
HAL Id: hal-01483576
https://hal.science/hal-01483576

Submitted on 6 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Region Analysis and a π-Calculus with Groups
Silvano Dal Zilio, Andrew D. Gordon

To cite this version:
Silvano Dal Zilio, Andrew D. Gordon. Region Analysis and a π-Calculus with Groups. Lecture
Notes in Computer Science, Springer Verlag (Germany), pp.1-20, 2000, �10.1007/3-540-44612-5_1�.
�hal-01483576�

https://hal.science/hal-01483576
https://hal.archives-ouvertes.fr

Region Analysis and a π-Calculus with Groups

Silvano Dal Zilio and Andrew D. Gordon

Microsoft Research

Abstract. We show that the typed region calculus of Tofte and Talpin
can be encoded in a typed π-calculus equipped with name groups and
a novel effect analysis. In the region calculus, each boxed value has a
statically determined region in which it is stored. Regions are allocated
and de-allocated according to a stack discipline, thus improving memory
management. The idea of name groups arose in the typed ambient cal-
culus of Cardelli, Ghelli, and Gordon. There, and in our π-calculus, each
name has a statically determined group to which it belongs. Groups allow
for type-checking of certain mobility properties, as well as effect analy-
ses. Our encoding makes precise the intuitive correspondence between
regions and groups. We propose a new formulation of the type preser-
vation property of the region calculus, which avoids Tofte and Talpin’s
rather elaborate co-inductive formulation. We prove the encoding pre-
serves the static and dynamic semantics of the region calculus. Our proof
of the correctness of region de-allocation shows it to be a specific instance
of a general garbage collection principle for the π-calculus with effects.

1 Motivation

This paper reports a new proof of correctness of region-based memory manage-
ment [26], based on a new garbage collection principle for the π-calculus.

Tofte and Talpin’s region calculus is a compiler intermediate language that,
remarkably, supports an implementation of Standard ML that has no garbage
collector, the ML Kit compiler [4]. The basic idea of the region calculus is to
partition heap memory into a stack of regions. Each boxed value (that is, a
heap-allocated value such as a closure or a cons cell) is annotated with the par-
ticular region into which it is stored. The construct letregion ρ in b manages
the allocation and de-allocation of regions. It means: “Allocate a fresh, empty
region, denoted by the region variable ρ; evaluate the expression b; de-allocate
ρ.” A type and effect system for the region calculus guarantees the safety of
de-allocating the defunct region as the last step of letregion. The allocation and
de-allocation of regions obeys a stack discipline determined by the nesting of
the letregion constructs. A region inference algorithm compiles ML to the region
calculus by computing suitable region annotations for boxed values, and insert-
ing letregion constructs as necessary. In practice, space leaks, where a particular
region grows without bound, are a problem. Still, they can practically always
be detected by profiling and eliminated by simple modifications. The ML Kit
efficiently executes an impressive range of benchmarks without a garbage col-
lector and without space leaks. Region-based memory management facilitates

interoperability with languages like C that have no garbage collector and helps
enable realtime applications of functional programming.

Tofte and Talpin’s semantics of the region calculus is a structural operational
semantics. A map from region names to their contents represents the heap. A
fresh region name is invented on each evaluation of letregion. This semantics
supports a co-inductive proof of type safety, including the safety of de-allocating
the defunct region at the end of each letregion. The proof is complex and sur-
prisingly subtle, in part because active regions may contain dangling pointers
that refer to de-allocated regions.

The region calculus is a strikingly simple example of a language with type
generativity. A language has type generativity when type equivalence is by name
(that is, when types with different names but the same structure are not equiva-
lent), and when type names can be generated at run-time. A prominent example
is the core of Standard ML [17], whose datatype construct effectively generates
a fresh algebraic type each time it is evaluated. (The ML module system also
admits type generativity, but at link-time rather than run-time.) The region
calculus has type generativity because the type of a boxed value includes the
name of the region where it lives, and region names are dynamically generated
by letregion. The semantics of Standard ML accounts operationally for type gen-
erativity by inventing a fresh type name on each elaboration of datatype. Various
researchers have sought more abstract accounts of type generativity [13, 21].

This paper describes a new semantics for a form of the region calculus, ob-
tained by translation to a typed π-calculus equipped with a novel effect system.
The π-calculus [15] is a rather parsimonious formalism for describing the essen-
tial semantics of concurrent systems. It serves as a foundation for describing
a variety of imperative, functional, and object-oriented programming features
[22, 25, 28], for the design of concurrent programming languages [9, 20], and for
the study of security protocols [1], as well as other applications. The only data
in the π-calculus are atomic names. Names can model a wide variety of iden-
tifiers: communication channels, machine addresses, pointers, object references,
cryptographic keys, and so on. A new-name construct (νx)P generates names
dynamically in the standard π-calculus. It means: “Invent a fresh name, denoted
by x; run process P .” One might hope to model region names with π-calculus
names but unfortunately typings would not be preserved: a region name may
occur in a region-calculus type, but in standard typed π-calculi [19], names may
not occur in types.

We solve the problem of modelling region names by defining a typed π-
calculus equipped with name groups and a new-group construct [5]. The idea
is that each π-calculus name belongs to a group, G. The type of a name now
includes its group. A new-group construct (νG)P generates groups dynamically.
It means: “Invent a fresh group, denoted by G; run process P .” The basic ideas
of the new semantics are that region names are groups, that pointers into a
region ρ are names of group ρ, and that given a continuation channel k the
continuation-passing semantics of letregion ρ in b is simply the process (νρ)[[b]]k
where [[b]]k is the semantics of expression b. The semantics of other expressions

is much as in earlier π-calculus semantics of λ-calculi [22]. Parallelism allows
us to explain a whole functional computation as an assembly of individual pro-
cesses that represent components such as closures, continuations, and function
invocations.

This new semantics for regions makes two main contributions.

– First, we give a new proof of the correctness of memory management in
the region calculus. We begin by extending a standard encoding with the
equation [[letregion ρ in b]]k = (νρ)[[b]]k. Then the rather subtle correctness
property of de-allocation of defunct regions turns out to be a simple instance
of a new abstract principle expressed in the π-calculus. Hence, an advantage
of our π-calculus proof is that it is conceptually simpler than a direct proof.

– Second, the semantics provides a more abstract, equational account of type
generativity in the region calculus than the standard operational semantics.

The specific technical results of the paper are:

– A simple proof of type soundness of the region calculus (Theorem 1).
– A new semantics of the region calculus in terms of the π-calculus with groups.

The translation preserves types and effects (Theorem 2) and operational
behaviour (Theorem 3).

– A new garbage collection principle for the π-calculus (Theorem 4) whose
corollary (Theorem 5) justifies de-allocation of defunct regions in the region
calculus.

We organise the rest of the paper as follows. Section 2 introduces the region
calculus. Section 3 describes the π-calculus with groups and effects. Section 4
gives our new π-calculus semantics for regions. Section 5 concludes. Omitted
proofs may be found in a long version of this paper [8].

2 A λ-Calculus with Regions

To focus on the encoding of letregion with the new-group construct, we work with
a simplified version of the region calculus of Tofte and Talpin [26]. Our calculus
omits the recursive functions, type polymorphism, and region polymorphism
present in Tofte and Talpin’s calculus. The long version of this paper includes an
extension of our results to a region calculus with recursive functions, finite lists,
and region polymorphism. To encode these features, we need to extend our π-
calculus with recursive types and group polymorphism. Tofte and Talpin explain
that type polymorphism is not essential for their results. Still, we conjecture that
our framework could easily accommodate type polymorphism.

2.1 Syntax

Our region calculus is a typed call-by-value λ-calculus equipped with a letregion
construct and an annotation on each function to indicate its storage region. We

assume an infinite set of names, ranged over by p, q, x, y, z. For the sake of
simplicity, names represent both program variables and memory pointers, and
a subset of the names L = {`1, . . . , `n} represents literals. The following table
defines the syntax of λ-calculus expressions, a or b, as well as an auxiliary notion
of boxed value, u or v.

Expressions and Values:

x, y, p, q, f, g name: variable, pointer, literal
ρ region variable
a, b ::= expression

x name
v at ρ allocation of v at ρ
x(y) application
let x = a in b sequencing
letregion ρ in b region allocation, de-allocation

u, v ::= boxed value
λ(x:A)b function

We shall explain the type A later. In both let x = a in b and λ(x:A)b,
the name x is bound with scope b. Let fn(a) be the set of names that occur
free in the expression a. We identify expressions and values up to consistent
renaming of bound names. We write P{x←y} for the outcome of renaming all
free occurrences of x in P to the name y. Our syntax is in a reduced form,
where an application x(y) is of a name to a name. We can regard a conventional
application b(a) as an abbreviation for let f = b in let x = a in f(x), where
f 6= x and f is not free in a.

We explain the intended meaning of the syntax by example. The following
expression,

ex1
∆
= letregion ρ′ in

let f = λ(x:Lit)x at ρ′ in
let g = λ(y:Lit)f(y) at ρ in g(5)

means: “Allocate a fresh, empty region, and bind it to ρ′; allocate λ(x:Lit)x
in region ρ′, and bind the pointer to f ; allocate λ(y:Lit)f(y) in region ρ (an
already existing region), and bind the pointer to g; call the function at g with
literal argument 5; finally, de-allocate ρ′.” The function call amounts to calling
λ(y:Lit)f(y) with argument 5. So we call λ(x:Lit)x with argument 5, which
immediately returns 5. Hence, the final outcome is the answer 5, and a heap
containing a region ρ with g pointing to λ(y:Lit)f(y). The intermediate region
ρ′ has gone. Any subsequent invocations of the function λ(y:Lit)f(y) would go
wrong, since the target of f has been de-allocated. The type and effect system
of Section 2.3 guarantees there are no subsequent allocations or invocations on
region ρ′, such as invoking λ(y:Lit)f(y).

2.2 Dynamic Semantics

Like Tofte and Talpin, we formalize the intuitive semantics via a conventional
structural operational semantics. A heap, h, is a map from region names to re-
gions, and a region, r, is a map from pointers (names) to boxed values (function
closures). In Tofte and Talpin’s semantics, defunct regions are erased from the
heap when they are de-allocated. In our semantics, the heap consists of both
live regions and defunct regions. Our semantics maintains a set S containing the
region names for the live regions. This is the main difference between the two
semantics. Side-conditions on the evaluation rules guarantee that only the live
regions in S are accessed during evaluation. Retaining the defunct regions sim-
plifies the proof of subject reduction. Semmelroth and Sabry [23] adopt a similar
technique for the same reason in their semantics of monadic encapsulation.

Regions, Heaps, and Stacks:

r ::= (pi 7→ vi)
i∈1..n region, pi distinct

h ::= (ρi 7→ ri)
i∈1..n heap, ρi distinct

S ::= {ρ1, . . . , ρn} stack of live regions

A region r is a finite map of the form p1 7→ v1, . . . , pn 7→ vn, where the pi are
distinct, which we usually denote by (pi 7→ vi)

i∈1..n. An application, r(p), of the
map r to p denotes vi, if p is pi for some i ∈ 1..n. Otherwise, the application is
undefined. The domain, dom(r), of the map r is the set {p1, . . . , pn}. We write
∅ for the empty map. If r = (pi 7→ vi)

i∈1..n, we define the notation r − p to be
pi 7→ vi

i∈(1..n)−{j} if p = pj for some j ∈ 1..n, and otherwise to be simply r.
Then we define the notation r + (p 7→ v) to mean (r − p), p 7→ v.

We use finite maps to represent regions, but also heaps, and various other
structures. The notational conventions defined above for regions apply also to
other finite maps, such as heaps. Additionally, we define dom2(h) to be the set
of all pointers defined in h, that is,

⋃
ρ∈dom(h) dom(h(ρ)).

The evaluation relation, S · (a, h) ⇓ (p, h′), may be read: in an initial heap
h, with live regions S, the expression a evaluates to the name p (a pointer or
literal), leaving an updated heap h′, with the same live regions S.

Judgments:

S · (a, h) ⇓ (p, h′) evaluation

Evaluation Rules:

(Eval Var)

S · (p, h) ⇓ (p, h)

(Eval Alloc)
ρ ∈ S p /∈ dom2(h)

S · (v at ρ, h) ⇓ (p, h+ (ρ 7→ (h(ρ) + (p 7→ v))))

(Eval Appl)
ρ ∈ S h(ρ)(p) = λ(x:A)b S · (b{x←q}, h) ⇓ (p′, h′)

S · (p(q), h) ⇓ (p′, h′)

(Eval Let)
S · (a, h) ⇓ (p′, h′) S · (b{x←p′}, h′) ⇓ (p′′, h′′)

S · (let x = a in b, h) ⇓ (p′′, h′′)

(Eval Letregion)
ρ /∈ dom(h) S ∪ {ρ} · (a, h+ ρ 7→ ∅) ⇓ (p′, h′)

S · (letregion ρ in a, h) ⇓ (p′, h′)

Recall the example expression ex1 from the previous section. Consider an
initial heap h = ρ 7→ ∅ and a region stack S = {ρ}, together representing a heap
with a single region ρ that is live but empty. We can derive S · (ex1, h) ⇓ (5, h′)
where h′ = ρ 7→ (g 7→ λ(y:Lit)f(y)), ρ′ 7→ (f 7→ λ(x:Lit)x). Since ρ ∈ S but
ρ′ /∈ S, ρ is live but ρ′ is defunct.

2.3 Static Semantics

The static semantics of the region calculus is a simple type and effect system [10,
24, 27]. The central typing judgment of the static semantics is:

E ` a :{ρ1,...,ρn} A

which means that in a typing environment E, the expression a may yield a result
of type A, while allocating and invoking boxed values stored in regions ρ1, . . . ,
ρn. The set of regions {ρ1, . . . , ρn} is the effect of the expression, a bound on
the interactions between the expression and the store. For simplicity, we have
dropped the distinction between allocations, put(ρ), and invocations, get(ρ), in
Tofte and Talpin’s effects. This is an inessential simplification; the distinction
could easily be added to our work.

An expression type, A, is either Lit , a type of literal constants, or (A
e→ B) at

ρ, the type of a function stored in region ρ. The effect e is the latent effect: the
effect unleashed by calling the function. An environment E has entries for the
regions and names currently in scope.

Effects, Types, and Environments:

e ::= {ρ1, . . . , ρn} effect
A,B ::= type of expressions

Lit type of literals

(A
e→ B) at ρ type of functions stored in ρ

E ::= environment
∅ empty environment
E, ρ entry for a region ρ
E, x:A entry for a name x

Let fr(A) be the set of region variables occurring in the type A. We define
the domain, dom(E), of an environment, E, by the equations dom(∅) = ∅,
dom(E, ρ) = dom(E) ∪ {ρ}, and dom(E, x:A) = dom(E) ∪ {x}.

The following tables present our type and effect system as a collection of
typing judgments defined by a set of rules. Tofte and Talpin present their type
and effect system in terms of constructing a region-annotated expression from
an unannotated expression. Instead, our main judgment simply expresses the
type and effect of a single region-annotated expression. Otherwise, our system
is essentially the same as Tofte and Talpin’s.

Type and Effect Judgments:

E ` � good environment
E ` A good type
E ` a :e A good expression, with type A and effect e

Type and Effect Rules:

(Env ∅)

∅ ` �

(Env x) (recall L is the set of literals)
E ` A x /∈ dom(E) ∪ L

E, x:A ` �

(Env ρ)
E ` � ρ /∈ dom(E)

E, ρ ` �

(Type Lit)
E ` �
E ` Lit

(Type →)
E ` A ρ ∪ {e} ⊆ dom(E) E ` B

E ` (A
e→ B) at ρ

(Exp x)
E, x:A,E′ ` �

E, x:A,E′ ` x :∅ A

(Exp `)
E ` � ` ∈ L
E ` ` :∅ Lit

(Exp Appl)

E ` x :∅ (B
e→ A) at ρ E ` y :∅ B

E ` x(y) :{ρ}∪e A

(Exp Let)

E ` a :e A E, x:A ` b :e
′
B

E ` let x = a in b :e∪e
′
B

(Exp Letregion)
E, ρ ` a :e A ρ /∈ fr(A)

E ` letregion ρ in a :e−{ρ} A

(Exp Fun)
E, x:A ` b :e B e ⊆ e′ {ρ} ∪ e′ ⊆ dom(E)

E ` λ(x:A)b at ρ :{ρ} (A
e′→ B) at ρ

The rules for good environments are standard; they assure that all the names
and region variables in the environment are distinct, and that the type of each
name is good. All the regions in a good type must be declared. The type of a
good expression is checked much as in the simply typed λ-calculus. The effect
of a good expression is the union of all the regions in which it allocates or from
which it invokes a closure. In the rule (Exp Letregion), the condition ρ /∈ fr(A)
ensures that no function with a latent effect on the region ρ may be returned.
Calling such a function would be unsafe since ρ is de-allocated once the letregion
terminates. In the rule (Exp Fun), the effect e of the body of a function must
be contained in the latent effect e′ of the function. For the sake of simplicity we
have no rule of effect subsumption, but it would be sound to add it: if E ` a :e A

and e′ ⊆ dom(E) then E ` a :e∪e
′
A. In the presence of effect subsumption we

could simplify (Exp Fun) by taking e = e′.
Recall the expression ex1 from Section 2.1. We can derive the following:

ρ, ρ′ ` (λ(x:Lit)x) at ρ′ :{ρ
′} (Lit

∅→ Lit) at ρ′

ρ, ρ′, f :(Lit
∅→ Lit) at ρ′ ` (λ(x:Lit)f(x)) at ρ :{ρ} (Lit

{ρ′}→ Lit) at ρ

ρ, ρ′, f :(Lit
∅→ Lit) at ρ′, g:(Lit

{ρ′}→ Lit) at ρ ` g(5) :{ρ,ρ
′} Lit

Hence, we can derive ρ ` ex1 :{ρ} Lit .
For an example of a type error, suppose we replace the application g(5) in

ex1 simply with the identifier g. Then we cannot type-check the letregion ρ′

construct, because ρ′ is free in the type of its body. This is just as well, because
otherwise we could invoke a function in a defunct region.

For an example of how a dangling pointer may be passed around harmlessly,

but not invoked, consider the following. Let F abbreviate the type (Lit
∅→ Lit) at

ρ′. Let ex2 be the following expression:

ex2
∆
= letregion ρ′ in

let f = λ(x:Lit)x at ρ′ in
let g = λ(f :F)5 at ρ in
let j = λ(z:Lit)g(f) at ρ in j

We have ρ ` ex2 :{ρ} (Lit
{ρ}→ Lit) at ρ. If S = {ρ} and h = ρ 7→ ∅,

then S · (b, h) ⇓ (j, h′) where the final heap h′ is ρ 7→ (g 7→ λ(f :F)5, j 7→
λ(z:Lit)g(f)), ρ′ 7→ (f 7→ λ(x:Lit)x). In the final heap, there is a pointer f from
the live region ρ to the defunct region ρ′. Whenever j is invoked, this pointer
will be passed to g, harmlessly, since g will not invoke it.

2.4 Relating the Static and Dynamic Semantics

To relate the static and dynamic semantics, we need to define when a configu-
ration is well-typed. First, we need notions of region and heap typings. A region
typing R tracks the types of boxed values in the region. A heap typing H tracks
the region typings of all the regions in a heap. The environment env(H) lists all
the regions in H, followed by types for all the pointers in those regions.

Region and Heap Typings:

R ::= (pi:Ai)
i∈1..n region typing

H ::= (ρi 7→ Ri)
i∈1..n heap typing

ptr(H)
∆
= R1, . . . , Rn if H = (ρi 7→ Ri)

i∈1..n

env(H)
∆
= dom(H), ptr(H)

The next tables describe the judgments and rules defining well-typed regions,
heaps, and configurations. The main judgment H |= S · (a, h) : A means that a
configuration S ·(a, h) is well-typed: the heap h conforms to H and the expression
a returns a result of type A, and its effect is within the live regions S.

Region, Heap, and Configuration Judgments:

E ` r at ρ : R in E, region r, named ρ, has type R
H |= � the heap typing H is good
H |= h in H, the heap h is good
H |= S · (a, h) : A in H, configuration S · (a, h) returns A

Region, Heap, and Configuration Rules:

(Region Good)
E ` vi at ρ :{ρ} Ai ∀i ∈ 1..n

E ` (pi 7→ vi)
i∈1..n at ρ : (pi:Ai)

i∈1..n

(Heap Typing Good)
env(H) ` �
H |= �

(Heap Good) (where dom(H) = dom(h))
env(H) ` h(ρ) at ρ : H(ρ) ∀ρ ∈ dom(H)

H |= h

(Config Good) (where S ⊆ dom(H))
env(H) ` a :e A e ∪ fr(A) ⊆ S H |= h

H |= S · (a, h) : A

These predicates roughly correspond to the co-inductively defined consistency
predicate of Tofte and Talpin. The retention of defunct regions in our semantics
allows a simple inductive definition of these predicates, and a routine inductive
proof of the subject reduction theorem stated below.

We now present a subject reduction result relating the static and dynamic
semantics. Let H � H ′ if and only if the pointers defined by H and H ′ are
disjoint, that is, dom2(H) ∩ dom2(H ′) = ∅. Assuming that H � H ′, we write
H+H ′ for the heap consisting of all the regions in either H or H ′; if ρ is in both
heaps, (H +H ′)(ρ) is the concatenation of the two regions H(ρ) and H(ρ′).

Theorem 1. If H |= S · (a, h) : A and S · (a, h) ⇓ (p′, h′) there is H ′ such that
H � H ′ and H +H ′ |= S · (p′, h′) : A.

Intuitively, the theorem asserts that evaluation of a well-typed configuration
S ·(a, h) leads to another well-typed configuration S ·(p′, h′), where H ′ represents
types for the new pointers and regions in h′.

The following proposition shows that well-typed configurations avoid the
run-time errors of allocation or invocation of a closure in a defunct region.

Proposition 1.

(1) If H |= S · (v at ρ, h) : A then ρ ∈ S.
(2) If H |= S · (p(q), h) : A then there are ρ and v such that ρ ∈ S, h(ρ)(p) = v,

and v is a function of the form λ(x:B)b with env(H), x:B ` b :e A.

Combining Theorem 1 and Proposition 1 we may conclude that such run-
time errors never arise in any intermediate configuration reachable from an ini-
tial well-typed configuration. Implicitly, this amounts to asserting the safety of

region-based memory management, that defunct regions make no difference to
the behaviour of a well-typed configuration. Our π-calculus semantics of regions
makes this explicit: we show equationally that direct deletion of defunct regions
makes no difference to the semantics of a configuration.

3 A π-Calculus with Groups

In this section, we define a typed π-calculus with groups. In the next, we explain
a semantics of our region calculus in this π-calculus. Exactly as in the ambient
calculus with groups [5], each name x has a type that includes its group G, and
groups may be generated dynamically by a new-group construct, (νG)P . So as to
model the type and effect system of the region calculus, we equip our π-calculus
with a novel group-based effect system. In other work [6], not concerned with
the region calculus, we consider a simpler version of this π-calculus, with groups
but without an effect system, and show that new-group helps keep names secret,
in a certain formal sense.

3.1 Syntax

The following table gives the syntax of processes, P . The syntax depends on a
set of atomic names, x, y, z, p, q, and a set of groups, G, H. For convenience,
we assume that the sets of names and groups are identical to the sets of names
and region names, respectively, of the region calculus. We impose a standard
constraint [9, 14], usually known as locality, that received names may be used
for output but not for input. This constraint is actually unnecessary for any of
the results of this paper, but is needed for proofs of additional results in the
long version [8]. Except for the addition of type annotations and the new-group
construct, and the locality constraint, the following syntax and semantics are
the same as for the polyadic, choice-free, asynchronous π-calculus [15].

Expressions and Processes:

x, y, p, q name: variable, channel
P,Q,R ::= process

x(y1:T1, . . . , yn:Tn).P input (no yi ∈ inp(P))
x〈y1, . . . , yn〉 output
(νG)P new-group: group restriction
(νx:T)P new-name: name restriction
P | Q composition
!P replication
0 inactivity

The set inp(P) contains each name x such that an input process x(y1:T1, . . . ,
yn:Tn).P ′ occurs as a subprocess of P , with x not bound. We explain the types
T below. In a process x(y1:T1, . . . , yn:Tn).P , the names y1, . . . , yn are bound;

their scope is P . In a group restriction (νG)P , the group G is bound; its scope
is P . In a name restriction (νx:T)P , the name x is bound; its scope is P . We
identify processes up to the consistent renaming of bound groups and names. We
let fn(P) and fg(P) be the sets of free names and free groups, respectively, of a
process P . We write P{x←y} for the outcome of a capture-avoiding substitution
of the name y for each free occurrence of the name x in the process P .

Next, we explain the semantics of the calculus informally, by example. We
omit type annotations and groups; we shall explain these later.

A process represents a particular state in a π-calculus computation. A state
may reduce to a successor when two subprocesses interact by exchanging a tuple
of names on a shared communication channel, itself identified by a name. For
example, consider the following process:

f(x, k′).k′〈x〉 | g(y, k′).f〈y, k′〉 | g〈5, k〉

This is the parallel composition (denoted by the | operator) of two input
processes g(y, k′).f〈y, k′〉 and f(x, k′).k′〈x〉, and an output process g〈5, k〉. The
whole process performs two reductions. The first is to exchange the tuple 〈5, k〉
on the channel g. The names 5 and k are bound to the input names y and k,
leaving f(x, k′).k′〈x〉 | f〈5, k〉 as the next state. This state itself may reduce to
the final state k〈5〉 via an exchange of 〈5, k〉 on the channel f .

The process above illustrates how functions may be encoded as processes.
Specifically, it is a simple encoding of the example ex1 from Section 2.1. The
input processes correspond to λ-abstractions at addresses f and g; the output
processes correspond to function applications; the name k is a continuation for
the whole expression. The reductions described above represent the semantics
of the expression: a short internal computation returning the result 5 on the
continuation k.

The following is a more accurate encoding:

(νf)(νg)(

f 7→λ(x)x︷ ︸︸ ︷
!f(x, k′).k′〈x〉 |

g 7→λ(y)f(y)︷ ︸︸ ︷
!g(y, k′).f〈y, k′〉 |

g(5)︷ ︸︸ ︷
g〈5, k〉)

A replication !P is like an infinite parallel array of replicas of P ; we replicate
the inputs above so that they may be invoked arbitrarily often. A name restric-
tion (νx)P invents a fresh name x with scope P ; we restrict the addresses f
and g above to indicate that they are dynamically generated, rather than being
global constants.

The other π-calculus constructs are group restriction and inactivity. Group
restriction (νG)P invents a fresh group G with scope P ; it is the analogue of
name restriction for groups. Finally, the 0 process represents inactivity.

3.2 Dynamic Semantics

We formalize the semantics of our π-calculus using standard techniques. A re-
duction relation, P → Q, means that P evolves in one step to Q. It is defined

in terms of an auxiliary structural congruence relation, P ≡ Q, that identifies
processes we never wish to tell apart.

Structural Congruence: P ≡ Q

P ≡ P (Struct Refl)
Q ≡ P ⇒ P ≡ Q (Struct Symm)
P ≡ Q,Q ≡ R⇒ P ≡ R (Struct Trans)

P ≡ Q⇒ x(y1:T1, . . . , yn:Tn).P ≡ x(y1:T1, . . . , yn:Tn).Q (Struct Input)
P ≡ Q⇒ (νG)P ≡ (νG)Q (Struct GRes)
P ≡ Q⇒ (νx:T)P ≡ (νx:T)Q (Struct Res)
P ≡ Q⇒ P | R ≡ Q | R (Struct Par)
P ≡ Q⇒ !P ≡ !Q (Struct Repl)

P | 0 ≡ P (Struct Par Zero)
P | Q ≡ Q | P (Struct Par Comm)
(P | Q) | R ≡ P | (Q | R) (Struct Par Assoc)
!P ≡ P | !P (Struct Repl Par)

x1 6= x2 ⇒ (νx1:T1)(νx2:T2)P ≡ (νx2:T2)(νx1:T1)P (Struct Res Res)
x /∈ fn(P)⇒ (νx:T)(P | Q) ≡ P | (νx:T)Q (Struct Res Par)
(νG1)(νG2)P ≡ (νG2)(νG1)P (Struct GRes GRes)
G /∈ fg(T)⇒ (νG)(νx:T)P ≡ (νx:T)(νG)P (Struct GRes Res)
G /∈ fg(P)⇒ (νG)(P | Q) ≡ P | (νG)Q (Struct GRes Par)

Reduction: P → Q

x〈y1, . . . , yn〉 | x(z1:T1, . . . , zn:Tn).P → P{z1←y1} · · · {zn←yn} (Red Interact)
P → Q⇒ P | R→ Q | R (Red Par)
P → Q⇒ (νG)P → (νG)Q (Red GRes)
P → Q⇒ (νx:T)P → (νx:T)Q (Red Res)
P ′ ≡ P, P → Q,Q ≡ Q′ ⇒ P ′ → Q′ (Red ≡)

Groups help to type-check names statically but have no dynamic behaviour;
groups are not themselves values. The following proposition demonstrates this
precisely; it asserts that the reduction behaviour of a typed process is equivalent
to the reduction behaviour of the untyped process obtained by erasing all type
and group annotations.

Erasing type annotations and group restrictions:

erase((νG)P)
∆
= erase(P)

erase((νx:T)P)
∆
= (νx)erase(P)

erase(0)
∆
= 0

erase(P | Q)
∆
= erase(P) | erase(Q)

erase(!P)
∆
= !erase(P)

erase(x(y1:T1, . . . , yn:Tn).P)
∆
= x(y1, . . . , yn).erase(P)

erase(x〈y1, . . . , yn〉)
∆
= x〈y1, . . . , yn〉

Proposition 2 (Erasure). For all typed processes P and Q, if P → Q then
erase(P)→ erase(Q) and if erase(P)→ R then there is a typed process Q such
that P → Q and R ≡ erase(Q).

3.3 Static Semantics

The main judgment E ` P : {G1, . . . , Gn} of the effect system for the π-calculus
means that the process P uses names according to their types and that all its
external reads and writes are on channels in groups G1, . . . , Gn. A channel type
takes the form G[T1, . . . , Tn]\H. This stipulates that the name is in group G and
that it is a channel for the exchange of n-tuples of names with types T1, . . . , Tn.
The set of group names H is the hidden effect of the channel. In the common
case when H = ∅, we abbreviate the type to G[T1, . . . , Tn].

As examples of groups, in our encoding of the region calculus we have groups
Lit and K for literals and continuations, respectively, and each region ρ is a
group. Names of type Lit [] are in group Lit and exchange empty tuples, and
names of type K[Lit []] are in group K and exchange names of type Lit []. In our
running example, we have 5 : Lit [] and k : K[Lit []]. A pointer to a function in a
region ρ is a name in group ρ. In our example, we could have f : ρ′[Lit [],K[Lit []]]
and g : ρ[Lit [],K[Lit []]].

Given these typings for names, we have g(y, k′).f〈y, k′〉 : {ρ, ρ′} because the
reads and writes of the process are on the channels g and f whose groups are ρ
and ρ′. Similarly, we have f(x, k′).k′〈x〉 : {ρ′,K} and g〈5, k〉 : {ρ}. The compo-
sition of these three processes has effect {ρ, ρ′,K}, the union of the individual
effects.

The idea motivating hidden effects is that an input process listening on a
channel may represent a passive resource (for example, a function) that is only
invoked if there is an output on the channel. The hidden effect of a channel is
an effect that is masked in an input process, but incurred by an output process.
In the context of our example, our formal translation makes the following type
assignments: f : ρ′[Lit [],K[Lit []]]\{K} and g : ρ[Lit [],K[Lit []]]\{K, ρ′}. We then
have f(x, k′).k′〈x〉 : {ρ′}, g(y, k′).f〈y, k′〉 : {ρ}, and g〈5, k〉 : {ρ, ρ′,K}. The
hidden effects are transferred from the function bodies to the process g〈5, k〉
that invokes the functions. This transfer is essential in the proof of our main
garbage collection result, Theorem 5.

The effect of a replicated or name-restricted process is the same as the
original process. For example, abbreviating the types for f and g, we have:
(νf :ρ′)(νg:ρ)(!f(x, k′).k′〈x〉 | !g(y, k′).f〈y, k′〉 | g〈5, k〉) : {ρ, ρ′,K}.

On the other hand, the effect of a group-restriction (νG)P is the same as that
of P , except that G is deleted. This is because there can be no names free in P
of group G; any names of group G in P must be internally introduced by name-
restrictions. Therefore, (νG)P has no external reads or writes on G channels.
For example, (νρ′)(νf)(νg)(!f(x, k′).k′〈x〉 | !g(y, k′).f〈y, k′〉 | g〈5, k〉) : {ρ,K}.

The following tables describe the syntax of types and environments, the
judgments and the rules defining our effect system. Let fg(G[T1, . . . , Tn]\H)

∆
=

{G} ∪ fg(T1) ∪ · · · ∪ fg(Tn) ∪H.

Syntax of Types and Environments, Typing Judgments:

G,H ::= {G1, . . . , Gk} finite set of name groups
T ::= G[T1, . . . , Tn]\H type of channel in group G with hidden effect H
E ::= ∅ | E,G | E, x:T environment

E ` � good environment
E ` T good channel type T
E ` x : T good name x of channel type T
E ` P : H good process P with effect H

Typing Rules:

(Env ∅)

∅ ` �

(Env x)
E ` T x /∈ dom(E)

E, x:T ` �

(Env G)
E ` � G /∈ dom(E)

E,G ` �

(Type Chan)
E ` � {G} ∪H ⊆ dom(E) E ` T1 · · · E ` Tn

E ` G[T1, . . . , Tn]\H

(Exp x)
E′, x:T,E′′ ` �

E′, x:T,E′′ ` x : T

(Proc Input)
E ` x : G[T1, . . . , Tn]\H E, y1:T1, . . . , yn:Tn ` P : G

E ` x(y1:T1, . . . , yn:Tn).P : {G} ∪ (G−H)

(Proc Output)
E ` x : G[T1, . . . , Tn]\H E ` y1 : T1 · · · E ` yn : Tn

E ` x〈y1, . . . , yn〉 : {G} ∪H

(Proc GRes)
E,G ` P : H

E ` (νG)P : H− {G}

(Proc Res)
E, x:T ` P : H

E ` (νx:T)P : H

(Proc Par)
E ` P : G E ` Q : H

E ` P | Q : G ∪H

(Proc Repl)
E ` P : H

E ` !P : H

(Proc Zero)
E ` �

E ` 0 : ∅

(Proc Subsum)
E ` P : G G ⊆ H ⊆ dom(E)

E ` P : H

The rules for good environments and good channel types ensure that declared
names and groups are distinct, and that all the names and groups occurring in
a type are declared. The rules for good processes ensure that names are used for
input and output according to their types, and compute an effect that includes
the groups of all the free names used for input and output.

In the special case when the hidden effect H is ∅, (Proc Input) and (Proc
Output) specialise to the following:

E ` x : G[T1, . . . , Tn]\∅
E, y1:T1, . . . , yn:Tn ` P : G

E ` x(y1:T1, . . . , yn:Tn).P : {G} ∪G

E ` x : G[T1, . . . , Tn]\∅
E ` y1 : T1 · · · E ` yn : Tn

E ` x〈y1, . . . , yn〉 : {G}

In this situation, we attribute all the effect G of the prefixed process P to
the input process x(y1:T1, . . . , yn:Tn).P . The effect G of P is entirely excluded
from the hidden effect, since H = ∅.

A dual special case is when the effect of the prefixed process P is entirely
included in the hidden effect H. In this case, (Proc Input) and (Proc Output)
specialise to the following:

E ` x : G[T1, . . . , Tn]\H
E, y1:T1, . . . , yn:Tn ` P : H

E ` x(y1:T1, . . . , yn:Tn).P : {G}

E ` x : G[T1, . . . , Tn]\H
E ` y1 : T1 · · · E ` yn : Tn

E ` x〈y1, . . . , yn〉 : {G} ∪H

The effect of P is not attributed to the input x(y1:T1, . . . , yn:Tn).P but in-
stead is transferred to any outputs in the same group as x. If there are no such
outputs, the process P will remain blocked, so it is safe to discard its effects.

These two special cases of (Proc Input) and (Proc Output) are in fact suffi-
cient for the encoding of the region calculus presented in Section 4; we need the
first special case for typing channels representing continuations, and the second
special case for typing channels representing function pointers. For simplicity,
our actual rules (Proc Input) and (Proc Output) combine both special cases; an
alternative would be to have two different kinds of channel types corresponding
to the two special cases.

The rule (Proc GRes) discards G from the effect of a new-group process
(νG)P , since, in P , there can be no free names of group G (though there may
be restricted names of group G). The rule (Proc Subsum) is a rule of effect
subsumption. We need this rule to model the effect subsumption in rule (Exp
Fun) of the region calculus. The other rules for good processes simply compute
the effect of a whole process in terms of the effects of its parts.

We can prove a standard subject reduction result.

Proposition 3. If E ` P : H and P → Q then E ` Q : H.

Next, a standard definition of the barbs exhibited by a process formalizes the
idea of the external reads and writes through which a process may interact with
its environment. Let a barb, β, be either a name x or a co-name x.

Exhibition of a barb: P ↓ β

x(y1:T1, . . . , yn:Tn).P ↓ x x〈y1, . . . , yn〉 ↓ x

P ↓ β
(νG)P ↓ β

P ↓ β β /∈ {x, x}
(νx:T)P ↓ β

P ↓ β
P | Q ↓ β

P ≡ Q Q ↓ β
P ↓ β

The following asserts the soundness of the effect system. The group of any
barb of a process is included in its effect.

Proposition 4. If E ` P : H and P ↓ β with β ∈ {x, x} then there is a type
G[T1, . . . , Tn]\G such that E ` x : G[T1, . . . , Tn]\G and G ∈ H.

4 Encoding Regions as Groups

This section interprets the region calculus in terms of our π-calculus. Most of
the ideas of the translation are standard, and have already been illustrated by
example. A function value in the heap is represented by a replicated input pro-
cess, awaiting the argument and a continuation on which to return a result. A
function is invoked by sending it an argument and a continuation. Region names
and letregion ρ are translated to groups and (νρ), respectively.

The remaining construct of our region calculus is sequencing: let x = a in b.
Assuming a continuation k, we translate this to (νk′)([[a]]k′ | k′(x).[[b]]k). This
process invents a fresh, intermediate continuation k′. The process [[a]]k′ evaluates
a returning a result on k′. The process k′(x).[[b]]k blocks until the result x is
returned on k′, then evaluates b, returning its result on k.

The following tables interpret the types, environments, expressions, regions,
and configurations of the region calculus in the π-calculus. In particular, if S ·
(a, h) is a configuration, then [[S ·(a, h)]]k is its translation, a process that returns
any eventual result on the continuation k. In typing the translation, we assume
two global groups: a group, K, of continuations and a group, Lit , of literals. The
environment [[∅]] declares these groups and also a typing `i:Lit for each of the
literals `1, . . . , `n.

Translating of the region calculus to the π-calculus:

[[A]] type modelling the type A
[[E]] environment modelling environment E
[[a]]k process modelling term a, answer on k
[[p 7→ v]] process modelling value v at pointer p
[[r]] process modelling region r
[[S · (a, h)]]k process modelling configuration S · (a, h)

In the following equations, where necessary to construct type annotations
in the π-calculus, we have added type subscripts to the syntax of the region
calculus. The notation

∏
i∈I Pi for some finite indexing set I = {i1, . . . , in} is

short for the composition Pi1 | · · · | Pin | 0.

Translation rules:

[[Lit]]
∆
= Lit []

[[(A
e→ B) at ρ]]

∆
= ρ[[[A]],K[[[B]]]]\(e ∪ {K})

[[∅]]
∆
= K,Lit , `1:Lit [], . . . , `n:Lit []

[[E, ρ]]
∆
= [[E]], ρ

[[E, x:A]]
∆
= [[E]], x:[[A]]

[[x]]k
∆
= k〈x〉

[[let x = aA in b]]k
∆
= (νk′:K[[[A]]])([[a]]k′ | k′(x:[[A]]).[[b]]k)

[[p(q)]]k
∆
= p〈q, k〉

[[letregion ρ in a]]k
∆
= (νρ)[[a]]k

[[(v at ρ)A]]k
∆
= (νp:[[A]])([[p 7→ v]] | k〈p〉)

[[p 7→ λ(x:A)bB]]
∆
= !p(x:[[A]], k:K[[[B]]]).[[b]]k

[[(pi 7→ vi)
i∈1..n]]

∆
=

∏
i∈1..n[[pi 7→ vi]]

[[(ρi 7→ ri)
i∈1..n]]

∆
=

∏
i∈1..n[[ri]]

[[S · (a, hH)]]k
∆
= (νρdefunct)(ν[[ptr(H)]])([[a]]k | [[h]]) if {ρdefunct} = dom(H)− S

The following theorem asserts that the translation preserves the static se-
mantics of the region calculus.

Theorem 2 (Static Adequacy).

(1) If E ` � then [[E]] ` �.
(2) If E ` A then [[E]] ` [[A]].
(3) If E ` a :e A and k /∈ dom([[E]]) then [[E]], k:K[[[A]]] ` [[a]]k : e ∪ {K}.
(4) If H |= h and ρ ∈ dom(H) then [[env(H)]] ` [[h(ρ)]] : {ρ}.
(5) If H |= S · (a, h) : A and k /∈ [[env(H)]] then [[env(H)]], k:K[[[A]]] ` [[a]]k |

[[h]] : dom(H) ∪ {K} and also [[∅]], S, k:K[[[A]]] ` [[S · (a, h)]]k : S ∪ {K}.

Next we state that the translation preserves the dynamic semantics. First,
we take our process equivalence to be barbed congruence [16], a standard oper-
ational equivalence for the π-calculus. We use a typed version of (weak) barbed
congruence, as defined by Pierce and Sangiorgi [19]; the long version of this pa-
per contains the detailed definition. Then, our theorem states that if one region
calculus configuration evaluates to another, their π-calculus interpretations are
equivalent. In the following, let E ` P mean there is an effect G such that
E ` P : G.

Typed process equivalence: E ` P ≈ Q

For all typed processes P and Q, let E ` P ≈ Q mean that
E ` P and E ` Q and that P and Q are barbed congruent.

Theorem 3 (Dynamic Adequacy). If H |= S·(a, h) : A and S·(a, h) ⇓ (p′, h′)
then there is H ′ such that H � H ′ and H + H ′ |= S · (p′, h′) : A and for all
k /∈ dom2(H +H ′) ∪ L, [[∅]], S, k:K[[[A]]] ` [[S · (a, h)]]k ≈ [[S · (p′, h′)]]k.

Recall the evaluations of the examples ex1 and ex2 given previously. From
Theorem 3 we obtain the following equations (in which we abbreviate environ-
ments and types for the sake of clarity):

[[{ρ} · (ex1, h)]]k ≈ (νρ′)(νf :ρ′)(νg:ρ)([[f 7→ λ(x)x]] | [[g 7→ λ(y)f(y)]] | k〈5〉)
[[{ρ} · (ex2, h)]]k ≈ (νρ′)(νf :ρ′)(νg:ρ)(νj:ρ)

([[f 7→ λ(x)x]] | [[g 7→ λ(f)5]] | [[j 7→ λ(z)g(f)]] | k〈j〉)

Next, we present a general π-calculus theorem that has as a corollary a
theorem asserting that defunct regions may be deleted without affecting the
meaning of a configuration.

Suppose there are processes P and R such that R has effect {G} but G is not
in the effect of P . So R only interacts on names in group G, but P never interacts
on names in group G, and therefore there can be no interaction between P and R.
Moreover, if P and R are the only sources of inputs or outputs in the scope of G,
then R has no external interactions, and therefore makes no difference to the be-
haviour of the whole process. The following makes this idea precise equationally.
We state the theorem in terms of the notation (νE)P defined by the equations:

(ν∅)P
∆
= P , (νE, x:T)P

∆
= (νE)(νx:T)P , and (νE,G)P

∆
= (νE)(νG)P . The

proof proceeds by constructing a suitable bisimulation relation.

Theorem 4. If E,G,E′ ` P : H and E,G,E′ ` R : {G} with G /∈ H, then
E ` (νG)(νE′)(P | R) ≈ (νG)(νE′)P .

Now, by applying this theorem, we can delete the defunct region ρ′ from our
two examples. We obtain:

(νρ′)(νf :ρ′)(νg:ρ)([[f 7→ λ(x)x]] | [[g 7→ λ(y)f(y)]] | k〈5〉)
≈ (νρ′)(νf :ρ′)(νg:ρ)([[g 7→ λ(y)f(y)]] | k〈5〉)

(νρ′)(νf :ρ′)(νg:ρ)(νj:ρ)([[f 7→ λ(x)x]] | [[g 7→ λ(f)5]] | [[j 7→ λ(z)g(f)]] | k〈j〉)
≈ (νρ′)(νf :ρ′)(νg:ρ)(νj:ρ)([[g 7→ λ(f)5]] | [[j 7→ λ(z)g(f)]] | k〈j〉)

The first equation illustrates the need for hidden effects. The hidden effect
of g is {K, ρ′}, and so the overall effect of the process [[g 7→ λ(y)f(y)]] | k〈5〉
is simply {ρ,K}. This effect does not contain ρ′ and so the theorem justifies
deletion of the process [[f 7→ λ(x)x]], whose effect is {ρ′}. In an effect system for
the π-calculus without hidden effects, the effect of [[g 7→ λ(y)f(y)]] | k〈5〉 would
include ρ′, and so the theorem would not be applicable.

A standard garbage collection principle in the π-calculus is that if f does
not occur free in P , then (νf)(!f(x, k).R | P) ≈ P . One might hope that this
principle alone would justify de-allocation of defunct regions. But neither of our
example equations is justified by this principle; in both cases, the name f occurs
in the remainder of the process. We need an effect system to determine that f
is not actually invoked by the remainder of the process.

The two equations displayed above are instances of our final theorem, a corol-
lary of Theorem 4. It asserts that deleting defunct regions makes no difference
to the behaviour of a configuration:

Theorem 5. Suppose H |= S · (a, h) : A and k /∈ dom2(H)∪L. Let {ρdefunct} =
dom(H)− S. Then we can derive the equation [[∅]], S, k:K[[[A]]] ` [[S · (a, h)]]k ≈
(νρdefunct)(ν[[ptr(H)]])([[a]]k |

∏
ρ∈S [[H(ρ)]]).

5 Conclusions

We showed that the static and dynamic semantics of Tofte and Talpin’s region
calculus are preserved by a translation into a typed π-calculus. The letregion

construct is modelled by a new-group construct originally introduced into pro-
cess calculi in the setting of the ambient calculus [5]. We showed that the rather
subtle correctness of memory de-allocation in the region calculus is an instance
of Theorem 4, a new garbage collection principle for the π-calculus. The transla-
tion is an example of how the new-group construct accounts for the type gener-
ativity introduced by letregion, just as the standard new-name construct of the
π-calculus accounts for dynamic generation of values.

Banerjee, Heintze, and Riecke [3] give an alternative proof of the soundness
of region-based memory management. Theirs is obtained by interpreting the
region calculus in a polymorphic λ-calculus equipped with a new binary type
constructor # that behaves like a union or intersection type. Their techniques
are those of denotational semantics, completely different from the operational
techniques of this paper. The formal connections between the two approaches
are not obvious but would be intriguing to investigate. A possible advantage of
our semantics in the π-calculus is that it could easily be extended to interpret a
region calculus with concurrency, but that remains future work. Another line of
future work is to consider the semantics of other region calculi [2, 7, 11] in terms
of the π-calculus. Finally, various researchers [18, 23] have noted a connection
between the monadic encapsulation of state in Haskell [12] and regions; hence it
would be illuminating to interpret monadic encapsulation in the π-calculus.

Acknowledgements Luca Cardelli participated in the initial discussions that led
to this paper. We had useful conversations with Cédric Fournet, Giorgio Ghelli
and Mads Tofte. Luca Cardelli, Tony Hoare, and Andy Moran commented on a
draft.

References

1. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi
calculus. Information and Computation, 148:1–70, 1999. An extended version
appears as Research Report 149, Digital Equipment Corporation Systems Research
Center, January 1998.

2. A. Aiken, M. Fähndrich, and R. Levien. Better static memory management: Im-
proving region-based analysis of higher-order languages. In Proceedings PLDI’95,
pages 174–185, 1995.

3. A. Banerjee, N. Heintze, and J. Riecke. Region analysis and the polymorphic
lambda calculus. In Proceedings LICS’99, 1999.

4. L. Birkedal, M. Tofte, and M. Vejlstrup. From region inference to von Neumann
machines via region representation inference. In Proceedings POPL’96, pages 171–
183. 1996.

5. L. Cardelli, G. Ghelli, and A. D. Gordon. Ambient groups and mobility types.
In Proceedings TCS2000, Lecture Notes in Computer Science. Springer, 2000. To
appear.

6. L. Cardelli, G. Ghelli, and A. D. Gordon. Group creation and secrecy. In Proceed-
ings Concur’00, Lecture Notes in Computer Science. Springer, 2000. To appear.

7. K. Crary, D. Walker, and G. Morrisett. Typed memory management in a calculus
of capabilities. In Proceedings POPL’99, pages 262–275, 1999.

8. S. Dal Zilio and A. D. Gordon. Region analysis and a π-calculus with groups.
Technical Report MSR–TR–2000–57, Microsoft Research, 2000.

9. C. Fournet and G. Gonthier. The reflexive CHAM and the Join-calculus. In
Proceedings POPL’96, pages 372–385, 1996.

10. D. K. Gifford and J. M. Lucassen. Integrating functional and imperative program-
ming. In Proceedings L&FP’86, pages 28–38, 1986.

11. J. Hughes and L. Pareto. Recursion and dynamic data-structures in bounded space:
Towards embedded ML programming. In Proceedings ICFP’99, pages 70–81, 1999.

12. J. Launchbury and S. Peyton Jones. State in Haskell. Lisp and Symbolic Compu-
tation, 8(4):293–341, 1995.

13. X. Leroy. A syntactic theory of type generativity and sharing. Journal of Functional
Programming, 6(5):667–698, 1996.

14. M. Merro and D. Sangiorgi. On asynchrony in name-passing calculi. In Proceedings
ICALP’98, volume 1443 of Lecture Notes in Computer Science, pages 856–867.
Springer, 1998.

15. R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press, 1999.

16. R. Milner and D. Sangiorgi. Barbed bisimulation. In Proceedings ICALP’92,
volume 623 of Lecture Notes in Computer Science, pages 685–695. Springer, 1992.

17. R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard
ML (Revised). MIT Press, 1997.

18. E. Moggi and F. Palumbo. Monadic encapsulation of effects: a revised approach.
In Proceedings HOOTS99, volume 26 of Electronic Notes in Theoretical Computer
Science, pages 119–136. Elsevier, 1999.

19. B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. Mathe-
matical Structures in Computer Science, 6(5):409–454, 1996.

20. B. C. Pierce and D. N. Turner. Pict: A programming language based on the
pi-calculus. Technical Report CSCI 476, Computer Science Department, Indiana
University, 1997. To appear in Proof, Language and Interaction: Essays in Honour
of Robin Milner, G. Plotkin, C. Stirling, and M. Tofte, editors, MIT Press, 2000.

21. C. V. Russo. Standard ML type generativity as existential quantification. Technical
Report ECS–LFCS–96–344, LFCS, University of Edinburgh, 1996.

22. D. Sangiorgi. Interpreting functions as π-calculus processes: a tutorial. Technical
Report 3470, INRIA, 1998. Draft chapter to appear in The pi-calculus: a theory of
mobile processes, D. Sangiorgi and W. Walker, Cambridge University Press, 2000.

23. M. Semmelroth and A. Sabry. Monadic encapsulation in ML. In Proceedings
ICFP’99, pages 8–17, 1999.

24. J.-P. Talpin and P. Jouvelot. Polymorphic type, region and effect inference. Journal
of Functional Programming, 2(3):245–271, 1992.

25. C. J. Taylor. Formalising and Reasoning about Fudgets. PhD thesis, University of
Nottingham, 1998. Available as Technical Report NOTTCS–TR–98–4.

26. M. Tofte and J.-P. Talpin. Region-based memory management. Information and
Computation, 132(2):109–176, 1997.

27. P. Wadler. The marriage of effects and monads. In Proceedings ICFP’98, pages
63–74, 1998.

28. D. Walker. Objects in the pi-calculus. Information and Computation, 116(2):253–
271, 1995.

