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Online Sequential Monte Carlo smoother for
partially observed stochastic differential equations

Pierre Gloaguen*  Marie-Pierre Etienne*  Sylvain Le Corfff

Abstract

This paper introduces a new algorithm to approximate smoothed addi-
tive functionals for partially observed stochastic differential equations. This
method relies on the recent procedure introduced in [24] which allows to
compute such approximations online, i.e. as the observations are received,
and with a computational complexity growing linearly with the number of
Monte Carlo samples. The algorithm of [24] cannot be used in the case
of partially observed stochastic differential equations since the transition
density of the latent data is usually unknown. We prove that a similar
algorithm may still be defined for partially observed continuous processes
by replacing this unknown quantity by an unbiased estimator obtained for
instance using general Poisson estimators. We prove that this estimator is
consistent and its performance are illustrated using data from two models.

Keywords: Stochastic differential equations, Smoothing, Sequential Monte
Carlo Methods.

1 Introduction

This paper introduces a new algorithm to solve the smoothing problem for par-
tially observed continuous time stochastic processes. In this setting, the hid-
den state process (X;);>o is assumed to be a solution to a stochastic differential
equation (SDE) and the only information available is given by noisy observa-
tions (Yx)o<k<n Of the states (Xy)o<k<n at some discrete time points (tx)o<k<n-
The bivariate stochastic process { (X, Yx) }o<k<n is a state space model such that
conditional on the state sequence (Xj)o<k<n the observations (Yj)o<k<n are inde-
pendent and for all 0 < ¢ < n the conditional distribution of Y, given {Xj }o<i<n
depends on X, only.
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Statistical inference for partially observed state sequences often requires to
solve bayesian filtering and smoothing problems, i.e. the computation of the pos-
terior distributions of sequences of hidden states given observations. The filtering
problem refers to the estimation, for each 0 < k < n, of the distributions of the
hidden state X} given the observations (Yp,...,Y:). Smoothing stands for the
estimation of the distributions of the sequence of states (X, ..., X)) given obser-
vations (Yp,...,Y,) with 0 < k < p < ¢ < n. These posterior distributions are
crucial to compute maximum likelihood estimators of unknown parameters using
the observations (Y, ...,Y,,) only. For instance, the E-step of the EM algorithm
introduced in [7] boils down to the computation of a conditional expectation of
an additive functional of the hidden states given all the observations up to time
n. Similarly, by Fisher’s identity, recursive maximum likelihood estimates may be
computed using the gradient of the loglikelihood which can be written as the con-
ditional expectation of an additive functional of the hidden states. See [5, Chapter
10 and 11], [15, 19, 20, 27] for further references on the use of these smoothed
expectations of additive functionals applied to maximum likelihood parameter
inference in latent data models.

The exact computation of these expectations is usually not possible in the case
of partially observed diffusions. In this paper, we propose to use Sequential Monte
Carlo (SMC) methods to approximate smoothing distributions with random par-
ticles associated with importance weights. [13] [I§] introduced the first particle
filters and smoothers for state space models by combining importance sampling
steps to propagate particles with resampling steps to duplicate or discard particles
according to their importance weights. Unfortunately, these methods cannot be
applied directly to partially observed stochastic differential equations since some
elementary quantities, such as transition densities of the hidden states, are not
available explicitly. Discretization procedures may be used to approximate transi-
tion densities, for instance the Euler-Maruyama method, the Ozaki discretization
which proposes a linear approximation of the drift coefficient between two ob-
servations [25] 28], or Gaussian based approximations using Taylor expansions of
the posterior mean and variance of an observation given the observation at the
previous time step, [16], 17, 29]. Other approaches based on Hermite polynomi-
als expansion were also introduced by [I], 2, B] and extended in several directions
recently, see [2I] and all the references on the approximation of transition densi-
ties therein. However, even the most recent discretization based approximations
of the transition densities induce a systematic bias of particle based approxima-
tions of posterior distributions, see for instance [6]. To overcome this difficulty,
[T1] proposed to solve the filtering problem by combining SMC methods with an
unbiased estimate of the transition densities based on the generalized Poisson es-
timator (GPE). In this case, only the Monte Carlo error has to be controlled as
there is no Taylor expansion to approximate unknown transition densities.
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The only solution to solve the smoothing problem for partially observed SDE
using SMC methods has been proposed in [23] and extends the fixed-lag smoother
of [22]. Using forgetting properties of the hidden chain, the algorithm improves
the performance of [I1] to approximate smoothing distributions but at the cost of
a bias that does not vanish as the number of particles grows to infinity. In the case
of discrete time state space models, approximations of the smoothing distributions
may also be obtained using the Forward Filtering Backward Smoothing algorithm
(FFBS) and the Forward Filtering Backward Simulation algorithm (FFBSi) de-
veloped respectively in [I8], 14, 9] and [12]. Both algorithms require first a forward
pass which produces a set of particles and weights approximating the sequence
of filtering distributions up to time n. Then, a backward pass is performed to
compute new weights (FFBS) or sample trajectories (FFBSi) in order to approxi-
mate the smoothing distributions. Recently, [24] proposed a new SMC algorithm,
the particle-based rapid incremental smoother (PaRIS), to approximate on-the-fly
(i.e. using the observations as they are received) smoothed expectations of addi-
tive functionals. Unlike the FFBS algorithm, the complexity of this algorithm
grows only linearly with the number of particles N and contrary to the FFBSi
algorithm, no backward pass is required.

In this paper, we extend the use of PaRIS algorithm to partially observed SDE.
The proposed algorithm allows to approximate smoothed expectations of additive
functionals online and with a complexity growing only linearly with the number of
particles. The crucial and simple result (Lemma of the application of PaRIS al-
gorithm to SDE is that the accept reject mechanism introduced in [§] ensuring the
linear complexity of the procedure is still correct when the transition densities are
replaced by unbiased estimates. The usual FFBS and FFBSi algorithms may not
be extended this easily since they both require the computation of weights defined
as ratios involving the transition densities, thus replacing these unknown quan-
tities by unbiased estimates does not lead to unbiased estimators of the weights.
The proposed Generalized Random version of PaRIS algorithm, hereafter named
GRand PaRIS algorithm, may be applied to general hidden Markov models whose
Markovian dynamics is ruled by a stochastic differential equation (one of the first
two domains defined in [4]) but also to any general state space model where the
transition density of the hidden chain may be estimated unbiasedly.

Section [2] describes the proposed algorithm to approximate smoothed additive
functionals using unbiased estimates of the transition density of the hidden states
and details the application of this algorithm when the transition density may be
approximated using a GPE. In Section [3, classical convergence results for SMC
smoothers are extended to the setting of this paper and illustrated with numerical
experiments in Section [d] All proofs are postponed to Appendix [A]
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2 The Generalized Random PaRIS algorithm

(Xi)¢>0 is defined as a weak solution to the following SDE in R%:
Xo=1z9 and dX;=a(X;)dt+dW;, (1)

where (W;)i>0 is a standard Brownian motion. It is assumed that « is of the form
a(z) = V. A(z) where A : RY — R is a twice continuously differentiable function.
The solution to is supposed to be partially observed at times tg = 0,...,%,
through an observation process (Yj)o<r<n in (R™)"*1. For all 0 < k < n, the
distribution of Y} given X := X, has a density with respect to a reference
measure A on R™ given by g(X, ) = grx(Xy). The distribution of X, has a density
with respect to a reference measure p on R? given by x. Forall 0 < k < n — 1,
the conditional distribution of X} given X has a density qx (X, -) with respect
to u.

Let 0 < k < k' < n, the joint smoothing distributions of the hidden states are
defined, for all measurable function h on (R%)*~#+1 by:

¢kk’|n[h] =E [h(Xka cee 7Xk’)’YE):n} .

For all 0 < k < n, ¢, = ¢pui denote the filtering distributions. The aim of this
section is to detail the extension of PaRIS algorithm to approximate expectations
of the form
n—1
¢0n|n[Hn] =E [Hn<X0n)‘YE)n] where Hn = Z hk(Xk, Xk—l—l) ’ (2)
k=0

when the transition density of the hidden states is not available explicitly and
where {h;}}, are given functions on R? x R%. The algorithm is based on the
following link between the filtering and smoothing distributions for additive func-
tionals, see [24]:

¢0:HIN[h} = ¢n[Tu[h]] , where T,,[h](Xy) = E [A(Xo:n) | Xn, Youn| - (3)

The approximation of requires first to approximate the sequence of filtering
distributions. Sequential Monte Carlo methods provide an efficient and simple
solution to obtain these approximations using sets of particles {£f}2 | associated
with weights {wi}¥ ,, 0 <k <n.

At time k = 0, N particles {¢5}2, are sampled independently according to
&5 ~ no, where 1 is a probability density with respect to pu. Then, &§ is associ-
ated with the importance weights wf = x(£§)g0(£5)/n0(&5). For any bounded and
measurable function h defined on R?, the expectation ¢g[h] is approximated by

1 N N
o5 [h] = g D_woh (&) » =D _w-
(=1

0 =1
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Then, for 1 < k < n, using {(&_,,wi )}, the auxiliary particle filter of [20]
samples pairs { (I}, &0) 1Y, of indices and particles using an instrumental transition
density p, on R? x R? and an adjustment multiplier function 9, on R¢. Each new
particle & and weight w! at time k are computing following these steps:

- choose a particle index [ L at time k—1in {1,..., N} with probabilities propor-
tional to wj_,9x(&_;), for jin {1,..., N} ;

L
- sample & using this chosen particle according to &, ~ pk(f’,ﬁ’“_ 1)

- associate the particle & with the importance weight:

o a6t E)ae
Wg = J& It .
e (&t )Pk (§4" 1 fi)

The expectation ¢g|h| is approximated by

N
oN[h) - QNZ weh (6) =) wp
/=1

ko p=1

PaRIS algorithm uses the same decomposition as the FFBS algorithm introduced
in [10] and the FFBSi algorithm proposed by [12] to approximate smoothing
distributions. It combines both the forward only version of the FFBS algorithm
with the sampling mechanism of the FFBSi algorithm. It does not produce an
approximation of the smoothing distributions but of the smoothed expectation of
a fixed additive functional and thus may be used to approximate . Its crucial
property is that it does not require a backward pass, the smoothed expectation
is computed on-the-fly with the particle filter and no storage of the particles or
weights is needed.

PaRIS algorithm relies on the following fundamental property of T;[H}| when
Hy is as in (2)):

Te[Hi)(Xy) = B [Tho1 [Hi—1](Xi—1) + hio—1 (Xi—1, Xi) | Xk, You—1]
_ J Or—1(dzp—1)qe—1(@p—1, X)) {The1 [Hp—1)(@p-1) + hi—1(zp—1, Xi)}
[ b (dzp_1)qe—1(xp—1, Xi) '
Therefore, [24] introduces sufficient statistics 77, (starting with 76 = 0, 1 <7 < N),

approximating Ty [Hy] (&), for 1 <4 < N and 0 < k < n. First, replacing ¢y by
@Y | in the last equation leads to the following approximation of Ty [Hy](&L):

TN H(E) = ZAk 1 (i, 5) { Ter [Hie— (&) + hua (65 L&D T (5)
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where . .o
Wik (&g §1Z~c+1)

N i )
Ze:1 WﬁQk (ff;y §k+1)
Computing exactly these approximations would lead to a complexity growing

quadratically with NV because of the normalizing constant in @ Therefore, PaRIS
algorithm samples particles in the set {&)_ 1}N , with probabilities AN (1,-) to

AY (i, 0) = I<(<N. (6)

approximate the expectation (5)) and produce 7¢. Choosing N > 1, at each time
step 0 < k < n — 1 these statistics are updated according to the following steps.

() Run one step of a particle filter to produce {(&,wt)} for 1 < ¢ < N.

(ii) For all 1 < i < N, sample independently J;* in {1,..., N} for 1 < ¢ < N
with probabilities A} (4, -), given by (6.

) 1 N it Jit
Thp1 = ﬁz {Tkk + hy, <§kk 75}2+1)} :

(=1

(iii) Set

Then, ([2)) is approximated by

As proved in [24], the algorithm is asymptotically consistent (as N goes to in-
finity) for any precision parameter N. However, there is a significant qualitative
difference between the cases N = 1 and N > 2. As for the FFBSI algorithm, when
there exists o, such that 0 < ¢, < o4, PaRIS algorithm may be implemented
with O(NV) complexity using the accept-reject mechanism of [§].

In general situations, PaRIS algorithm cannot be used for stochastic differen-
tial equations as ¢ is unknown. Therefore, the computation of the importance
weights wi and of the acceptance ratio of [§] is not tractable. Following [I1], 23],
filtering weights can be approximated by replacing qx (¢, &L +1) by an unbiased
estimator gy (&g, &4, 15 k), where ; is a random variable in R? such that:

Ge(&60413C) >0 as and  E [Gu(&h, & G)|Goia] = ae(&061s1)

where, for all 0 < k <n,

) v o)

Gis = Fie Vo {Yiyr; (Gyr,wig); 1<SES N}

FY = o {Vous (6wl ml) J09 1< ESN, 0<u<h 1< < N,0<v <k},
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Practical choices for (} are discussed below, see for instance @ which presents
the choice made for the implementation of such estimators in our context. In the
case where ¢ is unknown, the filtering weights in then become:

~ el en, ¢

o= i (&4 15§k C) 9r (§)
= i I .

U(§4 1 )P (&1 fﬁ)
Therefore, to obtain a generalized random version of PaRIS algorithm, we only
need to be able to sample from the discrete probability distribution AY (7, -) in the

case of SDE based HMM. Consider the following assumption: for all 0 < k < n,
there exists a random variable Eﬂj measurable with respect to g,ﬁl such that,

(7)

SUPy 4 ¢ El\k(ffa Y; g) < OA{T— . (Al)

Lemma 1. Assume that Ay holds for some 0 < k <n—1. Foralll1 <i <N, de-
fine the random variable J;. as follows:

repeat
Sample independently (, U ~ U[0,1] and J € {1,..., N} with probabilities
proportional to {&i, ... 0N }.

until U < @ (&, &1, Q) /0%
Set J, = J.

Then, the conditional probability distribution given G, of Ji. is Ay (i,-).
Proof. See Appendix [A] O

Note that Lemma [1] still holds if assumption (A1) is relaxed and replaced by
one of the two following assumptions:

Supi,j,( a\k(giafi+1a C) S &-’T- . (A3)

It is worth noting that under assumptions (Alf) or (A2)), the linear complexity
property of PaRIS algorithm still holds, whereas if only assumption (A3]) holds,
the algorithm has a quadratic complexity.

Bounded estimator of ¢

For z,y € R%, by Girsanov and Ito’s formulas, the transition density q(z,y) of
(1)) satisfies, with Ay = tg1 — tx,
Ag
ow)ds}]

0(2,9) = @ (@,4) exp {Aly) — A()} Eyponss [exp {— 0
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where W*¥2% is the law of Brownian bridge starting at z at 0 and hitting y at
Ay, (Wi)o<t<a, is such a Brownian bridge, pa,(z,y) is the p.d.f. of a normal
distribution with mean x and variance A, evaluated at y and ¢ : R? — R is
defined as:

o(2) = (lla(z)|* + AA(@)) /2,

with A the Laplace operator. Assume that there exist random variables L,, and
Uw such that for all 0 < s < Ay, Ly < ¢(ws) < Uy,. Let & be a random variable
taking values in N with distribution g and (U )1<]<,.i be independent uniform
random variables on [0, Ag], and ¢, = {k,w,Ui,...,Us} . As shown in [II], a
positive unbiased estimator is given by

ak(mvy; Ck) = @Ak<xvy) exXp {A< ) - A(l’)}

< exp (U} A”,H ~olw) - (®)

Interesting choices of p are discussed in [11] and we focus here on the so called
GPE-1, where p is a Poisson distribution with intensity (U,, — Ly)Ag. In that
case, the estimator becomes:

(.35 G) = oo (. 9) exp {A(y) — A(r) ~ L Ak}HU—LU). )

On the r.h.s. of @D, the product over x elements is bounded by 1, therefore, a
sufficient condition to satisfy of the assumptions (A1])-(A3) is that the function:

PA, R? x R?— R
(z,y) = oa, (2, y) exp {A(y) — A(z) — LuAs} (10)

is upper bounded almost surely by &ﬁ. In particular, if L, is bounded almost

surely, (10) always satisfies assumption and Algorithm (1| can be used. This
condition is always satisfied for models in the domains D; and D, defined in [4],
i.e. domains for which the exact algorithms EA1 and EA2 can be used.

When or holds, it can be nonetheless of practical interest to choose
the bound &i corresponding to . Indeed, this might increase significantly the
acceptance rate of the algorithm, and therefore reduce the number of drawings of
the random variable (, which has a much higher cost than the computation of p,
as it requires simulations of Brownian Bridges. Moreover, this latter option can
also avoid numerical optimization if no analytical expression of 6{1 is available. In
practice, we found this option more efficient in terms of computation time when
N has moderate values.
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Algorithm 1 GRand PaRIS algorithm
foralliel,...,N do
Sample & ~ 1o, 75 = 0 and & = go(£5)x0(€5)/10(&)-
end for
for k€0,...,.n—1do
foralliel,...,N do
Set 7/, =0;
Sample [I;,, in {1,...,N} with probabilities proportional to
(@101 (€D - - B s (6}

Sample &, ~ pk(fé’““, ).
For all 1 < m < M, sample independently (;* = (Km, Wi, (U")1<j<nn)
with K, ~ 1, W, ~ W?k“ and (U}nhgjgmm ~ U0, Ag]®rm.
Compute @ ,; using equation (7).
for all / € 1,...,Ndo
Sample J,i’z as in Lemma .

1,4 i,0 ~
Update 7/, =7}, + (T,;]'“ + hk(é}ik &)/ N
end for
end for
end for

3 Convergence results

Consider the following assumptions.

H1 (i) For all k > 0 and all z € R?, gi(x) > 0.

(i) sup|gr|eo < 00.
k>0

H2 sup|d|e < 00, sup|pile < 00 and sup|ig|e < oo, where
k>1 k>1 k>1

Wo(x) = w and for k > 1 Oz, 25 2) = Qk<$,$§z)gk+1(i¢’)
() Vi1 (2)pr(z, o)

Lemma 2. For all 0 < k < n — 1, the random variables {&} 7}, }N, are
independent conditionally on Fp¥ and

E [0 17hse | FR] = (@biv[ﬁkﬂ])_l o [/ (s ) g1 (2) {7k () + haya (- ) } d

Proof. See appendix [A] ]
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Proposition 1. Assume that and HZ_hold and that for all 1 < k < n,
osc(hg) < +o00. For all0 < k <n and all N > 1, there exist by, cy, > 0 such that
for all N > 1 and all ¢ € R,

P (‘(ﬁ]]cv[Tk] — ¢k [Tkth Z 8) S bk exp (—CkN€2> .

Proof. See appendix [A] ]

4 Numerical experiments

This section investigates the performance of the proposed algorithm with the sine
and log-growth models. In both cases, the proposal distribution p; is chosen as
the following approximation of the optimal filter (or the fully adapted particle
filter in the terminology of [26]):

Pe(Te—1, k) X G(Tr—1, k) g () |

where Gi(zx_1, 7)) is the p.d.f. of Gaussian distibution with mean a(zy_1)Ay and
variance Agly, i.e. the Euler approximation of equation . As the observation
model is linear and Gaussian, the proposal distribution is therefore Gaussian with
explicit mean and variance.

In order to evaluate the performance of the proposed algorithm, the follow-
ing strategy has been chosen. We compare the estimation of the EM intermediate
quantity with the one obtained by the fixed lag method of [23], for different values
of the lag (namely, 1,2,5,10,50). The particle approximation of Q(6,0) for each
model is computed using each algorithm, see Figure [l| for the SINE model (and
respectively Figure (3] for the log-growth model). This estimation is performed
200 times to obtain the estimates @1, e ,@200, using N =2 particles for PaRIS
algorithm, and M = 30 replications for the Monte Carlo approximation ¢;, of each
qrx- Moreover, the E step requires the computation of a quantity such as with
hi = log gr. +1og qx. log gy is not available explicitly and is approximated using the
unbiased estimator proposed in [23, Appendix B] based on 30 independent Monte
Carlo simulations. The intermediate quantity of the EM algorithm is also esti-
mated with our algorithm 30 times using N = 5000 particles, the reference value
is then computed as the arithmetic mean of these 30 estimations, and denoted by
Q* Figure [1] (resp. [3|) shows this estimate for an example on one simulated data
set. The GRand Par1s algorithm is performed using N = 400 particles in both
cases, the fixed lag technique using N = 1600 so that both estimations require
similar computational times.

10
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The SINE model

The performance of the GRand PaRIS algorithm are first highlighted using the
SINE model, where (X}):>0 is supposed to be the solution to:

dXt = Sin (Xt — 9) dt + th, XQ =X - (11)

This simple model has no explicit transition density, however GPE estimators
may be computed by simulating Brownian bridges. The process solution to ((11])
is observed regularly at times ¢ty = 0, .. ., 190 = 50 through the observation process
(Yk)ogkgmoi
Yk:Xk+5k s (12)
where the (€)o<k<i00 are i.i.d. A(0,1). In the example displayed on Figure [1} we
set = 0. In that case, the function pa, defined in (10) can be upper bounded
either on (x,y) or only on y, the GRand PaRIS algorithm has therefore a linear
complexity.
This same experiment was reproduced on 100 different simulated data sets.
For each simulation s, the empirical absolute relative bias arb, and the empirical
absolute coefficient of variation acv, are computed as

m(Q*) — Qs

arbg = = (13)
Qs
acvg = o = ) (14)
m(Q*)|
where m(@s) and 0(@5) are the empirical mean and standard deviation of the
sample @7, ..., Q5. For each estimation method, the resulting distributions of
arby,...,arbjgo and acvy, ..., acvygy are shown on Figure

The GRand PaRIS algorithm outperforms the fixed lag methods for any value
of the lag as the bias is the lowest (it is already negligible for N = 400) and with
a lower variance than fixed lag estimates with negligible bias (i.e., in this case,
lags larger than 10). Small lags lead to strongly biased estimates for the fixed lag
method, and unbiased estimates are at the cost of a large variance. It is worth
noting here that the lag for which the bias is small is model dependent.

Log-growth model

Following [4] and [24], the performance of the proposed algorithm are also illus-
trated with the log-growth model defined by:

A
dZt = K,Zt (1 - 715) dt + O'thWt, ZO = Z20- (15)

11
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Figure 1: SINE model. Process X solution to the SDE (balls) and observations Y
(circles) at times ty =
quantity Q(0,0) using the fixed lag (FL) technique for 5 different lags, and the
GRand PaRIS algorithm using 200 replicates [right]. The whiskers represent the
extent of the 95% central values. The dot represents the empirical mean over the
200 replicates. The dotted line shows the reference value, computed using the

GRand PaRIS algorithm with N = 5000 particles.
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Figure 2: SINE model. Distribution of the empirical absolute relative bias [left]
and of the empirical absolute coefficient of variation [right] for each method.
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In order to use the exact algorithms of [4] and the GPE of [II], we consider
after the Lamperti transform, i.e., the process defined by X; = n(Z;), with
n(z) := —log(z) /o, which satisfies the following SDE:

::aJ(\Xt)
Yo K K \
dX, = (— — — 4+ —exp (—O'Xt)) dt +dW;, Xo = x9 = n(20). (16)
2 o no

In this case, the conditions of the Exact Algorithm 2 defined in [4] are satisfied, as
for any m € R there exists U,, such that for all z > m, ¥(x) := o?(z)+a’/(z) < U,,.
Moreover, 1 is lower bounded uniformly by L. Then, GPE estimators may be
computed by simulating the minimum of a Brownian bridge, and simulating Bessel
bridges conditionally to this minimum, as proposed by [4].

The process solution to is observed regularly at times tg = 0,...,t5 = 100
through the observation process (Yj)o<k<so defined as:

Y. =Xy +er, (17)

2

2¢)- The parameters are given by

where the (gx)o<k<so are i.i.d. N (0,0

0= (k=0.10=0.1,v=1000,02%, =4) .

obs

In that case, the pa, function defined in can be upper bounded as a function
of y when z € {&},...,&Y}, the GRand PaRIS algorithm has therefore a linear
complexity. The intermediate quantity of the EM algorithm is evaluated as for
the SINE model, see Figures [3| and [4]

The results for the fixed lag technique are similar to the ones presented in
[23, Figure 1] on the same model. For small lags, the variance of the estimates is
small, but the estimation is highly biased. The bias rapidly decreases as the lag
increases, together with a great increase of variance. Again, the GRand PaRIS
algorithm outperforms the fixed lag smoother as it shows a similar (vanishing)
bias as the fixed lag for the largest lag and a smaller variance than the fixed lags
estimates with negligible bias.

5 Conclusions

This paper presents a new online SMC smoother for partially observed differential
equations. This algorithm relies on an accept-reject procedure inspired from the
recent PaRIS algorithm. The main result of the article for practical applications is
that the mechanism of this procedure remains valid when the transition density is
approximated by a an unbiased positive estimator. The proposed procedure out-
performs the existing fixed lag smoother for SDE of [23], as it does not introduce

13
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Figure 3: Log-growth model. Process X solution to the SDE (balls) and obser-
vations Y (circles) at times ¢y = 0,...,t100 = 50 [left]. Estimation of the EM
intermediate quantity Q(0,0) using the fixed lag (FL) technique for 5 different
lags, and the GRand PaRIS algorithm using 200 replicates [right]. The whiskers
represent the extent of the 95% central values. The dot represents the empirical
mean over the 200 replicates. The dotted line shows the reference value, computed
using the GRand PaRIS algorithm with N = 5000 particles.
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an intrinsic and non vanishing bias. In addition, numerical simulations highlight
a better variance using data from two different models. It can be implemented
for the class of models D; and Dy defined in [4] with a linear complexity in N.

A Proofs

Proof of Lemma[ll Let T be the first time draws are accepted in the accept-reject
mechanism. For all £ > 1, write

Ay = {ve <l g /o |
Let h be a function defined on {1,..., N},

B[] = 3B (M) 1eon|GE] |

m>1

m>1
m—1 7 .

_ (H 1— ( A&:—H?Ck) g;ﬁq])

m>1 \ £=1 T+

<« E h(J ) ( fk-‘rl?Ck ) gk+1 ,
ok
J1 el m=—1 J1 el

=) <IE 1— W g,iVHD E h(Jl)q’“(—,f’“m Q,iVH] :

m>1 + +

:E[ (Jl)Qk<5k afk—f—l |gk:+1:| /E[ ( ’;]17£’i+1)|g]1€\;1:| 9

which concludes the proof. O
Proof of Lemma[9 The independence is ensured by the mechanism of SMC meth-
ods. By ,

I,
E [wk-i-lTk—ﬁ—l}Fliv} =E k+1 = k+1 Tr+1 flﬁv

19k+1(5k )pk+1(£kk L&)
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Note that by Lemma

E [Ths1|Gi%] = iv: k(€ Ein) (76 + hal§i )

/=1 Ze/ 1 wk 4k (£I€/> 5114-1)
B [G(E5 €105 G0) |08 | = anl€ €h0n)

I

Since 71, and (;, are independent conditionally to Gp,

i el g
E [Tk+19k(§kk+ y Skt Ck) ’g;ﬁl}
N

&)Y

/=1

7
k+1

o () (7h+ (L E)
—Clk(fk ) )

N / / i
Zé/zl Wil; Qk(ff; ) ’Sk+1)

Moreover, conditionally to F}"
given by

, the probability density function of (&, I} ,,) is

WiV (ED)pi(&L, @)

@) o ]

Therefore, this yields:

Qk(fiv ?)ngrl'(x)
Drr1(§3)pr (&1, @)

ar(§ Il; ) (Tk + hk(5k7$))

. . N o
E [@/2+1T;z+1}.7:;iv:| ¢k 19k;+1 ZQ_k/ k+1 ﬁk)
=1

ZZ/—l wll;/ 4k (§£,> 33)

pk(fi? :L’)d:L’ )

i [/ 1‘%(119 ék’ )
24'1%% ")

= (Y [0en)) " Y [/ e >gk+l<x>{fk<->+hk<~,x>}dx},

g (£)n (€6 2) (7 + I (€L, ) dx]

which concludes the proof. O

Proof of Proposition [l The results is proved by induction. At time k = 0, the
result holds using that for all 1 < i < N, pi = 0 and the convention Ty[ho] = 0. In
addition, ¢} is a standard importance sampler estimator of ¢y with &f < |@g|eo
so that for any bounded function h on X,

P (|¢)'[h] — ¢o [h]| =€) < bpexp (—coNe?) .
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Assume the results holds for £ > 1 and that ¥;,; = 1 for simplicity. Write
Orit [Tir1) — Gkt [T [hasa]] = an /by,

-1\ i i -1\ i
where ay = N!0 O (i, — Dh+1 [TMl[hHl]]) and by = N7' Y00 Wy
By Lemma , the random variables {&] ;7 ,}, are independent conditionally
on F{ and by ,

1741 (Tegs = Bt [T [Pasa]]) | < 2@kt oo Hit 1o -
Therefore, by Hoeffding inequality,
P (‘aN —E [aN|]:,iv] ‘ > 5) =K []P’ (}aN —E [aﬂf,ﬁv] ‘ > S‘F,ﬁv)] < 2exp (—ckNgz) )

On the other hand,
E [an|FY] = o1 [Td]

where
Ty(z) = /Qk('>$)9k+1(f’5) (Tr(r) + higa (2, ) — Oppr [Tha[Prra]]) do

By [24, Lemma 11], ¢y [Y)] = 0 which implies by the induction assumption that
P (|]E [aﬂ]—",ﬂ ‘ > 5) < by exp (—CkNEQ) )

Then,
P (lan| > &) < byexp (—cxNe®) .

Similarly, as by < |Wk|eo, by Hoeffding inequality,

P([oy —E [bv] 7] =€)
=E [P (|ox — E [by|FY]| > €| FY)] < 2exp (—epNe?) .

Note that
E [bN“FliV] = o [/ Qk<'7x)gk+1($)dl’:| .

By the induction assumption,

P (‘E k2] = o | [ tdgnntara]

> 5) < b, exp (—ckN€2) .

The proof is completed using Lemma [3] O

Lemma 3. Assume that ay, by, and b are random variables defined on the same
probability space such that there exist positive constants 5, B, C, and M satisfying
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(i) lan/bn| < M, P-a.s. and b > 3, P-a.s.,

(ii) For alle >0 and all N > 1, P[|by — b| > €] < Bexp (—CN¢e?),

(iti) For alle >0 and all N > 1, P[lay| > €] < Bexp (—CN (6/M)2)

Then,
ay 8\’
Pq|— <B —CN | — )
(] =om(or(22)
Proof. See [§]. O
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