
HAL Id: hal-01483492
https://hal.science/hal-01483492

Preprint submitted on 6 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polynomial Stabilization of Solutions to a Class of
Damped Wave Equations

Otared Kavian, Qiong Zhang

To cite this version:
Otared Kavian, Qiong Zhang. Polynomial Stabilization of Solutions to a Class of Damped Wave
Equations. 2017. �hal-01483492�

https://hal.science/hal-01483492
https://hal.archives-ouvertes.fr


Polynomial Stabilization of Solutions to a

Class of Damped Wave Equations ∗

Otared Kavian†, and Qiong Zhang‡

Abstract. We consider a class of wave equations of the type ∂ttu+Lu+B∂tu = 0,
with a self-adjoint operator L, and various types of local damping represented by
B. By establishing appropriate and raher precise estimates on the resolvent of an
associated operator A on the imaginary axis of C, we prove polynomial decay of the
semigroup exp(−tA) generated by that operator. We point out that the rate of decay
depends strongly on the concentration of eigenvalues and that of the eigenfunctions
of the operator L. We give several examples of application of our abstract result,
showing in particular that for a rectangle Ω := (0, L1)× (0, L2) the decay rate of the
energy is different depending on whether the ratio L2

1/L
2
2 is rational, or irrational

but algebraic.
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1 Introduction

In this paper, we study the long time behavior of a class of wave equa-
tions with various types of damping (such as Kelvin-Voigt damping, viscous
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damping, or both). More precisely, let N ≥ 1 be an integer, and let Ω ⊂ RN

be a bounded Lipschitz domain, its boundary being denoted by ∂Ω. The
wave equations we study in this paper are of the following type





utt −∆u+ b1(x)ut − div (b2(x)∇ut) = 0 in (0,∞) × Ω,

u(t, σ) = 0 on (0,∞) × ∂Ω,

u(0, x) = u0(x) in Ω

ut(0, x) = u1(x) in Ω.

(1.1)

In the above equation ∆ is the Laplace operator on RN and we denote ut :=
∂tu and utt := ∂ttu, while b1, b2 ∈ L∞(Ω) are two nonnegative functions such
that at least one of the following conditions

∃ ε1 > 0 and ∅ 6= Ω1 ⊂ Ω, s.t. Ω1 is open and b1 ≥ ε1 on Ω1 (1.2)

or

∃ ε2 > 0 and ∅ 6= Ω2 ⊂ Ω, s.t. Ω2 is open and b2 ≥ ε2 on Ω2 (1.3)

is satisfied. When b1 ≡ 0 and condition (1.3) is satisfied, the wave equation
described in (1.1) corresponds to a wave equation with local viscoleastic
damping on Ω1, that is a damping of Kelvin–Voigt’s type (see, e.g., S. Chen,
K. Liu & Z. Liu [11], K. Liu & Z. Liu [15], M. Renardy [20], and references
therein). The case in which b2 ≡ 0, and (1.2) is satisfied, corresponds to a
damped wave equation where the damping, or friction, is activated on the
subdomain Ω1, and is proportional to the velocity ut (see, e.g., C. Bardos,
G. Lebeau & J. Rauch [5], G. Chen, S.A. Fulling, F.J. Narcowich & S. Sun
[10], and references therein).

The energy function associated to the system (1.1) is

E(t) =
1

2

∫

Ω
|ut(t, x)|2dx+

1

2

∫

Ω
|∇u(t, x)|2 dx. (1.4)

and it is dissipated according to the following relation:

d

dt
E(t) = −

∫

Ω
b1(x)|ut(t, x)|2 dx−

∫

Ω
b2(x)|∇ut(t, x)|2dx. (1.5)

If Ω1 = Ω, that is a damping of viscous type exists on the whole domain,
it is known that the associated semigroup is exponentially stable (G. Chen
& al [10]). It is also known that the Kelvin-Voigt damping is stronger than
the viscous damping, in the sense that if Ω2 = Ω, the damping for the wave
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equation not only induces exponential energy decay, but also restricts the
spectrum of the associated semigroup generator to a sector in the left half
plane, and the associated semigroup is analytic (see e.g. S. Chen & al [11]
and references therein).

When b2 ≡ 0 and the viscous damping is only present on a subdomain
Ω1 6= Ω, it is known that geometric optics conditions guarantee the exact
controllability, and the exponential stability of the system (C. Bardos & al.
[5]). However, when b1 ≡ 0, and Ω2 6= Ω, even if Ω2 satisfies those geometric
optics conditions, the Kelvin-Voigt damping model does not necessarily have
an exponential decay. In fact, for the one dimensional case N = 1, S. Chen
& al. [11] have proved that when b2 := 1Ω2

(and Ω2 6= Ω), the energy
of the Kelvin–Voigt system (1.1) does not have an exponential decay. A
natural question is to study the decay properties of the wave equation with
local viscoelastic damping, or when viscous damping is local and geometric
optics conditions are not satisfied.

Our aim is to show that, if one of the conditions (1.2) or (1.3) is satisfied
then, as a matter of fact, the energy functional decreases to zero at least
with a polynomial rate: more precisely, there exists a real number m > 0
and a positive constant c > 0 depending only on Ω1,Ω2,Ω and on b1, b2,
such that

E(t) ≤ c

(1 + t)2/m

(
‖∇u0‖2 + ‖u1‖2

)
.

The positive number m depends in an intricate way on the distribution of
the eigenvalues (λk)k≥1 of the Laplacian with Dirichlet boundary conditions
on ∂Ω, and it depends also strongly on the concentration, or localization,
properties of the corresponding eigenfunctions, and thus on the geometry
of Ω, and those of Ω1,Ω2. More precisely, let (λk)k≥1 be the sequence of
eigenvalues given by

−∆ϕk,j = λkϕk,j in Ω, ϕk,j ∈ H1
0 (Ω),

∫

Ω
ϕk,j(x)ϕℓ,i(x)dx = δkℓδij .

Here we make the convention that each eigenvalue has multiplicity mk ≥ 1
and that in the above relation 1 ≤ j ≤ mk and 1 ≤ i ≤ mℓ. As usual, the
eigenvalues λk are ordered in an increasing order: 0 < λ1 < λ2 < · · · <
λk < λk+1 < · · · . We shall consider the cases where an exponent denoted
by γ1 ≥ 0 exists such that for some constant c0 > 0 one has

∀ k ≥ 2, min

(
λk
λk−1

− 1, 1− λk
λk+1

)
≥ c0λ

−γ1
k . (1.6)
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We shall need also the following assumption on the concentration properties
of the eigenfunctions ϕk,j: there exist a constant c1 > 0 and an exponent
γ0 ∈ R such that if ϕ :=

∑mk

j=1 cjϕk,j with
∑mk

j=1 |cj |2 = 1, then

∀ k ≥ 2,

∫

Ω1

|ϕ(x)|2 dx+

∫

Ω2

|∇ϕ(x)|2 dx ≥ c1 λ
−γ0
k . (1.7)

Then we show that if m := 3 + 2γ0 + 4γ1, the decay of the energy is at
least of order (1 + t)−2/m. The fact that the above conditions are satisfied
for certain domains Ω, and subdomains Ω1,Ω2, depends strongly on the
geometry of these domains and will be investigated later in this paper, by
giving examples in which these assumptions are satisfied.

Before stating our first result, which will be in an abstract setting and
will be applied to several examples later in this paper, let us introduce the
following notations. We consider an infinite dimensional, complex, separable
Hilbert space H0, and a positive (in the sense of forms) self-adjoint operator
(L,D(L)) acting on H0, which has a compact resolvent (in particular D(L)
is dense in H0 and (L,D(L)) is an unbounded operator). The dual of H0

having been identified with H0, we define the spaces H1 and H−1 by

H1 := D(L1/2) and H−1 := (H1)
′, (1.8)

the space H1 being endowed with the norm u 7→ ‖L1/2u‖. We shall denote
also by 〈·, ·〉 the duality between H−1 and H1, adopting the convention that
if f ∈ H0 and ϕ ∈ H1, then

〈f, ϕ〉 = (ϕ|f).

As we mentioned earlier, we adopt the convention that the spectrum of L
consists in a sequence of distinct eigenvalues (λk)k≥1, with the least eigen-
value λ1 > 0, numbered in an increasing order and λk → +∞ as k → ∞,
each eigenvalue λk having multiplicity mk ≥ 1.

Next we consider an operator B satisfying the following conditions:





B : H1 −→ H−1 is bounded,

B∗ = B, i.e. 〈Bϕ,ψ〉 = 〈Bψ,ϕ〉 for ϕ,ψ ∈ H1,

∀ϕ ∈ H1, 〈Bϕ,ϕ〉 ≥ 0.

(1.9)

We will assume moreover that B satisfies the non degeneracy condition

∀k ≥ 1,
1

βk
:= min {〈Bϕ,ϕ〉 ; ϕ ∈ N(L− λkI), ‖ϕ‖ = 1} > 0, (1.10)
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and we study the abstract second order equation of the form





utt + Lu+But = 0 in (0,∞)

u(t) ∈ D(L)

u(0) = u0 ∈ D(L)

ut(0) = u1 ∈ H1.

(1.11)

Our first result is:

Theorem 1.1. Assume that the operators (L,D(L)) and B are as above,

and let the eigenvalues (λk)k≥1 of L satisfy

λ∗ := inf
k≥1

λk
λk+1

> 0. (1.12)

Moreover assume that there exist a constant c0 > 0 and two exponents γ0 ∈ R

and γ1 ≥ 0 such that, βk being defined by (1.10), for all inetgers k ≥ 1 we

have

βk ≤ c0 λ
γ0
k , (1.13)

λk−1

λk − λk−1
+

λk+1

λk+1 − λk
≤ c0 λ

γ1
k . (1.14)

Then, setting m := 3 + 2γ0 + 4γ1, there exists a constant c∗ > 0 such that

for all (u0, u1) ∈ D(L)×H1, and for all t > 0, the energy of the solution to

equation (1.11) satisfies

(Lu(t)|u(t)) + ‖ut(t)‖2 ≤ c∗(1 + t)−2/m
[
(Lu0|u0) + ‖u1‖2

]
. (1.15)

Our approach consists in establishing, by quite elementary arguments,
rather precise a priori estimates on the resolvent of the operator

u := (u0, u1) 7→ Au := (−u1, Lu0 +Bu1) (1.16)

on the imaginary axis iR of the complex plane. Indeed the proof of Theorem
1.1 is based on results characterizing the decay of the semigroup exp(−tA)
in terms of bounds on the norm of the resolvent ‖(A − iω)−1‖ as |ω| → ∞
(see J. Prüss [19], W. Arendt & C.J.K. Batty [2], Z. Liu & B.P. Rao [16],
A. Bátkai, K.J. Engel, J. Prüss and R. Schnaubelt [6], C.J.K. Batty &
Th. Duyckaerts [7]). In this paper we use the following version of these
results due to A. Borichev & Y. Tomilov [8]:
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Theorem 1.2. Let S(t) := exp(−tA) be a C0-semigroup on a Hilbert space

H generated by the operator A. Assume that iR is contained in ρ(A), the
resolvent set of A, and denote R(λ,A) := (A − λI)−1 for λ ∈ ρ(A). Then

for m > 0 fixed, one has:

sup
ω∈R

‖R(iω,A)‖
(1 + |ω|)1/m <∞ ⇐⇒ sup

t≥0
(1 + t)m‖S(t)A−1‖ <∞. (1.17)

The remainder of this paper is organized as follows. In Section 2 we
gather a few notations and preliminary results concerning equation (1.1),
and we prove Theorem 1.1 by establishing a priori estimates for the resolvent
of the generator of the semigroup associated to (1.1), in order to use the
above Theorem 1.2. In Section 3 we apply our abstract result to various
wave equations in dimension one, and in Section 4 we give a few examples of
damped wave equations in higher dimensions when Ω := (0, L1)×· · · (0, LN ),
with N ≥ 2, which show that depending on algebraic properties of the
numbers L2

i /L
2
j the decay rate of the energy may be different.

2 An abstract result

As stated in the introduction, in what follows H0 is an infinite dimensional,
separable, complex Hilbert space, whose scalar product and norm are de-
noted by (·|·) and ‖ · ‖, on which we consider a positive, densely defined
selfadjoint operator (L(D(L))) acting on H0. With the definition (1.8) we
have H1 ⊂ H0 = (H0)

′ ⊂ H−1, with dense and compact embeddings, and L
can be considered as a selfadjoint isomorphism (even an isometry) between
the Hilbert spaces H1 and H−1. We denote R∗ := R \ {0}, N∗ := N \ {0}.

By an abuse of notations, X being a Banach space, when there is no risk
of confusion we may write f := (f1, f2) ∈ X to mean that both functions
f1 and f2 belong to X (rather than writing f ∈ X × X or f ∈ X2). Thus
we shall write also (f |g) := (f1|g1) + (f2|g2) for f = (f1, f2) ∈ H0 ×H0 and

g = (g1, g2) ∈ H0 ×H0. Analogously ‖f‖ will stand for
(
‖f1‖2 + ‖f2‖2

)1/2
.

Recall that we have denoted by (λk)k≥1 the increasing sequence of dis-
tinct eigenvalues of L, each eigenvalue λk having multiplicity mk ≥ 1.
We shall denote by Pk the orthogonal projection of H0 on the eigenspace
N(L− λkI). We denote by

Fk :=
⊕

j≥k+1

N(L− λjI) , (2.1)
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and
Ek := (N(L− λkI)⊕ Fk)

⊥ =
⊕

1≤j≤k−1

N(L− λjI) , (2.2)

(note that E1 = {0}). We recall that Ek and Fk are invariant under the
action of L, and obviously under that of L− λkI. More precisely

L(Ek) = (L− λkI)(Ek) = Ek,

and also
L (D(L) ∩ Fk) = (L− λkI) (D(L) ∩ Fk) = Fk.

Next we consider a bounded linear operator B satisfying the conditions
(1.9), and we recall that one has a Cauchy-Schwarz type inequality for B,
more precisely

|〈Bϕ,ψ〉| ≤ 〈Bϕ,ϕ〉1/2 〈Bψ,ψ〉1/2, ∀ϕ,ψ ∈ H1. (2.3)

which implies in particular that if 〈Bϕ,ϕ〉 = 0 then we have Bϕ = 0.
We shall consider the abstract damped wave equation of the form (1.11),

and we introduce the Hilbert space

H := H1 ×H0, (2.4)

corresponding to the energy space associated to equation (1.11), whose ele-
ments will be denoted by u := (u0, u1) and whose norm is given by

‖u‖2H = ‖L1/2u0‖2 + ‖u1‖2.

In order to solve and study (1.11), we define an unbounded operator (A,D(A))
acting on H by setting

Au := (−u1, Lu0 +Bu1), (2.5)

for u ∈ D(A) defined to be

D(A) := {u ∈ H ; u1 ∈ H1, Lu0 +Bu1 ∈ H0} . (2.6)

Since for u = (u0, u1) ∈ D(A) we have

(Au|u)H = 〈Bu1, u1〉 ≥ 0,

one can easily see that the operator A is m-accretive on H, that is for any
λ > 0 and any f ∈ H there exists a unique u ∈ D(A) such that

λAu+ u = f, and ‖u‖ ≤ ‖f‖.
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Thus D(A) is dense in H, and A is a closed operator generating a C0-
semigroup acting on H, denoted by S(t) := exp(−tA) (see for instance
K. Yosida [25], chapter IX).

Then, writing the system (1.11) as a Cauchy problem in H:

dU

dt
+AU(t) = 0 for t > 0, U(0) = U0 := (u0, u1) ∈ H,

we have U(t) = (U0(t), U1(t)) = exp(−tA)U0, and the solution of (1.11) is
given by u(t) = U0(t), the first component of U(t).

In order to study the behavior of u(t), or rather that of U(t), as t→ +∞,
we are going to show that the resolvent set of A contains the imaginary axis
iR of the complex plane and that, under appropriate assumptions on the
operators L and B, the norm ‖(A − iωI)−1‖ has a polynomial growth as
|ω| → ∞.

Lemma 2.1. The adjoint of (A,D(A)) is given by the operator (A∗,D(A∗))
where

D(A∗) = {v ∈ H : v1 ∈ H1, −Lv0 +Bv1 ∈ H0} , (2.7)

and for v = (v0, v1) ∈ D(A∗) we have

A∗v = (v1,−Lv0 +Bv1) . (2.8)

Proof. Since D(A) is dense in H, the adjoint of A can be defined. Re-
call that v = (v0, v1) ∈ D(A∗) means that there exists a constant c > 0
(depending on v) such that

∀u = (u0, u1) ∈ D(A), |(Au|v)H| ≤ c ‖u‖H.

To determine the domain of A∗, let v ∈ D(A∗) be given, and consider first
an element u = (u0, 0) ∈ D(A). Thus Au = (0, Lu0) ∈ H and

|(Au|v)H| = |(Lu0|v1)| ≤ c ‖u‖H = c ‖L1/2u0‖.

This means that the linear form u0 7→ (Lu0|v1) extends to a continuous
linear form on H1, and this is equivalent to say that v1 ∈ H1, and that for
u = (u0, 0) ∈ H we have

(Au|v)H = 〈Lu0, v1〉 = (v1|u0)H1
.

Now take u = (0, u1) ∈ D(A). Since, according to (1.9), B∗ = B, we
have

(Au|v)H = (−u1|v0)H1
+ 〈Bu1, v1〉 = −(L1/2u1|L1/2v0) + 〈Bv1, u1〉,
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and thus
(Au|v)H = 〈−Lv0 +Bv1, u1〉

and since v ∈ D(A∗) means that the mapping u1 7→ (Au|v) extends to a
continuous linear form on H0, we conclude that

−Lv0 +Bv1 ∈ H0,

and
(Au|v)H = (−Lv0 +Bv1|u1) = (u1| − Lv0 +Bv1).

From these observations it is easy to conclude that in fact

A∗v = (v1,−Lv0 +Bv1),

and that the domain of A∗ is precisely given by (2.7).

We shall use the following classical results of S. Banach which character-
izes operators having a closed range (see for instance K.Yosida [25], chapter
VII, section 5):

Theorem 2.2. Let (A,D(A)) be a densely defined operator acting on a

Hilbert space H. Then

R(A) closed ⇐⇒ R(A∗) closed ,

and either of the above properties is equivalent to either of the following

equivalent equalities

R(A) = N(A∗)⊥ ⇐⇒ R(A∗) = N(A)⊥.

Moreover when N(A) = N(A∗) = {0}, the range R(A) is closed if and only

if there exist two constants c1, c2 > 0 such that

∀u ∈ D(A) ‖u‖ ≤ c1 ‖Au‖, ∀ v ∈ D(A∗) ‖v‖ ≤ c2 ‖A∗v‖. (2.9)

In the following lemma we show that 0 ∈ ρ(A), that is that the operator
A defined by (2.5) has a bounded inverse:

Lemma 2.3. Denote by N(A) the kernel of the operator A defined by (2.5)–
(2.6), and by R(A) its range. Then we have N(A) = {0} = N(A∗) and

R(A), as well as R(A∗), are closed. In particular A : D(A) −→ H is one-

to-one and its inverse is continuous on H.
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Proof. It is clear that N(A) = N(A∗) = {0}. On the other hand, thanks
to Banach’s theorem 2.2, we have only to show that R(A) is closed. For a
sequence un = (u0n, u1n) ∈ D(A) such that fn = (f0n, f1n) := Aun → f =
(f0, f1) ∈ H, we have to show that there exists u = (u0, u1) ∈ D(A) for
which f = Au. Since u1n = −f0n → −f0 in H1, setting u1 := −f0, due to
the fact that B : H1 −→ H−1 is continuous, we have that

Lu0n = f1n −Bu1n → f1 −Bu1 in H−1,

and therefore, denoting by u0 ∈ H1 the unique solution of

Lu0 = f1 −Bu1,

we have that u = (u0, u1) ∈ D(A) and that Au = f . This proves that the
range of A, as well as that of A∗, are closed. Thus we have R(A) = N(A∗)⊥

and R(A∗) = N(A)⊥. Since N(A) = N(A∗) = {0}, by property (2.9) of
Theorem 2.2 there exist two constants c1, c2 > 0 such that

∀u ∈ D(A), ‖Au‖ ≤ c1 ‖u‖, ∀ v ∈ D(A∗), ‖A∗v‖ ≤ c2 ‖v‖.
This means that A−1 : H −→ D(A) is continuous, and naturally the same
is true of (A∗)−1 : H −→ D(A∗).

Next we show that a certain perturbation of L, which appears in the
study of the resolvent of A, is invertible.

Proposition 2.4. (Main estimates). Assume that B satisfies (1.9), and
that for any fixed k ≥ 1 condition (1.10) is satisfied. Let ω ∈ R, and for

j ≥ 1 and ω2 6= λj denote

αj(ω) :=
λj

|ω2 − λj |
. (2.10)

Then the operator Lω : H1 −→ H−1 defined by

Lωu := Lu− iωBu− ω2u. (2.11)

has a bounded inverse, and

‖L−1
ω ‖H−1→H1

≤ c(ω)

where the constant c(ω) is given by

c(ω) :=

(
βkλk
|ω| + (1 + βkλk)(αk−1(ω) + αk+1(ω))

2(1 + |ω|)
)
c∗ , (2.12)

for ω such that λk−1 < ω2 < λk+1, with c
∗ := 16(1 + ‖B‖)2, and ‖B‖ :=

‖B‖H1→H−1
.
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Proof. Note that according to (2.10), the constants αk−1(ω) and αk+1(ω)
are well-defined whenever λk−1 < ω < λk+1.

For ω ∈ R fixed, and any given g ∈ H−1 we have to show that there
exists a unique u0 ∈ H1 solution of

Lu0 − iωBu0 − ω2u0 = g , (2.13)

and there exists a constant c(ω) > 0 such that

‖L1/2u0‖ ≤ c(ω) ‖g‖H−1
. (2.14)

Note that Lω is a bounded operator fromH1 intoH−1 and that (Lω)
∗ = L−ω.

First we show that N(Lω) = {0}. If ω = 0, then we know that L0 = L and
by assumption N(L) = {0}. If ω 6= 0, and if u ∈ H1 satisfies Lωu = 0, we
have

−ω〈Bu, u〉 = Im 〈Lu− iωBu− ω2u, u〉 = 0.

Since ω 6= 0, this yields 〈Bu, u〉 = 0 and, as remarked above after the
Cauchy–Schwarz inequality (2.3), the latter implies that Bu = 0 and thus
Lu− ω2u = 0. If u were not equal to zero, this would imply that u ∈ D(L)
and that ω2 is an eigenvalue of L, say ω2 = λk for some integer k ≥ 1, that is
u ∈ N(L−λkI)\{0}. However we have 〈Bu, u〉 = 0 and this in contradiction
with the assumption (1.10). Therefore u = 0 and N(Lω) = {0}.

Next we show that R(Lω) is closed, that is, according to property (2.9)
of Banach’s theorem 2.2, there exists a constant c(ω) > 0 such that (2.14)
is satisfied.

To this end, ω ∈ R being fixed, we define two bounded operators B and
Lω acting in H0 by

B := L−1/2BL−1/2 (2.15)

Lω := I − ω2L−1 − iωB = I − iωL−1/2(B − iωI)L−1/2, (2.16)

and we note that

Lω = L1/2
(
I − iωL−1/2(B − iωI)L−1/2

)
L1/2 = L1/2

LωL
1/2.

Since L1/2 is an isometry between H1 and H0, and also between H0 and
H−1, in order to see that L−1

ω is a bounded operator mapping H−1 into H1,
with a norm estimated by a certain constant c(ω), it is sufficient to show
that the operator Lω, as a mapping on H0, has an inverse and that c(ω)
being defined in (2.12) we have

‖L−1
ω ‖ ≤ c(ω). (2.17)
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We observe also that B : H0 −→ H0 is a bounded, selfadjoint and
nonnegative operator and thus, as recalled in (2.3), for any f, g ∈ H0 we
have the Cauchy-Schwarz inequality

|(Bf |g)| ≤ (Bf |f)1/2(Bg|g)1/2. (2.18)

Now consider f, g ∈ H0 such that ‖g‖ ≤ 1 and

Lωf = f − ω2L−1f − iωBf = g. (2.19)

We split the proof into two steps, according to whether ω2 is smaller or
larger than λ1/2.

Step 1. Assume first that ω2 ≤ λ1/2. Using the fact that

(L−1f |f) ≤ 1

λ1
‖f‖2,

upon multiplying (2.19) by f , and then taking the real part of the resulting
equality, one sees that

‖f‖ ≤ λ1
λ1 − ω2

. (2.20)

Thus if ω2 < λ1 one has ‖L−1
ω ‖ ≤ λ1/(λ1−ω2), and more precisely ‖L−1

ω ‖ ≤
2 if ω2 ≤ λ1/2.

Step 2. Now assume that for some integer k ≥ 1 we have

λk−1 < ω2 < λk+1. (2.21)

(If k = 1 by convention we set λ0 := 0). Multiplying, in the sense of H0,
equation (2.19) by f and taking the imaginary part of the result yields

(Bf |f) ≤ |ω|−1 ‖f‖. (2.22)

This first estimate is indeed not sufficient to obtain a bound on f , since the
operator B may be neither strictly nor uniformly coercive. However, as we
shall see in a moment, this crude estimate is a crucial ingredient to obtain
our result.

We begin by decomposing f into three parts as follows: there exist a
unique t ∈ C and ϕ ∈ N(L− λkI), with ‖ϕ‖ = 1, such that

f = v + tϕ+ z, where v ∈ Ek, and z ∈ Fk ∩H1.
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(Recall that we have E1 = {0}; also when λk has multiplicity mk ≥ 2, then
ϕ may depend also on g, but in any case its norm in H1 is

√
λk). With these

notations, equation (2.19) reads

v − ω2L−1v + z − ω2L−1z +
λk − ω2

λk
tϕ = iωBf + g. (2.23)

When k = 1, by convention we have v = 0, while when k ≥ 2 we may
multiply the above equation by −v, and using the fact that for v ∈ Ek we
have

(L−1v|v) ≥ 1

λk−1
‖v‖2,

we deduce that

ω2 − λk−1

λk−1
‖v‖2 ≤ ‖v‖ + |ω| |(Bf |v)|.

Using (2.18) and (2.22) we have

|(Bf |v)| ≤ (Bf |f)1/2(Bv|v)1/2 ≤ |ω|−1/2‖f‖1/2 · ‖B‖1/2 · ‖v‖,

so that since ‖B‖ ≤ ‖B‖ := ‖B‖H1→H−1
, we get finally

‖v‖ ≤ αk−1(ω)
(
1 + |ω|1/2‖B‖1/2‖f‖1/2

)
. (2.24)

Analogously, multiplying (2.23) by z and using the fact that

(L−1z|z) ≤ 1

λk+1
‖z‖2,

we get
λk+1 − ω2

λk+1
‖z‖2 ≤ ‖z‖+ |ω| |(Bf |z)|,

and, proceeding as above, we deduce that

‖z‖ ≤ αk+1(ω)
(
1 + |ω|1/2‖B‖1/2‖f‖1/2

)
. (2.25)

Writing (2.23) in the form

(I − ω2L−1)(v + z) +
λk − ω2

λk
t ϕ− i t ωBϕ = g + iωB(v + z),
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we multiply this equation by ϕ and we take the imaginary part of the re-
sulting equality to obtain

|t| |ω|(Bϕ|ϕ) ≤ 1 + |ω| · |(Bϕ|v + z)|
≤
(
1 + |ω|(Bϕ|ϕ)1/2‖B‖1/2(‖v‖ + ‖z‖)

)
. (2.26)

(Here we have used the fact that ((I − ω2L−1)(v + z)|ϕ) = 0 since v + z ∈
N(L− λkI)

⊥). Now we have

(Bϕ|ϕ) = 〈BL−1/2ϕ,L−1/2ϕ〉 = 1

λk
〈Bϕ,ϕ〉 ≥ 1

βkλk
,

and thus the above estimate (2.26) yields finally

|t| ≤ λkβk
|ω| + ‖B‖1/2(βkλk)1/2(‖v‖+ ‖z‖). (2.27)

Using this together with (2.24) and (2.25), we infer that

‖f‖ ≤ λkβk
|ω| +(1+ (‖B‖βkλk)1/2)(αk−1(ω)+αk+1(ω))(1+ (|ω|‖B‖‖f‖)1/2).

From this, upon using Young’s inequality αβ ≤ εα2/2+ε−1β2/2 on the right
hand side, with α := ‖f‖1/2 and β the terms which are factor of ‖f‖1/2, it is
not difficult to choose ε > 0 appropriately and obtain (2.17), and thus the
proof of Proposition 2.4 is complete.

Remark 2.5. When B : H0 −→ H0 is bounded, the estimate of Proposition
2.4 can be improved, but the improvement does not seem fundamental in an
abstract result such as the one we present here. Instead, for instance when
one is concerned with a wave equation where B∂tu := 1ω∂tu, in specific
problems one may find better estimates using the local structure of the
operator B.

In the next lemma we give a better estimate when, in equation (2.13),
the data g belongs to H0 or to H1.

Lemma 2.6. Assume that B satisfies (1.9) and (1.10), ω ∈ R∗ and g ∈ H0

be given. Then, the operator Lω being given by (2.11) and with the notations

of Proposition 2.4, the solution u0 ∈ H1 of Lωu0 = g satisfies

‖u0‖ ≤
(
2c(ω)

ω
√
λ1

+
3

ω2

)
‖g‖. (2.28)

14



Also, for any ω ∈ R∗ any v ∈ H1 we have

‖L−1
ω (B − iωI) v‖H1

≤ 1 + c(ω)

|ω| ‖v‖H1
. (2.29)

Proof. When g ∈ H0, computing 〈Lωu0, u0〉 = (u0|g) and taking the
imaginary part yields

|ω| 〈Bu0, u0〉 ≤ ‖g‖ ‖u0‖. (2.30)

Then, using Proposition 2.4, we have

ω2‖u0‖2 = ‖L1/2u0‖2 − iω〈Bu0, u0〉 − 〈g, u0〉
≤ c(ω)2‖g‖2H−1

+ 2‖g‖‖u0‖.

From this, and the fact that λ1‖g‖2H−1
≤ ‖g‖2 one easily conclude that

ω2‖u0‖2 ≤
(
2c(ω)2

λ1
+

8

ω2

)
‖g‖2.

In order to see that (2.29) holds, it is sufficient to observe that

L−1
ω (B − iωI) = (iω)−1L−1

ω (L− Lω) = (iω)−1
(
L−1
ω L− I

)
,

and using once more Proposition 2.4, the proof of the Lemma is complete.

We can now prove that iR ⊂ ρ(A), the resolvent set of A.

Lemma 2.7. Assume that the operator B satisfies conditions (1.9) and

(1.10). Then iR ⊂ ρ(A).

Proof. It is clear that we may assume |ω| > 0, since the case ω = 0 is
already treated by Lemma 2.3.

In order to see that λ = iω belongs to ρ(A) for any ω ∈ R∗, we begin by
showing that

N(A− λI) = N(A∗ − λI) = {0}.
Indeed if u ∈ D(A) and Au− iω u = 0, then we have u1 = −iω u0 and

Lu0 − iω Bu0 − ω2u0 = 0 ,

and by Proposition 2.4 we know that u0 = 0, and thus the N(A−iωI) = {0}.
In the same way, one may see that N(A∗ + iωI) = {0}.
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Next we show that both R(A− iωI) and R(A∗ + iωI) are closed. Since
it is clearly sufficient to prove the former property, let a sequence (un)n≥1 =
{(u0n, u1n)}n≥1 in D(A) be so that

fn = (f0n, f1n) := Aun − iω un → f = (f0, f1) in H.

In particular we have

−u1n − iω u0n = f0n → f0 in H1.

Reporting the expression of u1n = −f0n− iω u0n into the second component
of Aun, upon setting

gn := f1n +Bf0n − iω f0n ,

and g := f1 +Bf0 − iω f0, we have clearly gn → g in H−1 and

Lu0n − iωBu0n − ω2u0n = gn. (2.31)

Using Proposition 2.4, we know that L− iωB−ω2I has a bounded inverse,
and thus u0n → u0 in H1, where u0 is the unique solution of

Lu0 − iω Bu0 − ω2u0 = g.

It is clear that this shows that un → u := (u0, u1), where u1 = −iω u0 − f0.
Thus R(A − iω I) is closed, in fact R(A − iω I) = H and (A − iω I)−1 is
bounded.

Proposition 2.8. Assume that the operator B satisfies conditions (1.9) and
(1.10). Then there exists a constant c∗ > 0 such that for all ω ∈ R we have

‖R(iω,A)‖ ≤ c∗ c(ω), (2.32)

where c(ω) is defined in (2.12).

Proof. By Lemma 2.7 we know that the imaginary axis of the complex plane
is contained in the resolvent set of the operator A. For f = (f0, f1) ∈ H, the
equation Au− iωu = f can be written as

{
−u1 − iωu0 = f0 ∈ H1,

Lu0 +Bu1 − iωu1 = f1 ∈ H0.
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Consequently, it follows that

u0 = L−1
ω (B − iωI) f0 + L−1

ω f1 ,

u1 = −f0 − iωu0.

By Proposition 2.4 and the estimate (2.29) of Lemma 2.6 we have

‖u0‖H1
≤ ‖L−1

ω (B − iωI) f0‖H1
+ ‖L−1

ω f1‖H1

≤ 1 + c(ω)

|ω| ‖f0‖H1
+ c(ω)‖f1‖H−1

≤ c∗ c(ω) ‖f‖H ,

for some constant c∗ > 0 independent of ω and f .
On the other hand, using (2.28) we have, again for some constant c∗

independent of f1 and |ω| ≥ 1

|ω| ‖L−1
ω f1‖ ≤ c∗ c(ω) ‖f1‖,

and thus, since u1 = −f0 − iωu0,

‖u1‖ ≤ ‖f0‖+ |ω| ‖L−1
ω (B − iωI) f0‖+ |ω| ‖L−1

ω f1‖
≤ c∗ c(ω) ‖f‖H ,

for some appropriate constant c∗ independent of ω and f .

We are now in a position to prove our main abstract result.
Proof of Theorem 1.1. Take ω ∈ R. In order to prove our claim, using
Theorem 1.2, it is enough to show that the constant c(ω) which appears in
(2.32) has a growth rate of at most (1 + |ω|m), where m is given by (1.15).
It is clear that it is sufficient to prove the estimate on c(ω) when ω2 ≥ λ1/2.
Therefore, assuming that such is the case, there is an integer k ≥ 1 such
that

λk−1 <
λk−1 + λk

2
≤ ω2 ≤ λk + λk+1

2
< λk+1.

Thus, with the notations of Proposition 2.4, we have

αk−1(ω) + αk+1(ω) ≤
2λk−1

λk − λk−1
+

2λk+1

λk+1 − λk
≤ 2 c0 λ

γ1
k . (2.33)

Now, thanks to the assumption (1.12) we have λk+1 ≤ λk/λ∗ and, when
k ≥ 2, we have also λk−1 ≥ λ∗λk. From this we may conclude that

1

2
(1 + λ∗)λk ≤ ω2 ≤ 1 + λ∗

2λ∗
λk.
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Using the expression of c(ω) given by (2.12), one may find a constant c∗0 > 0,
depending only λ∗, c0 and on λ1, c

∗, so that for all ω with ω2 ≥ λ1/2 we have

c(ω) ≤ c∗0

(
|ω|1+2γ0 + (1 + |ω|2(1+γ0)) |ω|4γ1 (1 + |ω|)

)
.

From this, setting m := 3 + 2γ0 + 4γ1, it is not difficult to see that one has
c(ω) ≤ c∗1(1+ |ω|m), at the expense of choosing another constant c∗1, and the
proof of our Theorem is complete.

In the following sections we give a few examples of damped wave equa-
tions which can be treated according to Theorem 1.1.

3 Wave equations in dimension one

In this section we give a few applications of Theorem 1.1 to the case of a
class of wave equations, in dimension one, that is a system corresponding to
the vibrations of a string. The treatment of such a problem is easier in one
dimension than in higher dimensions, due to the fact that on the one hand
the multiplicity of each eigenvalue is one, the distance between consecutive
eigenvalues is large, and on the other hand the eigenfunctions are explicitely
known in some cases, and have appropriate asymptotic behaviour when they
are not explicitely known.

More precisely, without loss of generality, we may assume that Ω = (0, π)
and, with the notations of the previous section, we set H0 := L2(0, π), the
scalar product of f, g ∈ L2(0, π) = L2((0, π),C) being denoted by

(f |g) :=
∫ π

0
f(x) g(x) dx,

and the associated norm by ‖ · ‖. Let a ∈ L∞(0, π) be a positive function
such that for a certain α0 > 0, we have a(x) ≥ α0 a.e. in (0, π). Then, two
nonnegative functions b1, b2 ∈ L∞(0, π) being given, the system




∂ttu− ∂x(a∂xu) + b1∂tu− ∂x(b2∂x∂tu) = 0 in (0,∞) × (0, π),

u(t, 0) = u(t, π) = 0 on (0,∞),

u(0, x) = u0(x) in (0, π)

ut(0, x) = u1(x) in (0, π),

(3.1)

is a special case of the system (1.11). We are going to verify that under
certain circumstances, we can apply Theorem 1.1 and obtain a polynomial
decay for the energy associated to equation (3.1).
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First we consider the operator (L,D(L)) defined by

Lu := −(a(·)u′)′ (3.2)

D(L) :=
{
u ∈ H1

0 (0, π) ; Lu ∈ L2(0, π)
}
, (3.3)

which is a selfadjoint, positive operator with a compact resolvent and one
has H1 := D(L1/2) = H1

0 (0, π). We shall endow H1
0 (0, π) with the scalar

product

(u|v)H1

0

:=

∫ π

0
u′(x) · v′(x) dx,

and its associated norm u 7→ ‖u′‖ (the resulting topology is equivalent to
that resulting from the equivalent Hilbertian norm u 7→ ‖a1/2u′‖).

For the operator B, assuming that the functions b1, b2 are such that at
least one of the conditions (1.2) or (1.3) is satisfied, we define

Bϕ := b1ϕ− (b2ϕ
′)′. (3.4)

It is easy to verify that the operator B is bounded and selfadjoint from
H1

0 (0, π) into H
−1(0, π) and that it satisfies conditions (1.9).

Assume also that Ω1 and Ω2 are given by

Ω1 = (ℓ1, ℓ1 + δ1), Ω2 := (ℓ2, ℓ2 + δ2) (3.5)

with 0 ≤ ℓ1 < ℓ1 + δ1 ≤ π and 0 ≤ ℓ2 < ℓ2 + δ2 ≤ π. Then we have the
following result:

Proposition 3.1. Assume that N = 1 and let the domains Ω1,Ω2 be as in

(3.5) with δ2 > 0. Let the function a in (3.1) be of class C2([0, π]) and, for

j = 1 or j = 2, the functions bj ∈ L∞(0, π) be such that bj ≥ εj ≥ 0 on Ωj,

where εj is a constant. Then, if ε2 > 0, there exists a constant c∗ > 0 such

that the energy of the solution of (3.1) satisfies

‖∂xu(t, ·)‖2 + ‖∂tu(t, ·)‖2 ≤ c∗ (1 + t)−2/3
[
‖∂xu0‖2 + ‖u1‖2

]
. (3.6)

Also, if b2 ≡ 0 and ε1 > 0, there exists a constant c∗ > 0 such that

‖∂xu(t, ·)‖2 + ‖∂tu(t, ·)‖2 ≤ c∗ (1 + t)−1/2
[
‖∂xu0‖2 + ‖u1‖2

]
. (3.7)

Proof. Consider first the case a(x) ≡ 1. Then, for all integers k ≥ 1

λk = k2, and ϕk =
√

2/π sin(kx).
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One sees immediately that for some constant c∗ > 0 independent of k we
have

λk−1

λk − λk−1
+

λk+1

λk+1 − λk
≤ k ≤ c∗ λ

1/2
k ,

and thus, with the notations of Theorem 1.1, we can take γ1 = 1/2.
On the other hand, when ε2 > 0, one checks easily that for some constant

c independent of k we have

〈Bϕk, ϕk〉 ≥ ε2

∫ ℓ2+δ2

ℓ2

|ϕ′
k(x)|2dx =

2ε2k
2

π

∫ ℓ2+δ2

ℓ2

cos2(kx) dx ≥ c k2. (3.8)

Therefore for some other constant c∗ independent of k, we have βk ≤ c∗λ
−1
k ,

and thus we can take γ0 := −1.
Finally we have m = 3 + 2γ0 + 4γ1 = 3 and, according to Theorem 1.2,

the semigroup decays polynomially with rate 1/3, that is the decay estimate
for the energy is given by (3.6).

When b2 ≡ 0 and ε1 > 0, then the only damping comes from the term
involving b1 and in this case

〈Bϕk, ϕk〉 ≥ ε1

∫ ℓ1+δ1

ℓ1

|ϕk(x)|2dx =
2ε1
π

∫ ℓ1+δ1

ℓ1

sin2(kx) dx ≥ c. (3.9)

Thus βk ≤ c∗, and we can take γ0 := 0. From this we infer that m =
3 + 2γ0 + 2γ1 = 4, which means that (3.7) holds.

When a is not identically equal to 1, it is known that there exist two
positive constants C1, C2 and a sequence of real numbers (ck)k≥1, satisfying∑

k≥1 |ck|2 <∞, such that as k → ∞ the eigenvalues λk and eigenfunctions
ϕk satisfy, uniformly in x,

λk = ℓ2k2 + C1 + ck, (3.10)

ϕk(x) = C2 a(x)
−1/4 sin(kξ(x)) +O(k−1), (3.11)

ϕ′
k(x) = C2 a(x)

−3/4 k cos(kξ(x)) +O(1), (3.12)

where

ℓ :=

∫ π

0
a(y)−1/2 dy, ξ(x) :=

π

ℓ

∫ x

0
a(y)−1/2 dy, and

∑

k≥1

|ck|2 <∞.

These formulas are obtained through the Liouville transformation, and we do
not give the details of their computations, since we can refer to J. Pöschel
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& E. Trubowitz [22], or A. Kirsch [13, Chapter 4]. Indeed in the latter
reference, in Theorem 4.11, the result is stated for the Dirichlet eigenvalue
problem −ϕ′′+qϕ = λϕ, but one may show that after an appropriate change
of variable and unknown function, described in the introduction of chapter 4,
on pages 121–122 of this reference, one can prove the formulas given above,
which are of interest in our case.

Now, according to the definition of x 7→ ξ(x), making a change of variable
in the first integral below, one has

∫ ℓ2+δ2

ℓ2

a(x)−3/2 cos2(kξ(x)) dx =
ℓ

π

∫ ξ(ℓ2+δ2)

ξ(ℓ2)
a(x(ξ))−1 cos2(kξ) dξ,

so that on a close examination of the asymptotic expansions (3.10)–(3.12),
one is convinced that the same values for the exponents γ0 and γ1 of Theorem
1.1 can be obtained, and the proof of the Proposition is complete.

Remark 3.2. When a ≡ 1, a great number of results exist in the literature.
In particular, assuming that b1 ≡ 0 and b2 := 1Ω2

, Z. Liu and B.P. Rao
[16], M. Alves & al. [1] have shown that the semigroup has a decay rate
of (1 + t)−2, thus the energy decays with the rate (1 + t)−4, and that this
decay rate is optimal. However the cases in which a 6≡ 1, or b1 ≥ ε1 > 0
on Ω0, are not covered by these authors, while the method we present here
can handle such cases, at the cost of not establishing an optimal decay in
simpler cases.

Remark 3.3. As a matter of fact the same decay rate of the energy, with
the same exponent number m = 3, holds for a wave equation of the form

ρ(x)∂ttu− ∂x(a(x)∂xu) + q(x)u+ b0(x)∂tu− ∂x(b1(x)∂xtu) = 0.

In such a case, the operator L will be given by

Lu := −ρ(x)−1(a(x)u′)′ + ρ(x)−1q(x)u, (3.13)

where ρ and a belong to C2([0, π]) and min(ρ(x), a(x)) ≥ ε0 > 0, while the
potential q ∈ C([0, π]) is such that the least eigenvalue λ1 of the problem

−(a(x)ϕ′)′ + qϕ = λρ(x)ϕ, ϕ(0) = ϕ(π) = 0,

verifies λ1 > 0 (in fact any other boundary conditions, such as Neumann, or
Fourier conditions, ensuring that the first eigenvalue λ1 > 0, can be handled,
with the same decay rate for the corresponding wave equation). Indeed, such
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an operator L is selfadjoint in the weighted Lebesgue space L2(0, π, ρ(x)dx),
and it is known that (see for instance A. Kirsch [13], as cited above) an
expansion of the form (3.10)–(3.12) holds in this case for the eigenvalues
and eigenfunctions of L, with the only difference that in (3.11) the function
a(x)−1/4 should be replaced by a(x)−1/4ρ(x)−1/4, and in (3.12) the function
a(x)−3/4 should be replaced by a(x)−3/4ρ(x)−1/4.

Remark 3.4. It is noteworthy to observe that the assumption a ∈ C2([0, π])
of Proposition 3.1, as well as the condition ρ ∈ C2([0, π]) in Remark 3.3,
are needed in order to apply the general result which ensures the precise
asymptotics (3.10)–(3.12). We are not aware of any result analogous to the
precise expansion properties (3.10)–(3.12) in the general case where a, ρ are
only in L∞(0, π).

However, in some cases in which the coefficients a and ρ are not smooth,
it is nevertheless possible to show that the behaviour of the eigenvalues λk
and eigenfunctions ϕk resembles those of the Laplace operator with Dirichlet
boundary conditions on (0, π). Such an example may be given by coefficients
having a finite number of discontinuites, such as step functions, for which
explicit calculation of λk and ϕk is possible. For instance consider ρ(x) ≡ 1
and a ∈ L∞(0, π) the piecewise constant function given by

a(x) := 1(0,π/2)(x) + 4× 1(π/2,π)(x),

where for a set A the function 1A denotes the characteristic function of A.
Then a simple, but perhaps somewhat dull, if not tedious, calculation shows
that the eigenvalues and eigenfunctions solutions to

−(a(x)ϕ′
k(x))

′ = λkϕk(x), ϕk(0) = ϕk(π) = 0,

are given by

{(λk, ϕk) ; k ≥ 1} = {(µ1,m, ϕ1,m) ; m ∈ N∗} ∪ {(µ2,n, ϕ2,n) ; n ∈ Z} ,

where the sequences (µ1,m, ϕ1,m)m≥1 and (µ2,n, ϕ2,n)n∈Z are defined as fol-
lows. For m ≥ 1 integer, µ1,m := 16m2 and (up to a multiplicative normal-
izing constant independent of m)

ϕ1,m(x) = sin(4mx)1(0,π/2)(x) + 2× (−1)m sin(2mx) 1(π/2,π)(x).

Also, for n ∈ Z, the sequence λ2,n is given by

µ2,n := 16

(
n+

arctan(
√
2)

π

)2

,
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and (again up to a multiplicative normalizing constant independent of n)

ϕ2,n(x) := sin(
√
µ2,n x) 1(0,π/2) + (−1)n

2
√
3

3
sin

(√
µ2,n (π − x)

2

)
1(π/2,π).

Now it is clear that proceeding as in the proof of Proposition 3.1, when
ε2 > 0, one can infer that the exponent m in Theorem 1.1 can be taken
as m = 3, so that the decay rate of the energy is at least (1 + t)−2/3.
Analogously when b2 ≡ 0 and ε1 > 0, then one can take m = 4 and the
energy decays at least with the rate (1 + t)−1/2.

4 Wave equations in higher dimensions

Our next example of a damped wave equation for which a decay rate of the
energy can be proven using Theorem 1.1, with an explicitly computed rate
of decay, for the solution of





∂ttu−∆u+ b1∂tu− div(b2∇∂tu) = 0 in (0,∞) × Ω,

u(t, σ) = 0 on (0,∞) × ∂Ω,

u(0, x) = u0(x) in Ω

ut(0, x) = u1(x) in Ω,

(4.1)

where bj ∈ L∞(Ω) are nonnegative functions.
As we shall se below, in order to find the adequate exponents γ0 and γ1

which are used in Theorem 1.1, one has to carry out a precise analysis of the
behaviour of the eigenvalues and eigenfunctions of the underlying operator.
As far as the Laplace operator is concerned, in a few cases one can perform
this analysis, but even in those cases one sees that the exponents γ0 and γ1
depend in avery subtle way on the domain Ω.

The following lemma takes of the condition (1.12) in the cases we study
in this section.

Lemma 4.1. Let Ω := (0, L1) × · · · × (0, LN ) ⊂ RN where Lj > 0 for

1 ≤ j ≤ N . Denoting by (λk)k≥1 the eigenvalues of the Laplacian operator

with Dirichlet boundary conditions on Ω, we have

lim
k→∞

λk+1

λk
= 1.

Proof. The eigenvalues of the operator L defined by Lu := −∆u with

D(L) :=
{
u ∈ H1

0 (Ω) ; ∆u ∈ L2(Ω)
}
,
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are given by

λ̃n :=
n21π

2

L2
1

+ · · ·+ n2Nπ
2

L2
N

, for n = (n1, . . . , nN ) ∈ (N∗)N .

As before we denote by (λk)k≥1 the sequence of eigenvalues obtained upon

reordering this family (λ̃n)n, with the convention that each eigenvalue has
multiplicity mk ≥ 1 and λk < λk+1.

If all the eigenvalues λk were simple, we could use Weyl’s formula, assert-
ing that λk ∼ c∗k

2/N as k → ∞ (see W. Arendt & al. [3], H. Weyl [23, 24])
where c∗ > 0 is a constant depending only on L1, . . . , LN . However, here
we have made the convention that λk < λk+1, each eigenvalue λk having
multiplicity mk ≥ 1, and thus if one has no information on mk, one cannot
use Weyl’s formula.

However in general the eigenvalues are not simple, implying that we
cannot use directly Weyl’s formula. Nevertheless the proof of the Lemma
can be done in an elementary way: consider a sequence of integers kj → +∞
as j → +∞. Then there exists a sequence of N -tuples of integers nj ∈ (N∗)N
such that

λkj =
n2j1π

2

L2
1

+ · · ·+
n2jNπ

2

L2
N

.

It is clear that necessarily there exists ℓj > kj such that

λℓj =
(nj1 + 1)2π2

L2
1

+ · · ·+ (njN + 1)2π2

L2
N

,

and thus λkj+1 ≤ λℓj . Thus we have

1 ≤
λkj+1

λkj
≤
(
(nj1 + 1)2

L2
1

+ · · ·+ (njN + 1)2

L2
N

)(
n2j1
L2
1

+ · · ·+
n2jN
L2
N

)−1

.

Since kj → ∞, we have max {nji ; 1 ≤ i ≤ N} → ∞, and thus

lim
j→∞

(
(nj1 + 1)2

L2
1

+ · · ·+ (njN + 1)2

L2
N

)(
n2j1
L2
1

+ · · ·+
n2jN
L2
N

)−1

= 1,

and the proof of the Lemma is complete.

To illustrate how Theorem 1.1 can be used, first we investigate the case
of dimension N = 2 with a choice of the domains Ω,Ω1 and Ω2 as follows





Ω := (0, π) × (0, π),

Ω1 := (ℓ1, ℓ1 + δ1)× (0, π),

Ω2 := (ℓ2, ℓ2 + δ2)× (0, π),

(4.2)
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where, for j = 1 and j = 2, it is assumed that 0 ≤ ℓj < ℓj + δj ≤ π.
As an inspection of the proof of the following proposition shows, the

exact same result holds when one of the sets Ω1 or Ω2 is a horizontal strip,
and also for any dimension N ≥ 2 with Ω := (0, π)N while the damping

subdomains Ω1,Ω2 are narrow strips of the above type, parallel to one of
the axis and touching the boundary of Ω. As we have mentioned before, one
can also consider the case of an operator such as Lu := −∆u with boundary
conditions which ensure that L is self-adjoint and its least eigenvalue is
positive (for instance mixed Neumann and Dirichlet boundary conditions,
or of Fourier type, also called Robin type boundary condition). However,
for the sake of clarity of exposition, we present the result, and its proof, only
for the case N = 2 and Dirichlet boundary conditions.

Then we can state the following:

Proposition 4.2. Assume that N = 2 and the domains Ω,Ω1,Ω2 are as

in (4.2). For j = 1 or j = 2, let the functions bj ∈ L∞(Ω) be such that

bj ≥ εj ≥ 0 on Ωj , where εj is a constant. Then, when ε2 > 0, there exists

a constant c∗ > 0 such that the energy of the solution of (4.1) satisfies

‖∇u(t, ·)‖2 + ‖∂tu(t, ·)‖2 ≤ c∗ (1 + t)−2/5
[
‖∇u0‖2 + ‖u1‖2

]
. (4.3)

When ε1 > 0 and b2 ≡ 0, one has

‖∇u(t, ·)‖2 + ‖∂tu(t, ·)‖2 ≤ c∗ (1 + t)−2/7
[
‖∇u0‖2 + ‖u1‖2

]
. (4.4)

Proof. Setting Lu := −∆u with

D(L) :=
{
u ∈ H1

0 (Ω) ; ∆u ∈ L2(Ω)
}
,

the eigenvalues and eigenfunctions of the operator L are given by

λ̃n := n21 + n22, ϕn(x) :=
2

π
sin(n1x1) sin(n2x2), for n ∈ N∗ ×N∗. (4.5)

Rearranging these eigenvalues λ̃n in an increasing order, we denote them by
(λk)k≥1, the multiplicity of each λk being

mk := card(Jk), where Jk :=
{
n ∈ N∗ × N∗ ; n21 + n22 = λk

}
. (4.6)

To begin with the verification of the conditions of Theorem 1.1, we recall that
Lemma 4.1 ensures that we have limk→∞ λk/λk+1 = 1, and thus condition
(1.12) is satisfied.
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Observe also that each λk being an integer, we have λk+1 − λk ≥ 1, and
thus there exists a constant c∗ > 0 such that for all k ≥ 1 we have

λk−1

λk − λk−1
+

λk+1

λk+1 − λk
≤ c∗ λk,

and therefore condition (1.14) is also satisfied with γ1 = 1.

When ε2 > 0, in order to verify condition (1.13), it is sufficient to show
that there exist γ0 ∈ R and some constant c∗ > 0, such that for any k ≥ 1
and any ϕ ∈ N(L− λkI) with ‖ϕ‖ = 1 we have

∫

Ω2

|∇ϕ(x)|2dx ≥ c∗λ
−γ0
k . (4.7)

Since the family (ϕn)n∈Jk is a Hilbert basis of the finite dimensional space
N(L− λkI), we have

ϕ ∈ N(L− λkI), ‖ϕ‖ = 1 ⇐⇒ ϕ =
∑

n∈Jk

cnϕn with
∑

n∈Jk

|cn|2 = 1. (4.8)

Thus we have
∫

Ω2

|∇ϕ(x)|2dx =
∑

n∈Jk

|cn|2
∫

Ω2

|∇ϕn(x)|2dx

+
∑

n,m∈Jk
n6=m

cncm

∫

Ω2

∇ϕn(x) · ∇ϕm(x) dx. (4.9)

Now it is clear that we have

∫

Ω2

|∂1ϕn(x)|2dx =
4n21
π2

∫ π

0

∫ ℓ2+δ2

ℓ2

cos2(n1x1) sin
2(n2x2) dx1dx2,

which yields

∫

Ω2

|∂1ϕn(x)|2dx =
2n21
π

∫ ℓ2+δ2

ℓ2

cos2(n1x1) dx1.

Analogously, we have

∫

Ω2

|∂2ϕn(x)|2dx =
2n22
π

∫ ℓ2+δ2

ℓ2

sin2(n1x1) dx1,
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and thus one can find a constant c∗ > 0 such that for all k ≥ 1 and all
n ∈ Jk, we have

∫

Ω2

|∇ϕn(x)|2dx ≥ c∗ δ2 (n
2
1 + n22) = c∗ δ2 λk. (4.10)

Regarding the second sum in (4.9), taking n,m ∈ Jk and n 6= m, we observe
that since n21 + n22 = m2

1 +m2
2, we have necessarily n2 6= m2 and therefore,

∫

Ω2

∂1ϕn(x)∂1ϕm(x) dx =

4n1m1

π2

∫ π

0

∫ ℓ2+δ2

ℓ2

cos(n1x1) cos(m1x1) dx1 sin(n2x2) sin(m2x2) dx2 = 0.

In the same manner one may see that

∫

Ω2

∂2ϕn(x)∂2ϕm(x) dx =

4n2m2

π2

∫ π

0

∫ ℓ2+δ2

ℓ2

sin(n1x1) sin(m1x1) dx1 cos(n2x2) cos(m2x2) dx2 = 0.

Finally one sees that for all n,m ∈ Jk such that n 6= m we have

∫

Ω2

∇ϕn(x) · ∇ϕm(x) dx = 0,

so that reporting this and (4.10) into (4.9) we have, for all ϕ ∈ N(L− λkI)
with ‖ϕ‖ = 1, ∫

Ω2

|∇ϕ(x)|2dx ≥ c∗ δ1 λk,

which means that, when ε2 > 0, the inequality (4.7), and thus (1.13), is
satisfied with γ0 = −1.

Therefore, when ε2 > 0 we have m := 3+2γ0+4γ1 = 5, and (4.3) holds.

When b2 ≡ 0 and ε1 > 0, proceeding as above, one checks easily that
using (4.8) there exists a constant c∗ > 0 such that for ϕ ∈ N(L− λkI) and
‖ϕ‖ = 1 we have ∫

Ω1

|ϕ(x)|2 dx ≥ c∗.

Thus we may take γ0 = 0, so that m = 3 + 2γ0 + 4γ1 = 7, yielding (4.4),
and the proof of our claim is complete.
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As a matter of fact, one sees that in order to establish a decay result for
other domains Ω ⊂ RN and N ≥ 2, there are two issues which should be
inspected carefully: the first one is an estimate of (λk+1 − λk) from below
(comparing it with a power of λk) and this is related to the concentration
properties of the eigenvalues as k → ∞. The second issue is to obtain an
estimate of the local norm of an eigenfunction ϕ on Ω1, or that of ∇ϕ on
Ω2, and this is related to the concentration properties of the eigenfunctions
of the Laplacian.

Regarding the first issue we shall use the following lemma for the special
case of two dimenional rectangles.

Lemma 4.3. Let ξ > 0 be a real number and for n ∈ (N∗)2 denote µn(ξ) :=
n21 + ξn22 and

δ(ξ) := inf
{
|µn − µm| ; n,m ∈ (N∗)2, µn 6= µm

}
.

Then we have δ(ξ) ≥ 1/q if ξ = p/q where p, q ≥ 1 are integers and mutually

prime, while δ(ξ) = 0 if ξ is irrational.

Proof. If ξ = p/q for two mutually prime integers p, q ≥ 1, then we have

|µn − µm| = 1

q

∣∣q(n21 −m2
1) + p(n22 −m2

2)
∣∣ ≥ 1

q
,

because q(n21 − m2
1) + p(n22 − m2

2) ∈ Z∗, and any non zero integer has an
absolute value greater or equal to 1.

If ξ /∈ Q, then the subgroup Z+ ξZ is dense in R and for any ε > 0, with
ε < min(1, ξ), there exist two integers k′, j′ ∈ Z such that 0 < k′+j′ξ < ε/8.
One easily sees that necessarily we must have k′j′ < 0, and thus, without
loss of generality, we may assume that we are given two integers k, j ≥ 1
such that

0 < k − jξ <
ε

8
.

(This corresponds to the case k′ > 0 and j′ < 0; when k′ < 0 and j′ > 0 one
can adapt the argument which follows). Choosing now

n := (2k + 1, 2j − 1), m := (2k − 1, 2j + 1),

one verifies that µn(ξ) − µm(ξ) = 8k − 8jξ ∈ (0, ε), and thus δ(ξ) ≤ ε. We
conclude that as a matter of fact we have δ(ξ) = 0.
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For the case of a rectangle Ω = (0, L1) × (0, L2) we recalled previously
that the eigenvalues of the Laplace operator with Dirichlet boundray condi-
tions are given by

n21π
2

L2
1

+
n22π

2

L2
2

,

with (n1, n2) ∈ N∗ × N∗. Using the above lemma we conclude that when
Ω is such a rectangle and L2

1/L
2
2 ∈ Q, we can take again the exponent

γ1 = 1 appearing in (1.14), yielding the same decay estimate for the energy,
provided that Ω1 and Ω2 are strips of the form (ℓj , ℓj + δj) × (0, L2) with
0 ≤ ℓj < ℓj + δj ≤ Lj (in which case the exponent γ0 in (1.13) is −1 when
ε2 > 0, or 0 when b2 ≡ 0 and ε1 > 0). Thus we can state the following:

Corollary 4.4. Assume that Ω = (0, L1)× (0, L2) and (L1/L2)
2 ∈ Q. then

the gap between the eigenvalues is bounded below, more precisely,

λk+1 − λk ≥ π2

L2
1 q
, if

L2
1

L2
2

=
p

q
,

with p and q mutually prime. Moreover, if Ωj := (ℓj , ℓj + δj)× (0, L2) with
0 ≤ ℓj < ℓj+δj ≤ L1, the results of Proposition 4.2 are valid for the solution

of (4.1) on Ω.

Remark 4.5. We should point out that when L2
1/L

2
2 ∈ Q, we take the

domains Ωj to be a strip which touches the boundary of ∂Ω, in order to give
a lower bound for ∫

Ω2

|∇ϕ(x)|2 dx or

∫

Ω1

|ϕ(x)|2dx,

for all ϕ ∈ N(L−λkI) with ‖ϕ‖ = 1. Indeed, if Ω0 ⊂⊂ Ω is an open subset,
and λk is not a simple eigenvalue, then, as far as we know, it is an open
problem to give a lower bound in terms of λk for

∫

Ω0

|∇ϕ(x)|2 dx or

∫

Ω0

|ϕ(x)|2dx,

for all ϕ ∈ N(L− λkI) with ‖ϕ‖ = 1 (however cf. D. S. Grebenkov & B. T.
Nguyen [12], sections 6 and 7).

Actually one can easily generalize the above Lemma 4.3 so that it can
be applied to the study of the gap between eigenvalues of the Laplacian on
a domain Ω ∈ RN with N ≥ 3, which is a product of N intervals. The proof
of the following statement is straightforward and can be omitted here (with
the notations of the corollary, take (n1, n2) 6= (m1,m2) and nj = mj for
3 ≤ j ≤ N , then apply Lemma 4.3).
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Lemma 4.6. Let N ≥ 3 be an integer and ξj > 0 for 2 ≤ j ≤ N . For

n ∈ (N∗)N denote µn(ξ) := n21 +
∑N

j=2 ξjn
2
j , and

δ(ξ) := inf
{
|µn − µm| ; n,m ∈ (N∗)N , µn 6= µm

}
.

Then if there exists j such that ξj /∈ Q we have δ(ξ) = 0, while if for all j
we have ξj = pj/qj for two mutually prime integers pj, qj ≥ 1, we have

δ(ξ) ≥ 1

q
,

where q is the least common multiple of q2, . . . , qN .

As a consequence, the result of Corollary 4.4 is valid in any dimension
N ≥ 2. More precisely, for instance, we can state the following:

Corollary 4.7. When the Kelvin–Voigt damping region Ω2 is a strip of the

form (ℓ1, ℓ1 + δ1) × (0, L2) × · · · × (0, LN ) with 0 ≤ ℓ1 < ℓ1 + δ1 ≤ L1 and

b2 ≥ ε2 > 0 on Ω2, the rate of decay of the energy for the wave equation is

also (1+ t)−2/5, provided that for all 1 ≤ i < j ≤ N the ratios (Li/Lj)
2 ∈ Q.

Next we consider the case of a domain Ω := (0, L1) × (0, L2) such that
if ξ := L2

1/L
2
2 /∈ Q. In this case the exponent γ1 in (1.14) cannot be taken

equal to 1, and a further analysis is necessary. As a matter of fact, Lemma
4.3 shows that infk≥1(λk+1 − λk) = 0, and therefore the best we can hope
for is to find an estimate of the type

λk+1 − λk ≥ c0 λ
−τ
k ,

for some c0 > 0 and τ > 0 independent of k. To this end, we recall that
the degree of an algebraic number ξ is the minimal degree of all polynomials
P with integer coefficients such that P (ξ) = 0. The following result of K.
F. Roth [21] (see Y. Bugeaud [9], chapter 2, Theorem 2.1, page 28) states
how well, or rather how badly, as algebraic number of degree greater or equal
to two can be approximated by rational numbers:

Theorem 4.8. (Roth’s Theorem) Let ξ > 0 be an algebraic number of

degree greater or equal to two. Then for any ε > 0 there exists a positive

constant c(ξ, ε) > 0 such that for any rational number p/q with q ≥ 1 one

has ∣∣∣∣ξ −
p

q

∣∣∣∣ >
c(ξ, ε)

q2+ε
. (4.11)
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We use this result in order to give an estimate of λk+1 − λk from below
when ξ = L2

1/L
2
2 is an algebraic number.

Lemma 4.9. Assume that Ω = (0, L1)× (0, L2) and that ξ := L2
1/L

2
2 is an

algebraic number of degree greater or equal to two. Then for any ε > 0,
there exists a constant c0(ξ, ε) such that

λk+1 − λk ≥ min
(
1, c0(ξ, ε)λ

−1−ε
k

)
. (4.12)

Proof. Let k ≥ 1 be fixed, and for m ∈ N∗ × N∗ let us denote µm :=
m2

1 + ξm2
2. There exist m,n ∈ N∗ × N∗ with m 6= n such that

λk =
m2

1π
2

L2
1

+
m2

2π
2

L2
2

=
π2

L2
1

µm, λk+1 =
n21π

2

L2
1

+
n22π

2

L2
2

=
π2

L2
1

µn.

Then we can write

λk+1 − λk =
π2

L2
1

(µn − µm).

If n2 = m2, we have clearly µn − µm = n21 −m2
1 ≥ 1, since n21 −m2

1 ∈ N∗. If
m2 6= n2, using Roth’s Theorem 4.8, by (4.11) we have, for any ε > 0,

µn − µm =
∣∣(n22 −m2

2

)
ξ + n21 −m2

1

∣∣ ≥ c(ξ, ε)

|n22 −m2
2|1+ε

.

It is easily seen that

|n22 −m2
2| ≤ max(m2

2, n
2
2) ≤

1

ξ
max(µm, µn) =

1

ξ
µn,

and this yields

µn − µm ≥ ξ1+ε c(ξ, ε)

µ1+ε
n

=
ξ1+επ2(1+ε)

L
2(1+ε)
1

· c(ξ, ε)
λ1+ε
k+1

.

From this, and the fact that for some constant c∗ > 0 depending only on
L1, L2 we have λk+1 ≤ c∗ λk (cf Lemma 4.1), one is convinced that (4.12)
holds.

To finish this paper, we state the following decay estimate when ξ :=
L2
1/L

2
2 is an algebraic number, and we point out that when ξ is a transcen-

dant number we cannot state such a result.
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Proposition 4.10. Assume that N = 2 and Ω := (0, L1) × (0, L2) where

ξ := L2
1/L

2
2 is an algebraic number of degree greater or equal to 2. Let

Ω1 := (a1, a1 + δ1)× (a2, a2 + δ2), Ω2 := (b1, b1 + δ1)× (b2, b2 + δ2),

and for j = 1 or j = 2, let the functions bj ∈ L∞(Ω) be such that bj ≥ εj ≥ 0
on Ωj, where εj is a constant. Then, when ε2 > 0, for any ε > 0 there exists

a constant c∗(ε) > 0 such that the energy of the solution of (4.1) satisfies

‖∇u(t, ·)‖2 + ‖∂tu(t, ·)‖2 ≤ c∗ (1 + t)−2/(9+ε)
[
‖∇u0‖2 + ‖u1‖2

]
. (4.13)

When ε1 > 0 and b2 ≡ 0, one has

‖∇u(t, ·)‖2 + ‖∂tu(t, ·)‖2 ≤ c∗ (1 + t)−2/(11+ε)
[
‖∇u0‖2 + ‖u1‖2

]
. (4.14)

Proof. First note that for any ε > 0, thanks to Lemmas 4.1 and 4.9, we
have for some constant c0(ε)

λk−1

λk − λk−1
+

λk+1

λk+1 − λk
≤ c0(ε)λ

2+ε
k ,

so that we can take γ1 = 2 + ε.
On the other hand, in this case each eigenvalue λk = (n21π

2/L2
1) +

(n22π
2/L2

2) is simple and the corresponding eigenfunction is

ϕk(x) = 2 sin(n1πx1/L1) sin(n2πx2/L2)/
√
L1L2.

Therefore, when ε2 > 0, it is easily seen that
∫

Ω2

|∇ϕk(x)|2dx ≥ c∗ b1b2 π
2

(
n21
L2
1

+
n22
L2
2

)
= c∗ b1b2 λk ,

so that we can take γ0 = −1, which implies m = 3+2γ0+4γ1 = 9+4ε, and
(4.13) can be deduced.

When b2 ≡ 0 and ε1 > 0, we notice that for some constant c∗ > 0 and
all k ≥ 1 we have ∫

Ω1

|ϕk(x)|2dx ≥ c∗,

therefore we can take γ0 = 0, hence m = 3+2γ0+4γ1 = 11+4ε, and (4.14)
follows easily.
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