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aEA-7340-M2N-Modélisation, Mathématique et Numérique, Conservatoire National des
Arts et Métiers, 2 Rue Conté, 75003 Paris FRANCE
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Abstract

In this work, a passive flow control study is proposed in order to regularize the
flow dynamics around a hemisphere at a low and a higher Reynolds number
in the wake transition regime. This passive control is realized by covering
the projected curved surface of the hemisphere with a porous coating. The
presence of such porous medium modifies the boundary conditions at the
body-fluid interface, allowing a non-zero velocity to settle in this region. This
phenomenon smoothes the global flow dynamics and leads, in particular, to a
decrease of the energy dissipation and the aerodynamic force. In this paper,
the flow control study is carried out for several configurations using a vortex-
penalization technique which allows to easily model solid-fluid-porous media
without prescribing any boundary condition.

Keywords: passive flow control, porous media, drag reduction, flow past a
hemisphere, vortex methods, Brinkman penalization method.

1. Introduction

The main advantage of passive control for drag reduction, in aerodynam-
ics, relies in the fact that it is energy free and generally easy to implement.
Many devices have been proposed in the literature as for instance compliant
walls like the dolphin skin [1, 2], ribelets or bumps [3, 4, 5], and wavy or rough
surfaces [6, 7]. Another possibility is to introduce porous and permeable lay-
ers [8]. The main effect of a porous interface between the solid and the fluid
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is to change the shear forces. Indeed, the no-slip boundary condition is re-
placed by a quasi-slip boundary condition [9] due to the Darcy flow inside the
porous layer; as a result, the rate of vorticity generation is reduced. There-
fore the shedding around a bluff body is modified and the flow behaviour can
be drastically regularized. The efficiency of this passive control is related to
the choice of the permeability of the porous medium, the thickness of the
porous layers and their location. As highlighted in [10], it is interesting to
mention that flow throughout porous (or porous-like) media may be observed
in multiple applications, like tennis balls [11] or carbon-nanotubes-based flow
sensors [12], as well as natural structures like vegetation canopies [13], birds’
covert feathers [14] or endothelial glycocalyx (i.e. ”sweet shield”) of blood
vessels [15]. The presence of such porous devices enables a damping of the
flow-induced surface instabilities, therefore modifying the flow behavior in
the vicinity of the solid-porous-fluid interface.

In this paper, passive control is explored to regularize three-dimensional
flows around a hemisphere and more specifically to reduce the drag forces,
and focuses on the physics of these underlying flows. The main reason for
choosing the hemisphere geometry is its similarity to the sideview mirrors of
a ground vehicle and the possible extension of this control to reduce their
drag. Indeed, in spite of the fact that the mirrors only represent 0.5% of
the projected surface of the vehicle, they are responsible for about 10% of
the total aerodynamic drag because of their spanwise position. Moreover,
due to the size and the geometry of sideview mirrors, passive control devices
appear as the most adapted. The passive manipulation considered here in
order to smooth the flow dynamics involves porous media. Based on the
works of [8, 16, 17], the control devices designed in the present work rely
in a total or partial coating of the hemisphere surface with a porous layer.
Under optimal conditions related to the permeability of the added porous
layer, its thickness and its position, the modifications of the flow induced by
the presence of such device may lead to a regularization of the wake and to a
drag reduction. In the previous related study performed for two-dimensional
flows [18], the presence of a porous layer at the surface of a two-dimensional
semi-circular cylinder was actually shown to be responsible for a decrease of
the shear forces and the vorticity generation of the boundary layer, leading
to aerodynamic improvements like drag reduction.

Regarding the numerical approach, we propose here a three-dimensional
vortex-penalization method to approximate the incompressible flows in solid-
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fluid-porous media. Vortex methods and immersed boundary methods have
been separately used to simulate viscous recirculating flows around obsta-
cles. The vortex-penalization method combines the advantages of both ap-
proaches. This technique maintains the efficiency and the robustness of vor-
tex methods that solve the flow equations in a fast Lagrangian way [19, 20].
On the other hand, the use of the Brinkman penalization technique [21, 22]
enables to simplify the treatment of the no-slip boundary conditions. This
immersed boundary method consists in extending the fluid velocity inside
the solid body and to solve the Navier-Stokes equations with a penalization
term, depending on the intrinsic permeability, to enforce rigid motion inside
the solid using a vorticity formulation [23]. The penalization technique can
therefore be defined as an immersed boundary method based on permeabil-
ity variations. The distinction between the three different media is indeed
easily performed defining the value of the penalization parameter without
prescribing a boundary condition at the solid boundary or a condition at the
porous-fluid interface. Hence, it appears as a suitable approach to handle
flows in solid-fluid-porous media and to perform passive flow control using
porous interfaces.

In this work, the numerical method is first presented and then validated
for three-dimensional viscous incompressible flows past bluff bodies for tran-
sitional Reynolds numbers. The application to passive flow control past a
3D hemisphere is finally proposed by adding a porous sheath on the obsta-
cle surface in order to reduce the drag forces. This control study takes into
account several configurations of the added porous layer around the hemi-
sphere, involving different geometries, permeabilities and thicknesses. The
flow physics is oberved in detail for each of these configurations to better
understand the control effects.

2. Hybrid vortex penalization method for solid-porous-fluid media

2.1. The governing equations
In this work, we use the so called Brinkman-Navier-Stokes equations in

their velocity(u) - vorticity(ω) formulation in order to model incompressible
flows past obstacles. In three dimensions, these equations read as follows :

∂ω

∂t
+ (u · ∇)ω − div(ω : u) =

1

Re
∆ω +∇× [λ χS(us − u)], (1)

∆u = −∇× ω. (2)
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One can denote in Eq. 1 the advection term (u · ∇)ω, the stretching term
div(ω : u) expressed in its conservative form, the diffusion term ∆ω/Re and
the penalization term ∇ × [λ χS(us − u)]. The Poisson equation (Eq. 2)
allows to recover the velocity field u from the vorticity field ω which has
been convected, diffused and penalized through Eq. 1. Concerning the pe-
nalization term, it enables to model the presence of a solid body in the flow,
varying the permeability of the medium. In this penalization term, χS de-
notes the characteristic function that yields 0 in the fluid and 1 in the solid,
us indicates the rigid body velocity which is zero in all this work since the
body is fixed and λ = µΦ lref/ρkuref is the non-dimensional penalization pa-
rameter essentially depending, in the inverse proportion, on the permeability
k of the medium (with µ the viscosity, Φ the porosity of the porous material
which is close to 1 as imposed by Brinkman equations, lref the height of the
obstacle, ρ the fluid density and uref = u∞ the reference far field velocity).
Varying the λ value thus directly defines the different media. Indeed, in the
fluid, the intrinsic permeability coefficient k goes to infinity, thus λ tends to 0
in this region and we naturally recover the u-ω Navier-Stokes equations. On
the contrary, the solid has a permeability coefficient k which goes to zero,
it can be consequently modeled setting the penalization parameter λ to a
very high value. In our study λ equals 108 in the solid, which makes the flow
velocity vanishing in this region. Furthermore, setting the λ parameter to
an intermediate value, reasonably chosen between these two extreme values
(λ = 0 and λ = 108), would model a porous medium in which the flow has a
non-zero Darcy velocity uD. As a conclusion, the variation of λ corresponds
to the variation of k that specifies the intrinsic porous material permeability.

2.2. Sketch of algorithm

To discretize the penalized vorticity equations (Eqs. 1, 2) we use in this
work a semi-Lagrangian vortex method. The flow is discretized into elements,
also called particles, that carry the physical flow properties. The hybrid
feature of the proposed method relies in its semi-Lagrangian framework. In
practice, the resolution of the governing equations is based on a viscous
splitting algorithm [24], which consists in the present context in successively
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solving at each time step the following equations:

∂ω

∂t
=∇× (λ χS(us − u)) (3)

∂ω

∂t
= div(ω : u) (4)

∂ω

∂t
=

1

Re
∆ω (5)

∂ω

∂t
+ (u ·∇)ω = 0 (6)

∆u = −∇× ω (7)

The penalization equation (Eq. 3) is solved on a Cartesian grid using an
implicit Euler scheme and the right hand side is evaluated by fourth order
centered finite differences. Eq. 4 corresponds to the stretching equation with
a conservative formulation of the stretching term, where div(ω : u) is the

vector of component
∂(ωiuj)

∂xj
. The space discretization of the stretching term

is performed using a fourth order finite differences scheme for the derivatives.
A RK3 scheme is used for time integration. Then, diffusion equation (Eq. 5)
is solved on the grid using FFT-based evaluations. Finally, the vorticity field
is advected through Eq. 6 using a remeshed vortex method [19]: particles
are pushed in a Lagrangian way with a RK2 time-stepping and are then
redistributed on the original grid using a fourth order interpolation kernel [26,
27]. Finally, the resulting velocity field is recovered from vorticity by solving
the Poisson equation 7 on the grid with FFT-based evaluations. Grid values
for vorticity and velocity are now available for time tn+1 and a new cycle
of iterations can start. For a complete description of the present numerical
method we refer the reader to the previous authors’ work [28].

The no-slip boundary conditions are handled by penalizing the vortic-
ity transport equations, through equation 3. Concerning far-field bound-
ary conditions on the domain walls, we use periodic boundary conditions
combined with correction techniques to ensure the proper inlet boundary
conditions. In particular, this choice allows us to use the Fast Fourier Trans-
form method in order to efficiently solve the Poisson equation ∆u = ∇×ω.
However, handling periodic boundary conditions implies special treatments
on the flow fields in order to recover the desired uniform flow at the inlet
u∞ = (uref, 0, 0) = (1, 0, 0). These treatments appear in two types of correc-
tions. First of all, one needs to discard the eddies coming periodically from
the outlet. This is performed at each time step through a smooth absorption
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satisfying solenoidal vorticity on a narrow region at the outlet of the compu-
tational domain. In a second place, a correction has to be performed on the
velocity field in order to recover the desired flux at the inlet and to account
for a non-zero circulation. More details and validations concerning the treat-
ment of the far-field boundary conditions may be found in [28]. This hybrid
vortex penalization method has already been successfully used in 2D [29]
and 3D [28] to simulate transitional and highly transitional flows past bluff
bodies. In the following, we present additionnal validations for geometries
corresponding to the physical configuration studied in this paper.

3. Validation results

In order to verify the accuracy of the method, we present in this sec-
tion a validation study of the computational method employed in this work.
For this purpose, we consider flows past a sphere and a hemisphere and
we compare the results with the ones of the literature. Each simulation
presented in the following is performed considering the same geometrical
setup: the obstacle under study has a dimensionless diameter of d = 1 and
its center (in the case of the sphere) or its back wall (in the case of the
hemisphere) is located at (x, y, z) = (0, 0, 0) in the computational domain
D = [−2, 8.48] × [−2.56, 2.56] × [−2.56, 2.56] (Figure 1). The whole do-
main is meshed by an equispaced Cartesian orthogonal grid where particles
are initialized and remeshed at every time step. Based on previous grid re-
finement studies [29, 28], we set the grid step to h = 0.02 for simulations
performed at Re = 300 and to h = 0.01 at Re = 1000. The penalization
parameter is set to λ = 108 inside the body. The time step is adaptative and
calculated at each iteration according to the Lagrangian CFL condition :

∆tadapt =
LCFL

|∇u|∞
, (8)

where LCFL must be smaller that 1. In this work LCFL = 1/8.

3.1. Flow past a sphere

As concerns validation process, we first consider the classical benchmark
of flow around a sphere at Re = 300. The 3D computational box D is meshed
by an uniform 512×256×256 Cartesian grid, which corresponds to a mesh size
of h = 0, 02. In the early times of the simulation, a perturbation is applied
to the flow in order to trigger the instability. This perturbation is imposed
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(a) Flow past a sphere
(b) Flow past a hemisphere

Figure 1: Computational domain D.

between T = 3 and T = 4 on the y component of the velocity and stands as
uy∞ = sin(π(T − 3)). Table 1 provides the values of the drag and vertical
lift coefficients obtained with the present method, as well as the Strouhal
number. These values are compared to several results of the literature and
as the table shows, our results coincide well with the references.

Re = 300
Authors c̄D c̄L St

Roos & Willmarth ? [30] 0.629 - -
Johnson & Patel [31] 0.656 -0.069 0.137
Tomboulides & Orszag [32] 0.671 - 0.136
Constantinescu & Squires [33] 0.655 -0.065 0.136
Kim & Choi [34] 0.657 -0.067 0.134
Ploumhans et al. [35] 0.683 -0.061 0.135
Present work 0.673 -0.066 0.133

Table 1: Comparison of drag and lift coefficients and Strouhal number for flow past a
sphere at Re = 300. Star notation (?) refers to experimental results.

The flow analysis at Re = 1000 is also considered. The simulation is
performed on an uniform 1024 × 512 × 512 Cartesian mesh (h = 0.01). A
perturbation is defined in this case by uy∞ = 0.1 sin(π(T − 3)), between
T = 3 and T = 4. A plot of the time average streamwise velocity ux along
the centerline is given in Figure 2a. The results obtained with the present
method are compared to those of [32] together with the experimental data
of [36] obtained at Re = 960. They show a good agreement. The same
conclusion holds for the time evolution of force coefficients. Indeed, as shown
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Figure 2: Flow past a sphere at Re = 1000: (a) Average streamwise velocity ux along the
x-axis: comparison of the present results (red curve) with numerical results [32] (green
curve) and experimental data [36] at Re = 960 (black circles). (b) CD (solid lines) and
CL (dashed lines) time evolution: comparison of the present results (red curves) with [35]
(black curves).

in Figure 2b, the time evolution of the drag coefficient CD and the vertical
lift coefficient CL coincide with the one found by [35]. The mean value of
the drag coefficient CD obtained from long time computations is 0.485, to be
compared with the numerical values reported by [37] and [38], respectively
equal to 0.46 and 0.478.

3.2. Flow past a hemisphere

It is important to validate the numerical method used in the present study
for flows past a hemisphere. To our knowledge, the only study related to
this problem is the numerical work of Kim and Choi [39], where an immersed
boundary method in a cylindrical coordinate system is used to investigate the
behavior of flows past a hemisphere at different Reynolds numbers, ranging
from 100 to 300. In the present validation study we will focus on three values
of the Reynolds number, corresponding to different unsteady flow behaviors:
Re = 200, 250, and 300. These Reynolds numbers are also studied in detail
in [39]. For each simulation, the domain D is meshed with a 512× 256× 256
Cartesian grid (h = 0.02). The hemisphere has a diameter d equal to 1 and
its rear back surface is centered at the point (0, 0, 0) (Figure 1b). As we did
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Re = 200 c̄D c̄L Stlift Stdrag
Kim & Choi [39] 0.790 0.0 ± 0.024 0.128 0.256
Present work 0.805 0.003 ± 0.025 0.129 0.257

Re = 250 c̄D c̄L Stlift Stdrag
Kim & Choi [39] 0.742 0.0 ± 0.05 0.127 0.254
Present work 0.757 0.0 ± 0.05 0.128 0.256

Re = 300 c̄D c̄L Stlift Stdrag
Kim & Choi [39] 0.715 0.0 ± 0.062 0.135 0.270
Present work 0.729 -0.002 ± 0.063 0.134 0.270

Table 2: Comparison of mean drag and vertical lift coefficient as well as Strouhal numbers
for flow past a hemisphere at Re = 200, 250 and 300.

for the sphere, the flow instability is triggered by a perturbation imposed
between T = 3 and T = 4. The compared results are reported in Table 2.
We notice that the results agree rather well with each other.

All these validation results therefore confirm the capability of the present
semi-Lagrangian penalization method to accurately model incompressible
bluff body flows.

4. Passive flow control past a 3D hemisphere

The vortex penalization method is now applied to passive flow control
around a 3D hemisphere. The control is achieved covering the obstacle with
a porous coating, without changing its original shape and size. The expected
effect of a porous medium at the solid-fluid interface is to modify the vorticity
generation of the boundary layer and the vortex shedding, and therefore to
reduce drag forces, improving the aerodynamic properties of the obstacle [8,
16, 17]. In the following simulations, the hemisphere has a total dimensionless
diameter of d = 1. This diameter includes a porous coating of thickness
τ , constituting the passive control device. According to the Brinkman’s
equation on which our model is based, the porosity Φ of the added coating
has to be close to 1 (see section 2.1). In practice, one can consider materials
like wire crimps (Φ ∼ 0.72), fiberglass (Φ ∼ 0.9), steel wool (Φ ∼ 0.9) or hair
like texture (Φ ∼ 0.97).

The two different Reynolds numbers considered in the present study are
Re = 300 and Re = 1000. These choices correspond to the Reynolds numbers
considered in our validation studies. These validations indeed enabled us to
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identify the mesh sizes allowing to account for the correct flow behaviors at
these two Reynolds numbers, which correspond to two different flow regimes.
Our goal is to give an accurate description and understanding of the physical
mechanisms occurring in the presence of a porous medium, when all the
time and space scales are resolved in a three-dimensional case. Although the
values of the Reynolds numbers considered here do not correspond to realistic
flow conditions, we believe that this can give insight into generic mechanisms
related to drag reduction in presence of porous coating.

The DNS are performed in the computational domain D = [−2, 8.24]×
[−2.56, 2.56]× [−2.56, 2.56], previously used for the validation studies. The
geometrical configuration is the one depicted in Figure 1b. According to the
convergence study and the validation results reported in the previous section,
the simulations at Re = 300 and Re = 1000 are carried out setting the grid
resolution to 512 × 256 × 256 (h = 0.02) and 1024 × 512 × 512 (h = 0.01)
respectively. The time step is adaptive and defined according to equation
8. As in the validation simulations, a perturbation is applied to the flow
imposing uy∞ = a sin(π(T − 3)) between T = 3 and T = 4, with a = 1 at
Re = 300 and a = 0.1 at Re = 1000.

In order to analyze the effects of our control approach, a comparison
between the controlled devices and the uncontrolled obstacle is needed. For
this purpose we will systematically analyze the following diagnostics in both
cases:

• Global flow quantities :

– Aerodynamic force (F = (Fx, Fy, Fz)): we consider drag and lift
forces instead of drag and lift coefficients since the expressions
of the latter involve the diameter d of the obstacle which is not
clearly defined because of the porous coating. Indeed, when the
permeability of the added porous layer tends to infinity, the ob-
stacle tends to a hemisphere of smaller diameter.

– Enstrophy (Z): the enstrophy measures the dissipation effects in
the flow. A decrease of enstrophy may lead in this context to a
delay of transition to turbulence.

• (Fy, Fz) phase diagrams

• Time averaged and instantaneous vorticity fields
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4.1. Influence of the porous coating configuration and permeability on flow
control efficiency

The passive control around the hemisphere is achieved by covering the
obstacle with a porous coating for which different geometrical configurations
are considered. These configurations are depicted in Figure 3, where case 0
refers to the uncontrolled case (i.e. solid case), case 1 contains a porous layer
on the whole hemisphere surface, case 2 involves two porous poles on top
and bottom of the body, case 3 contains a porous zone corresponding to the
rotation of the previous poles around the z-axis (this case will be denoted as
”ring inlay” in the following) and case 4 implements an ”annular coating”,
consisting in a thin porous ring. Finally the ”fluid case” corresponds to
the hemisphere including a porous layer of infinite permeability (λ = 0):
it actually represents a smaller hemisphere of diameter d − 2τ and thus a
diminution of the Reynolds number. Here, the ”fluid case” corresponds to a
flow past a hemisphere of diameter d = 0.8 at Re = 240. This case has to be
considered as a reference rather than a control device itself. It constitutes the
lower limit of the control problem whereas the solid case (case 0) corresponds
to the upper one.

In the present simulations, all the solid parts of the hemisphere are mod-
elled fixing λ = 108 and the porous areas of cases 1, 2, 3 and 4 will be modeled
setting λ to 1 (very high permeability) or 10 (high permeability). When the
non-dimensional λ value is equal to 1 and 10 it is equivalent to an intrin-
sic dimensional permeability in the order of k = 10−3m2 and k = 10−4m2,
respectively. The choice of such values is based on the parametric studies
performed by Bruneau & Mortazavi in [8], where those two λ values were
found to give the best results in terms of drag and enstrophy reduction, and
more recently by the present authors in [18], where a study was carried out
in the two-dimensional case for a larger range of permeable λ values. The
results showed that the most significant drag and enstrophy reductions were
obtained for 1 ≤ λ ≤ 10. Concerning the thickness τ of the coating, it is first
set to 10% of the diameter (τ = 0.1) for all the cases.

4.1.1. Numerical results for Re = 300

• λ = 1

The flow control results are first analyzed for Re = 300, fixing λ = 1
within the porous areas. At this regime, the less efficient passive control
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Figure 3: Cases 1 to 4 corresponding to different porous layer configurations. Case 0 de-
picts the uncontrolled case and “fluid case” corresponds to the case of a smaller hemisphere
of diameter d− 2τ .
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device is the case 4. Indeed, as reported in Table 3 and Figure 4, the drag
reduction induced by the annular coating is particularly moderated (-1.4%)
and concerning the enstrophy, one can notice a slight increase compared to
the uncontrolled case (+0.4%).

λ = 1, τ = 0.1 F̄x Z̄
case 0 0.285 73.0
case 1 (layer) 0.246 (-14%) 49.6 (-32%)
case 2 (poles) 0.269 (-7%) 69.0 (-5.5%)
case 3 (ring inlay) 0.224 (-21%) 55.0 (-25%)
case 4 (annular coating) 0.281 (-1.4%) 73.3 (+0.4%)
fluid case 0.189 49.8

Table 3: Reduction effects brought by the different porous layer configurations in compar-
ison to the uncontrolled case at Re = 300 with λ = 1 within the permeable regions and
τ = 0.1.

layer)
poles)

ring inlay)
annular coating)

(a) History of drag force

layer)
poles)

ring inlay)
annular coating)

(b) History of enstrophy

Figure 4: Effects of various layer configurations on drag force (a) and enstrophy (b) for
flow past a hemisphere at Re = 300, with λ = 1 within the permeable regions and τ = 0.1.

The poor performance of this device is corroborated by Figure 5, showing
the time-averaged vorticity magnitude in the domain. On this figure one can
indeed see that the mean wake obtained with case 4 is very similar to the one
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obtained with case 0. The phase diagram (Fy, Fz) plotted in Figure 6 also
confirms that even with an annular coating, the flow remains chaotic and
do not turn to become time-periodic. This statement is also verifiable with
Figure 4. The phase diagram related to case 4 is moreover very comparable
to the one of the uncontrolled case (Fig. 6). Finally, the instantaneous 3D
vorticity field |ω| of case 4, presented in Figure 7, shows that the wake is
thick and not planar symmetric. The lack of efficiency of this annular coating
can be explained by the fact that it is too close to the back wall edge and
does not offer a clear entrance area for the upstream flow inside the porous
part (see the side view and top view of case 4 in Figure 3). This makes the
adding of such device almost useless.

case 0

case 1 (layer)

case 2 (poles)

case 3 (ring inlay)

case 4 (annular coating)

�uid case

(a) XY plane

case 0

case 1 (layer)

case 2 (poles)

case 3 (ring inlay)

case 4 (annular coating)

�uid case

(b) XZ plane

Figure 5: Effects of various layer configurations on mean vorticity magnitude for flow past
a hemisphere at Re = 300, with λ = 1 within the permeable regions and τ = 0.1.
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Fz
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case 0 case 2 (poles) case 4 (annular coating)
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Figure 6: Effects of various layer configurations on the phase diagram (Fy, Fz) for flow
past a hemisphere at Re = 300, with λ = 1 within the permeable regions and τ = 0.1.

case 0 case 4 (annular coating)case 2 (poles)

case 1 (layer) �uid casecase 3 (ring inlay)

Figure 7: Effects of various layer configurations on instantaneous vorticity magnitude 3D
field and isocontour |ω| = 1 for flow past a hemisphere at Re = 300, with λ = 1 within
the permeable regions and τ = 0.1.

According to Table 3 and Figure 4, the case 1 is an efficient device to
reduce drag (-14%) and more especially enstrophy (-32%). The mean wake
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related to this type of controlled hemisphere is still relatively thick in the
XY plane (although the vorticity intensity of the eddies is strongly decreased
compared to case 0) but it shows a perfect symmetry in the XZ plane (Figure
5). This planar symmetry is confirmed by Figure 6 showing for case 1 a phase
diagram centered around Fz = 0. This diagram also indicates an emerging
time-periodicity in the solution which is indeed confirmed by Figure 4. The
representation of the 3D vorticity field in Figure 7 clearly highlights the
capability of the porous layer of case 1 to regularize the flow. We can notice
that the result is very close to the one obtained with the fluid case, that is
to say with the hemisphere of diameter d − 2τ = 0.8, for which the actual
Reynolds number is equal to 240, as mentioned previously. The efficiency
of case 1 can be explained by the fact that the whole porous layer acts as a
damper and regularizes the flow.

The results obtained with the case 2 are much less visible. Indeed, al-
though the presence of porous poles tends to make the wake periodic (Figure
6) and planar symmetric (Figure 5b), high vorticity values can still be ob-
served (Figure 5), and finally the drag force and the enstrophy only reduce
respectively of 7% and 5.5% compared to the uncontrolled case (Table 3
and Figure 4). The case 2 therefore has a positive effect but its action area
remains too small compared to the whole separation zone.

Let us consequently focus on the case 3. The drag reduction induced by
this type of device is the best one among all the considered configurations,
with a diminution of 21%. As regards enstrophy, a decrease of 25% is ob-
served with such a device (Table 3 and Figure 4). These significant reductions
are related to the global flow regularization, evidenced by the wake in Figure
5 as well as the instantaneous vorticity in Figure 7. Nevertheless, one can no-
tice in Figure 5b that with case 3 the wake is not planar symmetric, contrary
to case 1. Indeed, the phase diagram (Fy, Fz) is not vertically centered at the
point Fz = 0 (see Figure 6). Furthermore, no clear periodic pattern emerges
from the solution (see Figure 4). Despite this absence of periodicity, we can
however remark the low amplitude of the drag and enstrophy solution, which
confirms the regularizing effects brought by this device. Unlike the case 4,
the ring case 3 allows the flow to easily penetrate within the porous zone,
leading to a great enhancement of the flow regularization.

Finally, in Figure 6, the phase diagram of the fluid case indicates that
with such a configuration the flow is time-periodic and planar symmetric
(the diagram is a straight line on Fz = 0, perfectly centered around Fy = 0).
Indeed, in this case smaller diameter results in a Reynolds number reduced
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to 240, and for this value the flow past a hemisphere was indeed shown in
[39] to exhibit such properties.

These first results highlight the clear influence of the position of the
porous coating around the hemisphere. In particular, the outcomes obtained
with the case 3 show that the control efficiency in terms of drag reduction
may be enhanced by only concentrating the porous areas in the vicinity of the
flow separation zone. On the other hand, the complete porous layer (case 1)
seems more competitive to achieve a global flow regularization, caracterized
here by the enstrophy value and the vorticity wake.

• λ = 10

In order to further investigate these hypotheses, the same devices are now
analyzed at the same flow regime, considering a lower permeability within the
porous areas, materialized by λ = 10. According to the previous discussion,
the case 4 (i.e. the annular coating) will not be taken into consideration in
this study and in the sequel.

In general, and as expected, the control performances obtained fixing
λ = 10 in the porous areas are quite reduced compared to the one achieved
with devices containing high permeable zones (λ = 1).

Concerning the case 1, the outcome is even more critical since one can
notice non-beneficial effects in terms of drag production. Indeed, as shown
by Table 4 and Figure 8, case 1 is responsible for an increase of 7.4% of the
drag force compared to the uncontrolled case. On the other hand, the case 1
allows an enstrophy reduction, although it is limited to -7%. Contrary to

λ = 10, τ = 0.1 F̄x Z̄
case 0 0.285 73.0
case 1 (layer) 0.306 (+7.4%) 67.7 (-7%)
case 2 (poles) 0.280 (-2%) 71.5 (-2%)
case 3 (ring inlay) 0.273 (-4%) 67.9 (-7%)
fluid case 0.189 49.8

Table 4: Reduction effects brought by the different porous layer configurations in compar-
ison to the uncontrolled case at Re = 300 with λ = 10 within the permeable regions and
τ = 0.1.

the results obtained with λ = 1 inside the porous layer of case 1, the mean
wake is still rather perturbed here with λ = 10 (Figure 9a) and do not present
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Figure 8: Effects of various layer configurations on drag force (a) and enstrophy (b) for flow
past a hemisphere at Re = 300, with λ = 10 within the permeable regions and τ = 0.1.

planar symmetry (Figure 9b). The phase diagram of case 1 plotted in Figure
10 is more regular that the one of case 0 but shows however non negligible
amplitudes for the lift forces Fy and Fz. In fact, decreasing the permeability
makes the fluid displacement more difficult inside the front part of the porous
layer. This increase of the resistance to the fluid movement in the boundary
layer region is directly related to the rise of the drag force, which is precisely
a quantity evaluated on the walls of the obstacle. These results indicate the
importance of the porous coating location for lower permeabilities. Once
again it appears that, for drag reduction purpose, these areas should be
concentrated in the vicinity of the flow separation points.

The results obtained with case 2 (permeable poles) confirm this state-
ment. In this case, due to small concentrated porous surfaces the control
effects are moderated (Table 4 and Figure 8); however the performances
are not deteriorated. From a qualitative point of view, the phase diagram
(Fy, Fz) and the mean wake in the XY plane remain very similar to the
one of case 0 (Figure 10 and Figure 9a), but a symmetry emerges in the XZ
plane (Figure 9b), confirming the beneficial effects brought by the two porous
poles. The case 2 cannot be qualified as very efficient but in comparison with
case 1 it can be assessed that the passive action in the vicinity of the back
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Figure 9: Effects of various layer configurations on mean vorticity magnitude for flow past
a hemisphere at Re = 300, with λ = 10 within the permeable regions and τ = 0.1.

wall and shedding edge is important.
The best flow control device considered here is the case 3, allowing for

a drag reduction of 4% and a decrease of the enstrophy of 7% (Table 4 and
Figure 8). Figure 9b shows that compared to case 0 the flow better attaches
to the obstacle with case 3, leading to a thinner wake. The 3D instantaneous
vorticity fields depicted in Figure 11 clearly show the benefits obtained with
case 3 compared to cases 1 and 2 since its wake is the only one showing a
clear regularization compared to case 0.

4.1.2. Numerical results for Re = 1000

Let us now focus on the flow control results at Re = 1000. At this
regime, we only take into consideration the best configurations outlined in
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Figure 10: Effects of various layer configurations on the phase diagram (Fy, Fz) for flow
past a hemisphere at Re = 300, with λ = 10 within the permeable regions and τ = 0.1.

case 0
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case 1 (layer) case 3 (ring inlay)

Figure 11: Effects of various layer configurations on instantaneous vorticity magnitude 3D
field and isocontour |ω| = 1 for flow past a hemisphere at Re = 300, with λ = 10 within
the permeable regions and τ = 0.1.
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the previous section, namely the case 1 with λ = 1 within the porous layer,
and the case 3 with λ = 1 and λ = 10 inside the porous ring. The reduction
effects in terms of drag force and enstrophy are given by Table 5 and Figure
12. As can be seen, the case 3 with λ = 1 is the only device providing a drag
decrease (-16%). In particular, case 1 with λ = 1 is responsible for a drag
increase of 3% while it ensures a reduction of enstrophy of 30%, which is more
than the reduction achieved with case 3 and λ = 1 (-19%). As observed at
Re = 300, the case 1 is better suited to regularize the wake. Indeed, as can
be noticed on Figure 13, the porous layer of permeability λ = 1 significantly
impacts the wake that tends to present the same characteristics that the one
of the fluid case. It allows in particular to recover a planar symmetric wake
(Figure 13b), which is not the case for the case 3 with λ = 1. However, the
latter represents the best device in terms of overall regularization. Besides
the important reductions reported in Table 5, the mean wake obtained from
case 3 with λ = 1 is smoother than the one of case 0, with lower vorticity
values and a thinner dimension in the crosswise direction (Figure 13a) and
in the spanwise direction (Figure 13b). The instantaneous 3D vorticity field
depicted in Figure 14 also shows the same effects on the wake and enhances
the regularization capabilities of such device. On the contrary, setting λ = 10
within the porous area of case 3 deteriorates the performances. The wake
indeed thickens, showing higher vorticity values (Figures 13 and 14), and the
drag force as well as the enstrophy raise of 5% and 2% respectively (Table
5 and Figure 12). Therefore, among the configurations handled in this flow
control study at Re = 1000 with the layer thickness τ = 0.1, the most
competitive device is clearly the case 3 with a high permeability (λ = 1)
settled within the porous coating.

τ = 0.1 F̄x Z̄
case 0 0.210 175.8
case 1 (layer) , λ = 1 0.217 (+3%) 123.1 (-30%)
case 3 (ring inlay), λ = 1 0.177 (-16%) 141.8 (-19%)
case 3 (ring inlay), λ = 10 0.221 (+5%) 179.6 (+2%)
fluid case 0.143 126.5

Table 5: Reduction effects brought by different porous layer configurations in comparison
to the uncontrolled case at Re = 1000 with τ = 0.1.

Let us discuss the results obtained in this section. In terms of control
efficiency and especially drag reduction, the main outcome is the necessity
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Figure 12: Effects of various layer configurations on drag force (a) and enstrophy (b) for
flow past a hemisphere at Re = 1000, with τ = 0.1.

for the Darcy velocity to settle within the porous medium before reaching
the detachment point. However, we observed that the presence of an ho-
mogeneous porous layer around the obstacle implied flow resistance in the
upstream region (case 1). The solution retained in this study is therefore the
one where the porous zones are concentrated in the vicinity of the separation
line, avoiding the flow to be damped by the porous layer but modifying the
shedding with a pressure rise on the back wall (case 3). From a qualitative
point of view, it is interesting to note that these results are in good agree-
ment with the experimental studies carried out by Ruck et al. [40] where
different porous sheaths made of polyester foam are added to the surface of
a circular cylinder in order to decrease the drag force. Indeed, despite the
different flow regimes considered in their study (in their case the Reynolds
number ranges from 104 to 1.3 · 105), the authors also found that a fully
porous surface deteriorates the aerodynamic performances whereas partially
coated surfaces, precisely located in the leeward side of the cylinder, lead to
a drag reduction.

An other important observation that emerges from this parametric study
is the difference of behavior between the enstrophy and the drag evolution,
depending on the controlled cases. With a porous layer covering the whole
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Figure 13: Effects of various layer configurations on mean vorticity magnitude for flow
past a hemisphere at Re = 1000, with τ = 0.1.

hemisphere front surface (case 1), we indeed highlighted a systematic enstro-
phy reduction compared to the uncontrolled case, regardless of the perme-
ability and the Reynolds number, whereas some values of λ were found to
be responsible for a non negligible drag increase. As evoked previously, this
is directly due to the way these two quantities are evaluated. The enstrophy
quantifies the energy dissipation of the system in the whole domain. Thus,
the laminar velocities caused by the presence of the large permeable layer
lead to a delay in transition to turbulence and directly impact the trans-
port of the vorticity which is regularized. On the contrary, the drag force
is evaluated on the boundaries of the obstacle or in the vicinity of the body
and is directly linked to the vorticity generation. Therefore, the friction phe-
nomenon caused by lower permeabilities of the porous layer (λ = 10) and
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Figure 14: Effects of various layer configurations on instantaneous vorticity magnitude 3D
field for flow past a hemisphere at Re = 1000, with τ = 0.1.

implying a resistance to the flow in the front part of the obstacle, is directly
reported in the drag diagnostic and in the very near-wake analysis.

4.2. Influence of the porous layer thickness τ on flow control efficiency

In this section we focus on the influence of the porous coating thickness
τ on the flow control efficiency. This study is performed at Re = 1000
using the ring inlay device (case 3) with a λ = 1 permability. These choices
restrict the study to the best parameters for the highest Reynolds number
in this work. Indeed, according to the above discussion, this device appears
as a good compromise between flow control efficiency and manufacturing
constraints since it presents good performances while involving a few quantity
of porous material. Naturally, in order to push further this investigation, it is
interesting to verify the performances of such a device with a thickness lower
than τ = 0.1. We consider for that purpose two other values of τ , namely
τ = 0.05 and τ = 0.025. The 3D representation of the ring inlay device (case
3) with the different values of τ is given by Figure 15.

Table 6, Figure 16 and Figure 17 show a non-linear decrease of drag and
enstrophy as the porous ring inlay thickens. Indeed, the drag and enstrophy
reductions obtained with τ = 0.05 and 0.025 are noticeably tempered com-
pared to the case where τ = 0.1 and similar to each other. The regularization
effects brought by the cases τ = 0.05 and τ = 0.025 are also qualitatively
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(a) τ = 0.1 (b) τ = 0.05 (c) τ = 0.025

Figure 15: Graphical representation of the control device corresponding to case 3 (ring
inlay). Three different thicknesses τ are considered. The shaded transparent areas depict
the permeable part of the hemisphere.

reported in Figure 18 and Figure 19. They show that the mean and instanta-
neous wakes obtained with τ = 0.025 in case 3 resemble to the one obtained
with the uncontrolled case. A smoothing tendency is then observed from
this lower value of τ to the higher one. At this flow regime, the ring inlay
configuration (case 3) with τ = 0.1 therefore appears as the most suitable
control device. However, this value of τ = 0.1 corresponds to a rather thick
porous coating around the obstacle (Fig. 15a). Therefore, in terms of effec-
tiveness, the ring inlay configuration with τ = 0.05 could be considered as a
good compromise since it needs a very low quantity of porous material while
allowing a non negligible drag reduction (−6%).
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λ = 1 F̄x Z̄
case 0 0.210 175.8
case 3, τ = 0.1 0.177 (-16%) 141.8 (-19%)
case 3, τ = 0.05 0.198 (-6%) 170.6 (-3%)
case 3, τ = 0.025 0.201 (-4%) 170.4 (-3%)

Table 6: Reduction effects brought by the case 3
(ring inlay) configuration with λ = 1 within the
permeable region, in comparison to the uncon-
trolled case at Re = 1000.

Figure 16: Figure associated to Ta-
ble 6 (Enstrophy is represented by
the blue-triangled line and the drag
force by the red-squarred line).
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Figure 17: Effects of various layer thicknesses τ for case 3 on drag force (a) and enstrophy
(b) for flow past a hemisphere at Re = 1000, with λ = 1 within the permeable region.

5. Conclusion

In this work, a three-dimensional vortex-penalization method was pro-
posed in order to easily handle solid-fluid-porous media. The differentiation
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Figure 18: Effects of various layer thicknesses τ for case 3 on mean vorticity magnitude
for flow past a hemisphere at Re = 1000, with λ = 1 within the permeable region.

between the three different media is indeed performed defining the value of
the penalization parameter in the Brinkman-Navier-Stokes equations with-
out prescribing a boundary condition at the solid boundary or a condition at
the porous-fluid interface. The method was validated for transitional flows
around a sphere and a hemisphere with grid convergence evaluations and
comparisons to the literature. This validation study showed the capabilities
of the present approach to accurately model flows past different types of bluff
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Figure 19: Effects of various thicknesses τ for case 3 on instantaneous vorticity magnitude
3D field for flow past a hemisphere at Re = 1000, with λ = 1 within the permeable region.

bodies.
In the second part of the paper, the method was applied to the design of

passive control strategies for flow past a hemisphere at Re = 300 and Re =
1000, consisting in adding porous coatings on the obstacle surface in order
to smooth the flow dynamics. The presence of a porous zone at the solid-
fluid interface is indeed responsible for a decrease of the shear forces and the
vorticity generation at the boundary layer, thus enabling wake stabilization
and drag reduction. From this flow control study, it turns out that the
drag force is rather sensitive to the permeability of the added porous coating
and that the location of the latter has a real impact on the drag reduction.
Among the control devices investigated in this work, one can retain the ”ring
inlay” configuration which only includes porous parts in the region of the
flow separation. With an appropriate choice of the permeability and the
thickness, this porous device represents a good compromise between control
efficiency and manufacturing constraints. Ongoing work consists in extending
the present study to higher Reynolds numbers using turbulence models.

In this paper we have considered control parameters that have axial sym-
metry. One may generalize this approach to control strategies which would
consist in porous coatings with variations in the azimuthal direction. In [41]
this technique has been used with success in combination with active control
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of a cylinder wake, with significant improvements over axisymmetric optimal
control strategies. Future works will therefore deal with a stability analysis
at transitional Reynolds numbers of the uncontrolled flow. This analysis will
help determining and reinforcing the physical mechanisms responsible for the
beneficial effects brought by the control.
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