
HAL Id: hal-01483577
https://hal.science/hal-01483577

Submitted on 6 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mobile Processes: A Commented Bibliography
Silvano Dal Zilio

To cite this version:
Silvano Dal Zilio. Mobile Processes: A Commented Bibliography. Modeling and Verification of Parallel
Processes, Springer Verlag (Germany), pp.206-222, 2001, �10.1007/3-540-45510-8_11�. �hal-01483577�

https://hal.science/hal-01483577
https://hal.archives-ouvertes.fr


Mobile Processes:
a Commented Bibliography

Silvano Dal Zilio

Microsoft Research

Abstract. We propose a short bibliographic survey of calculi for mobile
processes. Contrasting with other similar exercises, we consider two re-
lated, but distinct, notions of mobile processes, namely labile processes,
which can exhibit dynamic changes in their interaction structure, as mod-
elled in the π-calculus of Milner, Parrow and Walker for example, and
motile processes, which can exhibit motion, as modelled in the ambient
calculus of Cardelli and Gordon. A common characteristic of the alge-
braic frameworks presented in this paper is the use of names as first class
values and the support for the dynamic generation of new, fresh names.

1 Introduction

Process algebras have proved to be valuable mathematical tools to reason about
the behaviour of concurrent and communicating systems. For more than ten
years now, research has been conducted on semantics of higher-order processes
that allow communication channels or even processes to be carried across by
communications. Process calculi featuring the ability to dynamically create and
exchange channel names are often referred to as mobile, a term popularised by
the seminal introduction to the π-calculus [1], a prominent example of calculus
with mobile processes.

1. Robin Milner, Joachim Parrow, David Walker: A Calculus of Mobile Pro-
cesses, (parts I and II). Information and Computation 100(1) (1992) 1–77

2. Robin Milner: Communicating and Mobile Systems: the Pi-Calculus. Cam-
bridge University Press (2000)

Unfortunately, the term mobility is overloaded with meaning and the notion
of mobility supported by the π-calculus encompasses only part of all the abstrac-
tions meaningful to mobility in a distributed system. For instance, the π-calculus
does not directly model phenomena such as the distribution of processes within
different localities, their migrations, or their failures.

As a matter of fact, the term mobility is related to two distinct notions.
First, mobility is a property of systems undergoing frequent changes. In this
situation, we say that the system is labile, by analogy with the labile compounds
of a chemical reaction. Another notion associated with mobility is related to
systems capable of changing their physical location. We say that these systems
F. Cassez, C. Jard, B. Rozoy and M. Ryan (Eds.): Modelling and Verification of Parallel Processes,
LNCS 2067, pp. 207–223, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



208 Silvano Dal Zilio

are motile, borrowing a term commonly used in biology to describe living form
demonstrating movement by independent means.

Labile systems are well modelled by the π-calculus, which can represents
systems that dynamically reorganize their communication structure throughout
time. But as we said earlier, the π-calculus does not directly models motile
systems. Based on this distinction, and to grasp the core meaning of location
and process migration, process calculi with explicit locations, such as the ambient
calculus of Cardelli and Gordon [3], have been recently proposed.

3. Luca Cardelli, Andrew D. Gordon: Mobile Ambients. In Proc. of FoSSaCS,
Springer LNCS 1378 (1998) 140–155

This paper offers a short bibliographic survey of calculi for mobile processes.
Contrasting with other similar exercises, we consider both labile and motile
process calculi and we concentrate especially on the π-calculus, the ambient
calculus, and some extension of π with distribution primitives.

This commented bibliography is not meant as an introduction to the π-
calculus or the ambient calculus. In particular, we do not define these calculi,
nor give hints at their syntax or semantics, as we cite several introductory mate-
rials that answer this purpose. Instead, this paper is an attempt to explain the
differences and similarities between the two different notions of mobility that
motivated the design of the π and ambient calculi, and to attract notice to in-
teresting research problems arisen from the study of mobility.

We organize the rest of the paper as follows. Section 2 is concerned with
labile process calculi, that is, calculi featuring mobility of names, and more par-
ticularly with the π-calculus. We suppose that the reader is familiar with process
calculus and their equational theory, such as found in [2] for example. Familiar-
ity with distributed programming languages and type systems would also be an
advantage. In Section 3, we present calculi with distributed and migrating pro-
cesses, namely motile calculi. We start by considering extension of the π-calculus
with explicit locations and primitives for location failures and process migration.
Then we look at the ambient calculus, an archetypal calculus for the mobility of
computations.

Since bibliographical references make an important part of this paper, we
provide them directly within the text. The complete list of references is provided
at the end of this paper.

2 Mobility of Names

As explained in introduction of this paper, the notion of mobility in process
calculi often refers to the capability for a process to exchange names as values.
The idea of using channel names as data, together with the ability to generate
fresh and unique names, is the basis on which the π-calculus is founded.

In his 1991 Turing award Lecture, Milner [4] gives an illuminating account
on the concepts of interaction and naming. The study of the relation between



Mobile Processes: a Commented Bibliography 209

computation and naming is further developed in Gordon’s survey on nominal
calculi [5], that we discuss in the following section.

4. Robin Milner: Elements of Interaction. Communications of the ACM 36(1)
(1993) 78–89

5. Andrew D. Gordon: Notes on Nominal Calculi for Security and Mobility. In
Proc. of FOSAD, Springer LNCS (2001), to appear

2.1 The Significance of Names

In his Turing award lecture, Milner argues that when one talks about mobility
in a system of interacting agents, what really matters is not the mobility of
the agents per se (an agent can even not exist), but rather the movement of
the access paths to the agents. These access paths — channel names in the π-
calculus or references in object-oriented terminology — are the key element we
actually need to reason about.

As noted by Gordon [5], this emphasis on the role of naming in the compre-
hension of computational systems is not isolated. Indeed, contemporarily to the
π-calculus definition, Needham [6] was advocating the importance of the notion
of pure names in the formalization of distributed objects. In his own words, a
pure name is “nothing but a bit pattern that is an identifier, and is only useful
for comparing for identity with other bit patterns — which includes looking up
in tables in order to find other information.” Compare this definition with the
usage of (channel) names in the π-calculus, where a process can read from a
named channel, emit in a named channel, or test the equality of two names.

Another example of research on the significance of pure names can be found
in the nu-calculus of Pitts and Stark [7], a typed lambda-calculus extended with
state in the form of dynamically generated names, in which pure names are
introduced in order to models the effect of adding references to a functional
language like ML.

6. Roger M. Needham: Names. In S. Mullender (ed.): Distributed Systems,
Addison-Wesley (1989) 89–101

7. Andrew M. Pitts, Ian D. B. Stark: Observable Properties of Higher Order
Functions that Dynamically Create Local Names, or: What’s New? In Proc.
of MFCS, Springer LNCS 711 (1993) 122–141

2.2 The π-Calculus

As the λ-calculus, from which many similarities can be drawn, the π-calculus is
a parsimonious algebraic framework built from a reduced number of operators,
yet expressive enough to model a wide range of computational systems and data
structures.

A good introduction to the π-calculus can be found in Milner’s tutorial
book [2], a preliminary version of which exists as a LFCS research report [8].
Sangiorgi and Walker provide a reference book on the π-calculus theory [9], with



210 Silvano Dal Zilio

emphasis on proof techniques. Related papers, more targeted towards the ap-
plication to concurrent and distributed programming languages, are Benjamin
Pierce’s introduction to the π-calculus for the engineer [10], and Peter Sewell’s
report on applied pi [11].

Beside these papers, the reader interested by a thorough presentation of the
π-calculus will benefit from the notable bibliography on mobile processes com-
piled by Kohei Honda. Other interesting collections of resources are the bibliog-
raphy and web pages on mobile process calculi maintained by Uwe Nestmann and
Björn Victor and available at the following address: http://move.to/mobility.

8. Robin Milner: The Polyadic π-Calculus: a Tutorial. Technical Report ECS-
LFCS-91-180, University of Edinburgh (1991)

9. Davide Sangiorgi, David Walker: The π-Calculus: a Theory of Mobile Pro-
cesses. Cambridge University Press (2001)

10. Benjamin C. Pierce: Foundational Calculi for Programming Languages. In
A. B. Tucker (ed.): Handbook of Computer Science and Engineering, CRC
Press (1996)

11. Peter Sewell: Applied Pi – A Brief Tutorial. Technical Report 498, University
of Cambridge (2000)

12. Kohei Honda: Selected Bibliography on Mobile Processes. Unpublished notes,
available electronically (1998)

13. Uwe Nestmann, Björn Victor: Calculi for Mobile Processes: Bibliography
and Web Pages. Bulletin of the EATCS 64 (1998) 139–144

The definition of the π-calculus is not steady and many different evolution
of π can be found in the literature. The π-calculus is actually more a family of
calculi than just a unique calculus. Such evolutions, briefly summarized in [11],
include asynchronous, internal or receptive version of the π-calculus; extensions
with primitive for testing the (in)equality of names; etc. In addition, several
process calculi based on name-passing has been proposed: the fusion calculus
of Parrow and Walker, a simplification of π with a more symmetric form of
communication; the spi-calculus of Abadi and Gordon, an extension of π designed
for the description and analysis of cryptographic protocols; the join-calculus of
Fournet, Gonthier et al; the blue-calculus of Boudol; etc.

14. Joachim Parrow, Björn Victor: The Fusion Calculus: Expressiveness and
Symmetry in Mobile Processes. In Proc. of LICS, IEEE Computer Society
Press (1998) 176–185

15. Mart̀ın Abadi, Andrew D. Gordon: A Calculus for cryptographic protocols:
the spi calculus. Information and Computation 148 (1999) 1–70

16. Cédric Fournet, Georges Gonthier: The Reflexive Chemical Abstract Ma-
chine and the Join-Calculus. In Proc. of POPL, ACM Press (1996) 372–385

17. Gérard Boudol: The π-Calculus in Direct Style. Higher-Order and Symbolic
Computation 11 (1998) 177–208

There are also definitions of higher-order process calculi, like CHOCS for
instance [18], where whole processes and not simply names can be exchanged



Mobile Processes: a Commented Bibliography 211

during communication. Interestingly enough, Sangiorgi proved that it is possible
to encode a primitive for higher-order communication in π [19].

18. Bent Thomsen: Plain CHOCS. A Second Generation Calculus for Higher
Order Processes. Acta Informatica 30(1) (1993) 1–59

19. Davide Sangiorgi: From pi-Calculus to Higher-Order pi-Calculus – and Back.
In Proc. of TAPSOFT, Springer LNCS 668 (1993) 151–166

In the remainder of this section, we follow the style of [12] and present a
selection of articles following a somewhat arbitrary decomposition into topics.

2.3 Equational Theory and Properties of Processes

The operational semantics of concurrent systems are commonly defined using
labelled transition systems. For example, the π-calculus semantics given in [1]
is based on such a presentation. Nonetheless, the now conventional dynamic
semantics of π is based on a reduction relation defined on top of a structural
congruence relation that identifies processes up to elementary rearrangements.
This presentation, first introduced in [20] and inspired by the chemical abstract
machine of Berry and Boudol, allows for a simple and compact definition of the
reduction rules in which the sub-processes having to interact appear in contigu-
ous position. It also accounts for much of the elegance and simplicity of the
π-calculus semantics.

20. Robin Milner: Functions as Processes. Mathematical Structures in Computer
Science 2 (1992) 119–141

21. Gérard Berry, Gérard Boudol: The Chemical Abstract Machine. Theoretical
Computer Science 96 (1992) 217–248

There exist several definitions of behavioural equivalences for π-calculus pro-
cesses based on labelled-semantics, like for example the early and late bisim-
ulations defined in [1]. See [11,12] for a general account on these equivalences
and [22] for a good introduction to the semantics of concurrent process calculi.

In the reduction-based semantics, an interesting notion of equivalence is ob-
tained using barbed equivalence. See also Honda and Yoshida reduction-based
equivalence for an asynchronous process calculus [24].

The use of reduction-based equivalences is interesting because these kinds of
equivalences are amenable to comparison between different calculi and semantics.
Moreover, experience show that it is easier to define a reduction semantics for a
calculi with explicit locations than to define (the equivalent) labelled transition
semantics.

22. Robin Milner: Semantics of Concurrent Processes. In J. van Leeuwen (ed.):
Handbook of theoretical computer science, Elsevier (1990) 1203–1241

23. Robin Milner, Davide Sangiorgi: Barbed Bisimulation. In Proc. of ICALP,
Springer LNCS 623 (1992) 685–695



212 Silvano Dal Zilio

24. Kohei Honda, Nobuko Yoshida: On Reduction-Based Process Semantics.
Theoretical Computer Science 152(2) (1995) 437–486

Another general method to express and verify properties of processes is to
use a logical system. In the case of CCS, for example, a modal logic known as
Hennessy-Milner logic has been defined that can be used as an alternative char-
acterization of bisimulation equivalences: two processes are equivalent if and only
if they satisfies the same formulas. Milner, Parrow and Walker have extended
this logic to mobile processes in [26]. Another interesting reference is the work
of Mads Dam [27] on an extension of the modal µ-calculus used to define a proof
system for π.

25. Matthew Hennessy, Robin Milner: Algebraic laws for Non-Determinism and
Concurrency. Journal of the ACM 32 (1985) 137–161

26. Robin Milner, Joachim Parrow, David Walker: Modal Logics for Mobile Pro-
cesses. Theoretical Computer Science 114(1) (1993) 149–171

27. Mads Dam: Model Checking Mobile Processes. Information and Computa-
tion 129(1) (1996) 35–51

2.4 The π-Calculus as a Programming Model

One of the major successes of the π-calculus is its use in the validation of con-
cepts for concurrent programming languages; in almost the same manner that
functional programming has been established from the computational model pro-
vided by the λ-calculus. In particular, programming languages directly based on
the π-calculus have been proposed. Examples are Pict, developed by Pierce and
Turner at the University of Edinburgh, and the join-calculus, a programming
language based on the homonymous process calculus [16], developed at INRIA.

The theoretical foundations of these programming languages take support
from the study of abstract machines for intermediate languages derived from
π. For instance, Pict is based on an asynchronous version of π without choice
operator [28]. See [29] for a study on how to encode choice. Likewise, the join-
calculus is obtained as a restriction of π that makes it easier to implement in a
distributed scenario [30].

28. David N. Turner: The Polymorphic Pi-Calculus: Theory and Implementa-
tion. PhD thesis, University of Edinburgh (1995)

29. Uwe Nestmann, Benjamin C. Pierce: Decoding Choice Encodings. In Proc.
of CONCUR, Springer LNCS 119 (1996) 179–194

30. Cédric Fournet: Le join-calcul: un calcul pour la programmation répartie et
mobile. PhD thesis, École Polytechnique (1998)

Other theoretical foundations for the design of concurrent programming lan-
guages are provided by studies on how to model various computational model
in π. Fundamental studies include the encoding of the functional and object-
oriented paradigm in the π-calculus — including actors and concurrent objects.



Mobile Processes: a Commented Bibliography 213

For instance, a complete tutorial on the different encoding of the λ-calculus in
the π-calculus, extending the initial article of Milner on the encoding of functions
as processes [20], can be found in [31]. See also Part VI of [9].

31. Davide Sangiorgi: Interpreting Functions as pi-Calculus Processes: a Tuto-
rial. INRIA Research Report 3470 (1999)

The study of objects using process calculus (and process calculus techniques)
is also particularly fruitful. For instance, the π calculus has been used in seman-
tics of concurrent object-oriented programming languages [32] and to prove the
validity of program transformations [33].

32. Cliff B. Jones: A π-Calculus Semantics for an Object-Based Design Notation.
In Proc. of CONCUR, Springer LNCS 715 (1993) 158–172

33. Davide Sangiorgi: Typed pi-Calculus at Work: A Correctness Proof of Jones’s
Parallelisation Transformation on Concurrent Objects. Theory and Practice
of Object Systems, 5(1) (1999) 25–33

The π-calculus as also been used in interpretations of typed calculi of ob-
jects [34,35,36] and as a model for Obliq [37], an object-based programming
language with distributed and mobile objects developed by Cardelli [38]. Other
interesting works are concerned with the study of dedicated nominal calculi pro-
posed as formalism to reason about concurrent objects [39,40,41].

34. Davide Sangiorgi: An Interpretation of Typed Objects Into Typed π-Calculus.
Information and Computation 143(1) (1998) 34–73

35. Josva Kleist, Davide Sangiorgi: Imperative Objects and Mobile Processes.
In Proc. of PROCOMET, Chapman & Hall (1998)

36. Silvano Dal Zilio: An Interpretation of Typed Concurrent Objects in the
Blue Calculus. In Proc. of IFIP TCS, Springer LNCS 1872 (2000) 409–424

37. Josva Kleist, Massimo Merro, Uwe Nestmann: Local pi-Calculus at Work:
Mobile Objects as Mobile Processes. In Proc. of IFIP TCS, Springer LNCS
1872 (2000) 390–408

38. Luca Cardelli: A language with distributed scope. Computing Systems 8(1)
(1995) 27–59

39. Kohei Honda, Mario Tokoro: An Object Calculus for Asynchronous Com-
munication. In Proc. of ECOOP, Springer LNCS 512 (1991) 133–147

40. Vasco T. Vasconcelos: Typed Concurrent Objects. In Proc. of ECOOP,
Springer LNCS 821 (1994) 100–117

41. Andrew D. Gordon, Paul D. Hankin: A Concurrent Object Calculus: Reduc-
tion and Typing. In Proc. of HLCL, Elsevier ENTCS 16(3) (1998)

2.5 Verification and Type Systems

In the case of the π-calculus, verification is related to the action of checking
bisimilarity relations or checking whether a process satisfies some given logical
specification, for instance expressed in a temporal or modal logic. An interesting



214 Silvano Dal Zilio

example of verification problem is given by the work of Abadi and Gordon on
the spi-calculus, in which processes represent protocols and security properties
are stated in terms of behavioural equivalences.

A substantial number of works related to verification for mobile processes
concentrate on finite control processes [42], a class of processes that correspond
to CCS finite state processes. See for instance the mobility Workbench, an au-
tomated tool for analysing π-calculus processes developed by Faron Moller and
Björn Victor [43], and work in the HAL environment [45].

42. Mads Dam: On the Decidability of Process Equivalences for the π-Calculus.
SICS Research Report 94-20 (1994)

43. Björn Victor, Faron Moller; The Mobility Workbench – a Tool for the π-
Calculus. In Proc. of CAV, Springer LNCS 818 (1994) 428–440

44. Marco Pistore, Davide Sangiorgi: A Partition Refinement Algorithm for the
π-Calculus. In Proc. of CAV, Springer LNCS 1102 (1996) 38–49

45. Gianluigi Ferrari, Stefania Gnesi, Ugo Montanari, Marco Pistore, Gioia Ris-
tori: Verifying Mobile Processes in the HAL Environment. In Proc. of CAV,
Springer LNCS 1427 (1998)

Due to the presence of recursion and dynamic generation of names, and in
contrast with the situation in CCS, processes can exhibit an infinite-state be-
haviour. Therefore, model checking for mobile processes is related to the problem
of verification of infinite-state and parameterised systems, a problem potentially
undecidable. See the work of Esparza, among others, at the Technische Uni-
versität of Munich. An interesting proposition to automate the verification of
“infinite” mobile processes (especially proofs of bisimilarity properties) relies on
the use of theorem prover, such as Coq [46] or Isabelle [47].

46. Daniel Hirschkoff: A Full Formalisation of π-Calculus Theory in the Calculus
of Constructions. In Proc. of TPHOL, Springer LNCS 1275 (1997)

47. Christine Röckl, Javier Esparza: Proof-Checking Protocols using Bisimula-
tions. In Proc. of CONCUR, Springer LNCS 1664 (1999) 525–540

Another technique used to verify properties of processes relies on type sys-
tems. This approach of verification is particularly useful because it is generally
simpler to type a process than to verify a property given in a modal logic.

Type systems in mobile calculus, like in functional calculus, are useful to
prevent so-called run-time errors, but also to enforce security policies, to specify
synchronization behaviours, or to validate program transformations and equiva-
lences. For example, type systems have been used to attack problems related to
information flow analysis, to prove the correctness of cryptographic protocols,
or to prove the absence of deadlock in a program.

The first notion of type for π-calculus processes, called sort, is defined in
Milner’s tutorial [8]. Works on extension of the sorting system are well summa-
rized in [12], and include, among others, the addition of (second-order) poly-
morphism, subtyping [48] and linearity [49]. More precise type analysis, based
on the extension of the sorting system with modal operators, have also been
proposed [50,51,52].



Mobile Processes: a Commented Bibliography 215

48. Benjamin C. Pierce, Davide Sangiorgi: Typing and Subtyping for Mobile
Processes. Mathematical Structures in Computer Science 6(5) (1996) 409–
453

49. Naoki Kobayashi, Benjamin C. Pierce, David N. Turner: Linearity and the
pi-Calculus. In Proc. of POPL, ACM Press (1996) 358–371

50. Nobuko Yoshida: Graph Types for Monadic Mobile Processes. In Proc. of
FST & TCS, Springer LNCS 1180 (1996) 371–386

51. Gérard Boudol: Typing the Use of Resources in a Concurrent Calculus. In
Proc. of ASIAN, Springer LNCS 1345 (1997) 239–253

52. Naoki Kobayashi: A Partially Deadlock-Free Typed Process Calculus. In
Proc. of LICS, IEEE Computer Society Press (1997) 128–139

An original application of type systems to concurrent processes is in the def-
inition of new behavioural equivalences. See [53] for an example. In this context,
types are viewed as a way to establish a contract between a process and the pos-
sible contexts in which it can be executed, i.e., tested. Therefore, an equivalence
defined using typed processes is coarser than its untyped counterpart and can
be used to prove properties based on given assumption about the (execution)
environment.

53. Benjamin C. Pierce, Davide Sangiorgi: Behavioral Equivalence in the Poly-
morphic pi-Calculus. In Proc. of POPL, ACM Press (1997) 242–255

2.6 Locality-Based Semantics

Before moving on to the next section of this presentation, concerned with motile
process calculi, we briefly consider some early work on localities in CCS.

As pointed out in the introduction, mobility is strongly related to the concept
of locality, which is the key notion used to represent where things are changing,
or moving. In process calculi such as CCS, for example, it is possible to make
the distributed structure of processes explicit by assigning different locations to
each component of a parallel composition. Using this model of locations, it is
possible to refine the usual behavioural equivalences defined between processes.
An example of such equivalence is given in [55].

54. Ilaria Castellani, Matthew Hennessy: Distributed Bisimulations. Journal of
the ACM, 36(4) (1989) 887–911

55. Gérard Boudol, Ilaria Castellani, Matthew Hennessy, Astrid Kiehn: A The-
ory of Processes with Localities. Formal Aspects of Computing 6(2) (1994)
165–200

Based on the same idea, Sangiorgi [56], and later Degano and Priami [57],
have conducted related works in the context of mobile processes.

56. Davide Sangiorgi: Locality and Interleaving Semantics in Calculi for Mobile
Processes. Theoretical Computer Science, 155(1) (1996) 39–83



216 Silvano Dal Zilio

57. Pierpaolo Degano, Corrado Priami: Non Interleaving Semantics for Mobile
Processes. Theoretical Computer Science 216(1-2) (1999) 237–270

We mention this thread of research because it proposes an early treatment
of the notion of locality in process calculi. Nevertheless, the notion of locality
obtained with this approach is too syntactical and, consequently, is not ade-
quate to deal with phenomenon such as the migration of processes. To get round
this limitation, process calculi with an explicit notion of locality and explicit
primitives for migrating processes have been proposed.

3 Mobility of Processes

The π-calculus is best used to model concurrent systems where interacting pro-
grams and processes can freely address each other and share resources. This is,
for instance, the model commonly chosen to program systems of distributed ob-
jects over local area network, where a dedicated infrastructure can ensure the
consistency of an abstract layer of services, like transparent routing of messages
or failures recovery.

In programming over wide area network, such as the Internet, distribution
introduces new issues of its own and breaks many postulates commonly assumed
in concurrent system. See [58] for a good overview of the new problems faced in
computations over large-scale network. In this paper, Cardelli points out that
many events kept hidden in concurrent systems suddenly become apparent. Ex-
amples of such events, or observable, are the existence of explicit physical lo-
cations (because of the existence of latency in communication), the existence
of virtual locations (because security policies can restrict the access to some
protected resources), or the existence of failures.

Faced with these intrinsic differences, a new computing paradigm based on
the migration of code or agents, instead of the migration of references, has been
advocated.

58. Luca Cardelli: Abstractions for Mobile Computation. In J. Vitek and C. Jen-
sen (eds.): Secure Internet Programming: Security Issues for Mobile and
Distributed Objects, Springer LNCS 1603 (1999) 51–94

The existence of objective barriers to the free mobility of names makes the
π-calculus an unsatisfactory choice for the modelling of computations over large-
scale networks. But other limitations exist that require the definition of a new
model, like the ability to represent containment or repudiation behaviours. For
example, once a name has been communicated in π, it is impossible to withdraw
the knowledge or the capabilities associated with this name to the receiving pro-
cess. Likewise, even if the π-calculus has proved useful in modelling concurrent
objects, it is difficult to use π to model groups of objects, a very important
notion in component-based systems. Indeed, groups are important for defining
set of objects sharing a common behaviour — the involvement in a transaction,
a strategy regarding the concurrent access to resources, etc. — or a common



Mobile Processes: a Commented Bibliography 217

attribute — for example a given security policy. At the opposite, models based
on explicit locations, such as the ambient calculus, provide an easy way to define
“containment” or sharing properties.

The phenomena discussed in this introduction have little to do with (pure)
concurrency or name mobility, and are therefore not directly captured by la-
bile process calculi. Considering their significance in the understanding and the
modelling of computations over large-scale networks, they nevertheless require
an extensive theoretical treatment. For this reason, several motile process cal-
culi have been defined, which directly include locations and primitives for moving
processes.

3.1 Distributed Process Calculi

An early attempt to add an explicit notion of location to a process calculus is
the work of Amadio and Prasad on π1 [59]. In this paper, authors remark that
while site failure is an essential aspect of distributed systems, it was not ade-
quately modelled in the π-calculus. To model failures, they propose a process
calculus in which processes are run at distributed locations. Their calculus pro-
vides operators to kill locations, to test the status of locations (ping), and to
spawn processes at remote locations.

59. Roberto Amadio, Sanjiva Prasad: Localities and Failures. In Proc. of FST
& TCS, Springer LNCS 880 (1994) 205–216

60. Roberto Amadio: An Asynchronous Model of Locality, Failure, and Process
Mobility. In Proc. of COORDINATION, Springer LNCS 1282 (1997)

Riely and Hennessy have considered subsequent distributed versions of π.
In [61,62] they describe a foundational language for specifying dynamically evolv-
ing networks of distributed processes, Dpi, which extends π with notions of re-
mote execution and migration. Novel features of Dpi are that (channel) names
are endowed with permissions and that the holder of a name may only use it in
the manner allowed by these permissions. See also the model of distribution and
failure proposed, independently, for the join-calculus [65].

In the works of Hennessy and Riely, the administration of permissions can
be controlled using a type system: well-typed processes use their names in ac-
cordance with the permissions allowed by the types. For instance, types are used
to guarantee that distributed agents cannot access the resources of a system
without first being granted the capability to do so (the language studied allows
agents to move between distributed locations and to augment their set of capa-
bilities via communication with other agents). Another example of type system
for distributed version of π is given in [66].

61. Matthew Hennessy, James Riely: Resource Access Control in Systems of
Mobile Agents. In Proc. of HLCL, Electronic Notes in Theoretical Computer
Science 16(3) (1998)

62. Matthew Hennessy, James Riely: A Typed Language for Distributed Mobile
Processes. In Proc. of POPL, ACM Press (1998) 378–390



218 Silvano Dal Zilio

63. Peter Sewell: Global/Local Subtyping and Capability Inference for a Dis-
tributed π-Calculus. In Proc. of ICALP, Springer LNCS 1443 (1998) 695–
706

64. Nobuko Yoshida, Matthew Hennessy: Subtyping and Locality in Distributed
Higher Order Processes. In Proc. of CONCUR, Springer LNCS 1664 (1999)
557–572

65. Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, Didier
Rémy; A Calculus of Mobile Agents. In Proc. of CONCUR, Springer LNCS
1119 (1996) 406–421

66. Roberto Amadio, Gérard Boudol, Cédric Lhoussaine: The Receptive Dis-
tributed pi-Calculus. In Proc. of FST & TCS, Springer LNCS 1738 (1999)
304–315

3.2 The Ambient Calculus

Very recently, Cardelli and Gordon have proposed a new process algebra, the
ambient calculus [3], for describing systems with mobile computations. In this
calculus, processes may reside within a hierarchy of locations, called ambients.
Each location is a cluster of processes and sub-ambients that can move as a
group.

Ambients provide an interesting abstraction that combines, within the same
theoretical framework, notions such as mobile computations, i.e., computations
that can dynamically change the place where they are executed and are con-
tinuously active before and after movement (like agents), the sites where these
computations happen: processor, router, etc. and the mobility of these sites, such
as found with mobile, or even simply temporarily disconnected, computers, or
in the crossing of administrative boundary, like applets crossing a firewall.

In the ambient calculus, each ambient has a name — the counterpart of a
channel name in the π-calculus — used to define a set of possible capabilities,
namely the capability of entering, of exiting or of opening an ambient. The result
is a concise process calculus permitting to describe both the mobility and the
security behaviours of a system using the same primitives. Instead of extending
an existing process calculus with a hierarchical system of locations, Cardelli and
Gordon have designed a calculus of locations and migration primitives sufficiently
expressive to encode π.

An equational theory for the ambient calculus, as well as the proof of some
algebraic laws, is given in [67]. Other works are related to the definition of
type systems, like for instance type systems to guarantee that certain ambients
remain immobile, or that the execution environment cannot dissolved certain
ambients [68,69].

67. Luca Cardelli, Andrew D. Gordon: Equational Properties of Mobile Ambi-
ents. In Proc. of FoSSaCS, Springer LNCS 1578 (1999)

68. Luca Cardelli, Andrew D. Gordon: Types for Mobile Ambients. In Proc. of
POPL, ACM Press (1999) 79–92



Mobile Processes: a Commented Bibliography 219

69. Luca Cardelli, Giorgio Ghelli, Andrew D. Gordon: Mobility Types for Mobile
Ambients. In Proc. of ICALP, Springer LNCS 1644 (1999) 230–239

To define stronger and finer properties of processes, Cardelli and Gordon
have also defined a new logic for the ambient calculus [70,71], which includes
both temporal modalities, to specify the behaviour of processes after some re-
ductions, and space modalities, to specify the behaviour of sub-processes at a
given location. The modal logic for ambients has also been used as the basis for
a query language on semistructured data [72].

70. Luca Cardelli, Andrew D. Gordon: Anytime, Anywhere: Modal Logics for
Mobile Ambients. In Proc. of POPL, ACM Press (2000) 365–377

71. Davide Sangiorgi: Extensionality and Intensionality of the Ambients Logics.
In Proc. of POPL, ACM Press (2001) 4–13

72. Luca Cardelli, Giorgio Ghelli: A Query Language Based on the Ambient
Logic. In Proc. of ESOP, Springer LNCS (2001), to appear

Another definition of process calculus based on mobile location is the Seal
calculus of Vitek and Castagna. An interesting property of this calculus is that it
allows expressing directly the possibility to seize a capability given at a certain
point, something that can only be modelled in an ambient calculus equipped
with a type system enforcing a linear use of capabilities.

73. Jan Vitek, Guiseppe Castagna: Seal: A Framework for Secure Mobile Com-
putations. In Internet Programming Languages, Springer LNCS 1686 (1999)

4 Summary

This paper loosely surveys ten years of research on mobile process calculus. Our
choice was to concentrate on algebraic formalism based on the notion of naming,
also called nominal calculi by Gordon [5], and we have therefore omitted other
possible formalism like coordination languages (such as LINDA) or Hewitt’s
models of actors.

Although many work has already been achieved, there are still promising
research developments to expect in the study of the concept of naming and
interaction, notions at the core of Milner’s action calculi, a unifying framework
introduced to study various notions of concurrent interactive behaviour.

74. Robin Milner: Calculi for Interaction. Acta Informatica 33(8) (1996) 707–737

Another promising research development is to extend the notion of naming,
only used for processes at present, to the level of types or even logical formulas.
Example of type systems based on pure names can be found in [50,51] and in
the system of groups defined by Cardelli, Ghelli and Gordon for the ambient
calculus [75], which has also been applied to the π-calculus [76,77]. A similar
example, at the level of logic, can be found in the recent extension of the modal
logic of ambients with a new quantifier to express the freshness of names [79],
modelled after Gabbay and Pitts work [78].



220 Silvano Dal Zilio

75. Luca Cardelli, Giorgio Ghelli, Andrew D. Gordon: Ambient Groups and
Mobility Types. In Proc. of IFIP TCS, Springer LNCS 1872 (2000) 332–347

76. Luca Cardelli, Giorgio Ghelli, Andrew D. Gordon: Secrecy and Group Cre-
ation. In Proc. of CONCUR, Springer LNCS 1877 (2000) 365–379

77. Silvano Dal Zilio, Andrew D. Gordon: Region Analysis and a π-calculus with
Groups. In Proc. of MFCS, Springer LNCS 1893 (2000) 1–20

78. Murdoch J. Gabbay, Andrew M. Pitts: A New Approach to Abstract Syntax
Involving Binders. In Proc. of LICS, IEEE Computer Society Press (1999)
214–224

79. Luca Cardelli, Andrew D. Gordon: Logical Properties of Name Restriction.
In Proc. of FoSSaCS, Springer LNCS (2001), to appear

Acknowledgments

I would like to thank Uwe Nestmann and Peter Sewell for helpful comments.
Luca Cardelli and Andy Gordon commented on a previous version of this text.

References

1. Robin Milner, Joachim Parrow, David Walker: A Calculus of Mobile Processes,
parts I and II. Information and Computation 100 (1992) 1–77

2. Robin Milner: Communicating and Mobile Systems: the Pi-Calculus. Cambridge
University Press (2000)

3. Luca Cardelli, Andrew D. Gordon: Mobile Ambients. In Proc. of FoSSaCS,
Springer LNCS 1378 (1998) 140–155

4. Robin Milner: Elements of Interaction. Communications of the ACM 36(1) (1993)
78–89

5. Andrew D. Gordon: Notes on Nominal Calculi for Security and Mobility. In Proc.
of FOSAD, Springer LNCS (2001), to appear

6. Roger M. Needham: Names. In S. Mullender (ed.): Distributed Systems, Addison-
Wesley (1989) 89–101

7. Andrew M. Pitts, Ian D. B. Stark: Observable Properties of Higher Order Func-
tions that Dynamically Create Local Names, or: What’s New? In Proc. of MFCS,
Springer LNCS 711 (1993) 122–141

8. Robin Milner: The Polyadic π-Calculus: a Tutorial. Technical Report ECS-LFCS-
91-180, University of Edinburgh (1991)

9. Davide Sangiorgi, David Walker: The π-Calculus: a Theory of Mobile Processes.
Cambridge University Press (2001)

10. Benjamin C. Pierce: Foundational Calculi for Programming Languages. In
A. B. Tucker (ed.): Handbook of Computer Science and Engineering, CRC Press
(1996)

11. Peter Sewell: Applied Pi – A Brief Tutorial. Technical Report 498, University of
Cambridge (2000)

12. Kohei Honda: Selected Bibliography on Mobile Processes. Unpublished notes,
available electronically (1998)

13. Uwe Nestmann, Björn Victor: Calculi for Mobile Processes: Bibliography and
Web Pages. Bulletin of the EATCS 64 (1998) 139–144



Mobile Processes: a Commented Bibliography 221

14. Joachim Parrow, Björn Victor: The Fusion Calculus: Expressiveness and Symme-
try in Mobile Processes. In Proc. of LICS, IEEE Computer Society Press (1998)
176–185

15. Mart̀ın Abadi, Andrew D. Gordon: A Calculus for cryptographic protocols: the
spi calculus. Information and Computation 148 (1999) 1–70

16. Cédric Fournet, Georges Gonthier: The Reflexive Chemical Abstract Machine and
the Join-Calculus. In Proc. of POPL, ACM Press (1996) 372–385

17. Gérard Boudol: The π-Calculus in Direct Style. Higher-Order and Symbolic Com-
putation 11 (1998) 177–208

18. Bent Thomsen: Plain CHOCS. A Second Generation Calculus for Higher Order
Processes. Acta Informatica 30(1) (1993) 1–59

19. Davide Sangiorgi: From pi-Calculus to Higher-Order pi-Calculus – and Back. In
Proc. of TAPSOFT, Springer LNCS 668 (1993) 151–166

20. Robin Milner: Functions as Processes. Mathematical Structures in Computer Sci-
ence 2 (1992) 119–141

21. Gérard Berry, Gérard Boudol: The Chemical Abstract Machine. Theoretical Com-
puter Science 96 (1992) 217–248

22. Robin Milner: Semantics of Concurrent Processes. In J. van Leeuwen (ed.): Hand-
book of theoretical computer science, Elsevier (1990) 1203–1241

23. Robin Milner, Davide Sangiorgi: Barbed Bisimulation. In Proc. of ICALP,
Springer LNCS 623 (1992) 685–695

24. Kohei Honda, Nobuko Yoshida: On Reduction-Based Process Semantics. Theo-
retical Computer Science 152(2) (1995) 437–486

25. Matthew Hennessy, Robin Milner: Algebraic laws for Non-Determinism and Con-
currency. Journal of the ACM 32 (1985) 137–161

26. Robin Milner, Joachim Parrow, David Walker: Modal Logics for Mobile Processes.
Theoretical Computer Science 114(1) (1993) 149–171

27. Mads Dam: Model Checking Mobile Processes. Information and Computation
129(1) (1996) 35–51

28. David N. Turner: The Polymorphic Pi-Calculus: Theory and Implementation.
PhD thesis, University of Edinburgh (1995)

29. Uwe Nestmann, Benjamin C. Pierce: Decoding Choice Encodings. In Proc. of
CONCUR, Springer LNCS 119 (1996) 179–194

30. Cédric Fournet: Le join-calcul: un calcul pour la programmation répartie et mo-
bile. PhD thesis, École Polytechnique (1998)

31. Davide Sangiorgi: Interpreting Functions as pi-Calculus Processes: a Tutorial.
INRIA Research Report 3470 (1999)

32. Cliff B. Jones: A π-Calculus Semantics for an Object-Based Design Notation. In
Proc. of CONCUR, Springer LNCS 715 (1993) 158–172

33. Davide Sangiorgi: Typed pi-Calculus at Work: A Correctness Proof of Jones’s
Parallelisation Transformation on Concurrent Objects. Theory and Practice of
Object Systems, 5(1) (1999) 25–33

34. Davide Sangiorgi: An Interpretation of Typed Objects Into Typed π-Calculus.
Information and Computation 143(1) (1998) 34–73

35. Josva Kleist, Davide Sangiorgi: Imperative Objects and Mobile Processes. In Proc.
of PROCOMET, Chapman & Hall (1998)

36. Silvano Dal Zilio: An Interpretation of Typed Concurrent Objects in the Blue
Calculus. In Proc. of IFIP TCS, Springer LNCS 1872 (2000) 409–424

37. Josva Kleist, Massimo Merro, Uwe Nestmann: Local pi-Calculus at Work: Mobile
Objects as Mobile Processes. In Proc. of IFIP TCS, Springer LNCS 1872 (2000)
390–408



222 Silvano Dal Zilio

38. Luca Cardelli: A language with distributed scope. Computing Systems 8(1) (1995)
27–59

39. Kohei Honda, Mario Tokoro: An Object Calculus for Asynchronous Communica-
tion. In Proc. of ECOOP, Springer LNCS 512 (1991) 133–147

40. Vasco T. Vasconcelos: Typed Concurrent Objects. In Proc. of ECOOP, Springer
LNCS 821 (1994) 100–117

41. Andrew D. Gordon, Paul D. Hankin: A Concurrent Object Calculus: Reduction
and Typing. In Proc. of HLCL, Elsevier ENTCS 16(3) (1998)

42. Mads Dam: On the Decidability of Process Equivalences for the π-Calculus. SICS
Research Report 94-20 (1994)

43. Björn Victor, Faron Moller; The Mobility Workbench – a Tool for the π-Calculus.
In Proc. of CAV, Springer LNCS 818 (1994) 428–440

44. Marco Pistore, Davide Sangiorgi: A Partition Refinement Algorithm for the π-
Calculus. In Proc. of CAV, Springer LNCS 1102 (1996) 38–49

45. Gianluigi Ferrari, Stefania Gnesi, Ugo Montanari, Marco Pistore, Gioia Ristori:
Verifying Mobile Processes in the HAL Environment. In Proc. of CAV, Springer
LNCS 1427 (1998)

46. Daniel Hirschkoff: A Full Formalisation of π-Calculus Theory in the Calculus of
Constructions. In Proc. of TPHOL, Springer LNCS 1275 (1997)

47. Christine Röckl, Javier Esparza: Proof-Checking Protocols using Bisimulations.
In Proc. of CONCUR, Springer LNCS 1664 (1999) 525–540

48. Benjamin C. Pierce, Davide Sangiorgi: Typing and Subtyping for Mobile Pro-
cesses. Mathematical Structures in Computer Science 6(5) (1996) 409–453

49. Naoki Kobayashi, Benjamin C. Pierce, David N. Turner: Linearity and the pi-
Calculus. In Proc. of POPL, ACM Press (1996) 358–371

50. Nobuko Yoshida: Graph Types for Monadic Mobile Processes. In Proc. of FST &
TCS, Springer LNCS 1180 (1996) 371–386

51. Gérard Boudol: Typing the Use of Resources in a Concurrent Calculus. In Proc.
of ASIAN, Springer LNCS 1345 (1997) 239–253

52. Naoki Kobayashi: A Partially Deadlock-Free Typed Process Calculus. In Proc. of
LICS, IEEE Computer Society Press (1997) 128–139

53. Benjamin C. Pierce, Davide Sangiorgi: Behavioral Equivalence in the Polymorphic
pi-Calculus. In Proc. of POPL, ACM Press (1997) 242–255

54. Ilaria Castellani, Matthew Hennessy: Distributed Bisimulations. Journal of the
ACM, 36(4) (1989) 887–911

55. Gérard Boudol, Ilaria Castellani, Matthew Hennessy, Astrid Kiehn: A Theory of
Processes with Localities. Formal Aspects of Computing 6(2) (1994) 165–200

56. Davide Sangiorgi: Locality and Interleaving Semantics in Calculi for Mobile Pro-
cesses. Theoretical Computer Science, 155(1) (1996) 39–83

57. Pierpaolo Degano, Corrado Priami: Non Interleaving Semantics for Mobile Pro-
cesses. Theoretical Computer Science 216(1-2) (1999) 237–270

58. Luca Cardelli: Abstractions for Mobile Computation. In J. Vitek and C. Jensen
(eds.): Secure Internet Programming: Security Issues for Mobile and Distributed
Objects, Springer LNCS 1603 (1999) 51–94

59. Roberto Amadio, Sanjiva Prasad: Localities and Failures. In Proc. of FST & TCS,
Springer LNCS 880 (1994) 205–216

60. Roberto Amadio: An Asynchronous Model of Locality, Failure, and Process Mo-
bility. In Proc. of COORDINATION, Springer LNCS 1282 (1997)

61. Matthew Hennessy, James Riely: Resource Access Control in Systems of Mobile
Agents. In Proc. of HLCL, Electronic Notes in Theoretical Computer Science
16(3) (1998)



Mobile Processes: a Commented Bibliography 223

62. Matthew Hennessy, James Riely: A Typed Language for Distributed Mobile Pro-
cesses. In Proc. of POPL, ACM Press (1998) 378–390

63. Peter Sewell: Global/Local Subtyping and Capability Inference for a Distributed
π-Calculus. In Proc. of ICALP, Springer LNCS 1443 (1998) 695–706

64. Nobuko Yoshida, Matthew Hennessy: Subtyping and Locality in Distributed
Higher Order Processes. In Proc. of CONCUR, Springer LNCS 1664 (1999) 557–
572

65. Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, Didier
Rémy; A Calculus of Mobile Agents. In Proc. of CONCUR, Springer LNCS 1119
(1996) 406–421

66. Roberto Amadio, Gérard Boudol, Cédric Lhoussaine: The Receptive Distributed
pi-Calculus. In Proc. of FST & TCS, Springer LNCS 1738 (1999) 304–315

67. Luca Cardelli, Andrew D. Gordon: Equational Properties of Mobile Ambients. In
Proc. of FoSSaCS, Springer LNCS 1578 (1999)

68. Luca Cardelli, Andrew D. Gordon: Types for Mobile Ambients. In Proc. of POPL,
ACM Press (1999) 79–92

69. Luca Cardelli, Giorgio Ghelli, Andrew D. Gordon: Mobility Types for Mobile
Ambients. In Proc. of ICALP, Springer LNCS 1644 (1999) 230–239

70. Luca Cardelli, Andrew D. Gordon: Anytime, Anywhere: Modal Logics for Mobile
Ambients. In Proc. of POPL, ACM Press (2000) 365–377

71. Davide Sangiorgi: Extensionality and Intensionality of the Ambients Logics. In
Proc. of POPL, ACM Press (2001) 4–13

72. Luca Cardelli, Giorgio Ghelli: A Query Language Based on the Ambient Logic.
In Proc. of ESOP, Springer LNCS (2001), to appear

73. Jan Vitek, Guiseppe Castagna: Seal: A Framework for Secure Mobile Computa-
tions. In Internet Programming Languages, Springer LNCS 1686 (1999)

74. Robin Milner: Calculi for Interaction. Acta Informatica 33(8) (1996) 707–737
75. Luca Cardelli, Giorgio Ghelli, Andrew D. Gordon: Ambient Groups and Mobility

Types. In Proc. of IFIP TCS, Springer LNCS 1872 (2000) 332–347
76. Luca Cardelli, Giorgio Ghelli, Andrew D. Gordon: Secrecy and Group Creation.

In Proc. of CONCUR, Springer LNCS 1877 (2000) 365–379
77. Silvano Dal Zilio, Andrew D. Gordon: Region Analysis and a π-calculus with

Groups. In Proc. of MFCS, Springer LNCS 1893 (2000) 1–20
78. Murdoch J. Gabbay, Andrew M. Pitts: A New Approach to Abstract Syntax

Involving Binders. In Proc. of LICS, IEEE Computer Society Press (1999) 214–
224

79. Luca Cardelli, Andrew D. Gordon: Logical Properties of Name Restriction. In
Proc. of FoSSaCS, Springer LNCS (2001), to appear


	Mobile Processes: a Commented Bibliography

