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S U M M A R Y

Objectives: Neisseria meningitidis is the major cause of seasonal meningitis epidemics in the African

meningitis belt. In the changing context of a reduction in incidence of serogroup A and an increase in

incidence of serogroups W and C and of Streptococcus pneumoniae, a better understanding of the

determinants driving the disease transmission dynamics remains crucial to improving bacterial

meningitis control.

Methods: The literature was searched to provide a multi-disciplinary overview of the determinants of

meningitis transmission dynamics in the African meningitis belt.

Results: Seasonal hyperendemicity is likely predominantly caused by increased invasion rates, sporadic

localized epidemics by increased transmission rates, and larger pluri-annual epidemic waves by

changing population immunity. Carriage likely involves competition for colonization and cross-

immunity. The duration of immunity likely depends on the acquisition type. Major risk factors include

dust and low humidity, and presumably human contact rates and co-infections; social studies

highlighted environmental and dietary factors, with supernatural explanations.

Conclusions: Efforts should focus on implementing multi-country, longitudinal seroprevalence and

epidemiological studies, validating immune markers of protection, and improving surveillance,

including more systematic molecular characterizations of the bacteria. Integrating climate and social

factors into disease control strategies represents a high priority for optimizing the public health response

and anticipating the geographic evolution of the African meningitis belt.

� 2016 Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

1.1. Epidemiological context

Meningococcal meningitis is an acute bacterial disease
characterized by the sudden onset of fever, intense headache,
nausea, stiff neck, and photophobia.1 The meningococcus Neisseria

meningitidis is found only in humans and is transmitted from
person to person by airborne droplets of respiratory or throat
ious Diseases. This is an open access article under the CC BY-NC-ND license (http://
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secretions.2 Most infections with Nm result in a period of
asymptomatic pharyngeal carriage and only occasionally lead to
severe invasive disease.3 Meningococcal meningitis is a serious
public health problem because of its high case fatality rate4 and, in
some regions, its propensity for epidemics.

The African meningitis belt is a region stretching from Senegal
to Ethiopia with an estimated population exceeding 400 million
people. A high seasonal incidence of meningitis has been recorded
in the area for decades,5,6 with epidemic waves occurring
periodically but irregularly every 5–12 years.7 Seasonal hyper-
endemicity is observed every dry season between January and
May, when weekly incidence rates rise up to 10/100 000 population
throughout the African meningitis belt and can locally exceed 100/
100 000 population.8,9 Even with swift and appropriate treatment,
case fatality fluctuates around 10%,10 and 10–15% of survivors
suffer long-term neurological sequelae.11 While Nm serogroup A
(NmA) has been the main cause of large meningitis epidemics in
the African meningitis belt,12,13 serogroups W (NmW), C (NmC),
and X (NmX) have also been, and are still, responsible for localized
epidemics and occasionally more widespread epidemic waves.13–

17 Other bacteria contribute to the seasonality of the disease,
namely Haemophilus influenzae type b and Streptococcus pneumo-

niae, the latter having a high recorded incidence among adults and
a particularly high burden from serotype 1.18

The massive introduction of a monovalent group A polysaccha-
ride–tetanus toxoid conjugate vaccine, known as MenAfriVac,19

was initiated in 2010 and has successfully reduced the incidence of
NmA disease.13,20–23 To date, an estimated 217 million population
have been immunized through mass vaccination campaigns
targeting the 1–29 years age group in 15 countries. MenAfriVac
continues to be rolled out via these mass campaigns. In 2015, long-
term strategies incorporating the vaccine into the routine
Expanded Programme on Immunization schedule were recom-
mended.24 Concurrently, pneumococcal conjugate vaccines were
recently included in this routine immunization programme.
However the older age groups, representing the most susceptible
population, may currently not be sufficiently protected to reduce
the high disease burden.25

Global Nm incidence may increase again in the future as a result
of (1) a possible serogroup replacement, for example if NmA was
the main competitor in the nasopharyngeal ecological niche; (2)
the spontaneous emergence of highly invasive and transmittable
strains given the capacity of Nm for rapid genomic evolution; and
(3) population-level immunity against NmA waning following
vaccine introduction in the absence of a natural booster and with
the arrival of unvaccinated birth cohorts. Until an effective
multivalent meningococcal vaccine covering all relevant Nm

serogroups is available to the populations and pneumococcal
vaccination protects all age groups, control and prevention
strategies need to be adapted to the changing disease epidemiolo-
gy in the African meningitis belt.26,27 A better understanding of the
determinants of bacterial meningitis transmission dynamics in the
African meningitis belt is thus needed.

1.2. Definition of the African meningitis belt

The definition of the African meningitis belt was triggered by
the unique epidemiology of bacterial meningitis in the region; it
set the stage for international efforts towards a specific prevention
and public health response strategy. Lapeyssonnie first described
the African meningitis belt in 1963 based on cerebrospinal
meningitis cases reported over 23 years in the area, with several
serogroups of Nm predominantly causing the epidemics.5 Geo-
graphic boundaries were established from isohyets ranging
between 300 mm and 1100 mm annual rainfall, coinciding with
this ‘endemo-epidemic’ region, while sporadic or grouped cases of
bacterial meningitis occurred outside the area. The critical
population size allowing epidemic outbreaks was considered not
to be reached in regions with less than 300 mm of annual rainfall,
due to difficult conditions for subsistence farming. The southern
limit (1100 mm of annual rainfall) corresponds to the threshold of
50% of relative humidity.

In 1971, an extension of the African meningitis belt to the
eastern and southern shores of Lake Victoria was suggested,
particularly to cover Kenya and Uganda, countries that were
regularly devastated by epidemics in 1923–1950.28 In 1992, it was
suggested that Egypt, Tanzania, and Uganda be included,29

although the local epidemiology did not fully match Lapeysson-
nie’s description. In 1996, an extension of the African meningitis
belt to the south was suggested after improvements in microbio-
logical diagnostic tools allowed the detection of epidemic strains of
NmA subgroup III in the Central African Republic, Uganda, Rwanda,
Burundi, Tanzania, and Zambia.30 These studies relied on clinically
suspected rather than laboratory-confirmed meningitis cases
(other diseases such as malaria and mumps may produce similar
symptoms) and did not account for the mechanisms driving the
disease transmission dynamics. There is a risk that global
environmental change may accelerate the geographic distortion
of the African meningitis belt in the near future.

1.3. Objectives of this review

The present review aimed to bring a multidisciplinary
perspective on meningococcal meningitis disease in the African
meningitis belt. Based on the literature, the main knowledge of the
determinants of the disease epidemiology and the concepts that
have emerged were synthesized, focusing on five main topics:
disease transmission dynamics, asymptomatic carriage, pathogen
ecology, host immunity, and extrinsic risk factors for the disease. In
particular, the role of climate in driving meningitis transmission
dynamics was investigated. Meningitis is clearly identified as one
of the most climate-sensitive diseases in Africa,31 with 25% of the
incidence variability being explained by climatic factors.32 It has
been recommended in recently published reviews on meningitis
that major climate indicators are identified for possible integration
into operational decision-making.33 Research questions to be
addressed in the future are highlighted, with the aim of gaining a
better understanding of transmission dynamics and developing
appropriate long-term vaccination strategies to reduce the burden
of this disease in Africa.

1.4. Literature search methodology

Various electronic databases were searched to identify relevant
literature, independently for each topic. Details on the databases
searched, keywords used, and inclusion/exclusion criteria applied
are provided in the Supplementary Material. No limits were
applied for language or publication date. The records retrieved
were first screened by title and abstract and then by examination
of the full text. Studies that clearly did not meet the inclusion
criteria were discarded. The publications that were retained
investigated meningitis in various locations and time periods,
using variants of the case definition (suspected or confirmed cases,
with different lists of serogroups being included), aggregated on
different spatio-temporal scales.

2. Materials and methods

2.1. Meningococcal disease transmission dynamics and modelling

A set of statistical methods were investigated to analyze the
spatio-temporal transmission dynamics of meningitis epidemics
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and case emergence, spread, and outbreaks on different spatial and
time scales, including simple epidemiological description,34,35 and
more advanced modelling techniques such as wavelet analysis,7

cross-correlation between time series,36 Kulldorff’s spatial scan
statistic,37,38 principal component analysis, and cluster analysis.39

Mechanistic susceptible–infected–recovered (SIR) transmission
modelling was used to explore and test potential disease
processes.40–42

2.2. Asymptomatic carriage

Most existing carriage studies were cross-sectional or series of
cross-sectional surveys,43–51 with only one published cohort
approach.52 All studies aimed to rely on representative population
samples, and when reported, recommended nasopharyngeal
swabbing via the mouth behind the uvula (with or without
tonsils).53,54 An evaluation of PCR analysis of enriched swab
suspension compared to usual culture analysis found low
sensitivity of conventional microbiology methods for carriage
studies,55 which had already been suggested in a study comparing
swabbing with immunohistochemistry after tonsillectomy.56 It is
therefore likely that all existing meningococcal carriage studies
have underestimated true carriage prevalence.

2.3. Pathogen ecology

Laboratory testing was not performed systematically in the
African meningitis belt over the last 40 years. Approximately 10% of
reported cases were laboratory tested,57 and most large-scale
retrospective studies relied on suspected cases defined by clinical
criteria rather than laboratory-confirmed cases.58 Phenotypic
approaches to antigenic typing using serotyping and serosubtyping
were most commonly used until the mid-2000s. These techniques
were used to identify epidemic clones of Nm (e.g. Kwara et al.59,
Ouedraogo-Traore et al.60). Nowadays, the identification techniques
routinely used are sequence-based methods relying on cerebrospi-
nal fluid obtained through lumbar puncture. They include standard
microbiology with culture isolation and serological identification of
serogroup, latex agglutination testing, and PCR testing.61 Beyond
bacterial isolation and identification of serogroups, there is now a
wide range of molecular typing techniques available to genetically
characterize meningococcal strains, from invasive cases to carriage.
Among these, multi-locus sequence typing (MLST) and multi-locus
enzyme electrophoresis (MLEE) have frequently been used to
characterize strains in the African meningitis belt.62,63 Sequence
types are grouped into clonal complexes according to their
similarity with a central genotype.

2.4. Host immunity

The immunological assays that are currently available for
population-based serological studies of meningococcal disease
(i.e., IgG concentration and serum bactericidal antibody assays) do
not allow distinction between naturally acquired immunity
following carriage or disease, and vaccine-induced immunity.
This is currently limiting the interpretation of results, mostly for
studies conducted in areas with both high endemicity and high
vaccination coverage.45,64 No serological correlate of protection is
known for NmA disease or carriage in the African meningitis belt.
The serum bactericidal assay is the accepted correlate of protection
for meningococcal disease,65 but thresholds of protection are only
established for serogroup C meningococcal disease.45,66 In addi-
tion, most Nm seroprevalence studies in the African meningitis belt
have used cross-sectional study designs to quantify immunity at
specific time points, and at best cohort studies to quantify changes
during one meningitis season.50,52
2.5. Risk factors

Risk factor analyses were assessed both at the individual level
(e.g., in case–control studies) and at an aggregated ecological level
(e.g., in geographical correlation studies). The most frequently
investigated factors for infection were environmental and climatic
factors,32,67–73 with a few studies including other risk factors such
as population density,37,38,74 household socio-demographic char-
acteristics and lifestyle,47,75–77 or other co-infections.78,79 Al-
though climate was long suspected to influence the transmission
dynamics of meningococcal disease in Africa,5 researchers only
began to test these associations in the 2000s when long-term
remote sensing data became available. Before this, climate and
health associations were investigated on a local scale using in situ
meteorological data (e.g., air temperature and humidity,68 or
rainfall69). The advances made in remote sensing enabled the
effects to be investigated on a larger scale.

Regarding the specific role of desert dust in epidemics, a high
diversity of existing dust products were investigated, from remote
sensing products (generally indices that are proxies for the aerosol
quantity over the whole atmospheric column, some of which need
to be refined or corrected from various complex effects before
being used for health impact studies, e.g. aerosol index80)69,80 to in
situ aerosol measurements (e.g., the PM10 mass concentration,
which is available from a limited number of meteorological
stations across the African meningitis belt, or visibility, which is
more widely available but gives a qualitative rather than
quantitative estimate of the number of dusty days and the
atmospheric turbidity in a given location).

Risk factors were primarily investigated using regression
methods to estimate their association with the disease. The other
approaches investigated included disease mapping,6,81 hypotheti-
cal explanatory models,25,82 and mathematical modeling.80 The
characteristics of the publications relating meningococcal menin-
gitis to environmental and climatic risk factors are detailed in
Table 1, including the list of factors investigated, the methods used
for analysis, and a summary of the results.

Few studies have investigated the social science viewpoint on
the disease and on vaccination. In the African meningitis belt, these
studies relied on qualitative data collected through in-depth
interviews and/or focused group discussions in several ethnic
groups in Burkina Faso,83–85 Niger,86,87 and Benin.88 They
investigated the knowledge and perceptions of the disease and
its risk factors.

3. Knowledge and concepts

3.1. Pathophysiology of meningitis in the African meningitis belt

Laboratory-based surveillance studies on meningococcal
disease in the African meningitis belt usually rely on suspected
cases of acute bacterial meningitis and the analysis of cerebro-
spinal fluid. Based on the usual pathophysiology requiring
invasion of the blood stream before invasion of the central
nervous system,89 epidemics of meningococcal meningitis should
come with high morbidity and mortality due to meningococcal
septicaemia. For example, assuming that 28% of cases of invasive
meningococcal disease are accompanied by clinical signs of
septicaemia, as was observed in France,90 one would have
expected around 400 cases of septicaemia in Niger in 2015, when
1435 cases of Nm were confirmed in the laboratory.91 However,
the surveillance of febrile syndromes, which requires wide
inclusion criteria and blood culture for evaluation, is rarely
conducted in the African meningitis belt,92 and no published data
are available on the incidence of septicaemia in the region. A
possibly high ratio of meningitis to septicaemia cases could be due



Table 1
Characteristics of the publications relating meningococcal meningitis to environmental and climatic risk factors.

First author/year Location Period Epidemiological data Risk factors investigated Methods of analysis Space/time

scale

Agier 201380 Niger 1986–2007 Suspected cases Dust, wind direction and

force, relative humidity,

temperature

Wavelets District/week

Agier 201339 Niger, Mali, and

Burkina Faso

1986–2007 Suspected cases (Incidence only was

investigated)

Cluster analysis,

principal component

analysis

District/week

Besancenot

199768

Benin 1965–1992 Biologically confirmed

cases and suspected

cases of Nm

Temperature, relative

humidity, vapour

pressure, dust haze

Simple linear

regression

Region/month

Bharti 2012128 Niger 1995–2004 Suspected cases Human density, daily

rainfall

Cox proportional

hazard regression

model

District/year

Broutin 20077 Mali, Burkina Faso,

Ghana, Togo, Benin,

Niger, Nigeria, Chad,

and Sudan

1939 – 1999 Suspected cases (Incidence only was

investigated)

Wavelet analysis Country/year

Dukić 201279 Navrongo in Ghana 1998–2008 Biologically confirmed

cases

Rainfall, temperature,

relative humidity, wind

speed, dusty days, carbon

dioxide emissions from

fires

Poisson generalized

additive model,

possibly with lagged

risk factors

Month (no

space scale)

Greenwood

198467

Zaria area in

Northern Nigeria

1977–1979 Biologically confirmed

cases of Nm

Temperature, absolute

humidity, rainfall,

Harmattan intensity

Pearson correlation Two weeks (no

space scale)

Hodgson 200175 Kassena-Nankana

District in northern

Ghana

1997 Suspected cases (case–

control study)

Socio-economic factors,

housing and household

overcrowding, smoking

and exposure to smoke,

and close contact with a

case

Computation of

Mantel–Haenszel odds

ratios

Odds ratio

Irving 201140 (this simulation

study did not require

real data)

(this simulation

study did not

require real data)

(this simulation study

did not require real

data)

Model parameters: (1)

rate of progression from

asymptomatic carriage to

invasive disease is

seasonally forced; (2)

carriers and cases are

infectious, same

transmission rate; (3) no

immunity, immunity due

to disease, immunity due

to disease and carriage

Deterministic

compartmental model

susceptible–carrier–

ill– recovered

District–week

Jackou-Boulama

200569

Niger 1996–2002 Suspected cases Rainfall: monthly

cumulative rainfall from

four meteorological

stations

Pearson correlation Country/month

Maı̈nassara

201037

Niger 2002–2008 Biologically confirmed

cases of Nm

(Incidence only was

investigated)

Spatial scan statistics Canton/year

Niger 2002–2008 Biologically confirmed

cases of Nm

Population density Pearson correlation Department/

year

Martiny 201371 Niger and Mali 2004–2009 Suspected cases Dust, absolute humidity Comparisons between

mean standardized

annual regimes in

dust, absolute

humidity, and

meningitis; Pearson

correlation

Country/week

Molesworth

200374

Africa 1841–1999 Meningitis epidemics

published (PubMed)

and unpublished

(institutional reports)

Absolute humidity,

absorbing aerosols,

rainfall, land-cover type,

population density

Principal component

analysis, clustering,

logistic regression

District (no time

scale)

Mueller 200876 Bobo-Dioulasso City

in Burkina Faso

February to

June 2003

Carriers of Nm during

hyperendemic period

(5 monthly visits:

pharyngeal swabs)

Socio-demographic

information (medical

history, smoke exposure,

crowding, etc.),

meteorological data

Multivariate mixed

Poisson regression

Individual scale

Cox proportional

hazard model

Individual scale

Three rural villages

in Burkina Faso

2006 Carriers of Nm during

NmA epidemic period

Socio-demographic

information (medical

history, smoke exposure,

crowding, etc.),

meteorological data

Multivariate mixed

logistic regression

Individual scale
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Table 1 (Continued )

First author/year Location Period Epidemiological data Risk factors investigated Methods of analysis Space/time

scale

Mutonga

200977

West Pokot District

in Kenya

December

2005–April 2006

Suspected cases (case–

control study)

Characteristics of the

household, lifestyle,

recent travel, exposure to

sick people, upper

respiratory tract infection,

socio-economic status,

level of education

Conditional

multivariate logistic

regression

Individual scale

Paireau 201238 Niger 2003–2009 Biologically confirmed

cases of Nm

(Incidence only was

investigated)

Spatial scan statistics

and local Moran’s I test

for spatial

autocorrelation

Health area/

year

Niger 2003–2009 Biologically confirmed

cases of Nm

Distance to road and

population density

Pearson correlation Health area/

year

Philippon

200936

Mali 1992–2003 Suspected cases (Incidence only was

investigated)

Cross-correlation of

times series of cases

Region/week,

district/week,

and village/

week

Raghunathan

200647

Burkina Faso, two

districts vaccinated

against NmA and NmC

2002 5–25-year-olds,

carriage and

seroprevalence

Demographic

information, household

conditions, recent medical

history, and self-reported

previous meningococcal

vaccination: exposure to

meningitis in the

household, travel to

Mecca

Logistic regression Individual scale

Sultan 200573 Mali 1994–2002 Suspected cases Winter maximum Linear regression Country/week

Tall 201234 Six districts of

Burkina Faso

2004–2008 Suspected cases (Incidence only was

investigated)

Pearson correlation Health centre/

week

Thomson 200670 Burkina Faso

Niger

Parts of Mali

Togo

1997–2001

1993–2001

1989–1998

1990–1997

Suspected cases Dust, rainfall, normalized

difference vegetation

index, cold cloud duration

Multivariate linear

regression

District/year

Yaka 200832 Niger and Burkina

Faso

1966–2005 Suspected cases Wind velocity, surface

temperature, specific/

relative humidity near the

surface

Multivariate linear

regression

Country/year

Nm, Neisseria meningitidis; NmA, N. meningitidis serogroup A; NmC, N. meningitidis serogroup C.
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to the direct spread of bacteria from the nasopharynx to the
central nervous system along the olfactory nerve, which is
supported by a few animal studies.93,94

3.2. Meningitis transmission dynamics

In the African meningitis belt, seasonal meningitis outbreaks
are localized both in time and space when monitored on a scale
smaller than the district.34,37,38 When data are aggregated on a
country or broader scale, pluri-annual cycles of 5 to 12 years are
observed.7,39,57 No systematic spatial diffusion pattern was
observed at the country,7 region, district, village,36 or health
centre levels.38 However, it was shown that large outbreaks were
associated with early epidemic onset,32,39 and with large numbers
of localized epidemics within a district.34

It was hypothesized that the transition to seasonal hyper-
endemicity, localized epidemics, and larger pluri-annual epidemic
waves are distinct phenomena with their own respective mecha-
nisms, which could be explained by an increased risk of invasion
given nasopharyngeal colonization (possibly due to a dry and dusty
climate), epidemic co-factors increasing meningococcal transmis-
sion and colonization during short periods (such as viral
respiratory infections), and changing population immunity (e.g.,
due to the evolution of the predominant circulating meningococcal
strains), respectively.8 The suggested roles of an increased risk of
invasion in the seasonal hyperendemicity and of increased
transmission in driving localized epidemics were reinforced by
the findings of a systematic review on surveillance and carriage in
the African meningitis belt.95
The transmission dynamics of infectious diseases are primarily
explained by vaccine or disease-induced immunity. For epidemic
meningitis in the African meningitis belt, vaccination coverage
data were not systematically reported before the introduction of
MenAfriVac, and few seroprevalence estimates were available,
such that the effect of vaccination on the disease transmission
dynamics could not be investigated before 2010.

3.3. Asymptomatic carriage

The estimated prevalence of Nm carriage varies between 5% and
30%,96,97 and was shown to be low in young children and higher in
adolescents and young adults.97–99 There is growing evidence that
carriage of the epidemic strain is substantially increased during an
epidemic.44,48,95 The season and immunization with polysaccha-
ride vaccine appear to have little effect on carriage, but being in
contact with a case has.97,100

In industrialized countries, hyperinvasive Nm clones are rarely
identified in carriers, and carriage populations are highly
genetically diverse.96 In the African meningitis belt, a low carriage
rate of Nm and extensive genetic diversity of carriage strains was
also found, 101–103 except in one study.43 The carriage of less
virulent clones may help to prevent hypervirulent clones
spreading through induced immunity (indirect competition),104

or the physical presence of a clone in the nasopharyngeal niche
may hamper colonization by other strains (direct interaction).
Carriage of meningococci with a capsular null locus or FetA null
locus, which cannot produce a capsule, was also reported
frequently in the African meningitis belt.101,102,105 While these
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unencapsulated strains may establish long-term carriage relation-
ships with the host,43 sporadic cases of meningitis due to these
meningococci have been reported.105

Little is known about the duration of carriage episodes in the
African meningitis belt. Carriage can be transient or can last up to
several months before being cleared naturally,99 and this duration
is likely to vary by strain107 and by age of the host. One study
estimated a half-life of 3 months,51 and another estimated a
carriage episode duration of 30 days on average.102

It is unclear what triggers the transition from asymptomatic
carrier status to disease development, and what the impact is of
the duration of carriage on the process. Hypothetical models have
suggested that a systematic and widespread increase in the
carriage rate during the dry season is not likely, although it is
required locally for an epidemic to occur.8 The first point
contradicts Greenwood’s hypothetical model67 and the conclusion
of the first SIR simulation models, which stated that a seasonal
increase in transmission was necessary to obtain uneven annual
incidences.40

3.4. Pathogen ecology

Many of the observed genotypes in the African meningitis belt
are escape variants (in terms of antigenic typing or in other outer
membrane antigens108–111) resulting from positive selection, which
may be attributed to herd immunity. Competition between fit
genotypes results in dramatic changes in population composition
over short time periods. Most often, clonal complexes comprise a
dominant genotype and closely related variants. Most escape
variants are less fit than their parents and are lost because of
competition and bottlenecks during spread from country to
country. Yet, new variants with heightened fitness may arise,
allowing antigenic escape and spread when the antigenic char-
acteristics are partially distinct from the parents. Although this is
unlikely to happen in the presence of cross-immunity, it may
occasionally result in the emergence of a novel epidemic strain.108

Epidemics are usually triggered by concomitant short-term changes
in the pathogen’s genetics, host immunity, and the environment.112

Little is known regarding the strains that caused the disease in
the first part of the twentieth century in Africa. However, from the
1950s and prior to the introduction of MenAfriVac, the majority of
meningitis cases were caused by Nm,113,114 mainly serogroup
A.12,13 NmA outbreaks were caused by the sequence type ST-1, ST-
4, and ST-5 clonal complexes.57,62,115 In particular, ST-5 was linked
to three successive pandemic waves in the African meningitis belt;
the latest occurred in 1996–1997 and resulted in more than 250
000 cases and 50 000 deaths. The ST-5 complex persisted in Africa
until MenAfriVac was introduced. Serogroup W strains were
circulating at low levels in the African meningitis belt (mostly in
Chad, Cameroon, Niger, Togo, and Senegal) before 2000, until clone
ST-11 caused epidemics in Burkina Faso and Niger.57,116,117 The
NmW ST-2881 clone was occasionally reported. No NmC epidemic
was reported in the region for over 30 years, until epidemics
occurred in 2013–2015 in Nigeria16 and in Niger, due to a
previously unknown NmC strain ST with unique antigenic
properties.16 The incidence of serogroup X has increased in recent
years; this represents a major concern, as there is currently no
available vaccine.15,118 The surveillance of these non-A serogroups
is important due to their epidemic potential in the context of the
wide-scale introduction of MenAfriVac, which has eliminated
epidemics due to NmA so far. Since Nm shows a great capacity to
change its genome, the emergence of a new and possibly highly
virulent serogroup cannot be excluded.119 Recent studies of the
post-vaccination epidemiology of meningitis have all found that
NmA cases have disappeared from vaccinated countries and that
the global number of meningitis suspected cases has decreased,
but they have reported an increase in other serogroups and/or
pathogen incidence, mainly NmW, NmC, and S. pneumo-

niae.16,20,23,120–122 A few years of additional data are needed to
evaluate the long-term effectiveness of the MenAfriVac vaccine.

3.5. Host immunity

Disease and vaccination both induce immunity; however
carriage can promote bactericidal activity as well, and repeated
carriage episodes may offer some immunity against future carriage
and disease,123,124 including cross-strain immunity.44,66,125 Some
evidence has been given for such serogroup-specific relation-
ships,44,47,50 but not systematically.50 It is, however, coherent with
studies that have found antibody concentrations to increase with
age,125 and that living in a district with emerging serogroup W
disease is a predictor of higher immunity antibody levels.47 The
duration of immunity is unknown, but likely depends on the route
of acquisition (through vaccination, asymptomatic carriage, or by
developing the disease).

Some studies have found an inverse relationship between
immunity and incidence (low NmW immunity during a hyperen-
demic season and high NmA immunity with no detectable
circulation of the bacteria52), but others have not. A positive
association was found between age-specific NmA immunity and
meningitis incidence,44,45 and higher antibody titres were
recorded (1) in Sudan (even in unvaccinated populations)
compared to other regions outside the African meningitis belt,
although this did not prevent epidemics from occurring;104,126 (2)
for NmW in endemic areas of Burkina Faso compared to non-
endemic areas (even when an epidemic had just occurred).47

Immunity possibly does not have a direct effect, but rather an
interaction effect with another risk factor affecting the disease
transmission dynamics (a climatic factor for instance), so that no
clear relationship can be found with incidence.

One major limitation in serological studies is the absence of a
correlate of protection for most relevant serogroups in the African
meningitis belt.45 The high prevalence of putatively protective
serogroup A serum bactericidal antibody (SBA) titres >1:8 or
>1:128 in the population even before the introduction of the
MenAfriVac1 suggests that the standard SBA either does not
measure functional antibody, or that these antibodies are not
functional in this region.45

Overall, our knowledge of the relationship between immunity,
carriage, and disease is limited, especially as immunity and
carriage are likely to change greatly over time. Yet, long-term and
repetitive carriage episodes may bring some immunity to the host.

3.6. Risk factors

The first suspicion of climate largely impacting Nm transmis-
sion dynamics was inspired by the finding that the seasonal profile
for meningitis coincided with the core of the dry season, when the
Harmattan regime is well settled, and ended with the arrival of the
African monsoon.5,6,71,82

At spatially aggregated levels, evidence suggested that humidi-
ty/rainfall was negatively associated with incidence,69,70,74 while
temperature showed a positive association.79 Low humidity
appeared to prevent acquisition and increase clearance of the
non-groupable bacteria,76 and to be a necessary but not sufficient
condition for meningitis outbreaks to occur.71 Carbon monoxide
emission79 and land cover type74 were also found to be associated
with the magnitude of the epidemics; yet no hypothetical causal
effect was suggested. Despite a negative association between dust
and meningitis in one study,70 more recent studies have shown a
positive correlation between dust and meningitis incidence,72,79

with a 1- to 2-week delay between dust and meningitis seasonal
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components.71,80,127 This time-lag is consistent with the biologi-
cally plausible hypothesis that dust particles and dry air favour
bacterial invasion into the blood stream by damaging the host’s
mucosal barrier or by inhibiting mucosal immune defenses,82 with
an incubation period of <14 days.123 Wind was also found to
impact meningitis incidence,32,73 but it may rather be a correlate of
a true risk factor, such as dust or humidity.

Regarding non-climatic risk factors, the reoccurrence rate of
epidemics was higher in highly populated districts,36,128 but the
association between annual incidence and population density was
not proven significant.37,74 Human contact associated with
primary roads might largely contribute to local spatial transmis-
sion dynamics and spread of the disease.128

At the individual level, symptoms of upper respiratory tract
infection appeared to favour NmA and NmW carriage during
localized epidemics,47,76 while this and previous symptoms of flu
were found to be associated with subsequent meningococcal
meningitis during localized epidemics.44,77 This may relate to
immune depression following viral infections, as is known for
influenza virus and pneumococci.129 Similarly, the monthly
incidence of meningitis was shown to be associated with the
incidence of pneumonia in Ghana,79 yet the 2-month delay was
likely too long to be biologically relevant. Smoking was shown to
be a risk factor for NmW disease47 and NmY carriage,76 but not for
NmA carriage or disease.44,75,77 Different measures of proximity
with asymptomatic carriers or meningitis cases were found to
increase the risk of both carriage47,76 (except for one contradictory
result) and infection.75,77 Being a student lowers the risk of
contracting the disease.75 Exposure to kitchen fire smoke was
found to inflate the risk of meningitis during epidemics,44,75 but
the evidence is not conclusive.77

None of the studies investigating quantitative socio-economic
factors found significant associations with carriage or with
developing the disease.

The social perceptions of the aetiological risk factors of
meningitis were examined and highlighted environmental factors
with supernatural explanations in all West African societies. One
sort of wind in particular is believed to be pathological, i.e., to be a
sorcery entity purportedly bringing disease.86 In Niger, this entity
is expected to be met in the bush and cause agitations and delirium
during the disease phase.87 Meningitis is also viewed as an
airborne disease in Burkina Faso,130 in northern Benin where it is
believed to be caused by winds carrying waste, and in the Mosse
groups where it is considered the ‘disease of the sun’ or ‘disease of
the wind’.84,88 In both Benin and Burkina Faso, staying under the
sun during the hot season is believed to increase the risk of
developing the illness, particularly among children.83

Meningitis is also believed to have dietary causes, such as
malnutrition in the Hausa groups, or green foods in Burkina Faso,
e.g. green mangoes mostly when consumed by children, during the
hot season, or when ingested with dust.83 People with a
predisposition for meningitis in Burkina Faso activate the disease
by eating prohibited green mangoes and green food,83 and those
with a predisposition for meningitis in Niger have weak souls and
develop the disease by looking at a sick person.87

These West African representations of the aetiology of
meningitis display similarities with the risk factors identified in
epidemiological studies, mostly with environmental factors. Yet,
different mechanistic assumptions are described in these two
viewpoints, which deserve further exploration, as this may be
crucial to integrate more social science into operational tools.

4. Perspectives on research to date and the way forward

Despite research efforts over the last decades, gaps in the
understanding of several key aspects of meningococcal disease
epidemiology and ecology in the African meningitis belt have
prevented better control of the occurrence of seasonal outbreaks
and optimization of the public health response. Specifically, these
gaps include (1) clarifying the role of climatic risk factors, carriage,
and immunity in driving meningitis transmission dynamics; (2)
understanding why large-scale meningitis epidemics occur only in
a few Sahelian countries, and the possible role of behavioural and
socio-cultural factors; (2) elucidating how insights into the
molecular epidemiology of meningococcus may help prevent
epidemics; and (4) defining populations at risk and better
characterizing the boundaries of the African meningitis belt and
its potential evolution in the future in a context of climate change.

In order to advance the field of meningococcal meningitis
epidemiology in the African meningitis belt, efforts should focus on
developing the infrastructure, methods, and approaches to
systematically collect high-quality, population-representative
longitudinal data on carriage, immunity, disease incidence, social
factors, and key molecular characteristics in countries of the
African meningitis belt. Mathematical and statistical models that
draw upon these aspects, along with climatic and sociological
factors, should be further adapted and developed so as to better
explain the patterns of the disease observed, anticipate future
outbreaks and vaccine impact, and help characterize the changing
boundaries of the African meningitis belt. Ultimately, this would
allow better adaptation of prevention and control strategies and a
more efficient response to localized outbreaks.27 Several important
considerations and limiting factors that need to be addressed are
discussed below.

4.1. Meningococcal meningitis risk factors in the African meningitis

belt

Population-level changes in natural and vaccine-induced
immunity over time have not been investigated systematically
in the African meningitis belt. Innovative seroprevalence studies
with repeated immunogenic samples, ensuring more extensive
geographic and temporal coverage, are needed. Such studies
would require immune markers to be fully validated as surrogates
of protection against the most commonly reported serogroups in
the African meningitis belt. They would also benefit from
comparing clones at the whole genome level using novel
molecular techniques so as to identify differences in virulence,
transmissibility, or antigenicity.109,131–133 A better understanding
of the genetic evolution of meningococcal strains would help to
determine and foresee the emergence and spread of new strains
and the succession of invasive strains in the African meningitis
belt. Ecological factors within the nasopharyngeal environment
and strain competition are not well understood at present, but
likely play an important role in the epidemic wave phenomenon.
Competition can be indirect (mediated through immunity) or
direct (through interactions in the nasopharynx, via either
exploitative or interference mechanisms). Both immunological
and direct competitive interactions have been suggested to be
potentially important in high-income countries,134,135 but no
observation has been made in the context of the African
meningitis belt. The nasopharyngeal microbiome should indicate
the pathogen interactions and their role in epidemic waves in a
context of multi-vaccine implementation (i.e., MenAfriVac and
pneumococcal conjugate vaccines), including the role of S.

pneumoniae, which is also responsible for local meningitis
epidemics.

In addition to the biological factors, further investigations,
possibly combined, into climatic factors (especially humidity and
dust in the dry season) and social factors (especially resource
inequalities, migration, and seasonal population movements) and
their relationships with meningococcal disease would be valuable



L. Agier et al. / International Journal of Infectious Diseases 54 (2017) 103–112110
in developing plans to prevent and mitigate the spread of this
disease.

4.2. Mathematical and statistical modelling of meningococcal disease

in Africa

In terms of statistical and mechanistic models, more precise
data would allow (1) narrow spatial heterogeneities in disease
transmission dynamics to be detected; (2) risk factors to be better
detected and their impact to be estimated; (3) this knowledge to be
built on to obtain a clearer idea of the mechanisms underlying the
disease. In this regard, mathematical mechanistic SIR models have
great potential, but need to be developed further, with reliable
parameter estimates being plugged in. Scaling down the spatial
resolution of analyses to the health centre level would require that
the ministries of health of the countries of interest report cases at
the health centre level and keep up-to-date records of the
evolution of the health centres’ spatial definition. More timely
reporting of meningitis incidence would reduce the time for
decisions and allow reactive vaccination strategies to be opti-
mized, which remain crucial for global meningitis control. In
contrast, the current delay in the dissemination of information and
aggregation of data at the district level reduces the vaccination
campaign efficacy in preventing cases.27 Finally, as the epidemiol-
ogy of bacterial meningitis is currently changing in the African
meningitis belt following the introduction of MenAfriVac, the
national surveillance systems could subsequently be adapted if all
stakeholders and partners prioritize this undertaking.

In conclusion, the priorities identified here for future research
ultimately aim at understanding the observed patterns of the
disease, anticipating meningitis epidemic outbreaks, forecasting
the effects of possible public health policies, and determining
the geographical evolution of the African meningitis belt. Despite
the imminent introduction of a multivalent meningococcal vaccine
and the use of pneumococcal vaccine in routine childhood
immunization, no time should be wasted and efforts should be
made towards better understanding bacterial meningitis in the
African meningitis belt and in particular the links between climate,
pathogens, and hosts, so as to be prepared for suboptimal disease
elimination following vaccine introduction.
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18. Mueller JE, Yaro S, Ouédraogo MS, Levina N, Njanpop-Lafourcade BM, Tall H,
et al. Pneumococci in the African meningitis belt: meningitis incidence and
carriage prevalence in children and adults. PLoS One 2012;7:e52464. http://
dx.doi.org/10.1371/journal.pone.0052464

19. Frasch CE, Preziosi MP, Laforce FM. Development of group A meningococcal
conjugate vaccine, MenAfriVac. Hum Vaccines Immunother 2012;8:715–24.
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Baseline meningococcal carriage in Burkina Faso before the introduction of a
meningococcal serogroup A conjugate vaccine. Clin Vaccine Immunol 2011;
18:435–43.

47. Raghunathan PL, Jones JD, Tiendrebéogo SR, Sanou I, Sangaré L, Kouanda S,
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Afrique l’Ouest. Paris, Karthala. 2003. p. 279–93.

84. Colombini A, Bationo F, Zongo S, Ouattara F, Badolo O, Jaillard P, et al. Costs for
households and community perception of meningitis epidemics in Burkina
Faso. Clin Infect Dis 2009;49:1520–5.

85. Bouma FB, Ouattara F, Zongo S, Colombini A. La méningite, une maladie des «
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Afrique l’Ouest. Khartala; 2003;403–26.

131. Lucidarme J, Hill DM, Bratcher HB, Gray SJ, du Plessis M, Tsang RS, et al.
Genomic resolution of an aggressive, widespread, diverse and expanding
meningococcal serogroup B, C and W lineage. J Infect 2015;71:544–52.
http://dx.doi.org/10.1016/j.jinf.2015.07.007

132. Mustapha MM, Marsh JW, Krauland MG, Fernandez JO, de Lemos AP, Dunning
HJ, et al. Genomic epidemiology of hypervirulent serogroup W, ST-11 Neisseria
meningitidis. EBioMedicine 2015;2:1447–55. http://dx.doi.org/10.1016/
j.ebiom.2015.09.007

133. Agnememel A, Hong E, Giorgini D, Nuñez-Samudio V, Deghmane AE, Taha MK.
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