.1 (Simes and Hommel inequalities). Let (pi(X))i∈Nm be a p-value family for the
null hypotheses (H0,i)i∈Nm , satisfying the characteristic property

∀P ∈ P,∀i ∈ H0(P ), ∀t ∈ [0, 1], PX∼P (pi(X) ≤ t) ≤ t. (16)

Then it holds that ∀P ∈ P,

PX∼P
(
∃k ∈ {1, . . . ,m0} : p(k:H0) ≤

αk

m0cm

)
≤ α , (17)

where:

(i) cm = Cm :=
∑m
i=1 1/i under arbitrary dependency of the p-value family;

(ii) cm = 1 if for all P ∈ P, the p-value family is positively regressively dependent on each one
of H0(P ) (in short, PRDS on H0(P )).

Moreover, (17) is an equality (with cm = 1) when the pi, i ∈ H0(P ), are i.i.d. U(0, 1).

The inequalities corresponding to items (i) and (ii) are often referred to as the Hommel
inequality (Hommel, 1983) and the Simes inequality (Simes, 1986), respectively. We refer to
Benjamini and Yekutieli (2001) for a formal definition of the PRDS property. We recall that in
the Gaussian model defined in Section 2.5 (one-sided), the PRDS assumption is valid if Σi,j ≥ 0
for all i, j ∈ Nm.

In view of (14), Inequality (17) implies that the JER control (1) is satisfied for K = m (under
the appropriate conditions) by the reference family R0 = (R0

1(X), . . . , R0
m(X)) given by

R0
k(X) =

{
i ∈ Nm : pi <

αk

mcm

}
, 1 ≤ k ≤ m. (18)

Above, we have upper-bounded m0 by m because m0 is generally unknown. The Hommel inequality
is known to be exaggeratedly conservative, because the correction term Cm is of the order of log(m).
Therefore, we will only use in the sequel the reference family R0 when cm = 1 and refer to it as
the Simes reference family. The corresponding bound is given by

V R0(R) = min
k∈{1,...,m}

{∑
i∈R

1 {pi(X) ≥ αk/m}+ k − 1

}
, R ⊂ Nm . (19)

This bound is considered as a baseline for our work. As shown in Section 8, this bound is in fact
equivalent to the one proposed in Goeman and Solari (2011) from Simes local tests.
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3.2. Sharpness and conservativeness

An important limitation of the reference family R0 is its conservativeness and lack of adaptiveness,
that is, even if maxP∈P JER(R0, P ) is close to α, JER(R0, P ) can be far from α for the P that truly
generated the data. Indeed, both inequalities stated in Proposition 3.1 are adjusted to a worst case
dependency, thus do not adapt or take into account the dependence between the tested hypotheses.
For example, when the test statistics are strongly positively dependent, Simes’ inequality may be
too conservative, and the associated post hoc bounds will inherit this conservativeness.

To illustrate this point, we carried out a simulation study in the Gaussian equi-correlated model
where the one-sided test statistics follow the distribution N (0,Σ) with Σii = 1 and Σij = ρ for
i 6= j, for some ρ ≥ 0. As noted above, this p-value family is PRDS. We consider a “white”
setting (that is, all null hypotheses are true, m0 = m = 1, 000). In Table 1, we quantify the
conservativeness of JER control in this model as the ratio of the JER actually achieved (estimated
from 1, 000 simulations) to the target JER level α (for α = 0.2). For example, we observe that for
ρ = 0.2, the JER actually achieved by the canonical reference family R0 is only 73% of the target
JER.

Equi-correlation level: ρ 0 0.1 0.2 0.4 0.8
Achieved JER ×α−1 1.00 0.89 0.73 0.46 0.39

Table 1
Conservativeness of JER control based on Simes inequality in the Gaussian equi-correlated model. Here,

m0 = m = 1, 000 and α = 0.2. The standard error estimate is below 0.001 in all cases.

3.3. Unbalancedness

Let us consider a “favorable” case P for the Simes procedure, for which the p-values are all
independent and associated to true null hypotheses (“full null” configuration). In this case, the
Simes inequality is an equality

PX∼P
(
∃k ∈ {1, . . . ,m} : p(k:m) <

αk

m

)
= α . (20)

In particular, the conservativeness described in Section 3.2 is not true here, and we might conclude
that the family reference R0 given by (18) can be suitably used for our aim. However, we argue that
the errors in the event described in (20) are not balanced w.r.t. the parameter k. As an illustration,
P(p(1:m) < α/m) = 1−

(
1− α

m

)m
= α+ o(α), hence the probability of the event in (20) is already

almost exhausted for k = 1. More generally, some values of the function k 7→ P(p(k:m) < αk/m)
are given in Table 2 for m = 1, 000, where p(k:m) ∼ Beta(k,m + 1 − k). As a consequence, the
Simes family seems to favor some of the k’s when controlling the JER. In addition, the structure
of this unbalancedness is somewhat arbitrary, and imposed to the user of the procedure, which
may be undesirable. This phenomenon is quantified more formally in Appendix A, see (44).

k 1 2 3 4 5 10 100 1000
P(p(k:m) ≤ αk/m) 4.9e−2 4.7e−3 5.0e−4 5.7e−5 6.6e−6 1.6e−10 5.8e−93 0

Table 2
Values of P(p(k:m) < αk/m) for several k when p(k:m) ∼ Beta(k,m+ 1− k), m = 1, 000 and α = 0.05.

4. Methodology for adaptive JER control

In this section, we aim at building a thresholding-based reference family R for which the quantity
JER(R, P ) is as close as possible to α, for “many interesting P”. To this end, we focus on the
location model given in Section 2.5 for which the distribution of the noise is known. We combine
two approaches:
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• build a reference family R that incorporates the known dependence structure of the noise;
• use a step-down algorithm to adapt to H0.

4.1. Kernel and pivotal function

The starting point is to consider a reference family R of the form (13) (with a deterministic size
K) , based on thresholds tk(λ), 1 ≤ k ≤ K, for some functions tk : λ ∈ [0, 1] 7→ tk(λ) and then to
choose λ = λ(α) so that the JER control (1) is satisfied.

Definition 4.1. A (rejection) kernel is a family of functions tk(λ), λ ∈ [0, 1], 1 ≤ k ≤ K, such
that K ∈ {1, . . . ,m} and for all k ∈ {1, . . . ,K}, tk(0) = 0 and tk(·) is non-decreasing and left-
continuous on [0, 1]. The parameter K is called the size of the kernel.

Note that, for a given kernel, when λ is fixed, we refer to tk(λ), 1 ≤ k ≤ K, as thresholds.
Several choices of kernel are possible as we will see in Section 5. Here, we work with a generic,
fixed kernel tk(λ), λ ∈ [0, 1], 1 ≤ k ≤ K. We denote the generalized inverse of tk(·) by t−1

k (y) =
max{x ∈ [0, 1] : tk(x) ≤ y}, for any y ∈ R ∪ {−∞,+∞}.

Lemma 4.2. Consider the location model (15), any λ ∈ [0, 1] and any reference family Rλ based
on thresholds tk(λ), k ∈ {1, . . . ,K}. Then the error rate (2) can be written as follows: for any
P ∈ P,

JER(Rλ, P ) = Pq∼νm
(

min
1≤k≤K∧m0

{
t−1
k

(
q(k:H0)

)}
< λ

)
, (21)

where q(k:H0) denotes the k-th minimum of the set {qi, i ∈ H0}.

Proof. By definition, tk(λ) > q(k:H0) if and only if λ > t−1
k (q(k:H0)). Also, for all i ∈ H0, we have

pi(X) ≥ qi(X) (as defined in Section 2.5) both in the one-sided and two-sided cases. Hence, in
view of (14), we obtain

JER(Rλ, P ) = PX∼P
(
∃k ∈ {1, . . . ,K ∧m0} : p(k:H0) < tk(λ)

)
≤ Pq∼νm

(
∃k ∈ {1, . . . ,K ∧m0} : q(k:H0) < tk(λ)

)
= Pq∼νm

(
∃k ∈ {1, . . . ,K ∧m0} : t−1

k

(
q(k:H0)

)
< λ

)
,

which proves the result.

4.2. Single-step and step-down λ-adjustments

An important consequence of Lemma 4.2 is that JER control (1) can be achieved by choosing
λ equal to the α-quantile of the distribution of min1≤k≤K∧m0

{
t−1
k

(
q(k:H0)

)}
, that is, equal to

λ(α,H0), where for all C ⊂ {1, . . . ,m}, we denoted

λ(α, C) = max

{
λ ≥ 0 : Pq∼νm

(
min

1≤k≤K∧|C|

{
t−1
k

(
q(k:C)

)}
< λ

)
≤ α

}
. (22)

Note that λ(α, C) depends on νm and on the kernel, although it is not explicitly underlined in the
notation for simplicity. Unfortunately, since H0 is unknown, so is λ(α,H0). Therefore, a useful
property at this stage is that the functional C 7→ λ(α, C) is nonincreasing:

∀C, C′ ⊂ {1, . . . ,m}, with C ⊂ C′, λ(α, C′) ≤ λ(α, C). (NI)
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This is a direct consequence of the fact that, pointwise, if C ⊂ C′, then for all fixed k ≤ |C|,
q(k:C′) ≤ q(k:C) which in turn implies t−1

k

(
q(k:C′)

)
≤ t−1

k

(
q(k:C)

)
and thus

min
1≤k≤K∧|C′|

{
t−1
k

(
q(k:C′)

)}
≤ min

1≤k≤K∧|C|

{
t−1
k

(
q(k:C′)

)}
≤ min

1≤k≤K∧|C|

{
t−1
k

(
q(k:C)

)}
.

A consequence of (NI) is that λ(α,Nm) ≤ λ(α,H0) and λ(α,Nm) can be used as a conservative
substitute for λ(α,H0). Now, λ(α,Nm) (often denoted by λ(α) for short) can be computed from
the distribution of the distribution νm. This provides the following result.

Proposition 4.3. In the framework of Lemma 4.2, consider λ(α) = λ(α,Nm) defined by (22).
Then the procedure Rλ(α) controls the JER criterion at level α in the sense of (1).

Above, we have used λ(α,Nm) as a conservative substitute for λ(α,H0). This induces a loss in
the JER control, that is sometimes substantial (see Sections 5.3 and 6 for more details). This loss

can be reduced by using λ(α, Ĉ), where Ĉ comes from the following step-down algorithm.

Algorithm 4.4. (General step-down algorithm)

- initialization: let C(0) = Nm;
- step j ≥ 1: compute λj = λ(α, C(j−1)) by using (22) and consider

C(j) = {i ∈ Nm : pi(X) ≥ t1(λj)} , (23)

If C(j) = C(j−1), stop and let Ĉ = C(j). Otherwise, continue and go to step j + 1;

Note that, while the tk’s are used in (23) only through k = 1, Ĉ depends on all the tk’s through
the functional λ(α, ·).

Proposition 4.5. In the framework of Lemma 4.2, consider the functional λ(α, ·) defined by (22)

and compute Ĉ by Algorithm 4.4. Then the procedure Rλ(α,Ĉ) controls the JER at level α in the

sense of (1).

Proof. Consider the event Ω for which

∀k ∈ {1, . . . ,K}, p(k:H0)(X) ≥ tk(λ(α,H0)), (24)

which occurs with probability at least 1 − α by (22). Now, since t1(λ(α, ·)) is a non-decreasing
function on the subsets of Nm, we have on Ω, for all j ≥ 0,

H0 ⊂ C(j−1) ⇒ p(1:H0)(X) ≥ t1(λ(α, C(j−1))) ⇒ H0 ⊂ C(j),

and thus H0 ⊂ Ĉ, which itself entails

∀k ∈ {1, . . . ,K}, p(k:H0)(X) ≥ tk(λ(α, Ĉ)).

Since Ω is of probability at least 1− α, the result is proved.

Remark 4.6. When we choose K = 1, Algorithm 4.4 reduces to the usual FWER controlling
step-down algorithm (see, e.g., Romano and Wolf, 2005).

5. Application : two examples of kernel-based reference families

In this section, we apply the methodology presented in the previous section to two particular
instances of rejection kernels.
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5.1. Linear kernel

We define the linear kernel (of size K) by

tLk (λ) = λk/m, λ ∈ [0, 1], 1 ≤ k ≤ K. (25)

Since (tLk )−1(u) = 1 ∧ (mk u), our methodology is to perform a λ-adjustment according to the
following relation (see (22)): for all C ⊂ {1, . . . ,m},

λL(α, C) = max

{
λ ≥ 0 : Pq∼N (0,Σ)

(
min

1≤k≤K∧|C|

{
m q(k:C)/k

}
< λ

)
≤ α

}
. (26)

For each K, this gives rise to two new reference families:

• The single-step linear reference family (of size K), denoted RL, is given by RL = (RL1 (X),
. . . , RLK(X)), where

RLk (X) =

{
i ∈ Nm : pi < λL(α,Nm)

k

m

}
, 1 ≤ k ≤ K. (27)

• The step-down linear reference family (of size K), denoted RL,sd, is given by RL,sd =

(RL,sd1 (X), . . . , RL,sdK (X)), where

RL,sdk (X) =

{
i ∈ Nm : pi < λL(α, Ĉ) k

m

}
, 1 ≤ k ≤ K, (28)

where Ĉ is derived from Algorithm 4.4, used with λ(·) = λL(·) and t1(·) = tL1 (·).

Propositions 4.3 and 4.5 ensure that the reference families RL and RL,sd both control the JER
at level α in the location model. Note that RL = R0 (Simes family, see (18)) when λL(α,Nm) = α
and K = m, which arises in the independent case by Proposition 3.1.

Under dependence, what is the magnitude of λL(α,Nm) ? Figure 3 displays λL(α,Nm) in the
(one-sided) Gaussian ρ-equi-correlated setting, for different values of ρ. The influence of the size K
is also illustrated. In a nutshell, we see that the influence of K and ρ is moderate for, say, ρ ≤ 0.2
(a somewhat realistic range for the dependency strength). The lack of sensitivity with respect to
K is not surprising because for the linear kernel, only the very first k will be important inside the
probability of relation (26). However, the influence of K is more pronounced as ρ gets larger, say
ρ ≥ 0.4 (which is arguably a less realistic range of values for ρ).

5.2. Balanced kernel

Considering a linear kernel is not always appropriate : as already mentioned, under independence
and K = m, RL corresponds to the Simes reference family R0 (18), and thus suffers from a kind
of unbalancedness, as underlined in Section 3.3. To address this issue, we introduce another choice
for the kernel. For each k ∈ {1, . . . ,m}, let us define Fk(x) = Pq∼νm(q(k:m) ≤ x), x ∈ [0, 1], which
is the c.d.f. of q(k:m). The balanced kernel (of size K) is then given by

tBk (λ) = F−1
k (λ) = min{t ∈ R : Fk(x) ≥ λ}, with k ∈ {1, . . . ,K}. (29)

From an intuitive point of view, for each k, the threshold tBk (λ) corresponds to a procedure
controlling the k-FWER at level λ, because it ensures P(q(k:m) < tBk (λ)) ≤ λ for 1 ≤ k ≤ K. It is
straightforward to check that tBk (·) fulfills the requirements of Definition 4.1. Since (tBk )−1(x) =
Fk(x) for all x ∈ [0, 1], the definition of λ(α, C) in (22) can be rewritten as follows: for all C ⊂ Nm,

λB(α, C) = max

{
λ ∈ [0, 1] : Pq∼νm

(
min

1≤k≤K∧|C|

{
Fk
(
q(k:C)

)}
< λ

)
≤ α

}
. (30)

For each K, this gives rise to two new reference families:
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Fig 3. Influence of the equi-correlation level ρ on the adjustment factor λL(α,Nm) for linear kernel. Different
values of K are used. m = 1, 000; α = 0.2; π0 = 1. λL(α,Nm) was estimated based on B = 104 Monte-Carlo
samples of the joint null distribution.

• The single-step balanced reference family (of size K), denoted RB , is given by RB = (RB1 (X),
. . . , RBK(X)), where

RBk (X) =
{
i ∈ Nm : pi < tBk (λB(α,Nm))

}
, 1 ≤ k ≤ K. (31)

• The step-down balanced reference family (of size K), denoted RB,sd, is given by RB,sd =

(RB,sd1 (X), . . . , RB,sdK (X)), where

RB,sdk (X) =
{
i ∈ Nm : pi < tBk (λB(α, Ĉ))

}
, 1 ≤ k ≤ K, (32)

where Ĉ is derived from Algorithm 4.4, used with λ(·) = λB(·) and t1(·) = tB1 (·).

Propositions 4.3 and 4.5 ensure that the reference families RB and RB,sd both control the JER
at level α in the location model. Let us also mention that since the reference family RB,sd can
appear as quite complex to compute, we provide a full Monte-Carlo approximation scheme in
Appendix A.3.

What is the magnitude of λB(α,Nm) ? Since each of the Fk
(
q(k:m)

)
is uniformly distributed

on (0, 1), a simple union bound argument provides the following bounds:

α/K ≤ λB(α,Nm) ≤ α. (33)

Under independence and forK = m, Lemma A.2 shows the more accurate upper-bound λB(α,Nm) ≤
1/(logm)1/4 (for m large enough). This in particular shows that λB(α,Nm) tends to zero when m
tends to infinity. However, when the size K is kept fixed, say K = 10, (33) ensures that λB(α,Nm)
is bounded away from zero.

More specifically, Figure 4 shows the influence of ρ and K on the value of λB(α,Nm) under
(one-sided) Gaussian ρ-equi-correlated dependence. Compared to the linear kernel, we see the
sensitivity of λB(α,Nm) w.r.t. K and ρ is more substantial. When ρ = 0, the value of λB(α,Nm)
is small for K = m and increases as K becomes smaller, which supports the above theoretical
statements. Also, even moderate values of ρ (say, ρ ≤ 0.2) have a large impact on the value of
λB(α,Nm).
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Fig 4. Influence of the equi-correlation level ρ on the adjustment factor λB(α,Nm) for the balanced kernel. Different
values of K are used. m = 1, 000; α = 0.2; π0 = 1. λB(α,Nm) was estimated based on B = 104 Monte-Carlo
samples of the joint null distribution.

5.3. Effects of step-down algorithm

Remember that the rationale behind the proposed step-down algorithm is that, when π0 = m0/m
is smaller than 1, some of the hypotheses will be rejected at each step, which will improve the
value of the λ-adjustement by replacing λ(α,Nm) by λ(α, Ĉ) for Ĉ smaller than Nm. How large is
the magnitude of the improvement, for instance under independence (and K = m) ? It turns out
that the step-down refinement has a stronger influence for the balanced kernel than for the linear
kernel :

• For the linear reference family, we have λ(α,Nm) = α and the family reduces to the Simes
family in this case. From (17), the JER achieved is

P
(
∃k ∈ {1, . . . ,m0} : q(k:m0) < αk/m

)
= π0α.

As a consequence, the criterion as a linear dependence w.r.t. π0. The best improvement that
the step-down algorithm can provide is thus λ = α/π0.

• By contrast, for the balanced reference family, the influence of π0 is more substantial. To see
this, remember that λB(α,Nm) is calibrated so that

P
(
∃k ∈ {1, . . . ,m} : q(k:m) < tBk

(
λB(α,Nm)

))
= α.

while the achieved JER is

P
(
∃k ∈ {1, . . . ,m0} : q(k:m0) < tBk

(
λB(α,Nm)

))
,

where qi, i ∈ Nm, are i.i.d. U(0, 1). We show in Appendix A that, for all λ ≤ 0.5, the
probability P(p(k:m0) ≤ tBk (λ)) decreases exponentially with k(1 − π0)2 and thus becomes
small when k is “not small”, see (43). A consequence is that, when π0 is bounded away
from (but however close to) 1, the achieved JER tends to zero at a (logm)1/8 rate, see (46).
This shows that the influence of π0 < 1 on the achieved JER is substantial; this makes the
potential improvement of the step-down algorithm all the more important. Of course, the
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amplitude of this phenomenon decreases as π0 gets closer to 1, but our numerical experiments
suggest that it still exists for cases where π0 ≈ 1 (sparsity). This is a new feature of step-down
type algorithms to the best of our knowledge.

6. Numerical experiments

We report numerical experiments to illustrate the performance of the procedures defined in the
previous section. In our setting, the test statistics are distributed as multivariate equi-correlated
Gaussian N (µ,Σ), where the mean vector µ is unknown and the covariance Σ satisfies Σi,i = 1
and Σi,j = ρ for 1 ≤ i 6= j ≤ m, where ρ is known. The number of tested hypotheses is set to
m = 1, 000. We set µi = 0 for all i ∈ H0, and µi = µ for all i ∈ H1, where µ > 0 quantifies the
signal-to-noise ratio (SNR) of the setting.

6.1. JER control

The target JER level is set to α = 0.25. In order to study a wide range of scenarios from sparse
to non-sparse signals, we have considered the following range of parameter values:

• ρ ∈ {0, 0.2, 0.4};
• π0 ∈ {0.8, 0.9, 0.99}, corresponding to m1 ∈ {200, 100, 10};
• µ ∈ {0, 1, 2, 3, 4, 5}

For each setting, we report the proportion p̂ of simulation runs (out of a total of n = 1, 000
runs) for which the bound |Rk(X)∩H0(P )| ≥ k does not hold for at least one k ∈ {1, . . . ,K}. This
proportion is an estimate of the achieved JER. The results are summarized by Figure 5 for the
linear kernel, and by Figure 6 for the balanced kernel. Each figure is a 3×3 matrix of panels, where
each row corresponds to one value of the sparsity parameter π0, and each column corresponds to
one value of the equi-correlation parameter ρ. In each of these panels, the empirical JER achieved
by several procedures is displayed as a function of the signal-to-noise ratio parameter µ. The target
JER level α is represented by a horizontal dashed line, and for the linear kernel, the level π0α
is represented by a horizontal dotted line. In both figures, each color corresponds to a different
reference family:

- Simes : the reference family R0 given by (18) and obtained by the Simes inequality;
- Linear Single Step : the single-step linear reference family RL (of size K = m), given by (27)

and obtained from a single-step λ-adjustment λ(α,Nm);
- Linear Step-down : the step-down linear reference family RL,sd (of size K = m), given by

(28) and obtained from a step-down λ-adjustment λ(α, Ĉ);
- Linear Oracle : same as linear step-down with an oracle λ-adjustment λ(α,H0);
- Balanced Single Step : the single-step balanced reference family RB (of size K = m), given

by (31) and obtained from a single-step λ-adjustment λ(α,Nm);
- Balanced Step-down : the step-down balanced reference family RB,sd (of size K = m), given

by (32) and obtained from a step-down λ-adjustment λ(α, Ĉ);
- Balanced Oracle : same as balanced step-down with an oracle λ-adjustment λ(α,H0).

The following comments can be made from Figures 5 and 6. As expected, JER is controlled
at the target level α in all situations, and the Oracle family yields exact JER control, up to
sampling fluctuations. As discussed in Section 3.2, the Simes reference family with parameter α
yields a JER equal to π0α under independence (ρ = 0), while it is more conservative under positive
dependence ρ > 0 (Figure 5). The (single-step) λ-adjustment procedure described in Section 4.2
yields JER control at π0α in all dependency settings considered (we recall that the dependency,
which is parametrized by ρ, is assumed to be known here). Finally, as the signal-to-noise ratio µ
gets larger, the step-down refinement proposed in Section 4.4 yields a JER closer to the nominal
level α in non-sparse situations (π0 ∈ {0.8, 0.9}). In a sparse situation (π0 = 0.99), corresponding
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Fig 5. JER control based on the linear kernel for equi-correlated test statistics.
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Fig 6. JER control based on the balanced kernel for equi-correlated test statistics.
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to m1 = 10, the single-step procedure is already quite sharp and essentially indistinguishable from
its Oracle counterpart.

For the balanced kernel, as summarized by Figure 6, the single step λ-adjustment leads to much
more conservative JER control than for the linear kernel, especially under independence or weak
dependence. This is a numerical illustration of the effect discussed in Section 5.3: while the JER
achieved by the single step λ-adjustment of the Simes family is close to π0α, the JER achieved by
the single step λ-adjustment of the balanced family is quite conservative, even when π0 is close to
one. For example, when π0 = 0.99 (m1 = 10 out of m = 1, 000), the JER achieved by the single
step λ-adjustment of the balanced family is of the order of α/2. Therefore, a step-down adjustment
is required in order to catch up with the target JER level. When the signal-to-noise ratio is very
large, the JER of the step-down procedure is indeed much closer to α.

The JER control in the above-described experiments has been obtained with K = m. We have
performed further numerical experiments to illustrate the influence of K. The results are consistent
with the observations made in Section 5 (Figures 3 and 4): for the linear family, the influence of K
on the achieved JER is negligible for the considered range of values of ρ. For the balanced family,
the influence of K is more substantial. We report in Figure 7 the results obtained for the balanced
family with K = 10. The JER control offered by the balanced family with K = 10 is much less

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●●

●

●
●

●

●

●

●

●

●●

●●● ●●●
●●●

●●
● ●●

● ●●●

●●

●

●●

●

●
●

●

●

●

●

●

●●

●

●●

●●
●

●●

●

●●

●

●●
●

●

●●

●

●●

●●●
●●●

●●● ●●● ●●●

●●●

●●

●

●●

●

●●

●

●
●
●

●

●●

●

●●

●●
● ●●

● ●●
●

●
●●

●
●● ●

●●

●●●
●●●

●●●

●●●
●●● ●●●

ρ = 0 ρ = 0.2 ρ = 0.4

π
0 =

0.8
π

0 =
0.9

π
0 =

0.99

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

µ

JE
R

Balanced family
●

●

●

Single Step
Step down
Oracle

Fig 7. JER control based on the balanced kernel for equi-correlated test statistics, with K = 10.

conservative than with K = m (Figure 6), even for the single step λ-adjustment. The question of
how to choose K is briefly mentioned in the Discussion (Section 9).
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The experiments reported here are carried out only in the equi-correlated setting and assum-
ing that the mean signal under the alternative is constant: µi = µ for all i ∈ H1. We have
performed other experiments, where µi = µ spans a range of values between 0 and µ, and/or
where the test statistics have a (known) Toeplitz covariance, for which Σi,j = |i − j|θ, where
θ ∈ {−2,−1,−0.5,−0.2} controls the range of dependency. Smaller values of θ correspond to
short-range dependency while larger values of θ correspond to longer-range dependency. Because
the results obtained for both types of signals and for both types of dependency are qualitatively
similar, we have only reported the results for the parameter combination: constant signal/equi-
correlated dependency in this manuscript.

6.2. Power

In the preceding section, the quality of a JER controlling procedure is quantified by the tightness
of its JER control. We now compare some JER controlling procedures in terms of power. This
comparison is made under independence for simplicity. We consider the following reference families:

• Linear (K) : the reference family defined with a linear kernel in its step-down form (28)
(K = m or K = 10);

• Balanced (K) : the reference family defined with a balanced kernel in its step-down form
(32) (K = m or K = 10);

We consider a notion of power, referred to as “averaged power”, that takes into account the
amplitude of the lower bound SR(·). Let us define for some selected set R ⊂ {1, . . . ,m} (possibly
data dependent),

Pow(R, P ) = E
(

SR(R))

|R ∩H1(P )|

∣∣∣∣ |R ∩H1(P )| > 0

)
. (34)

The following selected sets R ⊂ {1, . . . ,m} are considered:

(a) R = Nm. In this case, the averaged power Pow(R, P ) measures the (relative) performance
of SR(Nm) as an estimator of m1(P ) = |H1(P )|;

(b) R0 = {i ∈ {1, . . . ,m} : pi ≤ 0.05}, and R is a random selection of half of the items of R0.
Each hypothesis is given a selection probability proportional to the rank of its p-value;

(c) Same as (b) with R0 corresponding to the rejections of the BH procedure at level 0.05.

In (b)-(c) above, the sets R are thought to be typical possible choices for the user. We chose to
give non-uniform selection probabilities in order to favor sets enriched in lower p-values.

The parameter π0 is taken in the range π0 ∈ {0.8, 0.9, 0.99}. We set µ =
√
−4 log(1− π0) in

order to specifically focus on situations where the signal strength lies just above the estimation
boundary, which would correspond to µ =

√
−2 log(1− π0), see Donoho and Jin (2004).

The results are displayed in Figure 8. The average power of the Simes family (light green) and
of the reference families obtained by single step and step-down λ-adjustment of the linear kernel
(dark green) are almost identical. This is consistent with the results displayed in the first column
of Figure 5, where the three families achieve very similar JER levels for µ ≤ 4 when ρ = 0. Overall,
the averaged power obtained from the balanced kernel are substantially larger than the averaged
power obtained from the linear kernel. The only situation where the linear kernel is more powerful
is under the most sparse scenario (π0 = 0.99), for the two user-defined rejection sets (b) and (c).
In particular, the first row of panels in Figure 8 indicates that, except for a very low target JER
(α ≤ 0.02), the bound SR(Nm) obtained from the balanced kernel provides a better estimator of
m1(P ) = |H1(P )| than the linear kernel. These experiments also show that, as expected, the choice
of K can improve the performance of the balanced procedure. Some suggestions for choosing K
are discussed in Section 9.
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Fig 8. Averaged power of JER controlling procedures for independent test statistics.
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7. Relation to higher criticism and detection power optimality

In a nutshell, we show in this section that, as a detection procedure, RB shares some similarity
with the calibration of the higher criticism (HC for short) method of Donoho and Jin (2004), DJ04
for short. By contrast, RL (with K = m), which is equal to R0 in the setting of this section, is
connected to the procedure of Benjamini and Hochberg (1995), BH for short. This induces specific
power properties.

In this section, we evaluate the power of a reference family through its detection capability of
any false null:

Pow?(R, P ) = P(SR(Nm) ≥ 1) = P (∃k ∈ {1, . . . ,K} : |Rk| ≥ k) . (35)

Note that this can be seen as the power of the single test rejecting the null H0: “∀i ∈ Nm, H0,i is
true” if there exists k ∈ {1, . . . ,m} such that |Rk| ≥ k. With respect to this criterion, and in a
special regime, we show in this section that RB is optimal, while RL is suboptimal.

Note that the step-down algorithm does not give any improvement in terms of detection power:
the step-down can potentially make the sets Rk in the reference family larger in comparison to the
single-step procedure, but by construction such an improvement can only take place if |R1| ≥ 1 in
the first place for the single-step procedure (which is the first iteration of the step-down). Hence,
we focus on the single-step versions in this section.

7.1. Framework

We consider the location model (15) in the Gaussian independent one-sided framework, with
the special setting considered in DJ04 where the trueness/falseness of the null hypotheses are
randomized with a distribution belonging to some sparse regime. Specifically, we consider the
hierarchical model where Hi are i.i.d. B(π1,m) and the p-values are independent conditionally on
the Hi’s, with

• pi(X) |Hi = 0 ∼ U(0, 1) ;

• pi(X) |Hi = 1 has for c.d.f. F1,m(t) = Φ(Φ
−1

(t)− µm).

Hence, overall, the p-values (pi, i ∈ Nm) are i.i.d. and of common c.d.f. G1,m(t) = π0,mt +
π1,mF1,m(t), where π0,m = 1− π1,m. The parameters π1,m, µm are taken in the asymptotic range
where π1,m = m−β and µm =

√
2r logm for two parameters β ∈ (1/2, 1) and r ∈ (0, 1).

Let us also recall the optimal asymptotic detection boundary:

ρ?(β) =

{
β − 1/2 if β ∈ (1/2, 3/4];

(1−
√

1− β)2 if β ∈ (3/4, 1).
(36)

Note that for all β ∈ (1/2, 3/4], the range where β−1/2 ≤ r ≤ (1−
√

1− β)2 is usually referred to
as sparse/weak, that is, with sparsity and low signal strength. This regime is of interest because
DJ04 showed that, in this regime, BH has asymptotically no detection power while HC has optimal
asymptotic power.

7.2. Test statistic of the balanced detection procedure

By definition, RB makes a detection if there exists k such that p(k:m) < tBk (λB(α)). Furthermore,
from (33) and (42), we have the lower bound

tBk (λB(α)) ≥ k

m+ 1
−
{

k

m+ 1

(
1− k

m+ 1

)}1/2

m−1/2 (4 log(K/α))
1/2

. (37)
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Hence, RB makes a detection whenever the test statistic

max
1≤k≤K

m1/2
k

m+1 − p(k:m){
k

m+1

(
1− k

m+1

)}1/2


exceeds (4 log(K/α))

1/2
. This is close to the higher criticism procedure of DJ04.

Remark 7.1. Note that in the definition of Higher Criticism considered in DJ04, the authors have
similarly restricted the range of the indices considered to {1, . . . , α0m}, that is, α0m plays the a
similar role as K does here. This is useful to tune the power detection ability, see Appendix D.

7.3. Optimality results

By adapting the proof of DJ04, we can show the following result (see Appendix B.2 for a proof):

Theorem 7.2. Consider the asymptotic setting of Section 7.1. Then, the two following facts hold.

(i) Consider any family R with thresholds tk, 1 ≤ k ≤ m, that controls the JER at level α in
the sense

P(∃k ∈ {1, . . . ,m} : U(k:m) ≤ tk) ≤ α,
for Ui, i ∈ Nm i.i.d. uniformly distributed on (0, 1). Then we have

lim sup
m

Pow?(R, P ) ≤ α

whenever P is such that r < ρ?(β).

(ii) For the balanced family RB with K = m, we have Pow?(RB , P ) → 1 whenever P is such
that r > ρ?(β).

By contrast, the family RL is sub-optimal, as we now show. It will make a detection if there
exists k such that p(k:m) < αk/m, that is, if the Benjamini-Hochberg procedure rejects at least one
null hypothesis. The following result is in fact a reformulation of Theorem 1.4 in Donoho and Jin
(2004); its proof is given in Appendix B.3 for completeness.

Theorem 7.3. Consider the asymptotic setting of Section 7.1. Then the linear reference family
RL satisfies the following:

(i) for r > (1−
√

1− β)2, lim Pow?(RL, P ) = 1;
(ii) for r < (1−

√
1− β)2, lim sup Pow?(RL, P ) ≤ α.

From an intuitive point of view, the threshold is αk/m = k/m− (1− α)k/m, so the deviation
term is not of the correct order. This implies a lack of detection power which makes this procedure
miss the optimal boundary.

Let us finally emphasize that the domination of the balanced family/HC w.r.t. the linear fam-
ily/BH in terms of detection power is less obvious for a moderate value of m, as illustrated in
the numerical experiments of Appendix D with m = 1, 000. This suggests that the asymptotical
regime described in Theorems 7.2 and 7.3 is not fully reached for such a value of m (while it seems
reached for m = 106 in DJ04).

8. Relation to Goeman and Solari (2011)

To the best of our knowledge, the only existing user-agnostic post hoc approach to multiple testing
is the method of Goeman and Solari (2011) (GS11 below for short), which served as an inspiration
for the present work. This method is based on closed testing (Marcus et al., 1976), which relies,
in principle, on testing all 2m− 1 possible intersections between m hypotheses. In this section, we
discuss connections between that work and ours.
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8.1. Closed testing principle and GS approach

We come back to the general setting of Section 2.1. For any subset I ⊂ Nm, define the associated
intersection hypothesis as H0,I =

⋂
i∈I H0,i. Therefore, H0,I is true iff P ∈ H0,i for all i ∈

I, or equivalently iff I ⊂ H0(P ). We will often informally identify the index subset I and the
corresponding intersection hypothesis H0,I in the text to simplify statements. Assume that for
any index subset I, the intersection null H0,I can be tested by a so-called local test φI(X) ∈
{0, 1} of (individual) level α. From the collection of intersection hypotheses that are rejected by
their respective local tests, the classical closed testing principle (Marcus et al., 1976) extracts a
subcollection1 R of subsets of Nm, such that rejecting all intersection hypotheses of the collection
R has now controlled family-wise error rate at level α.

Equivalently, the complementary X = Rc, i.e. the collection of intersection hypotheses not
rejected by the closed testing procedure, satisfies for all P ∈ P:

PX∼P
(
∀I ⊂ H0(P ), I ∈ X

)
≥ 1− α. (38)

From this, GS11 construct a user-agnostic post hoc bound in the following way: on the event (38),
for any arbitrary R ⊂ {1, . . . ,m}, I0 = R∩H0(P ) is a subset of H0(P ) and thus must be included
in the collection X . This entails that (PHα) is satisfied with

V
GS

α (R) = max{|I| : I ∈ X , I ⊂ R}. (39)

8.2. Closed testing as a particular JER control

We now justify that the inequality (38) resulting from closed testing can be seen as a JER control.
As a result, the GS11 post hoc bound (39) can be seen as a particular case of the JER post hoc
approach developed here, and more precisely a particular case of the optimal bound V ∗ defined
in (4).

For this, consider R = (R1, . . . , RK) returned by the closed testing procedure as in Section 8.1.
The closed testing principle inplies that R is closed by the superset operation, i.e., I ∈ R implies
∀J ⊃ I, J ∈ R. Now let ζ(k) := |Rk| − 1, 1 ≤ k ≤ K. Finally, we have{

∀I ⊂ H0(P ), I ∈ X
}c

=

{
∃I ⊂ H0(P ), I ∈ R

}
=

{
H0(P ) ∈ R

}
=

{
∃k ∈ {1, . . . ,K} : |H0(P ) ∩Rk| = |Rk|

}
=

{
∃k ∈ {1, . . . ,K} : |H0(P ) ∩Rk| > ζ(k)

}
= E(R,H0)c.

Concerning the post hoc bounds, note that

A(R) = {A ⊂ Nm : ∀k ∈ NK |Rk ∩A| ≤ ζk} = {A ⊂ Nm : ∀k ∈ NK |Rk ∩A| ≤ |Rk| − 1}
= {A ⊂ Nm : ∀k ∈ NK Rk 6⊂ A}
= Rc = X ,

where we have used the fact that R is closed by superset operation. Hence

V ∗R(R) = max
A∈A(R)

|R ∩A| = max
A∈X

|R ∩A| = max
A∈X ,A⊂R

|A| = V
GS

α (R) ,

since X is closed by subset operation.

1The rejected collection R is the maximal subcollection of hypotheses H0,I rejected by their local test that is
closed by the superset operation on their indices. In other words, the index set I corresponding to intersection
hypothesis H0,I is selected to be included in the rejected collection R by the closed testing principle iff φI(X) = 1,
as well as all φI′ (X) = 1 for all I ⊂ I′.
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8.3. Shortcut as using a particular reference family

However, as recognized by GS11, computation of the closed testing output R is (in general) not
feasible when m is larger than a few dozens. And even if R can be computed, we have shown that
the calculation of the post hoc bound (39) is itself NP-hard in a generic setting. To circumvent this
complexity issue, a less time-consuming conservative version of the bound (39) has been proposed
by GS11 for Simes-type local tests:

φI(X) = 1
{
∃i ∈ {1, . . . , |I|} : p(i:I) ≤ c

|I|
i

}
, I ⊂ Nm, (40)

with the assumptions c`i ≤ cki , for ` ≥ k and c`i ≤ c`j , for i ≤ j. The corresponding bound takes the
form:

V
GS

α (R) = |R| − (1 + max{Sr, 1 ≤ r ≤ |R|}) ∨ 0, (41)

where Sr = max{0 ≤ s ≤ r−1 : p(r:R) ≤ cmr−s} (with max ∅ = −∞). We argue below in Lemma 8.2

that this bound is in fact equivalent to the post hoc bound V R(R) defined in (6), for the family
R = (Rk, ζk := k − 1)1≤k≤m defined by

Rk = {i ∈ Nm : pi ≤ cmk }, 1 ≤ k ≤ m.

The next lemma establishes that JER control holds for this family:

Lemma 8.1. Assume that the tests (φI)I⊂Im form a family of local tests at level α for the con-
sidered model, i.e., for any P ∈ H0,I , it holds PX∼P (φI(X) = 1) ≤ α. Then joint control of the
k-FWER of Rk at level α, uniformly over k ∈ Nm, holds; in other words, equation (1) holds for
the reference family R = (Rk, ζk := k − 1)1≤k≤m.

Proof. For any given distribution P in the model, we have for I = H0 = H0(P ) the local test
control

PX∼P
[
∃k ≤ m0 : p(k:H0) ≤ cm0

k

]
≤ α ,

implying by the monotonicity assumption c`i ≤ c
j
i for ` ≥ j:

PX∼P
[
∃k ≤ m0 : p(k:H0) ≤ cmk

]
≤ α .

As we argued in Section 2.4, this is equivalent to JER(R, P ) for the threshold-based reference
family R = (Rk, k − 1)1≤k≤m using thresholds tk := cmk , k ∈ Nm, see (13)-(14).

Now, we establish the equivalence of the two bounds:

Lemma 8.2. For any R ⊂ Nm, V R(R) = V
GS

α (R).

Proof. The result comes from

max{Sr, 1 ≤ r ≤ |R|} = max{s ≥ 0 : ∃r s.t. 1 ≤ r ≤ |R| and 0 ≤ s ≤ r − 1 and p(r:R) ≤ cmr−s}
= max{s ≥ 0 : ∃r s.t. s+ 1 ≤ r ≤ |R| and |Rr−s ∩R| ≥ r}
= max{s ≥ 0 : ∃r ≤ m s.t. s+ 1 ≤ r ≤ |Rr−s ∩R|}
= max{s ≥ 0 : ∃k ≤ m s.t. 1 ≤ k ≤ |Rk ∩R| − s}
= max{|Rk ∩R| − k, 1 ≤ k ≤ m},

by letting k = r − s.

A consequence is that using this GS11 shortcut, which is again the only computable way to
use close-testing for m large (to our knowledge), reduces to the post hoc bound studied in this
paper. (A remark pointing in that direction is also mentioned at the end of Section 4.2 of GS11.)
In particular, for cmk = αk/m, the reference family reduces to the Simes reference family R0 (18),

and the bound V
GS

α (R) has the simple equivalent form given by (19).
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9. Discussion

Beyond the location model We have investigated the performance of the proposed approach
in a location model with a known distribution of the noise, see (15). Our theoretical findings can
be easily extended to any statistical model (Pθ, θ ∈ Θ), with Θ ⊂ Rm, where

• we aim at testing H0,i : “θi = θ0
i ” against H1,i : “θi 6= θ0

i ”, for some fixed θ0 ∈ Rm;
• there exist statistics Si(X), i ∈ Nm, and a R-valued pivotal function Ψ such that

(Ψ (Si(X), θi))i∈Nm

has a known distribution Q on Rm, not depending on θ.

Then, we can build a test by rejecting each H0,i if Ψ
(
Si(X), θ0

i

)
is large (say). More specifically,

denoting the i-th marginal of Q as Qi with c.d.f. Fi, the p-values can be set as pi(X) = 1 −
Fi
(
Ψ
(
Si(X), θ0

i

))
. Lemma 4.2 and thus the whole λ-adjustment process easily extends to that

situation because (pi(X))i∈H0
follows the distribution of (Qi)i∈H0

, where Q is known.

Choosing the size K While the choice K = m seems a priori natural, we have shown through-
out this paper that it induces some conservativeness (via the λ-adjustment): choosing a smaller
value for K can yield a tighter post hoc bound. This effect is particularly marked in the case of
the balanced kernel when p-values are close to independent (see Figure 4). The choice of K is
therefore quite important in practice. We underline the following plausible scenarios:

• if the user has an a priori maximum amount of tolerated false discoveries, then K can be
set taken equal to that value. This comes from the following fact: let K0 ∈ N and assume
R = (Ri(X))1≤i≤K is a reference family (using ζi = i− 1) satisfying JER control. Consider
any set R ⊂ Nm such that V R(R) ≤ K0 ≤ K. Then we have V R(R) = V R(K0)(R), where
R(K0) = (Ri(X))1≤i≤K0

. In words, if the user is only interested in rejected sets R where the
bound on the number of false positives is less than K0, then the family size K can safely be
taken equal to K0.

• if the user has some upper bound m1 on the number of false hypotheses as prior information,
it seems reasonable to take K0 = m1 above (a larger number of false discoveries would mean
that more than 50% of the hypotheses in the rejected set are false discoveries). The case
K = 2m1 considered in our numerical experiments can be interpreted as such a scenario
(assuming a known prior rough upper bound m1 = 2m1).

Designing a theoretically founded data-dependent choice of K is an interesting direction for future
efforts.

Step-down algorithm The principle of the step-down Algorithm 4.4 is to approach the oracle
value λ(α,H0) by iterative approximations λ(α, Ĉ). Here the kernel tk(·) is fixed once for all. A
seemingly natural extension is to allow the kernel tk(·, C) to also depend on subsets C ⊂ Nm and

to apply the step-down algorithm to the kernel as well as λ, that is, consider at each step tk(·, Ĉ),
then apply the λ-adjustment step. For instance, for the balanced rejection kernel, one could define
tBk (λ, C) as the λ-quantile of qk:C . From a theoretical point of view however, it turns out that the
corresponding combined threshold (depending onH0 both through tk and λ) loses the monotonicity
property with respect to H0. Hence, our current proof does not extend to that situation and we do
not know if the corresponding JER is controlled at level α. This is an interesting (but challenging)
issue.

Permutation-based approaches The λ-adjustment methodology presented in this paper ex-
tensively uses the fact that the distribution of the noise is known. When this is not the case,
permutation-based approaches (also known as exact tests) provide a good alternative in many
cases. However, the non-asymptotical theoretical study of permutation-based procedures is chal-
lenging for JER control. A general framework to define and analyze such procedures is to assume
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that the joint distribution of the null p-values is invariant under transformation of the data through
a transformation group G. The principle is to replace the distribution of the null p-values by their
empirical distribution under transformation of the data by a random element of G; see, e.g.,
Romano and Wolf (2005) in the context of FWER control. It seems natural to aim at extending
this approach to JER control.

For a deterministic kernel (e.g., linear), we can prove that the λ-adjustment can be done by
the permutation method while maintaining exact JER control. Nevertheless, for a data-driven
kernel, such as the balanced kernel that would itself be calibrated using random permutations,
things are getting more complicated. A possible algorithm could be similar to the one proposed
in Appendix A.3, except that the Monte-Carlo samples are be replaced by randomly transformed
samples. This would also follow the lines of Meinshausen (2006), where permutations are used to
build FDP confidence envelopes. However, there appears to be a gap in the theoretical analysis
justifying the validity of such an approach (Theorem 1 of Meinshausen, 2006), which seems to
have been overlooked so far2. As a consequence, the usual argument to theoretically control error
rates with permutation-based procedures apparently falls short in our setting. Hence, proving a
theoretical JER control for such a procedure remains an open issue – one of primary importance.
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Appendix A: Some properties of linear and balanced kernels and reference families

A.1. Properties of linear and balanced kernels

The following result gather some of the properties of the balanced kernel under independence :

Proposition A.1. Consider the location model (15), assume independence between the compo-
nents of the noise ε and consider tk(λ) the threshold given by (29). Then :

(i) for all k ∈ {1, . . . ,m} and λ ∈ [0, 1], tk(λ) is the λ-quantile of the distribution Beta(k,m+
1− k).

(ii) the following relations holds : for any λ ≤ 0.5,

tk(λ) ≤ k

m+ 1
;

tk(λ) ≥ k

m+ 1
−
{

k

m+ 1

(
1− k

m+ 1

)}1/2

m−1/2 (4 log 1/λ)
1/2

; (42)

(iii) for all m0 ∈ {1, . . . ,m} and k ∈ {1, . . . ,m0}, for all λ ≤ 0.5,

P
(
p(k:m0) ≤ tk(λ)

)
≤ exp

(
− k

32

(
1− m0

m

)2
)
. (43)

(iv) for all k ∈ {1, . . . ,m} and α ≤ 0.5,

P
(
p(k:m) ≤ α

k

m

)
≤ exp

(
−k

4

(
1− α− 1

m+ 1

)2
)
. (44)

2 More precisely, Equation (12) of Meinshausen (2006) is not fully justified: the fact that for all g ∈ G,

• (tk(g.X))1≤k≤K = (tk(X))1≤k≤K ;

• (pi(X))i∈H0
∼ (pi(g.X))i∈H0

,

does not imply equality of joint distributions ((tk(X))1≤k≤K , (pi(X))i∈H0
) ∼ ((tk(g.X))1≤k≤K , (pi(g.X))i∈H0

).
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Proof. Item (i) just follows from the definition. The proof of item (ii) is straightforward from a
classical bound for beta distribution, see relation (49) and Lemma C.3 in Appendix C. For item
(iii), we use item (ii) and m/(m+ 1) ≥ 1/2 and m0/(m0 + 1) ≥ 1/2, to write

P
[
p(k:m0) ≤ tk(λ)

]
≤ P

[
p(k:m0) ≤

k

m+ 1

]
= P

[
m

1/2
0

(
p(k:m0) −

k

m0 + 1

)
≤ −(k)1/2(km0)1/2

(
1

m0 + 1
− 1

m+ 1

)]
≤ P

[
m

1/2
0

(
p(k:m0) −

k

m0 + 1

)
≤ −

{
k

m0 + 1

}1/2

(k/2)1/2

(
m−m0

m+ 1

)]

≤ P

[
m

1/2
0

(
p(k:m0) −

k

m0 + 1

)
≤ −

{
k

m0 + 1

}1/2

(k/2)1/2
(

1− m0

m

)
/2

]
,

and we conclude by using (49). For (iv), the reasoning is similar, using

P
[
p(k:m) ≤ α

k

m

]
= P

[
m1/2

(
p(k:m) −

k

m+ 1

)
≤ −

{
k

m

}1/2√
k

((
1− 1

m+ 1

)
− α

)]
.

A.2. Properties of the single-step balanced reference family of size K = m

Under independence, we can have a bound measuring how severe the λ adjustment can be when
m is large:

Lemma A.2. In the framework of Proposition A.1, consider λB(α) = λB(α,Nm) defined by (30)
for K = m. Then for m large enough, we have

λB(α) ≤ 1/(logm)1/4. (45)

In particular, this result shows that λ(α) tends to zero as m grows to infinity.

Proof. Let λ0 = 1/(logm)1/4 and consider U1, . . . , Um i.i.d. ∼ U(0, 1). By definition of λ(α), it is
sufficient to prove that for m large enough, the probability P(∃k ∈ {1, . . . ,m} : U(k:m) < tk(λ0))
is larger than α. For this, use the lower bound (42) to write for a large m,

P(∃k ∈ {1, . . . ,m} : U(k:m) < tk(λ0))

= P(∃k ∈ {1, . . . ,m} : U(k:m) ≤ tk(λ0))

≥ P

(
∃k ∈ {1, . . . ,m} : U(k:m) ≤

k

m+ 1
−
{

k

m+ 1

(
1− k

m+ 1

)}1/2

m−1/2 (4 log(1/λ0))
1/2

)
= P

(
Zm ≥ (4 log(1/λ0))

1/2
)

where we let

Zm = max
1≤k≤m

 m1/2{
k

m+1

(
1− k

m+1

)}1/2

(
k

m+ 1
− U(k:m)

) .

Since (4 log(1/λ0))
1/2

= (log logm)1/2, we conclude by applying Lemma C.2.

The next lemma shows that using the substitute λB(α,Nm) instead of λB(α,H0) for the bal-
anced kernel (in the case K = m) results in a JER tending asymptotically to 0 with m if π0 is
bounded away from 1. Thus, this justifies the importance of trying to use some kind of adaptive
procedure, such as the step-down.
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Lemma A.3. Consider λB(α) = λB(α,Nm) defined by (30) for K = m and qi, i ∈ Nm, i.i.d.
U(0, 1) variables. Consider m0 = π0m for some π0 ∈ (0, 1) fixed with m. Then, for m large enough,

P
(
∃k ∈ {1, . . . ,m0} : q(k:m0) < tk

(
λB(α)

))
≤ C(π0)

(logm)1/8
, (46)

where C(π0) = 1 + 64
(1−π0)2

(
1− e−

(1−π0)2

32

)
.

Proof. Let N ∈ {1, . . . ,m0 − 1} be some integer to be chosen later. By a union bound argument,
we have

P
(
∃k ∈ {1, . . . ,m0} : q(k:m0) < tk

(
λB(α)

))
≤

N∑
k=1

P
(
q(k:m0) < tk

(
λB(α)

))
+

m0∑
k=N+1

P
(
q(k:m0) < tk

(
λB(α)

))
.

For the first term, since q(k:m) is stochastically smaller than q(k:m0), we have

N∑
k=1

P
(
q(k:m0) < tk

(
λB(α)

))
≤ NλB(α) ≤ N/(logm)1/4,

by Lemma A.2. For the second term, by (43) (λB(α) begin smaller than 0.5 for large enough m)

and letting r = e−
(1−π0)2

32 , we have for large enough m:

m0∑
k=N+1

P
(
q(k:m0) < tk

(
λB(α)

))
≤

m0∑
k=N+1

rk ≤ (1− r)−1rN ≤ (1− r)−1 32

N(1− π0)2
,

because e−u ≤ 1/u for all u > 0. Choosing N = b(logm)1/8c yields the desired result.

A.3. Monte-Carlo approximation for step-down balanced reference family

Let us consider the reference thresholds tBk (λB(α, Ĉ)), 1 ≤ k ≤ K, of the balanced reference
family RB,sd given in Section 5.2. For a practical use, we detail here how to obtain a Monte-Carlo
approximation t̃Bk (λ̃B(α, C̃)) of tBk (λB(α, Ĉ)).

1. Start by generating q(1), . . . , q(G) i.i.d. according to the distribution νm (on [0, 1]m) and
consider the matrix

M0 =


q

(1)
1 q

(1)
2 . . . q

(1)
m

q
(2)
1 q

(2)
2 . . . q

(2)
m

...
...

...

q
(G)
1 q

(G)
2 . . . q

(G)
m


2. Order (some of the elements of) the lines of M0 and let, for all C ⊂ {1, . . . ,m} of cardinal c,

M(C) =


q

(1)
(1:C) q

(1)
(2:C) . . . q

(1)
(c:C)

q
(2)
(1:C) q

(2)
(2:C) . . . q

(2)
(c:C)

...
...

...

q
(G)
(1:C) q

(G)
(2:C) . . . q

(G)
(c:C)

 .

3. Consider M(C) for C = Nm and approximate Fk(x) by F̃k(x) = G−1
∑G
g=1 1

{
q

(g)
(k:m) ≤ x

}
.

For each λ, approximate tk(λ) by t̃k(λ) the λ-quantile of the sample(
q

(1)
(k:m), . . . , q

(G)
(k:m)

)
.
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4. Consider the matrix of ’ranks’

S(C) =


S1,1(C) S1,2(C) . . . S1,c(C)
S2,1(C) S2,2(C) . . . S2,c(C)

...
...

...
SG,1(C) SG,2(C) . . . SG,c(C)


where we let Sb,k(C) = G−1

∑G
g′=1 1

{
q

(g′)
(k:m) ≤ q

(g)
(k:C)

}
, for 1 ≤ k ≤ K ∧ c and 1 ≤ b ≤ G.

5. Build the vector

V =

(
min

1≤k≤c
{S1,k(C)}, . . . , min

1≤k≤c
{SG,k(C)}

)
,

by taking the minimum within each line of S(C). Approximate now λB(α, C) by λ̃B(α, C) =
V(dαGe), i.e., the α empirical quantile of the sample V = (V1, . . . , VG).

6. Use Algorithm 4.4 with t̃Bk and λ̃B instead of tBk and λB , respectively, to obtain C̃.

Appendix B: Proofs

B.1. Proofs for Section 2

Proof of Proposition 2.1. We show a circular inclusion of the events in (8), starting with E(R,H0) .
First, for 1 ≤ k ≤ K, |Rk ∩H0| ≤ ζk, implies that for any R,

|R ∩H1|+ ζk ≥ |R ∩H1|+ |Rk ∩H0| ≥ |R ∩Rk| ,

which entails |R∩H1| ≥ S(R) by taking a maximum over all possible values of k. Secondly, if ∀R,
|R ∩ H1| ≥ S(R), then for R = H0, we obtain S(H0) = 0. Finally, S(H0) = 0 implies that for all
k, |H0 ∩Rk| − ζk ≤ 0.

Similarly for (9), the event E(R,H0) is by definition equivalent to H0 ∈ A(R) . This implies for
any R: |R ∩ H1| = |R \ H0| ≥ S∗(R). Specializing for R = H0 as above, this entails S∗(H0) = 0.
Finally, the latter event implies in turn that there must exist A ∈ A(R) with H0 ⊂ A , but since
any subset of an element of A(R) also belongs to A(R) , we conclude H0 ∈ A(R) .

Proof of Proposition 2.2. We prove that the specific subproblem of computing V ∗(R, R) under
the following restrictions is already NP-hard:

• |Rk| = 2 for all k ;
• ζk = 1 for all k ;
• R = Nm .

Namely, we can formally embed as an instance of this setting the well-known NP-complete problem
of finding a maximal independent set of vertices in an arbitrary graph G , in the following way: let
K be the number of edges in the graph; construct the family of sets by associating to each edge e
of G the set Re containing the two vertices it joins, and ζe = 1. Then elements of A(R) are exactly
the subsets of independent vertices of G. Taking R = Nm, computing V ∗(R) = maxA∈A(R) |A| is
then equivalent to finding the maximal size of an independent vertex set in G.

Proof of Proposition 2.3. Obviously, ζ̃k ≤ ζk and thus V (R̃, R) ≤ V (R, R). Let us prove the
reverse inequality:

V (R̃, R) = min
k∈{1,...,K}

(
|R \Rk|+ min

j∈{1,...,K}
(|Rk \Rj |+ ζj) ∧ |Rk|

)
∧ |R|

≥ min
j,k∈{1,...,K}

(|R \Rk|+ |Rk \Rj |+ ζj) ∧ |R|

≥ min
j∈{1,...,K}

(|R \Rj |+ ζj) ∧ |R|,

where we used |E \ F |+ |F \G| ≥ |E \G|.
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Proof of Proposition 2.4. For convenience, we recall the notation

A(R) := {A ⊂ Nm : ∀k = 1, . . . ,K, |Rk ∩A| ≤ ζk}

in the definition of V ∗. Let R ⊂ Nm ; it is straightforward to check that V ∗(R, R) ≤ V (R, R),
since V ∗ is optimal; in fact for all A ∈ A and k ∈ {1, . . . ,K}, we have |R ∩A| ≤ |R ∩A ∩Rk| +
|R ∩A ∩Rck| ≤ (ζk + |R ∩Rck|) ∧ |R|. We now prove the reverse inequality, by showing that there
exists a set A ∈ A(R) such that A ⊂ R and |A| ≥ V (R, R) . For this, note that V (R, R) ≤
|R \ (RK ∩R)|+ ζ̃K , where we let

ζ̃k = min
1≤j≤K

{|(Rk ∩R) \ (Rj ∩R)|+ ζj} ∧ |Rk ∩R|, 1 ≤ k ≤ K .

The latter is in accordance with the definition (10), applied to the family ((Rk∩R), ζk), 1 ≤ k ≤ K .
This means that (12) is satisfied and in particular

ζ̃k − ζ̃k−1 ≤ |(Rk ∩R) \ (Rk−1 ∩R)| , 1 ≤ k ≤ K,

with the conventions ζ̃0 = 0 and R0 = ∅. Now construct a set A by picking ζ̃k − ζ̃k−1 elements in
each (Rk ∩ R) \ (Rk−1 ∩ R) for 1 ≤ k ≤ K (which is possible by the latter display) and add the
points of R \ (RK ∩R) . We now check that A satisfies the constraints ensuring A ∈ A(R) , using
the nestedness assumption and the fact that A ⊂ R by construction:

|A ∩Rk| = |Rk ∩R ∩A| =
k∑
j=1

|(Rj ∩R ∩A) \ (Rj−1 ∩R ∩A)| = ζ̃k ≤ ζk , 1 ≤ k ≤ K .

Moreover, V (R, R) ≤ |R \ (RK ∩R)| + ζ̃K = |R \ (RK ∩R)| + |RK ∩R ∩A| = |A|, so the result
is proved.

B.2. Proof of Theorem 7.2

Proof. For proving (i), we note that any family R with thresholds tk, 1 ≤ k ≤ m, controlling
the JER at level α induces a test ϕ = 1

{
∃k : p(k) ≤ tk

}
of level α of H0 :“µm = 0” (i.e.,

pi, i ∈ Nm are all i.i.d. uniform) against H1: “µm =
√

2r logm”. Hence, it will have less power
than the likelihood ratio test (LRT) of level α. Now, as claimed in Section 1.1 of Donoho and Jin
(2004) (itself referring to Ingster, 1999), the null hypothesis and the alternative hypothesis merge
asymptotically whenever r < ρ?(β). Hence, the asymptotic power of the LRT is less than α.

Now consider the balanced family RB
α and prove (ii). Write tk for tBk (λB(α) for simplicity. The

basic inequality for our proof is the following: for any k ∈ {1, . . . ,m},

Pow?(RB
α , P ) ≥ P

(
U(k:m) ≤ π0,mtk + π1,mF1,m(tk)

)
. (47)

From (37), now write for any k ∈ {1, . . . ,m},

Pow?(RB
α , P )

≥ P

(
U(k:m) ≤

k

m+ 1
−
{

k

m+ 1

(
1− k

m+ 1

)}1/2

m−1/2 (4 log(m/α))
1/2

+ π1,m (F1,m(tk)− tk)

)

≥ P

 max
1≤k≤m

m1/2
U(k:m) − k

m+1{
k

m+1

(
1− k

m+1

)}1/2

 ≤ − (4 log(m/α))
1/2

+ π1,m
F1,m(tk)− tk
k1/2/(m+ 1)

 (48)

because k1/2/(m+1) ≥
{

k
m+1

(
1− k

m+1

)}1/2

m−1/2. Let rk > 0 such that Φ
−1

(tk) =
√

2rk logm,

so that when k = bm1−q logmc for some q ∈ (0, 1], rk → q as m tends to infinity. Then we have
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for q > r, by denoting φ the density of the standard gaussian distribution,

π1,mF1,m(tk) = m−βΦ(Φ
−1

(tk)−
√

2r logm)

= m−βΦ((q1/2 − r1/2)
√

2 logm)

∼ Dm−βφ
(

(q1/2 − r1/2)
√

2 logm
)
/
√

logm

∼ D′m−β−(q1/2−r1/2)2/
√

logm,

for some constants D,D′ > 0. This entails

π1,m
F1,m(tk)− tk
k1/2/(m+ 1)

∼ D′m
1+q
2 −β−(q1/2−r1/2)2/logm,

By choosing q = (4r) ∧ 1, we have 1+q
2 − β − (q1/2 − r1/2)2 > 0 as soon as r > ρ?(β). Now, (ii)

comes from (48) and the fact that the sequence of random variables

max
1≤k≤m

m1/2
U(k:m) − k

m+1{
k

m+1

(
1− k

m+1

)}1/2

 /(log logm)1/2

is tight (see Lemma C.2).

B.3. Proof of Theorem 7.3

Proof. Let us first prove (i). For any k ∈ {1, . . . ,m},

Pow?(R0
α, P ) ≥ P

(
U(k:m) ≤

k

m
(π0,mα+mπ1,mF1,m(αk/m)/k)

)
Let rk > 0 such that Φ

−1
(αk/m) =

√
2rk logm, so that when k = blogmc, rk → 1 as m tends to

infinity. Then we have for some universal constant D > 0,

mπ1,mF1,m(αk/m)/k ∼ Dm1−β−(1−r1/2)2/(logm)3/2,

and thus the latter tends to infinity. Hence, for any M > 0, for m large enough, we have

Pow?(R0
α, P ) ≥ P

(
U(k:m) ≤M

k

m

)
.

Then (i) is proved because mU(k:m)/k tends to 1 in probability. Now, let us show (ii). We have

Pow?(R0
α, P ) = P

(
∃k ∈ {1, . . . ,m} : U(k:m) ≤ α

k

m

(
π0,m + π1,m

F1,m(αk/m)

αk/m

))
≤ P

(
∃k ∈ {1, . . . ,m} : U(k:m) ≤ α

k

m

(
π0,m + π1,m

F1,m(α/m)

α/m

))
because F1,m(x)/x is decreasing. Now, we have

π1,m
F1,m(α/m)

α/m
∼ Dm1−β−(1−r1/2)2/(logm)1/2,

for some universal constant D > 0, and thus the latter tends to zero as soon as r < (1−
√

1− β)2.
Hence, for any ε ∈ (0, 1), for m large enough,

Pow?(R0
α, P ) ≤ P

(
∃k ∈ {1, . . . ,m} : U(k:m) ≤ α

k

m
(1 + ε)

)
≤ α(1 + ε),

by applying the Simes inequality. The result comes by making ε tends to zero.
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Appendix C: Some properties of the beta distribution

We recall the following result (Shorack and Wellner, 1986, p.454-455):

Lemma C.1. for U1, . . . , Un i.i.d. ∼ U(0, 1), any ` ∈ {1, . . . , n} and x ≥ 1, we have

P

(
n1/2

(
U(`:n) −

`

n+ 1

)
≤ −

{
`

n+ 1

(
1− `

n+ 1

)}1/2

x

)
≤ e−x

2/4 (49)

Here is another lemma, which is a consequence of (24) in (Shorack and Wellner, 1986, p.601):

Lemma C.2. Let U1, U2, . . . i.i.d. ∼ U(0, 1) and consider

Zn = max
1≤`≤n

n1/2
`

n+1 − U(`:n){
`

n+1

(
1− `

n+1

)}1/2

 ,

then we have, as n grows to infinity,

P((log log n)1/2 ≤ Zn ≤ 2(log log n)1/2)→ 1 (50)

Lemma C.3. Let U1, U2, . . . i.i.d. ∼ U(0, 1), then, for all m ≥ 2, for all k ∈ {1, . . . ,m},

P(U(k:m) ≤ (k + 1)/m) ≥ 0.5. (51)

Proof. We can assume k ≤ m− 1. Now, by considering Z ∼ B(m, (k + 1)/m), we have

P(U(k:m) ≤ (k + 1)/m) = P(Z ≥ k) = P(Z ≥ (k + 1)− 1) ≥ 1/2,

where we used that for any binomial distribution, the median and the mean are at a distance at
most 1 (see, e.g., Kaas and Buhrman, 1980):

Appendix D: Numerical experiments for detection power

Detection power is studied theoretically in Section 7 and formally defined in (35). We consider
the independent case, and we calibrate the parameter µ and π0 according to the regime defined
in Section 7, that is, π0 = 1 − m−β and µ =

√
2r logm, for two parameters β (sparsity) and r

(signal strength) taken in the range β ∈ {0.5, 0.6, 0.8, 1} and r ∈ {0.05, 0.1, 0.2, 0.5, 1}. Note that,
however, we do not consider an i.i.d. p-value mixture here; we stick to the framework defined in
Section 6. For each setting, we estimate this power by its empirical counterpart, the proportion q̂
of 1, 000 simulation runs for which at least one of the subsets Rk of the collection R contains more
than k elements. Our experiments have been made for a range of values of the target JER level
α ∈ {0.01, 0.02, 0.05, 0.10, 0.15, 0.20, 0.25}. To summarize the results, we plot in Figure 9 (top) the
empirical detection power q̂ as a function of α for each method.

The parameter configurations (β, r) for which the signal is below the asymptotically optimal
detection boundary identified by Donoho and Jin (2004) are represented by blue squares in the
bottom panel of Figure 9. As expected from the theory, in such configurations all procedures
are powerless, in the sense that the detection power is very close to the JER. Let us focus on
the parameter configurations for which detection is asymptotically feasible (green circles and
red triangles in the bottom panel of Figure 9). In such configurations, as expected, K has little
influence on detection power for the linear kernel. For the balanced kernel, the detection power
is substantially higher for K = 10 than for K = m. This influence of K is consistent with our
comments for JER control in the preceding section. Overall, the balanced kernel with K = m has
better detection power than the linear kernel for moderate sparsity (β ∈ {0.5, 0.6}) and signal
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Fig 9. Top: detection power of JER controlling procedures for independent test statistics in the sparsity range for
4 × 5 parameter configurations for (β, r) in the sparsity range [1/2, 1] × [0, 1]. Bottom: these 4 × 5 configurations
are positioned with respect to the detection boundaries identified in Donoho and Jin (2004).
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(r ≤ 1). However, for sparser settings (β ∈ {0.8, 1}) the linear kernel performs better than the
balanced kernel with K = m, and even than the balanced kernel with K = 10 in very sparse
scenarios. These numerical results provide a useful complement to the asymptotic statements of
Donoho and Jin (2004) and of Section 6 of the present paper. In particular, they suggest that
for a finite m, the balanced kernel/HC is not always superior to the linear kernel/FWER/FDR.
Moreover, in the sparse/weak setting, which is illustrated here by the configurations β = 0.5, r =
0.05 and β = 0.6, r = 0.1, the balanced kernel is only marginally superior to the balanced kernel.
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