
HAL Id: hal-01483315
https://hal.science/hal-01483315

Preprint submitted on 8 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Regular Metric Temporal Logic
Shankara Narayanan Krishna, Khushraj Madnani, Paritosh Pandya

To cite this version:
Shankara Narayanan Krishna, Khushraj Madnani, Paritosh Pandya. A Regular Metric Temporal
Logic. 2017. �hal-01483315�

https://hal.science/hal-01483315
https://hal.archives-ouvertes.fr

A Regular Metric Temporal Logic
Shankara Narayanan Krishna1, Khushraj Madnani1, and Paritosh
Pandya1

1 Dept of CSE, IIT Bombay, India
krishnas,khushraj@cse.iitb.ac.in

2 TIFR
pandya@tifr.res.in

Abstract
We study an extension of MTL in pointwise time with regular expression guarded modality
RegI(re) where re is a regular expression over subformulae. We study the decidability and ex-
pressiveness of this extension, called RegMTL, as well as its fragment SfrMTL where only star-free
extended regular expressions are allowed. Using the technique of temporal projections, we show
that RegMTL has decidable satisfiability by giving an equisatisfiable reduction to MTL. Moreover,
we identify a subset MITL[UReg] for which our (polynomial time computable) equi-satisfiable re-
duction gives rise to formulae of MITL. Thus, MITL[UReg] has elementary decidability. As our
second main result, we show that SfrMTL is equivalent to partially ordered (or very weak) 1-clock
alternating timed automata. We also identify natural fragments of logic TPTL which correspond
to our logics.

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

Temporal logics provide constructs to specify qualitative ordering between events in time.
Real time logics are quantitative extensions of temporal logics with the ability to specify
real time constraints amongst events. The main modality in Metric Temporal Logic (MTL)
is the until modality a UIb which, when asserted at a point specifies that there is a future
within a time distance in I where b holds, and a holds continuously till then. Two notions
of MTL have been studied in the literature : continuous and pointwise. It is known [1]
that satisfiability checking of MTL is undecidable in the continuous semantics even for finite
words, while for the pointwise case, this is decidable [10]. The complexity of the satisfiability
problem for MTL over finite timed words is known to be non-primitive recursive (NPR) in the
pointwise semantics, while if the intervals I allowed in the until modalities are non-punctual,
then the complexity drops to EXPSPACE in both the pointwise and continuous semantics.
The fragment of MTL with only non-punctual intervals is denoted MITL, and was introduced
in [1]. A non-punctual interval has the form 〈x, y〉 where x < y, x ∈ N, y ∈ N ∪ {∞}.

There are various natural extensions of temporal logics have been studied both in classical
and timed logic domain. Wolper extended LTL with certain grammar operators to achieve
MSO completeness. Baziramwabo, McKenzie and Thérien extended LTL with modular
and group modalities, and showed that the latter is as expressive as regular languages [2].
Counting LTL is an extension of LTL with threshold counting. It has been shown that this
extension does not increase the expressive power of LTL [6]. As another extension, LTL with
just modulo counting modalities has been studied by [7]. In timed logics, Raskin’s Ph.D
thesis studied various extensions of MITL with the ability to count over the entire model.
Rabinovich et. al. extended continuous MITL with counting (called the C modality) and
Pnueli modalities [13] and showed that these extensions are more expressive than MITL.
The counting modalities Cn(φ), specify that the number of points that satisfy φ within

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 A Regular Metric Temporal Logic

Figure 1 Big picture of the paper. The interval logic star-free MTL denoted SfrMTL is equi-
valent to the freeze logic 1− TPTL, which is equivalent to po−1-clock-ATA. All the logics in blue
have an elementary complexity, while SfMITL[UReg] is strictly more expressive than MITL, and
RegMITL[UReg] is more expressive than its star-free counterpart SfMITL[UReg].

the next unit interval is at least n. The Pnueli modality, Pnk
is a generalization of the

threshold counting modality : Pnk
(φ1, . . . , φk) specifies that there is an increasing sequence

of timestamps t1, . . . , tk in the next unit interval such that φi is true at ti.
Contributions This paper is on extensions of MTL in the point-wise semantics. Contri-

butions of this paper are as follows:
Generalizations: We generalize some of these extended modalities(Pnueli, modulo
counting) that has been studied in the literature with a RegI and URegI modality
which allows us to specify a regular expression over subformulae within some time
interval in the future. Let re(φ1, . . . , φk) be a regular expression over formulae φ1, . . . , φk.
The RegI(re(φ1, . . . , φk)) modality specifies that the pattern of the behaviour of the
subformulae, φ1, . . . , φk, in the time segment within interval I in the future is in accordance
with re(φ1, . . . , φk), while the ψ1URegI,re(φ1,...,φk)ψ2 modality asserts that there exist a
point j in the future within interval I where ψ2 is true, and at all the points strictly
between the present point and j, ψ1 is true and the behaviour of φ1, . . . , φk in this region
is in accordance with re(φ1, . . . , φk). This extension of MTL is denoted as RegMTL.
Satisfiability Checking: We show that RegMTL is decidable over finite timed words
with non primitive recursive complexity using the technique of oversampled temporal
projections. The check RegI(re) at each point in the timed word is taken care of by
annotating the timed word with an encoding of the runs of the DFA corresponding to
the re. We show that the runs of the automaton can be captured in a way requiring only
bounded amount of information, and that this can be captured in MTL, giving rise to an
equisatisfiable MTL formula.
Automata-Logic Connection and Expressiveness: We show that SfrMTL, the sub-
class of RegMTL where the regular expressions are star free, characterize exactly 1 clock
partially ordered alternating timed automata. If K is the maximum constant used in the
automaton, we show that the behaviour of each location of the automaton over time can
be asserted using LTL formulae over timed regions [0, 0], (0, 1), . . . , [K,K], (K,∞). This
enables us to assert the behaviour of the automaton starting at any location as a RegI(re)
formula where the re is captured by an LTL formula. This also implies that SfrMTL
is exactly equivalent to 1-TPTL (the most expressive decidable fragment of TPTL in

Krishna, Khushraj, Paritosh XX:3

pointwise semantics). This is the first such equivalence of logics with interval constraints
(SfrMTL) and freeze quantifications (1−TPTL) in pointwise semantics to the best of our
knowledge.
Complexity: We focus on non punctual fragments of RegMTL, and show that satisfiab-
ility with only UReg modality has a 2EXPSPACE upper bound, while, surprisingly, if one
considers a special case of the RegI modality which only specifies the parity of a proposi-
tion in the next unit interval (the iseven modality), the complexity is Fωω -hard. Finally
we also explore the complexity with UM, a restricted form of Ureg that allows to specify
only modulo counting constraints, and show its satisfiability to be EXPSPACE-complete.
It is important to note that in spite of being a special case, UM is exponentially more
succinct then UReg.
Novel Proof Techniques: The logic RegMTL uses modalities that can assert the truth
of a regular expression within a time interval. The satisfiability of RegMTL requires one
to check the truth of these regular expressions at arbitrary points of the model; we do this
by encoding the runs of the automaton corresponding to the regular expression starting
at each point in the model. We show that the information pertaining to the potentially
unbounded number of runs originating from the unboundedly many points of the model
can be stored using bounded memory, by merging the runs when they reach the same
state. This idea of merging the runs and encoding them in the model is new, to the best of
our knowledge. The other novelty in terms of proof techniques used is while proving that
RegMTL is at least as expressive as partially ordered 1-clock alternating timed automata.
The timed behaviours enforced by any state of the automaton is captured by writing LTL
formulae over the clock regions, and putting them together as RegMTL formulae RegI(re)
where the re is a star-free expression obtained corresponding to the LTL formula asserted
over clock region I.

2 Preliminaries

2.1 Timed Temporal Logics
We first describe the syntax and semantics of the timed temporal logics needed in this paper
: MTL and TPTL. Let Σ be a finite set of propositions. A finite timed word over Σ is a tuple
ρ = (σ, τ). σ and τ are sequences σ1σ2 . . . σn and t1t2 . . . tn respectively, with σi ∈ 2Σ − ∅,
and ti ∈ R≥0 for 1 ≤ i ≤ n and ∀i ∈ dom(ρ), ti ≤ ti+1, where dom(ρ) is the set of positions
{1, 2, . . . , n} in the timed word. Given Σ = {a, b}, ρ = ({a, b}, 0.8)({a}, 0.99)({b}, 1.1) is a
timed word. ρ is strictly monotonic iff ti < ti+1 for all i, i + 1 ∈ dom(ρ). Otherwise, it is
weakly monotonic. The set of finite timed words over Σ is denoted TΣ∗.

Metric Temporal Logic (MTL) extends linear temporal logic (LTL) by adding timing
constraints to the “until” modality of LTL. MTL is parameterized by using a permitted set
of open, half-open or closed time intervals, denoted by Iν. The end points of these intervals
are in N∪ {0,∞}. Such an interval is denoted 〈a, b〉. For example, [1, 6), [3,∞). For t ∈ R≥0
and interval 〈a, b〉, t+ 〈a, b〉 stands for the interval 〈t+ a, t+ b〉.

Metric Temporal Logic
Given a finite alphabet Σ, the formulae of MTL are built from Σ using boolean connectives
and time constrained version of the modality U as follows:
ϕ ::= a(∈ Σ) |true |ϕ ∧ ϕ | ¬ϕ | ϕ UIϕ, where I ∈ Iν. For a timed word ρ = (σ, τ) ∈ TΣ∗, a
position i ∈ dom(ρ) ∪ {0}, and an MTL formula ϕ, the satisfaction of ϕ at a position i of ρ

XX:4 A Regular Metric Temporal Logic

is denoted (ρ, i) |= ϕ, and is defined as follows:
ρ, i |= a ↔ a ∈ σi, ρ, i |= ¬ϕ ↔ ρ, i 2 ϕ
ρ, i |= ϕ1 ∧ ϕ2 ↔ ρ, i |= ϕ1 and ρ, i |= ϕ2
ρ, i |= ϕ1 UIϕ2 ↔ ∃j > i, ρ, j |= ϕ2, tj − ti ∈ I, and ρ, k |= ϕ1 ∀ i < k < j

We assume the existence of a special point called 0, outside dom(ρ). The time stamp
of this point is 0 (t0 = 0).1 ρ satisfies ϕ denoted ρ |= ϕ iff ρ, 1 |= ϕ. The language of a
MTL formula ϕ is L(ϕ) = {ρ | ρ, 0 |= ϕ}. Two formulae ϕ and φ are said to be equivalent
denoted as ϕ ≡ φ iff L(ϕ) = L(φ). Additional temporal connectives are defined in the
standard way: we have the constrained future eventuality operator ♦Ia ≡ true UIa and its
dual �Ia ≡ ¬♦I¬a. We also define the next operator as OIφ ≡ ⊥ UIφ. Weak versions of
operators are defined as ♦ns

I a = a ∨ ♦Ia,�ns
I a ≡ a ∧�Ia, a Uns

I b ≡ b ∨ [a ∧ (a UIb)] if 0 ∈ I,
and [a ∧ (a UIb)] if 0 /∈ I. Also, aWb is a shorthand for �a ∨ (a Ub). The subclass of MTL
obtained by restricting the intervals I in the until modality to non-punctual intervals is
denoted MITL.

I Theorem 1 ([10]). Satisfiability checking of MTL is decidable over finite timed words and
is non-primitive recursive.

Timed Propositional Temporal Logic (TPTL)
In this section, we recall the syntax and semantics of TPTL. A prominent real time extension
of linear temporal logic is TPTL, where timing constraints are specified with the help of
freeze clocks. The set of TPTL formulas are defined inductively as:
ϕ ::= a(∈ Σ) |true |ϕ ∧ ϕ | ¬ϕ | ϕ Uϕ | y.ϕ | y ∈ I
There is a set C of clock variables progressing at the same rate, y ∈ C, and I is an interval of
the form <a, b> a, b ∈ N with <∈ {(, [} and >∈ {],)}.

TPTL is interpreted over finite timed words over Σ. The truth of a formula is interpreted
at a position i ∈ N along the word. For a timed word ρ = (σ1, t1) . . . (σn, tn), we define the
satisfiability relation, ρ, i, ν |= φ saying that the formula φ is true at position i of the timed
word ρ with valuation ν of all the clock variables.
1. ρ, i, ν |= a ↔ a ∈ σi
2. ρ, i, ν |= ¬ϕ ↔ ρ, i, ν 2 ϕ
3. ρ, i, ν |= ϕ1 ∧ ϕ2 ↔ ρ, i, ν |= ϕ1 and ρ, i, ν |= ϕ2
4. ρ, i, ν |= x.ϕ ↔ ρ, i, ν[x← ti] |= ϕ

5. ρ, i, ν |= x ∈ I ↔ ti − ν(x) ∈ I
6. ρ, i, ν |= ϕ1 Uϕ2 ↔ ∃j > i, ρ, j, ν |= ϕ2, and ρ, k, ν |= ϕ1 ∀ i < k < j

ρ satisfies φ denoted ρ |= φ iff ρ, 1, 0̄ |= φ. Here 0̄ is the valuation obtained by setting all
clock variables to 0. We denote by k−TPTL the fragment of TPTL using at most k clock
variables. The fragment of TPTL with k clock variables is denoted k−TPTL.

MTL with Regular Expressions (RegMTL)
In this section, we introduce the extension of MTL with regular expressions, that forms the
core of the paper. These modalities can assert the truth of a regular expression within a
particular time interval with respect to the present point. For example, Reg(0,1)(ϕ1.ϕ2)∗

1 MTL cannot check the time stamp of the first action point

Krishna, Khushraj, Paritosh XX:5

when evaluated at a point i, asserts that either τi+1 ≥ τi + 1 (corresponds to ε) or, there
exist 2k points τi < τi1 < τi2 < · · · < τi2k

< τi+1, k > 0, 0 < τi+1 − τi < 1, such that ϕ1
evaluates to true at τi2j+1 , and ϕ2 evaluates to true at τi2j+2 , for all j ≥ 0.
RegMTL Syntax: Formulae of RegMTL are built from Σ (atomic propositions) as follows:
ϕ ::= a(∈ Σ) |true |ϕ ∧ ϕ | ¬ϕ | RegI re | ϕURegI,reϕ
re ::= ϕ | re.re | re + re | re∗ where I ∈ Iν.
An atomic regular expression re is any well-formed formula ϕ ∈ RegMTL. For a regular
expression re, let Γ be the set of all subformulae and their negations appearing in re. For
example, if re = aUReg(0,1),Reg(1,2)[Reg(0,1)b]b, then Γ consists of Reg(1,2)[Reg(0,1)b],Reg(0,1)b, b

and their negations.
Let Cl(Γ) denote consistent sets2 in P(Γ). L(re) is the set of strings over Cl(Γ) defined as
follows. Let S ∈ Cl(Γ).

L(re) =



{S | a ∈ S} if re = a,

{S | ϕ1, ϕ2 ∈ S} if re = ϕ1 ∧ ϕ2,

{S | ϕ /∈ S} if re = ¬ϕ,
L(re1).L(re2) if re = re1.re2,

L(re1) ∪ L(re2) if re = re1 + re2,

[L(re1)]∗ if re = (re1)∗.

If re is not an atomic regular expression, but has the form re1 + re2 or re1.re2 or (re1)∗,
then we use the standard definition of L(re) as L(re1) ∪ L(re2), L(re1).L(re2) and [L(re1)]∗
respectively.
RegMTL Semantics: For a timed word ρ = (σ, τ) ∈ TΣ∗, a position i ∈ dom(ρ) ∪ {0}, and a
RegMTL formula ϕ, we define the satisfaction of ϕ at a position i as follows.
1. ϕ = ϕ1URegI,reϕ2.

Consider first the case when re is any atomic regular expression. Let Γ be the set of
all subformulae appearing in re. For positions i < j ∈ dom(ρ), let Seg(Γ, i, j) denote
the untimed word over Cl(Γ) obtained by marking the positions k ∈ {i+ 1, . . . , j − 1}
of ρ with ψ ∈ Γ iff ρ, k |= ψ. Then ρ, i |= ϕ1URegI,reϕ2 ↔ ∃j>i, ρ, j|= ϕ2, tj − ti∈I,
ρ, k |= ϕ1 ∀i<k<j and, Seg(Γ, i, j) ∈ L(re), where L(re) is the language of the regular
expression re.

2. ϕ = RegI re. As above, let Γ be the set of all subformulae appearing in re. Then for a
position i∈dom(ρ) and an interval I, let TSeg(Γ, I, i) denote the untimed word over Cl(Γ)
obtained by marking all the positions k such that τk − τi ∈ I of ρ with ψ ∈ Γ iff ρ, k |= ψ.
Then ρ, i |= RegI re ↔ TSeg(Γ, I, i) ∈ L(re).

Example 1. Consider the formula ϕ = aUReg(0,1),ab∗b. Then re=ab∗ and Γ={a, b,¬a,¬b}.
For ρ=({a}, 0.1)({a}, 0.3)({a, b}, 1.01), ρ, 1 |= ϕ, since a∈σ2, b∈σ3, τ3−τ1∈(0, 1) and the
untimed word obtained at position 2 is a which is in L(ab∗).
For ρ = ({a}, 0.1)({a}, 0.3)({a}, 0.5)({a}, 0.9)({b}, 1.01), we know that ρ, 1 2 ϕ, since
the untimed word obtained is aaa /∈ L(ab∗). Example 2. Consider the formula ϕ =
Reg(0,1)[¬Reg(0,1)a]. Then Γ = {¬Reg(0,1)a,Reg(0,1)a, a,¬a}.
1. For the word ρ = ({a, b}, 0.1)({a, b}, 1.01)({a}, 1.2), TSeg(Γ, (0, 1), 1) = {a,Reg(0,1)a} is

the marking of position 2. ρ, 2 |= Reg(0,1)a since ρ, 3 |= a. Hence, ρ, 1 2 ϕ.
2. For ρ = ({a, b}, 0.1)({b}, 0.7)({a, b}, 1.01)({a}, 1.2), TSeg(Γ, (0, 1), 1)={b}.{a, b,Reg(0,1)a}.

ρ, 1 2 ϕ.

2 a set S is consistent iff ϕ ∈ S ↔ ¬ϕ /∈ S

XX:6 A Regular Metric Temporal Logic

3. Lastly, for ρ = ({a, b}, 0.1)({a, b}, 1.01)({b}, 1.2), we obtain ρ, 1 |= ϕ, since ρ, 3 2 a, and
hence position 2 is not marked Reg(0,1)a.

Example 3. Consider the formula ϕ = Reg(0,1)[Reg(0,1)a]∗.
For ρ = ({a, b}, 0.1)({a, b}, 0.8)({b}, 0.99)({a, b}, 1.5), we have ρ, 12Reg(0,1)[Reg(0,1)a]∗, since
point 2 is not marked Reg(0,1)a, even though point 3 is.

The language accepted by a RegMTL formula ϕ is given by L(ϕ) = {ρ | ρ, 0 |= ϕ}.

Subclasses of RegMTL
As a special subclass of RegMTL, we consider the case when the regular expressions do
only mod counting. With this restriction, the ϕURegI,reϕ modality is written as ϕUMI,θϕ

where θ has the form #ψ = k%n, while the RegI modality is written as MCk%n
I . In both

cases, k, n ∈ N and 0 ≤ k ≤ n − 1. This restriction of RegMTL, written MTLmod has the
form ϕ ::= a(∈ Σ) |true |ϕ ∧ ϕ | ¬ϕ | ϕ | MCk%n

I ϕ | ϕUMI,θϕ. The obvious semantics of
ρ, i |= MCk%n

I ϕ checks if the number of times ϕ is true in τi + I is M(n) + k, where M(n)
denotes a non-negative integer multiple of n, and 0 ≤ k ≤ n− 1. ρ, i |= ϕ1UMI,#ψ=k%nϕ2
checks the existence of j > i such that τj − τi ∈ I, and the number of times ψ is true in
between i, j is M(n) + k, 0 ≤ k ≤ n− 1.
Example 4. The formula ϕ = �ns(a → MC0%2

(0,1)b) says that whenever there is an a at a
time point t, the number of b’s in the interval (t, t + 1) is even. The formula ψ = (a →
trueUM(0,1),#b=0%2(a ∨ b)) when asserted at a point i checks the existence of a point j > i

such that a or b ∈ σj , τj − τi ∈ (0, 1), a ∈ σk for all i < k < j, and the number of points
between i, j where b is true is even.

The subclass of RegMTL using only the UReg modality is denoted RegMTL[UReg]. Like-
wise, the subclass of MTLmod with only UM is denoted MTLmod[UM], while MTLmod[MC]
denotes the subclass using just MC.

2.2 Temporal Projections
In this section, we discuss the technique of temporal projections used to show the satisfiability
of RegMTL. Let Σ, X be finite sets of propositions such that Σ ∩X = ∅.
(Σ, X)-simple extensions and Simple Projections: A (Σ, X)-simple extension is a timed word
ρ′ = (σ′, τ ′) over X ∪Σ such that at any point i ∈ dom(ρ′), σ′i∩Σ 6= ∅. For Σ={a, b}, X={c},
({a}, 0.2)({a, c}, 0.3)({b, c}, 1.1) is a (Σ, X)-simple extension while ({a}, 0.2)({c}, 0.3)({b}, 1.1)
is not. Given a (Σ, X)-simple extension ρ, the simple projection of ρ with respect to X, de-
noted ρ\X is the word obtained by deleting elements of X from each σi. For Σ={a, b}, X={c}
and ρ = ({a}, 0.1)({b}, 0.9)({a, c}, 1.1), ρ \X = ({a}, 0.1)({b}, 0.9)({a}, 1.1).
(Σ, X)-oversampled behaviours and Oversampled Projections: A (Σ, X)-oversampled beha-
viour is a timed word ρ′ = (σ′, τ ′) over X ∪ Σ, such that σ′1 ∩ Σ 6= ∅ and σ′|dom(ρ′)| ∩
Σ 6= ∅. Oversampled behaviours are more general than simple extensions since they al-
low occurrences of new points in between the first and the last position. These new
points are called oversampled points. All other points are called action points. For
Σ = {a, b}, X = {c}, ({a}, 0.2)({c}, 0.3)({b}, 0.7)({a}, 1.1) is a (Σ, X)-oversampled beha-
viour, while ({a}, 0.2)({c}, 0.3)({c}, 1.1) is not. Given a (Σ, X)-oversampled behaviour
ρ′ = (σ′, τ ′), the oversampled projection of ρ′ with respect to Σ, denoted ρ′ ↓ X is defined as
the timed word obtained by removing the oversampled points, and then erasing the symbols
of X from the action points. ρ=ρ′ ↓ X is a timed word over Σ.

A temporal projection is either a simple projection or an oversampled projection. We
now define equisatisfiability modulo temporal projections. Given MTL formulae ψ and φ, we

Krishna, Khushraj, Paritosh XX:7

say that φ is equisatisfiable to ψ modulo temporal projections iff there exist disjoint sets
X,Σ such that (1) φ is over Σ, and ψ over Σ ∪X, (2) For any timed word ρ over Σ such
that ρ |= φ, there exists a timed word ρ′ such that ρ′ |= ψ, and ρ is a temporal projection
of ρ′ with respect to X, (3) For any behaviour ρ′ over Σ ∪X, if ρ′ |= ψ then the temporal
projection ρ of ρ′ with respect to X is well defined and ρ |= φ.
If the temporal projection used above is a simple projection, we call it equisatisfiability modulo
simple projections and denote it by φ = ∃X.ψ. If the projection in the above definition is an
oversampled projection, then it is called equisatisfiability modulo oversampled projections and
is denoted φ ≡ ∃ ↓ X.ψ. Equisatisfiability modulo simple projections are studied extensively
[5, 12, 14]. It can be seen that if ϕ1 = ∃X1.ψ1 and ϕ2 = ∃X2.ψ2, with X1, X2 disjoint, then
ϕ1 ∧ ϕ2 = ∃(X1 ∪X2).(ψ1 ∧ ψ2) [8].

Unlike simple projections, when one considers oversampled projections, there is a need to
relativize the formula with respect to the original alphabet Σ to preserve satisfiability. As an
example, let φ = �(0,1)a be a formula over Σ = {a}, and let ψ1 = �(b↔ ¬a) ∧ (¬b U(0,1)b),
ψ2 = �(c↔ �[0,1)a) ∧ c be two formulae over Σ1 = Σ ∪ {b} and Σ2 = Σ ∪ {c} respectively.
Clearly, φ = ∃ ↓ {b}ψ1 and φ = ∃ ↓ {c}ψ2. However, φ 6= ∃ ↓ {b, c}(ψ1 ∧ ψ2), since the
non-action point b contradicts the condition �[0,1)a corresponding to c. However, if ψ1, ψ2
are relativized with respect to Σ1,Σ2 respectively, then we will not have this problem.
Relativizing ψ1, ψ2 with respect to Σ1,Σ2 gives Rel(ψ1,Σ1), Rel(ψ1,Σ2) as
�(act1→(b↔¬a))∧[(act1→¬b) U(0,1)(b∧act1)], and
�(act2 → (c↔ �[0,1)(act2 → a))) ∧ (act2 ∧ c).

This resolves the problem and indeed φ = ∃ ↓ {b, c}(Rel(ψ1,Σ1) ∧Rel(ψ2,Σ2)).

3 Satisfiability, Complexity, Expressiveness

The main results of this section are as follows.

I Theorem 2. 1. Satisfiability of RegMTL is decidable.
2. Satisfiability of MITLmod[UM] is EXPSPACE-complete.
3. Satisfiability of MITL[UReg] is in 2EXPSPACE.
4. Satisfiability of MITLmod[MC] is Fωω -hard.
We will use equisatisfiability modulo oversampled projections in the proof of Theorem
2. This technique is used to show the decidability of RegMTL, 2EXPSPACE-hardness of
RegMITL[UReg], and Ackermannian-hardness of MITLmod[MC]. The proof of Theorem 2.1
follows from Lemmas 4 and 5, and from Theorem 1. Details of Theorems 2.2, 2.3, 2.4 can be
found in Appendices B.2, B.3 and 3.3.

I Theorem 3. RegMTL[UReg] ⊆ RegMTL[Reg], MTLmod[UM] ⊆ MTLmod[MC].

Theorem 3 shows that the Reg modality can capture UReg (and likewise, MC captures UM).
Thus, RegMTL ≡ RegMTL[Reg]. The proofs can be seen in Appendix C.

3.1 Equisatisfiable Reduction
In this section, we describe the steps to obtain an equisatisfiable reduction from RegMTL
to MTL which shows that satisfiability checking of RegMTL is decidable. Starting from a
RegMTL formula ϕ, the following steps are taken.

1. Flattening. Each of the modalities RegI ,UReg that appear in the formula ϕ are re-
placed with fresh witness propositions to obtain a flattened formula. For example, if

XX:8 A Regular Metric Temporal Logic

ϕ = Reg(0,1)[aUReg(1,2),Reg(0,1)(a+b)∗b], then flattening yields �ns[w1 ↔ Reg(0,1)w2] ∧
�ns[w2 ↔ aUReg(1,2),w3b]∧�

ns[w3 ↔ Reg(0,1)(a+ b)∗], where w1, w2, w3 are fresh witness
propositions. Let W be the set of fresh witness propositions such that Σ ∩W = ∅. After
flattening, the modalities RegI ,UReg appear only within temporal definitions. Temporal
definitions are of the form �ns[a↔ RegIatom] or �ns[a↔ xURegI′,atomy], where atom is
a regular expression over Σ ∪W , W being the set of fresh witness propositions used in
the flattening, and I ′ is either a unit length interval or an unbounded interval.

2. Consider any temporal definition T and a timed word ρ over Σ ∪W . Each of the regular
expression atom has a corresponding minimal DFA recognizing it. We first construct
a simple extension ρ′ which marks each position of ρ using the run information from
the minimal DFA that accepts the regular expression atom. However, to check that
the regular expression atom holds good in a particular time interval from a point in
the timed word, we need to oversample ρ′ by introducing some extra points. Based
on this oversampling, each point of ρ′ can be marked a as a witness of RegIatom (or
xURegI′,atomy). The construction of the simple extension ρ′ is in section 3.2, while details
of the elimination of RegIatom, xURegI′,atomy using oversampling are in the lemmas 4
and 5.

3.2 Construction of Simple Extension ρ′

For any given ρ over Σ∪W , where W is the set of witness propositions used in the temporal
definitions T of the forms �ns[a ↔ RegIatom] or �ns[a ↔ xURegI′,atomy], we construct a
simple extension ρ′ that marks points of ρ with the run information of the minimal DFA
accepting atom. This results in the extended alphabet Σ ∪W ∪ Threads ∪Merge for ρ′. The
behaviour of Threads and Merge are explained below.

Let AP denote the (sub)set of propositions over which atom is defined. Let Aatom =
(Q, 2AP , δ, q1, QF) be the minimal DFA that accepts atom and let Q = {q1, q2, . . . , qm}. Let
In = {1, 2, . . . ,m} be the indices of the states. We have to mark every point i in dom(ρ′)
with a or ¬a depending on the truth of RegIatom or xURegI,atomy at i. To do this, we “run”
Aatom starting from each point i in dom(ρ′). At any point i of dom(ρ′), we thus have the
states reached in Aatom after processing the i − 1 prefixes of ρ′, and we also start a new
thread at position i. This way of book-keeping will lead to maintaining unbounded number
of threads of the run of Aatom. To avoid this, we “merge” threads i, j if the states reached
at points i, j are the same, and maintain the information of the merge. It can be seen then
that we need to maintain at most m distinct threads at each point, given m is the number of
states of Aatom. We mark the points in ρ′ with the state information on each thread and
the information about which threads are being merged (if any), with the following set of
propositions :
1. Let Thi(qx) be a proposition that denotes that the ith thread is active and is in state

qx, while Thi(⊥) be a proposition that denotes that the ith thread is not active. The set
Threads consists of propositions Thi(qx),Thi(⊥) for 1 ≤ i, x ≤ m.

2. If at a position e, we have Thi(qx) and Thj(qy) for i < j, and if δ(qx, σe) = δ(qy, σe), then
we can merge the threads i, j at position e+ 1. Let !(i, j) be a proposition that signifies
that threads i, j have been merged. In this case, !(i, j) is true at position e + 1. Let
Merge be the set of all propositions !(i, j) for 1 ≤ i < j ≤ m. At most m threads can be
running at any point e of the word.

We now describe the conditions to be checked in ρ′.
Initial condition- At the first point of the word, we start the first thread and initialize

Krishna, Khushraj, Paritosh XX:9

q1

q1

q1

q1

Th(1)
Th(2)
Th(3)
Th(4)

q2 q3 q4 q1

q2 q3 q4

q2 q3

q4

q2

q2×
Merge(1, 4)
×

q3

q3×
Merge(2, 3)

×

Figure 2 Encoding runs and merging of threads.

ci−1 cici−1 ci ci⊕uτv + l τv + u
τv Thi(q1)

¬Mrg(i)

M(i1, i)

¬Mrg(i1)

M(i2, i1) M(x, y)

¬Mrg(x)

Thj(qf)M(z, x)

¬Mrg(x)

Figure 3 Linking of Rpref and Rsuf .

all other threads as ⊥. This could be specified as ϕinit = ((Th1(q1)) ∧
∧
i>1

Thi(⊥)).

Initiating runs at all points- To check the regular expression within an arbitrary
interval, we need to start a new run from every point. ϕstart = �ns(

∨
i≤m

Thi(q1))

Disallowing Redundancy- At any point of the word, if i 6= j and Thi(qx) and Thj(qy)
are both true, then qx 6= qy.
ϕno−red =

∧
x∈In
�ns[¬

∨
1≤i<j≤m

(Thi(qx) ∧ Thj(qx))]

Merging Runs- If two different threads Thi,Thj(i < j) reach the same state qx on
reading the input at the present point, then we just keep one copy and merge thread
Thj with Thi. We remember the merge with the proposition !(i, j). We define a macro
Nxt(Thi(qx)) which is true at a point e if and only if Thi(qy) is true at e and δ(qy, σe) = qx,
where σe ⊆ AP is the maximal set of propositions true at e. Nxt(Thi(qx)) is true at e iff
thread Thi reaches qx after reading the input at e.
Nxt(Thi(qx))=

∨
(qy,prop)∈{(q,p)|δ(q,p)=qx}

[prop∧Thi(qy)].

Let ψ(i, j, k, qx) be a formula that says that at the next position, Thi(qx) and Thk(qx)
are true for k > i, but for all j < i, Thj(qx) is not. ψ(i, j, k, qx) is given by
Nxt(Thi(qx))∧

∧
j<i

¬Nxt(Thj(qx))∧Nxt(Thk(qx)). In this case, we merge threads Thi,Thk,

and either restart Thk in the initial state, or deactivate the kth thread at the next position.
This is given by the formula NextMerge(i, k)
O[!(i, k) ∧ (Thk(⊥) ∨ Thk(q1)) ∧ Thi(qx)]. ϕ! is defined as

∧
x,i,k∈In∧k>i

�ns[ψ(i, j, k, qx)→ NextMerge(i, k)]

Propagating runs- If Nxt(Thi(qx)) is true at a point, and if for all j < i, ¬Nxt(Thj(qx))
is true, then at the next point, we have Thi(qx). Let NextTh(i, j, qx) denote the formula
Nxt(Thi(qx)) ∧ ¬Nxt(Thj(qx)). The formula ϕpro is given by∧
i,j∈In∧i<j

�ns[NextTh(i, j, qx)→O[Thi(qx))∧¬! (i, j)]]. If Thi(⊥) is true at the current

point, then at the next point, either Thi(⊥) or Thi(q1). The latter condition corresponds
to starting a new run on thread Thi.

ϕNO−pro=
∧
i∈In
�ns{Thi(⊥)→O(Thi(⊥) ∨ Thi(q1))}

XX:10 A Regular Metric Temporal Logic

Once we construct the extension ρ′, checking whether the regular expression atom holds in
some interval I in the timed word ρ, is equivalent to checking that if a thread Thi is at q1 at
the first action point in I, then the corresponding thread is at qf at the last point in I. But
the main challenge is that the indices of a particular thread might change because of merges.
Thus the above condition reduces to checking that at the first action point u within I, if
Thi(q1) holds, then after a series of merges of the form !(i1, i),!(i2, i1), . . .! (j, in), at the
last point v in the interval I, Thj(qf) is true, for some final state qf . Note that the number
of possible sequences are bounded(and a function of size of the DFA). Figure 2 illustrates the
threads and merging. Let Run be the formula obtained by conjuncting all formulae explained
above. This captures the run information of Aatom. The formula Run then correctly captures
the run information on ρ.

We can easily write a 1- TPTL formula that will check the truth of Reg[l,u)atom at a
point v on the simple extension ρ′ (see Appendix A). However, to write an MTL formula
that checks the truth of Reg[l,u)atom at a point v, we need to oversample ρ′ as shown below.

I Lemma 4. Let T = �ns[a↔ RegIatom] be a temporal definition built from Σ ∪W . Then
we synthesize a formula ψ ∈ MTL over Σ ∪W ∪X such that T ≡ ∃ ↓ X.ψ.

Proof. Lets first consider the case when the interval I is bounded of the form [l, u). Starting
with the simple extension ρ′ having the information about the runs of Aatom, we explain the
construction of the oversampled extension ρ′′ as follows:

We first oversample ρ′ at all the integer timestamps and mark them with propositions in
C = {c0, . . . , cmax−1} where max is the maximum constant used in timing constraints of
the input formulae. An integer timestamp k is marked ci if and only if k = M(max) + i

where M(max) denotes a non-negative integral multiple of max and 0 ≤ i ≤ max− 1.
This can be done easily by the formula
c0∧

∧
i∈{0,...max−1}

�ns(ci → ¬♦(0,1)(
∨
C)∧♦(0,1]ci⊕1) where x⊕y is addition of x, y modulo

max.
Next, a new point marked ovs is introduced at all time points τ whenever τ − l or τ − u
is marked with

∨
Σ. This ensures that for any time point t in ρ′′, the points t+ l, t+ u

are also available in ρ′′.
After the addition of integer time points, and points marked ovs, we obtain the oversampled
extension (Σ ∪W ∪ Threads ∪Merge, C ∪ {ovs}) ρ′′ of ρ′.
To check the truth of Reg[l,u)atom at a point v, we need to assert the following: starting from
the time point τv + l, we have to check the existence of an accepting run R in Aatom such
that the run starts from the first action point in the interval [τv + l, τv + u), is a valid run
which goes through some possible sequence of merging of threads, and witnesses a final state
at the last action point in [τv + l, τv + u). To capture this, we start at the first action point
in [τv + l, τv + u) with initial state q1 in some thread Thi, and proceed for some time with
Thi active, until we reach a point where Thi is merged with some Thi1 . This is followed by
Thi1 remaining active until we reach a point where Thi1 is merged with some other thread
Thi2 and so on, until we reach the last such merge where some thread say Thn witnesses a
final state at the last action point in [τv + l, τv + u). A nesting of until formulae captures
this sequence of merges of the threads, starting with Thi in the initial state q1. Starting at v,
we have the point marked ovs at τv + l, which helps us to anchor there and start asserting
the existence of the run.

The issue is that the nested until can not keep track of the time elapse since τv + l.
However, note that the greatest integer point in [τv + l, τv + u) is uniquely marked with ci⊕u
whenever ci ≤ τv ≤ ci⊕1 are the closest integer points to τv. We make use of this by (i)

Krishna, Khushraj, Paritosh XX:11

asserting the run of Aatom until we reach ci⊕u from τv + l. Let the part of the run R that
has been witnessed until ci⊕u be Rpref . Let R = Rpref .Rsuf be the accepting run. (ii) From
τv + l, we jump to τv + u, and assert the reverse of Rsuf till we reach ci⊕u. This ensures that
R = Rpref .Rsuf is a valid run in the interval [τv + l, τv +u). Let Mrg(i) = [

∨
j<i

!(j, i)∨ ci⊕u].

We first write a formula that captures Rpref . Given a point v, the formula captures a
sequence of merges through threads i > i1 > · · · > ik1 , and m is the number of states of
Aatom.

Let ϕPref,k1 =
∨
m≥i>i1>···>ik1

MergeseqPref(k1) where MergeseqPref(k1) is the formula

♦[l,l]{¬(
∨

Σ ∨ ci⊕u) U[Thi(q1) ∧ (¬Mrg(i) U[!(i1, i)∧

(¬Mrg(i1) U[!(i2, i1) ∧ . . . (¬Mrg(ik1) Uci⊕u)])])]}

Note that this asserts the existence of a run till ci⊕u going through a sequence of merges
starting at τv + l. Also, Thik1

is the guessed last active thread till we reach ci⊕u which will
be merged in the continuation of the run from ci⊕u.

Now we start at τv + u and assert that we witness a final state sometime as part of some
thread Thik , and walk backwards such that some thread it got merged to ik, and so on, we
reach a thread Thic to which thread Thik1

merges with. Note that Thik1
was active when we

reached ci⊕u. This thread Thik1
is thus the “linking point” of the forward and reverse runs.

See Figure 3.
Let ϕSuf,k,k1 =

∨
1≤ik<···<ik1≤m

MergeseqSuf(k, k1) where MergeseqSuf(k, k1) is the for-
mula ♦[u,u]{¬(

∨
Σ∨ci⊕u)S[(Thik (qf))∧(¬Mrg(ik)S [!(ik, ik−1)∧(¬Mrg(ik−1)S[!(ik−1, ik−2)∧

· · ·! (ic, ik1) ∧ (¬Mrg(ik1) Sci⊕u)])])]}. For a fixed sequence of merges, the formula ϕk,k1 =∨
k≥k1≥1[MergeseqPref(k1)∧MergeseqSuf(k, k1)] captures an accepting run using the merge

sequence. Disjuncting over all possible sequences for a starting thread Thi, and disjuncting
over all possible starting threads gives the required formula capturing an accepting run. Note
that this resultant formulae is also relativized with respect to Σ and also conjuncted with
Rel(Σ,Run) (where Run is the formula capturing the run information in ρ′ as seen in section
3.2) to obtain the equisatisfiable MTL formula. Note that S can be eliminated obtaining an
equisatisfiable MTL[UI] formula modulo simple projections [12].

If I was an unbounded interval of the form [l,∞), then in formula ϕk,k1 , we do not
require MergeseqSuf(k, k1); instead, we will go all the way till the end of the word, and assert
Thik (qf) at the last action point of the word. Thus, for unbounded intervals, we do not need
any oversampling at integer points. J

I Lemma 5. Let T = �ns[a ↔ xURegI,rey] be a built from Σ ∪W . Then we synthesize a
formula ψ ∈ MTL over Σ ∪W ∪X such that T ≡ ∃ ↓ X.ψ.

Proof. We discuss the case of bounded intervals here; the unbounded interval case can be
seen in Appendix B. The proof technique is very similar to Lemma 4. The differences that
arise are as below.
1. Checking re in RegI re at point v is done at all points j such that τj − τv ∈ I. To ensure

this, we needed the punctual modalities ♦[u,u],♦[l,l]. On the other hand, to check URegI,re
from a point v, the check on re is done from the first point after τv, and ends at some
point within [τv + l, τv + u). Assuming τv lies between integer points ci, ci⊕1, we can
witness the forward run in MergeseqPref from the next point after τv till ci⊕1, and for
the reverse run, go to some point in τv + I where the final state is witnessed, and walk
back till ci⊕1. The punctual modalities are hence not required and we do not need points
marked ovs.

XX:12 A Regular Metric Temporal Logic

2. The formulae MergeseqPref(k1), MergeseqSuf(k, k1) of the lemma 4 are replaced as follows:
MergeseqPref(k1) : {¬(

∨
Σ ∨ ci⊕1) U[Thi(q1) ∧ (¬Mrg(i) U[!(i1, i) ∧ (¬Mrg(i1) U

[!(i2, i1) ∧ . . . (¬Mrg(ik1) Uci⊕1)])])]}.
MergeseqSuf(k, k1) : ♦I{[(Thik (qf))∧(¬Mrg(ik)S [!(ik, ik−1)∧(¬Mrg(ik−1)S[!(ik−1, ik−2)∧
· · ·! (ic, ik1) ∧ (¬Mrg(ik1) Sci⊕1)])])]}

The above takes care of re in xURegI,rey : we also need to say that x holds continously from
the current point to some point in I. This is done by pushing x into re (see the translation of
ϕ1URegI,reϕ2 to RegI re′ in Appendix C). The resultant formulae is relativized with respect
to Σ and also conjuncted with Rel(Σ,Run) to obtain the equisatisfiable MTL formula. J

The equisatisfiable reduction in Lemma 5 above hence gives an elementary upper bound
for satisfiability checking when we work on MITL with UReg, since after elimination of
UReg, we obtain an equisatisfiable MITL formula. This is very interesting since it shows an
application of the oversampling technique : without oversampling, we can eliminate UReg
using 1-TPTL as shown in Appendix A. However, 1-TPTL does not enjoy the benefits of
non-punctuality. In particular, Appendix F.2 shows that non punctual 1-TPTL is already
non-primitive recursive.

3.3 Complexity
In this section, we discuss the complexity of MITLmod[MC], proving Theorem 2.4. To prove
this, we obtain a reduction from the reachability problem of Insertion Channel Machines
with Emptiness Testing (ICMET). We now show how to encode the reachability problem of
ICMET in MITLmod[MC].

ICMET

A channel machine is a tuple A = (S,M,∆, C) where S is a finite set of states, M is a finite
channel alphabet, C is a finite set of channel names, and ∆ ⊆ S ×Op× S is the transition
relation, where Op = {c!a, c?a, c = ε | c ∈ C, a ∈M} is the set of transition operations. c!a
corresponds to writing message a to the tail of channel c, c?a denotes reading the message a
from the head of channel c, and c = ε tests channel c for emptiness.

We first define error-free channel machines. Given A as above, a configuration of A is a
pair (q, U) where q ∈ S and U ∈ (M∗)C gives the contents of each channel. Let Conf denote
the configurations of A. The rules in ∆ induce an Op-labelled transition relation on Conf, as
follows.
(a) (q, c!a, q′) ∈ ∆ yields a transition (q, U) c!a−→ (q′, U ′) where U ′(c) = U(c).a, and U ′(d) =

U(d) for d 6= c.
(b) (q, c?a, q′) ∈ ∆ yields a transition (q, U) c?a−→ (q′, U ′) where U(c) = a.U ′(c), and U ′(d) =

U(d) for d 6= c.
(c) (q, c = ε, q′) ∈ ∆ yields a transition (q, U) c=ε−→ (q′, U ′) provided U(c) is the empty word.

All other channel contents remain the same.
If the only transitions allowed are as above, then we call A an error-free channel-machine.
Error-free channel machines are Turing-powerful. We now look at channel machines with
insertion errors. These augment the transition relation on Conf with the following rule:

(d) Insertion errors are then introduced by extending the transition relation on global states
with the following clause: if (q, U) α−→ (q′, V), and if U ′ v U and V v V ′, then
(q, U ′) α−→ (q′, V ′). U ′ v U if U ′ can be obtained from U by deleting any number of
letters.

Krishna, Khushraj, Paritosh XX:13

The channel machines as above are called ICMET. A run of an ICMET is a sequence of
transitions γ0

op0→ γ1 · · ·
opn−1→ γn . . . that is consistent with the above operational semantics.

Consider any ICMET C = (S,M,∆, C), with set of states S = {s0, . . . , sn} and channels
C = {c1, . . . , ck}. Let M be a finite set of messages used for communication in the channels.

We encode the set of all possible configurations of C, with a timed language over the
alphabet Σ = Ma ∪Mb ∪∆ ∪ S ∪ {H}, where Ma = {ma|m ∈M} Mb = {mb|m ∈M}, and
H is a new symbol.

1. The jth configuration for j ≥ 0 is encoded in the interval [(2k + 2)j, (2k + 2)(j + 1)− 1)
where k refers to number of channels.

2. At time (2k + 2)j + (2k − 1), the current state sw of the ICMET at configuration j is
encoded by the truth of the proposition sw.

3. The jth configuration begins at the time point (2k + 2)j. At a distance [2i− 1, 2i] from
this point, 1 ≤ i ≤ k, the contents of the ith channel are encoded as shown in the point 7.
The intervals of the form (2i, 2i+ 1), 0 ≤ i ≤ k + 1 from the start of any configuration
are time intervals within which no action takes place.

4. Lets look at the encoding of the contents of channel i in the jth configuration. Let
mhi

be the message at the head of the channel i. Each message mi is encoded using
consecutive occurrences of symbols mi,a and mi,b. In our encoding of channel i, the first
point marked mhi,a in the interval (2k+ 2)j + [2i− 1, 2i] is the head of the channel i and
denotes that mhi

is the message at the head of the channel. The last point marked mti,b

in the interval is the tail of the channel, and denotes that message mti is the message
stored at the tail of the channel.

5. Exactly at 2k + 1 time units after the start of the jth configuration, we encode the
transition from the state at the jth configuration to the (j + 1)st configuration (starts
at (2k + 2)(j + 1)). Note that the transition has the form (s, c!m, s′) or (s, c?m, s′) or
(s, c = ε, s′).

6. We introduce a special symbol H, which acts as separator between the head of the
message and the remaining contents, for each channel.

7. A sequence of messages w1w2w3 . . . wz in any channel is encoded as a sequence
w1,aw1,bHw2,aw2,bw3,aw3,b . . . wz,awz,b.

Let S =
∨n
i=0 si denote the states of the ICMET, α =

∨m
i=0 αi, denote the transitions

αi of the form (s, c!m, s′) or (s, c?m, s′) or (s, c = ε, s′). Let action = true and let Ma =∨
mx∈M (mx,a), Mb =

∨
mx∈M (mx,b), with M = Ma ∨Mb.

1. All the states must be at distance 2k + 2 from the previous state (first one being at 0)
and all the propositions encoding transitions must be at the distance 2k + 1 from the
start of the configuration.
ϕS=s0∧�[S ⇒ {♦(0,2k+2](S)∧�(0,2k+2)(¬S)∧♦(0,2k+1]α∧�[0,2k+1)(¬α)∧♦(2k+1,2k+2)(¬α)}]

2. All the messages are in the interval [2i− 1, 2i] from the start of configuration. No action
takes place at (2i− 2, 2i− 1) from the start of any configuration.
ϕm=�{S⇒

∧k
i=1�[2i−1,2i](M∨H)∧ �(2i−2,2i−1)(¬action)}

3. Consecutive source and target states must be in accordance with a transition α. For
example, sj appears consecutively after si reading αi iff αi is of the form (si, y, sj) ∈ ∆,
with y ∈ {ci!m, ci?m, ci = ∅}.
ϕ∆=

∧
s,s′∈S �{(s∧♦(0,2k+2]s

′)⇒(♦(0,2k+1]
∨

∆s,s′)} where ∆s,s′ are possible αi between
s, s′.

XX:14 A Regular Metric Temporal Logic

4. We introduce a special symbol H along with other channel contents which acts as a
separator between the head of the channel and rest of the contents. Thus H has following
properties

There is one and only one time-stamp in the interval (2i− 1, 2i) from the start of the
configuration where H is true. The following formula says that there is an occurrence
of a H:
ϕH1=�[(S∧♦(2i−1,2i)M)⇒(

∧k
i=1 ♦(2i−1,2i)(H))]

The following formula says that there can be only one H: ϕH2=�(H⇒¬♦(0,1)H)
Every message mx is encoded by truth of proposition mx,a immediately followed by
mx,b. Thus for any message mx, the configuration encoding the channel contents has
a sub-string of the form (mx,amx,b)∗ where mx is some message in M .
ϕm=�[mx,a⇒O(0,1]mx,b]∧�[mx,b⇒O(0,1)Ma ∨O(

∨
∆ ∨H)]∧(¬Mb UMa)

If the channel is not empty (there is at least one messagemamb in the interval (2i−1, 2i)
corresponding to channel i contents) then there is one and only one mb before H. The
following formula says that there can be at most one mb before H.
ϕH3=�[¬{Mb ∧ ♦(0,1)(Ma ∧ ♦(0,1)H)}]

The following formula says that there is one Mb before H in the channel, if the channel
is non-empty.
ϕH4=�[S⇒{

∧k
j=1(♦[2j−1,2j](Mb)⇒ ♦[2j−1,2j](Mb ∧ ♦(0,1)H))}]

Let ϕH=ϕH1 ∧ ϕH2 ∧ ϕH3 ∧ ϕH4 .
5. Encoding transitions:

We first define a macro for copying the contents of the ith channel to the next
configuration with insertion errors. If there were some mx,a,mx,b at times t, t′, mx,b is
copied to t′′ + 2k + 2 (where t′′ ∈ [t, t′)), representing the channel contents in the next
configuration. This is specified by means of an even count check.

From any 3 consecutive points u, v, w such that mx,a and mx,b are true at v and
w, respectively, if there are even (or odd) number of mx,b within (0, 2k + 2) from
both v and w , then there must be odd number of mx,b’s within time interval
[τv + 2k + 2, τw + 2k + 2]. Thus there must be at least one mx,b copied from the
point w to some point in the interval [τv + 2k+ 2, τw + 2k+ 2]. The rest of the even
number of erroneous mx,b in [τv + 2k + 2, τw + 2k + 2], along with the arbitrary
insertion errors within [τu + 2k + 2, τv + 2k + 2] models the insertion error of the
ICMET. The formula copyg is as follows.

�[2g−1,2g][
∧
mx∈M (mx,a∧iseven(0,2k+2)(mx,b))⇒O(iseven(0,2k+2)(mx,b))]

∧�[2i−1,2i][
∧
mx∈M (mx,a∧¬iseven(0,2k+2)(mx,b))⇒O(¬iseven(0,2k+2)(mx,b))]

If the transition is of the form ci = ε. The following formulae checks that there are
no events in the interval (2i − 1, 2i) corresponding to channel i, while all the other
channel contents are copied.

ϕci=ε=S ∧�(2i−1,2i)(¬action)∧
k∧
g=1

copyg

If the transition is of the form ci!mx where m ∈ M . An extra message is appended
to the tail of channel i, and all the mamb’s are copied to the next configuration.
Mb ∧�(0,1)(¬M)) denotes the last time point of channel i; if this occurs at time t, we
know that this is copied at a timestamp strictly less than 2k + 2 + t.Thus we assert
that truth of ♦(2k+2,2k+3)mx,b at t.

ϕci!m=S∧
k∧
g=1

copyg∧♦[2i−1,2i){(M∧�(0,1)(¬M))⇒(♦(2k+2,2k+3)(mx,b))}

Krishna, Khushraj, Paritosh XX:15

If the transition is of the form ci?m where m ∈M . The contents of all channels other
than i are copied to the intervals encoding corresponding channel contents in the next
configuration. We also check the existence of a first message in channel i; such a
message has a H at distance (0, 1) from it.

ϕci?mx
=S∧

k∧
j 6=i,g=1

copyg∧♦(2i−1,2i){mx,b∧♦(0,1)(H)}∧�[2i−1,2i][
∧
mx∈M (mx,a∧

iseven(0,2k+2)(mx,b)∧¬♦(0,1)H)⇒O(iseven(0,2k+2)(mx,b))]∧
�[2i−1,2i][

∧
mx∈M (mx,a∧¬iseven(0,2k+2)(mx,b)∧¬♦(0,1)H)⇒O(¬iseven(0,2k+2)(mx,b))]

6. Channel contents must change in accordance to the relevant transition. Let L be a set of
labels (names) for the transitions. Let l ∈ L and αl be a transition labeled l.

ϕC = �[S ⇒
∧
l∈L(♦(0,2k+1](

∨
αl ⇒ φl))]

where φl are the formulae as seen in 5.
7. Let t be a state of the ICMET whose reachability we are interested in. Check st is

reachable from s0.
φreach = ♦(st)
Thus the formula encoding ICMET is:

ϕ3 = ϕS ∧ ϕ∆ ∧ ϕm ∧ ϕH ∧ ϕC ∧ ϕreach

4 Main Equivalences

In this section, we discuss the two equivalences : the equivalence between po-1-clock ATA
and 1−TPTL, and that between po-1-clock ATA and SfrMTL. SfrMTL is the fragment of
RegMTL where the regular expressions are all star-free. This gives the equivalence between
1−TPTL and SfrMTL.

4.1 Automaton-Logic Characterization
In this section, we show that partially ordered 1-clock alternating timed automata (po-1-clock
ATA) capture exactly the same class of languages as 1−TPTL. We also show that 1−TPTL
is equivalent to the class RegMTL where the regular expressions re involved in the formulae
are star-free. We denote by SfrMTL this subclass RegMTL. This also shows for the first time
in pointwise timed logics, an equivalence between freeze point logics and logics with interval
constraints.

A 1-clock ATA [10] is a tuple A = (Σ, S, s0, F, δ), where Σ is a finite alphabet, S is a
finite set of locations, s0 ∈ S is the initial location and F ⊆ S is the set of final locations.
Let x denote the clock variable in the 1-clock ATA, and x ./ c denote a clock constraint
where c ∈ N and ./∈ {<,≤, >,≥}. Let X denote a finite set of clock constraints of the form
x ./ c. The transition function is defined as δ : S × Σ→ Φ(S ∪ Σ ∪X) where Φ(S ∪ Σ ∪X)
is a set of formulae defined by the grammar below. Let s ∈ S. The grammar is defined as

ϕ ::= >|⊥|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2|s|x ./ c|x.ϕ

x.ϕ is a binding construct correspinding to resetting the clock x to 0.
The notation Φ(S∪Σ∪X) thus allows boolean combinations as defined above of locations,

symbols of Σ, clock constraints and >,⊥, with or without the binding construct (x.). A
configuration of a 1-clock ATA is a set consisting of locations along with their clock valuation.
Given a configuration C, we denote by δ(C, a) the configuration D obtained by applying
δ(s, a) to each location s such that (s, ν) ∈ C. A run of the 1-clock ATA starts from the

XX:16 A Regular Metric Temporal Logic

initial configuration {(s0, 0)}, and proceeds with alternating time elapse transitions and
discrete transitions obtained on reading a symbol from Σ. A configuration is accepting iff it
is either empty, or is of the form {(s, ν) | s ∈ F}. The language accepted by a 1-clock ATA
A, denoted L(A) is the set of all timed words ρ such that starting from {(s0, 0)}, reading ρ
leads to an accepting configuration. A po-1-clock ATA is one in which

there is a partial order denoted ≺ on the locations, such that whenever sj appears in
Φ(si), sj ≺ si, or sj = si. Let ↓ si = {sj | sj ≺ si}.
x.s does not appear in δ(s, a) for all s ∈ S, a ∈ Σ.

Example. ConsiderA = ({a, b}, {s0, sa, s`}, s0, {s0, s`}, δ) with transitions δ(s0, b) = s0, δ(s0, a) =
(s0 ∧ x.sa) ∨ s`, δ(sa, a) = (sa ∧ x < 1) ∨ (x > 1) = δ(sa, b), and
δ(s`, b) = s`, δ(s`, a) = ⊥. The automaton accepts all strings where every non-last a has no
symbols at distance 1 from it. Note that this is a po-1-clock ATA.

I Lemma 6. po-1-clock ATA and 1−TPTL are equivalent in expressive power.

4.1.1 po-1-clock ATA to 1−TPTL
In this section, we explain the algorithm which converts a po-1-clock ATA A into a 1−TPTL
formula ϕ such that L(A) = L(ϕ). The translation from 1−TPTL to po-1-clock ATA is easy,
as in the translation from MTL to po-1-clock ATA. We illustrate the key steps of the reverse
direction, and apply it on the example above, while the step by step details can be seen in
Appendix D. There are 4 main steps.
1. In step 1, we write each transition δ(s, a) into a disjunction C1 ∨ C2 or C1 or C2, where

C1 = s ∧ ϕ1, with ϕ1 ∈ Φ(↓ s ∪ {a} ∪X), and C2 = ϕ2, where ϕ2 ∈ Φ(↓ s ∪ {a} ∪X).
2. In step 2, we combine all transitions possible from a location s by disjuncting them, and

denote the resultant as ∆(s). In the example above, we obtain
∆(s0) = s0 ∧ [(a ∧ x.sa)) ∨ b] ∨ (a ∧ s`).

3. In step 3, we take the first step towards obtaining a 1−TPTL formula corresponding to
each location, by replacing all locations s′ appearing in ∆(s) with Os′. This is denoted
N (s). Continuing with the example, we obtain N (s0) = Os0∧ [(a∧x.Osa))∨b]∨(a∧Os`),
N (sa) = (Osa ∧ x < 1) ∨ (x > 1), N (s`) = Os` ∧ b.

4. In the last step, we solve each N (s) starting with the lowest location in the partial order.
We make use of the fact that for the lowest locations sn in the partial order, we have
N (sn) = (Osn ∧ ϕ1) ∨ ϕ2, where ϕ1, ϕ2 ∈ Φ(Σ, X). Hence, a solution to this, denoted
F (sn) is ϕ1 Wϕ2 if sn is an accepting location, and as ϕ1 Unsϕ2 if sn is non-accepting.
This is recursively continued as we go up the partial order, where each N (si) has the
form (Osi ∧ ϕ1) ∨ ϕ2 such that F (s′) is computed for all locations s′ appearing in ϕ1, ϕ2.
Solving for si is then similar to that of sn. F (s0) then gives the TPTL formula that we
are looking for.
In our example, F (s`) = �nsb, F (sa)=x < 1 Unsx > 1. Finally, F (s0) = [(a∧x.OF (sa))∨
b] W(a ∧ OF (s`)) as ((a ∧ (x.O[(x < 1) Unsx > 1])) ∨ b) W(a ∧ O�nsb).

4.2 1−TPTL and SfrMTL
In this section, we prove the following result.

I Theorem 7. 1−TPTL and SfrMTL are equivalent.

The proof uses Lemmas 8 and 9. We first show that starting from a SfrMTL formula ϕ, we
can construct an equivalent 1−TPTL formula ψ.

Krishna, Khushraj, Paritosh XX:17

I Lemma 8. SfrMTL ⊆ 1− TPTL

The proof can be found in Appendix E. We illustrate the technique on an example here.
Example. Consider ϕ = Reg(0,1)[Reg(1,2)(a+b)∗]. We first obtain Reg(0,1)(w(0,1)∧[Reg(1,2)(a+
b)∗]), followed by Reg(0,1)(w(0,1) ∧ w) where w is a witness for Reg(1,2)(a+ b)∗. This is then
rewritten as Reg((w(0,1) ∧w).(¬w(0,1))∗), and subsequently as Reg((x ∈ (0, 1)∧w)∧�[¬(x ∈
(0, 1)])). This is equivalent to x.[x ∈ (0, 1) ∧ w ∧ �[¬(x ∈ (0, 1)]]. Now we replace w, and
do one more application of this technique to obtain the formula x.[x ∈ (0, 1) ∧ [x.(ψ ∧ x ∈
(1, 2)∧�[¬(x ∈ (1, 2))])]∧�[¬(x ∈ (0, 1))]], where ψ is the LTL formula equivalent to (a+ b)∗.

4.3 po-1-clock ATA to SfrMTL
I Lemma 9. Given a po-1-clock ATA A, we can construct a SfrMTL formula ϕ such that
L(A) = L(ϕ).

Let A be a po-1-clock ATA with locations S = {s0, s1, . . . , sn}. Let K be the maximal con-
stant used in the guards x ∼ c occurring in the transitions. The idea of the proof is to partition
the behaviour of each location si across the regionsR0=[0, 0], R1=(0, 1), . . . , R2K=[K,K], R+

K=(K,∞)
with respect to the last reset of the clock. Let R denote the set of regions. Let Rh < Rg
denote that the region Rh comes before Rg.

The behaviour in each region is captured as an LTL formula that is invariant in each
region. From this, we obtain an SfrMTL formula that represents the behaviour starting from
each region while at location s. The fact that the behaviours are captured by LTL formulae
asserts the star-freeness of the regular expressions in the constructed RegMTL formulae. In
the following, we describe this construction step by step. Let a behaviour distribution (BD)
be described as a sequence of length 2K + 1 of the form [ϕ0, ϕ1, . . . , ϕ2K] where each ϕi is a
LTL formula (which does not evaluate to false) that is asserted in region Ri. For any location
s in A, and a region R we define a function that associates a set of possible behaviours.
As seen in section 4.1.1, assume that we have computed F (s) for all locations s. Let
F (S) = {F (s) | s ∈ S}. Let B(F (S)) represent the boolean closure of F (S) (we require only
conjunctions and disjunctions of elements from F (S)). We define Beh : B(F (S))×R → 2BD.
Intuitively, Beh(F (s), Ri) provides all the possible behaviours in all the regions of R, while
asserting F (s) at any point in Ri. Thus, Beh(F (s), Ri) = {[ϕg,0, . . . , ϕg,2K] | 1 ≤ g ≤ α},
where α is a number that depends on the number of locations and the transitions of A and
the maximal constant K. Now we describe the construction of Beh(F (s), Ri). If s is the
lowest in the partial order, then F (s) has the form ϕ1 Wϕ2 or ϕ1 Unsϕ2, where ϕ1, ϕ2 are
both disjunctions of conjunctions over Φ(Σ, X). Each conjunct has the form ψ ∧ x ∈ I where
ψ ∈ Φ(Σ) and I ∈ R.

Let s be a lowest location in the partial order. F (s) then has the form
ϕ=[(P1 ∧C1)∨ (P2 ∧C2) . . . (Pn ∧Cn)](U|W)[(Q1 ∧E1)∨ (Q2 ∧E2) . . . (Qm ∧Em)]

where Pi and Qj are propositional formulae in Φ(Σ) and Ci and Ej are clock constraints.
Without loss of generality, we assume that clock constraints are of the form x ∈ Ry,
where Ry ∈ R, and that no two Ci and no two Ej are the same. We now construct
Beh(F (s), R) for F (s).
1. Beh(F (s), Ri) = ∅ if and only if there are no constraints x ∈ Ri in F (s). This is

because F (s) does not allow any behaviour within Ri and Beh(F (s), Ri) asserts the
behaviour when the clock valuation lies in Ri.
Consider an Ej = x ∈ Ry with Ry ≥ Ri. For each such Ej , a behaviour BD is added
to the set Beh(F (s), Ri) as follows.

XX:18 A Regular Metric Temporal Logic

Assume that there exist some k such that Ej = Ck. In this case, the LTL formulae
that is satisfied in region Ry is Pk(U|W)Qj . Thus the yth element of the sequence
is Pk(U|W)Qj .
Assume that there is no Ck such that Ej = Ck. Then the LTL formula that is
satisfied in Ry is Qj . Thus the yth element of the sequence is Qj . For every sequence
that has Ry as one of the above, we have:
∗ The assertion in all regions < Ri is > as there is no restriction on the region before

the present point, since we only consider future temporal modalities. Similarly
the formulae in regions Rz > Ry are also set to > as there are no restrictions on
the behaviour once we come out of the state s.

∗ For all Cg = x ∈ Rw, where Ry > Rw > Ri, the region Rw will satisfy �nsPg ∨
�ns⊥. Thus the assertion in Rg in every sequence is �nsPg or �ns⊥, depending on
whether or not we have points lying in Rg. Recall that �ns⊥ is the LTL formula
whose only model is the empty word ε. If for some Cg such that Ej 6= Cg and
Cg = x ∈ Ri, then in region Ri, we assert �nsPg. Thus the ith entry is �nsPg.

∗ Note that all the remaining regions (if any), are between i and y. There is no
behaviour allowed at this point. At these points �ns⊥ is true as only the empty
string is accepted.

Boolean combinations of Beh- Given two locations s1, s2, with F (s1) = ϕ1 and
F (s2) = ϕ2, we construct Beh(F (s1), R) and Beh(F (s2), R) as shown above for all R ∈ R.
Given these Beh’s we now define boolean operations ∧ and ∨ on these sets, such that
Beh(ϕ1, R) ∧ Beh(ϕ2, R) = Beh(ϕ1 ∧ ϕ2, R).
1. For every Ri ∈ R, we first take the cross product Beh(ϕ1, Ri)×Beh(ϕ2, Ri), obtaining

a set consisting of ordered pairs of BDs. All the possible behaviours of ϕ1 ∧ϕ2 starting
in region Ri is equivalent to the conjunction of all possible behaviours of ϕ1 conjuncted
with all the possible behaviours of ϕ2.

2. For every pair (BD1,BD2)∈Beh(ϕ1, Ri)×Beh(ϕ2, Ri), construct a behaviour BD′ ∈
Beh(ϕ1 ∧ ϕ2, Ri) such that the ith entry of BD′ is equal to the conjunction of the
ith entry of BD1 with that of BD2. This will ensure that we take all the possible
behaviours of F (s1) at region Ri and conjunct it with all the possible behaviours of
F (s2) in the same region. In a similar way we can also compute the Beh(ϕ1 ∨ ϕ2, R).

Elimination of nested Beh: Given any F (s) of the form

ϕ=[(P1 ∧C1)∨ (P2 ∧C2) . . . (Pn ∧Cn)](U|W)[(Q1 ∧E1)∨ (Q2 ∧E2) . . . (Qm ∧Em)]

with Pi, Qj ∈ Φ(Σ ∪ OS), and Ci, Ej being clock constraints of the form x ∈ R. Assume
that we have calculated Beh(F (si), R) for all si ∈↓ s. We construct Beh(F (s), R) as
shown above. After the construction, there might be some propositions of the form O(sj)
as a conjunct in some of the BD’s in Beh(F (s), R). This occurrence of sj is eliminated by
stitching Beh(F (sj)) with BD as follows:
1. Given a sequence BD=[X0, . . . , Xg−1, Qj ∧ O(Tj), Xg+1, . . . , X2K], we show how to

eliminate Tj in the gth entry.
2. There are 2K − g + 1 possibilities, depending on which region ≥ g the next point lies

with respect to Qj ∧ O(Tj).
3. Suppose the next point can be taken in Rg itself. This means that from the next

point, all the possible behaviours described by Beh(F (Tj), Rg) would apply along
with the behaviour in this sequence BD. Thus, we first take a cross product BD ×
Beh(F (Tj), Rg) which will give us pairs of sequences of the form [X0, . . . , Xg−1, Qj ∧
O(Tj), Xg+1, . . . , X2K], [Y0, . . . , Y2K]. We define a binary operation combine which
combines two sequences. Let [X ′0, . . . , X ′2K] denote the combined sequence. To combine

Krishna, Khushraj, Paritosh XX:19

the behaviours from the point where Tj was called, we substitute Tj with the LTL
formula asserted at region Rg in Beh(F (Tj), Rg). This is done by replacing Tj with Yg.
For all w < g, X ′w = Xw. For all w > g, X ′w = Xw ∧ Yw. Let the set of BDs obtained
thus be called Seqg.

4. Now consider the case when the next point is taken a region > Rg. In this case, we
consider all the possible regions from Rg+1 onwards. For every b ∈ {g + 1, . . . , 2K}
we do the following operation: we first take the cross product of [X0, . . . , Xg−1, Qj ∧
O(Tj), Xg+1, . . . , X2K] and Beh(F (Tj), Rb). Consider any pair of sequences [X0, . . . , Xg−1, Qj∧
O(Tj), Xg+1, . . . , X2K], [Y0, . . . , Y2K]. We define an operation stitch(b) on this pair
which gives us a sequence [X ′0, . . . , X ′2K]. For all w < g, X ′w = Xw. For w = g,
X ′w = Qj . For all b > w > g, X ′w = Xw ∧ �ns⊥. This implies the next point
from where the assertion Qj ∧ O(Tj) was made is in a region ≥ Rb. For all w ≥ b,
X ′w = Xw ∧ Yw. This combines the assertions of both the behaviours from the next
point onwards. Let the set of BDs we get in this case be Seq≥g.

5. The final operation is to substitute [X0, . . . , Xg−1, Qj∧O(Tj), Xg+1, . . . , X2K] with
BDs from any of Seqg, Seqg+1, . . . ,Seq2K .

6. Note that a similar technique will work while eliminating Uj from BD = [X0, . . . , Xg−1,�nsPj∧
O(Uj), Xg+1, . . . , X2K].

Given BD=[X0, . . . , Xg−1, Pi∧O(Ui) UnsQj∧O(Tj), Xg+1, . . . , X2K], we need to eliminate
both the Ui and Tj . The formulae says either Qj∧O(Tj) is true at the present point or, Pi∧
O(Ui) true until some point in the future within the region Rg, when Qj ∧O(Tj) becomes
true. Thus, we can substitute BD with two sequences BD1=[X0, . . . , Xg−1, Qj∧O(Tj), Xg+1, . . . , X2K],
and BD2=[X0, . . . , Xg−1, Pi∧O(Ui) UQj∧O(Tj), Xg+1, . . . , X2K]. We can eliminate Tj
from BD1 as shown before. Consider BD2 which guarantees that the next point from
which the assertion Pi ∧O(Ui) UQj ∧O(Tj) is made is within Rg, and that Ui is called
for the last time within Rg. Such a BD2 has to be combined with Beh(F (Ui), Rg). Tj
can be called from any point either within region Rg or succeeding regions.
Consider the case where Tj is called from within the region Rg. First let us take a cross
product of BD with Beh(F (Ui), Rg)×Beh(F (Tj), Rg). This gives a triplet of sequences of
the form [X0, . . . , Xg−1, Qj ∧ O(Tj), Xg+1, . . . , X2K], [YU,0, . . . , YU,2K], [YT,0, . . . , YT,2K].
We now show to combine the behaviours and get a sequence [X ′0, . . . , X ′2K].

For every w < g, X ′w = Xw. For w = g, X ′g is obtaining by replacing Ui with YU,g and
Tj with YT,g in the gth entry of BD2. For all w > g, X ′w = Xw ∧ YU,g ∧ YT,g. Let the
set of these BDs be denoted Seqg.

Now consider the case where Tj was called from any region Rb>Rg. Take a cross
product of BD with Beh(F (Ui), Rg)×Beh(F (Tj), Rb). This gives us triplets of the form
[X0, . . . , Xg−1, Qj∧O(Tj), Xg+1, . . . , X2K], [YU,0, . . . , YU,2K], [YT,0, . . . , YT,2K]. The one
difference in combining this triplet as compared to the last one is that we have to assert
that from the last point in Rg, the next point only occurs in the region Rb. Thus all
the regions between Rg and Rb should be conjuncted with �ns⊥. We get a sequence
[X ′0, . . . , X ′2K] after combining, such that

For all w < g, X ′w = Xw.
For w = g, X ′g = (Pi ∧ OYU,g) UQj .
For b > w > g, X ′w = Xw ∧ YU,w ∧�ns⊥.
For w ≥ b, X ′w = Xw ∧ YU,g ∧ YT,g.

In case of formulae of the form [Pi∧O(Ui)]W[Qj∧O(Tj)] in Rg, we convert it into (α1Uα2)∨
�nsα1 where α1 = (Pi∧O(Ui)) and α2 = (Qj∧O(Tj)). Then BD is [X0, . . . , Xg−1, [α1 Wα2], Xg+1, . . . , X2K]
and can be replaced by 2 BDs

XX:20 A Regular Metric Temporal Logic

BD1=[X0, . . . , Xg−1, α1 Unsα2, Xg+1, . . . , X2K]
BD2=[X0, . . . , Xg−1,�ns(α1), Xg+1, . . . , X2K].

For BD1 and BD2, we apply the operations defined previously.
Finally, we show that given a Beh for F (s), how to construct an SfrMTL formula, Expr(s),
equivalent to x.O(s). That is, ρ, i |= Expr(s) if and only if ρ, i, ν |= x.O(F (s)), for any ν.
We give a constructive proof as follows:

Assume ρ, i, ν |= x.O(F (s)). Note that according to the syntax of TPTL, every
constraint x ∈ I checks the time elapse between the last point where x was frozen. Thus
satisfaction of formulae of the form x.φ at a point is independent of the clock valuation.
ρ, i, ν |= x.O(F (s)) iff ρ, i, ν[x← τi] |= OF (s). We have precomputed Beh(F (s), R) for
all regions R. Thus, ρ, i, ν |= x.O(F (s)) iff for all w ∈ 0, . . . , 2K, ρ, i+1, τi |= (x ∈ Rw).
This implies that there exists BD ∈ Beh(F (s), Rw) such that for all j ∈ {0, . . . , 2K},
the jth entry BD[j] of BD is the LTL formulae satisfied within region Rj . Note that,
ρ, i + 1, τi|=(x ∈ Rw) is true, iff, ρ, i |=

∧
g∈{1,...,w−1}

[RegRg
∅] ∧ RegRw

Σ+. This is

true iff ρ, i|=
∨

BD∈Beh(F (s),Rw)

∧
j∈{1,...,2K}

RegRj
(re(BD[j])), where re(BD[j]) is a regular

expression equivalent to BD[j]. As BD[j] is an LTL formula, the resultant expression
will definitely have an equivalent star-free expression. Thus, ρ, i, ν|=x.O(F (s)), iff,
ρ, i|=(ψ1→ψ2) where
∗ ψ1=

∧
w∈{0,...,2K}\E

∧
g∈{1,...,w−1}

RegRg
∅∧RegRw

Σ+ and

∗ ψ2=
∨

BD∈Beh(F (s),Rw)

∧
j∈{1,...,2K}

RegRj
(re(BD[j]))}].

where E is the set of regions such that, for all e ∈ E, Beh(F (s), Re) is an empty set. The
SfrMTL formula Expr(s0) is such that ρ, 1 |= F (s0) iff ρ, 0 |= Expr(s0).

4.4 Discussion
1. Generalization of other Extensions: In this paper, we study extensions of MTL with

ability to specify periodic properties by adding constructs which can specify regular
expressions over subformulae within a time interval. This construct also generalizes most
of the extensions studied in the literature (for example, Pnueli modalities, threshold
counting, modulo counting and so on) still retaining decidability. To the best of our
knowledge this is the most expressive decidable extension of MTL in the literature in
point-wise semantics.

2. Automaton Logic Connection: We give an interval logic characterization for po-1-
clock-ATA. The only other such equivalences we know of are [11] is between the logic
MITL with only unary future and past modalities, restricted to unbounded intervals and
partially ordered 2-way deterministic timed automata. Unlike interval logics, automata
and logics with freeze quantifiers do not enjoy the perks of non punctuality see Appendix
F.2.

3. Interval Constraint vs. Freeze point quantification: This was always an interesting
question in the literature. Ours is the first such equivalence in point wise semantics. In
continuous semantics, these logics are equivalent if we extend it with counting modality
[4].

4. Exploiting Non-punctuality: We also give two natural non-punctual fragments
RegMITL[UReg] and MITLmod[UM] of our logic having elementary complexity for sat-
isfiability over both finite and infinite words proving the benefits of characterization using
interval logics. We claim that these logics are the most expressive logics in pointwise

Krishna, Khushraj, Paritosh XX:21

semantics which have elementary satisfiability checking for both finite and infinite timed
words.

Finally, we show that if we allow mod counting within the next unit interval, we fail to
achieve benefits of relaxing punctuality.

References
1 R. Alur, T. Feder, and T. Henzinger. The benefits of relaxing punctuality. J.ACM,

43(1):116–146, 1996.
2 Augustin Baziramwabo, Pierre McKenzie, and Denis Thérien. Modular temporal logic. In

14th Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999,
pages 344–351, 1999.

3 Stéphane Demri and Ranko Lazic. LTL with the freeze quantifier and register automata.
ACM Trans. Comput. Log., 10(3), 2009.

4 P. Hunter. When is metric temporal logic expressively complete? In CSL, pages 380–394,
2013.

5 D. Kini, S. N. Krishna, and P. K. Pandya. On construction of safety signal automata for
MITL[U ,S] using temporal projections. In FORMATS, pages 225–239, 2011.

6 F. Laroussinie, A. Meyer, and E. Petonnet. Counting ltl. In TIME, pages 51–58, 2010.
7 K. Lodaya and A. V. Sreejith. Ltl can be more succinct. In ATVA, pages 245–258, 2010.
8 K. Madnani, S. N. Krishna, and P. K. Pandya. Partially punctual metric temporal logic is

decidable. In http://arxiv.org/abs/1404.6965, 2014.
9 M. Minsky. Finite and Infinite Machines. Prentice-Hall, 1967.

10 J. Ouaknine and J. Worrell. On the decidability of metric temporal logic. In LICS, pages
188–197, 2005.

11 Paritosh K. Pandya and Simoni S. Shah. The unary fragments of metric interval temporal
logic: Bounded versus lower bound constraints. In Automated Technology for Verification
and Analysis - 10th International Symposium, ATVA 2012, Thiruvananthapuram, India,
October 3-6, 2012. Proceedings, pages 77–91, 2012.

12 Pavithra Prabhakar and Deepak D’Souza. On the expressiveness of MTL with past oper-
ators. In FORMATS, pages 322–336, 2006.

13 A. Rabinovich. Complexity of metric temporal logic with counting and pnueli modalities.
In FORMATS, pages 93–108, 2008.

14 Jean Francois Raskin. Logics, Automata and Classical Theories for Deciding Real Time.
PhD thesis, Universite de Namur, 1999.

XX:22 A Regular Metric Temporal Logic

Appendix

A 1-TPTL for Reg[l,u)atom

To encode an accepting run going through a sequence of merges capturing Reg[l,u)atom at a
point e, we assert ϕchk1 ∨ ϕchk2 at e, assuming l 6= 0. If l = 0, we assert ϕchk3. Recall that
m is the number of states in the minimal DFA accepting atom.

Let cond1 = 0 ≤ n < m, and
Let cond2 = 1 ≤ i1 < i2 < . . . < in < i ≤ m.
ϕchk1 =

∨
cond1

∨
cond2

x.♦(x < l ∧ O[(x ≥ l) ∧ GoodRun])

ϕchk2 =
∨

cond1

∨
cond2

x.(O[(x ≥ l) ∧ GoodRun])

ϕchk3 =
∨

cond1

∨
cond2

x.GoodRun

where GoodRun is the formula which describes the run starting in q1, going through a
sequence of merges, and witnesses qf at a point when x ∈ [l, u), and is the maximal point in
[l, u). GoodRun is given by
Thi(q1) ∧ [{¬Mrg(i)} U[!(in, i) ∧
{¬Mrg(in)}U[!(in−1, in) . . . {¬Mrg(i2)}U[!(i1, i2)∧

∨
q∈QF

Nxt(Thi1(q))∧ x ∈ [l, u)∧O(x >

u)] . . .]]]]
where Mrg(i) =

∨
j<i

!(j, i).

The idea is to freeze the clock at the current point e, and start checking a good run from
the first point in the interval [l, u). ϕchk1 is the case when the first point in [l, u) is not the
next point from the current point e, while ϕchk2 handles the case when the next point is in
[l, u). In both cases, l > 0. Let Thi be the thread having the initial state q1 in the start of
the interval I. Let i1 be the index of the thread to which Thi eventually merged (at the
last point in the interval [l, u) from e). The next expected state of thread Thi1 is one of the
final states if and only if the sub-string within the interval [l, u) from the point e satisfies
the regular expression atom. Note that when the frozen clock is ≥ l, we start the run with
Thi(q1), go through the merges, and check that x ∈ I when we encounter a thread Thi1(q),
with q being a final state. To ensure that we have covered checking all points in τe + I, we
ensure that at the next point after Thi1(q), x > u. The decidability of 1−TPTL gives the
decidability of RegMTL.

B Proof of Lemma 5 : Unbounded Intervals

The major challenge for the unbounded case is that the point from where we start asserting
Thi(qf) (call this point w) and the point from where we start the counting, (this point is v)
may be arbitrarily far. This may result in more than one point marked ci⊕1. In the bounded
interval case, the unique point marked ci⊕1 was used as the “linking point” to stitch the
sequences of the run after v till ci⊕1, and from some point in τv + I witnessing a final state
back to ci⊕1. The possible non-uniqueness of ci⊕1 thus poses a problem in reusing what we
did in the bounded interval case. Thus we consider two cases:
Case 1: In this case, we assume that our point w lies within [τv + l, dτv + le). Note that
dτv + le is the nearest point from v marked with ci⊕l⊕1. This can be checked by asserting
¬ci⊕l⊕1 all the way till ci⊕1 while walking backward from w, where Thik (qf) is witnessed.

Krishna, Khushraj, Paritosh XX:23

The formula MergeseqPref(k1) does not change. MergeseqSuf(k, k1) is as follows:

♦[l,l+1){[(Thik (qf)) ∧ (¬Mrg′(ik) S[!(ik, ik−1) ∧ (¬Mrg′(ik−1)

S[!(ik−1, ik−2) ∧ · · ·! (ic, ik1) ∧ (¬Mrg′(ik1) Sci⊕1)])])]}

where Mrg′(i) = [
∨
j<i

!(j, i) ∨ ci⊕l⊕1]

Case 2: In this case, we assume the complement. That is the point w occurs after dτv + le.
In this case, we assert the prefix till ci⊕l⊕1 and then continue asserting the suffix from this
point in the forward fashion unlike other cases. The changed MergeseqPref and MergeseqSuf
are as follows:

MergeseqPref(k1):

{¬(
∨

Σ ∨ ci⊕l⊕1) U[Thi(q1) ∧ (¬Mrg(i) U[!(i1, i)∧

(¬Mrg(i1) U[!(i2, i1) ∧ . . . (¬Mrg(ik1) Uci⊕l⊕1)])])]}

MergeseqSuf(k, k1):

♦[l+1,l+2){[ci⊕l⊕1 ∧ (¬Mrg(ik1) U[!(ic, ik1) ∧ (¬Mrg(ic)

U[!(ic, ik1) ∧ · · ·! (ik−1, ik−2) ∧ (¬Mrg(ik−1) U

(Thik (qf))])])]} where Mrg(i) = [
∨
j<i

!(j, i)]

B.1 Complexity of RegMTL Fragments
To prove the complexity results we need the following lemma.

I Lemma 10. Given any MITL formulae ϕ with O(2n) modalities and maximum constant
used in timing intervals K, the satisfiability checking for ϕ is EXPSPACE in n,K.

Proof. Given any MITL formula with expn = O(2n) number of modalities, we give a satis-
fiability preserving reduction from ϕ to ψ ∈ MITL[U0,∞, S] as follows:

(a) Break each UI formulae where I is a bounded interval, into disjunctions of UIi
modality,

where each Ii is a unit length interval and union of all Ii is equal to I. That is,
φ1 U〈l,u〉φ2 ≡ φ1 U〈l,l+1)φ2 ∨ φ1 U[l+1,l+2)φ2 . . . ∨ φ1 U[u−1,u〉φ2. This at most increases
the number of modalities from expn to expn×K.

(b) Next, we flatten all the modalities containing bounded intervals. This results in replacing
subformulae of the form φ1 U[l,l+1)φ2 with new witness variables. This results in the
conjunction of temporal definitions of the form �ns[a ↔ φ1 U[l,l+1)φ2] to the formula.
This will result in linear blow up in number of temporal modalities (2× expn×K).

(c) Now consider any temporal definition �ns[a↔ φ1 U[l,l+1)φ2].

We show a reduction to an equisatisfiable MITL formula containing only intervals of the
form 〈0, u〉 or 〈l,∞).

First we oversample the words at integer points C = {c0, c1, c2, . . . , cK−1}. An integer
timestamp k is marked ci if and only if k = M(K)+i, whereM(K) denotes a non-negative
integer multiple of K, and 0 ≤ i ≤ K − 1. This can be done easily by the formula
c0∧

∧
i∈{0,...K−1}

�ns(ci→¬♦(0,1)(
∨
C) ∧ ♦(0,1]ci⊕1)

where x⊕ y is (x+ y)%K (recall that (x+ y)%K = M(K) + (x+ y), 0 ≤ x+ y ≤ K − 1).

XX:24 A Regular Metric Temporal Logic

Consider any point i within a unit integer interval marked ci−1, ci. Then φ1 U[l,l+1)φ2 is
true at that point i if and only if, φ1 is true on all the action points till a point j in the
future, such that

either j occurs within [l,∞) from i and there is no ci⊕l between i and j (τj ∈
[τi + l, dτ + le])
φC1,i = (φ1 ∧ ¬ci⊕l) U[l,∞)φ2

or, j occurs within [0, l + 1) from i, and j is within a unit interval marked ci⊕l and
ci⊕l⊕1 (τj ∈ [dτ + le, τi + l + 1)).
φC2,i = φ1 U[0,l+1)(φ2 ∧ (¬(

∨
C)) Sci⊕l)

The temporal definition �ns[a↔ φ1 U[l,l+1)φ2] is then captured by
K−1∨
i=1
�ns[{a ∧ (¬(

∨
C) Uci)} ↔ φC1,i ∨ φC2,i]

To eliminate each bounded interval modality as seen (a)-(c) above, we need O(K)
modalities. Thus the total number of modalities is O(2n) × O(K) × O(K) and the total
number of propositions 2Σ ∪ {c0, . . . , cK−1}. Assuming binary encoding for K, we get a
MITL[U0,∞, S] formulae of exponential size. As the satisfiability checking for MITL[U0,∞, S]
is in PSPACE [1], we get EXPSPACE upper bound. EXPSPACE hardness of MITL can be
found in [1].

J

B.2 Proof of Theorem 2.2
Starting from an MITLmod[UM] formula, we first show how to obtain an equisatisfiable MITL
formula modulo simple projections.

Elimination of UM
In this section, we show how to eliminate UM from MTLmod[UM] over strictly monotonic timed
words. This can be extended to weakly monotonic timed words. Given any MTLmod[UM]
formula ϕ over Σ, we first “flatten" the UM modalities of ϕ and obtain a flattened formula.
Example. The formula ϕ = [a U(e ∧ (f U(2,3),#b=2%5y))] can be flattened by replacing the
UM with a fresh witness proposition w to obtain
ϕflat = [a U(e ∧ w)]∧�ns{w ↔ (f U(2,3),#b=2%5y)}.

Starting from χ ∈ MTLmod[UM], in the following, we now show how to obtain equisatis-
fiable MTL formulae corresponding to each temporal projection containing a UM modality.
1. Flattening : Flatten χ obtaining χflat over Σ ∪ W , where W is the set of witness

propositions used, Σ ∩W = ∅.
2. Eliminate Counting : Consider, one by one, each temporal definition Ti of χflat. Let

Σi = Σ ∪W ∪Xi, where Xi is a set of fresh propositions, Xi ∩Xj = ∅ for i 6= j.
For each temporal projection Ti containing a UM modality of the form x UI,#b=k%ny,
Lemma 11 gives ζi ∈ MTL over Σi such that Ti ≡ ∃Xi.ζi.

3. Putting it all together : The formula ζ=
∧k
i=1 ζi ∈ MTL is such that∧k

i=1 Ti ≡ ∃X.
∧k
i=1 ζi where X =

⋃k
i=1Xi.

For elimination of UM, marking witnesses correctly is ensured using an extra set of symbols
B = {b0, ..., bn} which act as counters incremented in a circular fashion. Each time a witness
of the formula which is being counted is encountered, the counter increments, else it remains
same. The evaluation of the mod counting formulae can be reduced to checking the difference

Krishna, Khushraj, Paritosh XX:25

between indices between the first and the last symbol in the time region where the counting
constraint is checked.

B.2.1 Construction of Simple Extension

Consider a temporal definition T = �ns[a ↔ xUMI,#b=k%ny], built from Σ ∪W . Let ⊕
denote addition modulo n+ 1.
1. Construction of a (Σ ∪W,B)- simple extension. We introduce a fresh set of propositions

B = {b0, b1, . . . , bn−1} and construct a family of simple extensions ρ′ = (σ′, τ) from
ρ = (σ, τ) as follows:
C1: σ′1 = σ1 ∪ {b0}. If bk ∈ σ′i and if b ∈ σi+1, σ′i+1 = σi+1 ∪ {bk⊕1}.
C2: If bk ∈ σ′i and b /∈ σi+1, then σ′i+1 = σi+1 ∪ {bk}.
C3: σ′i has exactly one symbol from B for all 1 ≤ i ≤ |dom(ρ)|.

2. Formula specifying the above behaviour. The variables in B help in counting the number
of b’s in ρ. C1, C2 and C3 are written in MTL as follows:

δ1=
n∧
k=0
�ns[(Ob ∧ bk)→ Obk⊕1] and

δ2=
n∧
k=0
�ns[(O¬b ∧ bk)→ Obk]

δ3=
n∧
k=0
�ns[bk →

∧
j 6=k
¬bj]

I Lemma 11. Consider a temporal definition T = �ns[a↔ xUI,#b=k%ny], built from Σ∪W .
Then we synthesize a formula ψ ∈ MTL over Σ ∪W ∪X such that T ≡ ∃X.ψ.

Proof. 1. Construct a simple projection ρ′ as shown in B.2.1.
2. Now checking whether at point i in ρ, xUI,#b=k%ny is true, is equivalent to checking that

at point i in ρ′ there exist a point j in the future where y is true and for all the points
between j and i, x is true and the difference between the index values of the symbols from
B at i and j is k%n. φmark,a=�ns ∧

i∈{1,...n−1}
(a ∧ bi↔[x UI(y ∧ bj)]) where j = k + i%n.

3. The formula δ1 ∧ δ2 ∧ δ3 ∧ φmark,a is equivalent to T modulo simple projections.
J

I Lemma 12. Satisfiability of MITLmod[UM] is EXPSPACE-complete.

Proof. Assume that we have a MITLmod[UM] formula φ with m UM modalities, alphabet Σ
(number of propositions used is 2Σ) and let K be the maximal constant appearing in the
intervals of φ. Let k1%n1, . . . , km%nm be the modulo counting entities in these UM formulae.
Let nmax be the maximum of n1, . . . , nm. Going by the construction above, we obtain m
temporal definitions T1, . . . , Tm. To eliminate each Ti, we introduce nmax formulae of the
form φmark,a, evaluated on timed words over 2Σ∪B1∪· · ·∪Bm. This is enforced by δ1, δ2, δ3.
The number of propositions in the obtained MITL formula is hence |2Σ|.|B1 +B2 + · · ·+Bm|,
while the number of boolean connectives and temporal operators is O(m.nmax), while the
maximum constant appearing in the intervals is K. Thus we have an exponential size
MITL formulae with max constant as K. Hence, by lemma 10, satisfiability checking for
MITLmod[UM] is EXPSPACE is complete. J

XX:26 A Regular Metric Temporal Logic

B.3 Proof of Theorem 2.3
Proof. In Lemma 5, temporal definitions of the form �ns[a↔ xURegI,rey] were eliminated to
obtain equisatisfiable MTL formulae. The proof of Lemma 5 produces an equisatisfiable MITL
formula if the input formulae does not contain punctual intervals. The alphabet contains sets
Merge,Threads both of which have size m2 where m is the size of the DFA corresponding to
the regular expression re in the temporal definition �ns[a↔ xURegI,rey]. m is exponential
in the size of re. When it comes to the propositions marking the simple extension, at each
point, we maintain ≤ m threads Th1, . . . ,Thm. The states on each thread are different,
and thus, the propositions used in marking each position belongs to the set of sequences
{Th1(s1)Th2(s2) . . . Thm(sm) | si 6= sj}. The number of propositions in the MITL formula
is hence ≤ 2Σ × 2mm . By construction, the size of the reduced MITL formulae will be of the
order of O(2m.2m). Note that the number of modalities (and nesting) in MergeseqPref(k1)
and MergeseqSuf(k, k1) is at most m. The possible number of sequences over which ϕPref,k1

and ϕSuf,k,k1 disjunct is O(m!). There are at most m2 such formulae, giving a blow up of
O(m!)×O(Poly(m)). Thus the blow up is exponential O(2m.m) with respect to m and thus
doubly exponential with respect to the size of regular expression.

Applying the same reduction as shown in proof of Lemma 10 for the reduced MITL
formulae will result in an equisatisfiable MITL[U0∞, S] of the size of O(2n.2n). Using the
PSPACE complexity of MITL[U0∞, S], we obtain a 2EXPSPACE upper bound for MITL[UReg].
Arriving at a tighter complexity for this class is an interesting problem and is open.

J

C Details on Expressiveness

I Theorem 13. 1. RegMTL[UReg] ⊆ RegMTL[Reg]
2. MTLmod[UM] ⊆ MTLmod[MC]

Proof. 1. We first prove RegMTL[UReg] ⊆ RegMTL[Reg].

Note that φ1URegI,reφ2 ≡ trueURegI,re′φ2, where re′ is a regular expression obtained by
conjuncting φ1 to all formulae ψ occurring in the top level subformulae of re. For example,
if we had aUReg(0,1),(Reg(1,2)[Reg(2,3)(b+c)∗])d, then we obtain trueUReg(0,1),(a∧Reg(1,2)[Reg(2,3)(b+c)∗])d.
When evaluated at a point i, the conjunction ensures that φ1 holds good at all the points
between i and j, where τj − τi ∈ I. To reduce trueURegI,re′φ2 to a RegI formula, we
need the following lemma.
I Lemma 14. Given any regular expression R, there exist finitely many regular expressions
R1

1, R
1
2, . . . , R

n
1 , R

n
2 such that R =

⋃n
i=1R

i
1.R

i
2. That is, for any string σ ∈ R and for any

decomposition of σ as σ1.σ2, there exists some i ≤ n such that σ1 ∈ Ri1 and σ2 ∈ Ri2.

Proof. Let A be the minimal DFA for R. Let the number of states in A be n. The set
of strings that leads to some state qi from the initial state q1 is definable by a regular
expression Ri1. Likewise, the set of strings that lead from qi to some final state of A
is also definable by some regular expression Ri2. Given that there are n states in the
DFA A, we have L(A) =

⋃n
i=1R

i
1.R

i
2. Consider any string σ ∈ L(A), and any arbitrary

decomposition of σ as σ1.σ2. If we run the word σ1 over A, we might reach at some state
qi. Thus σ1 ∈ L(Ri1). If we read σ2 from qi, it should lead us to one of the final states
(by assumption that σ ∈ R) . Thus σ2 ∈ L(Ri2). J

Krishna, Khushraj, Paritosh XX:27

Lets consider trueURegI,re′φ2 when I = [l, l + 1). Let Γ be the set of subformulae
and their negations occurring in re′. When evaluating trueUReg[l,l+1),re′φ2 at a point
i, we know that φ2 holds good at some point j such that τj − τi ∈ [l, l + 1), and that
Seg(re′, i, j) ∈ L(re′). We know that by the above lemma, any word σ ∈ L(re′),for any
decomposition σ = σ1.σ2, there exist an i ∈ {1, 2, . . . , n} such that σ1 ∈ L(Ri1) and
σ2 ∈ L(Ri2). Thus we decompose at j′ with every possible Rk1 .Rk2 pair such that
τj′ ∈ τi + [l, l + 1), TSeg(Γ, (0, l), i) ∈ L(Rk1),
TSeg(Γ, [l, l + 1), i) ∈ L(Rk2).S.Σ∗, where φ2 ∈ S, S ∈ Cl(Γ).

Note that φ2 holds good at the point j such that τj ∈ [τi + l, τi + l+ 1), and in [l, τj), the
expression Rk2 evaluates to true. We simply assert Σ∗ on the remaining part (τj , l + 1) of
the interval. Thus trueUReg[l,l+1),re′φ2 ≡

∨
i∈{1,2...,n}

Reg(0,l)R
i
1 ∧ Reg[l,l+1)R

i
2.φ2.Σ∗.

2. We first show that the UM modality can be captured by MC. Consider any formula
φ1UMI,#φ3=k%nφ2. At any point i this formulae is true if and only if there exists a point
j in future such that τj − τi ∈ I and the number of points between i and j where φ3 is
true is k%n, and φ1 is true at all points between i and j. To count between i and j, we
can first count the behaviour φ3 from i to the last point of the word, followed by the
counting from j to the last point of the word. Then we check that the difference between
these counts to be k%n.
Let cntφ(x, φ3) = {φ ∧MCx%n

(0,∞)(φ3)}. Using this macro, φ1UMI,#φ3=k%nφ2 is equivalent
to

∨n−1
k1=0[ψ1 ∨ ψ2] where

ψ1={cnttrue(k1, φ3) ∧ (φ1 UIcntφ2∧¬φ3(k2, φ3))},
ψ2={cnttrue(k1, φ3) ∧ (φ1 UIcntφ2∧φ3(k2−1, φ3))},
k1−k2=k

The only difference between ψ1, ψ2 is that in one, φ3 holds at position j, while in the
other, it does not. The k2 − 1 is to avoid the double counting in the case φ3 holds at j.

J

D po-1-clock ATA to 1−TPTL

In this section, we explain the algorithm which converts a po-1-clock ATA A into a 1−TPTL
formula ϕ such that L(A) = L(ϕ).
1. Step 1. Rewrite the transitions of the automaton. Each δ(s, a) can be written in an

equivalent form C1 ∨ C2 or C1 or C2 where
C1 has the form s ∧ ϕ1, where ϕ1 ∈ Φ(↓ s ∪ {a} ∪X),
C2 has the form ϕ2, where ϕ2 ∈ Φ(↓ s ∪ {a} ∪X)

In particular, if s is the lowest location in the partial order, then ϕ1, ϕ2 ∈ Φ({a} ∪X).
Denote this equivalent form by δ′(s, a).
For the example above, we obtain δ′(s0, a) = (s0 ∧ (a∧ x.sa))∨ (a∧ s`), δ′(s0, b) = s0 ∧ b,
δ′(sa, a) = (sa ∧ x < 1) ∨ (x > 1) δ′(s`) = (s` ∧ b)

2. Step 2. For each location s, construct ∆(s) which combines δ′(s, a) for all a ∈ Σ, by
disjuncting them first, and again putting them in the form in step 1. Thus, we obtain
∆(s) = D1 ∨D2 or D1 or D2 where D1, D2 have the forms s ∧ ϕ1 and ϕ2 respectively,
where ϕ1, ϕ2 ∈ Φ(↓ s ∪ Σ ∪X).
For the example above, we obtain ∆(s0) = s0∧ [(a∧x.sa))∨b]∨(a∧s`) ∆(sa) = (sa∧x <
1) ∨ (x > 1) ∆(s`) = s` ∧ b.

3. Step 3. We now convert each ∆(s) into a normal form N (s). N (s) is obtained from
∆(s) as follows.

XX:28 A Regular Metric Temporal Logic

If s occurs in ∆(s), replace it with Os.
Replace each s′ occurring in each Φi(↓ s) with Os′.

Let N (s) = N1 ∨N2, where N1,N2 are normal forms. Intuitively, the states appearing
on the right side of each transition are those which are taken up in the next step. The
normal form explicitely does this, and takes us a step closer to 1−− TPTL.
Continuing with the example, we obtain N (s0) = Os0 ∧ [(a ∧ x.Osa)) ∨ b] ∨ (a ∧ Os`)
N (sa) = (Osa ∧ x < 1) ∨ (x > 1) N (s`) = Os` ∧ b.

4. Step 4.
Start with the state sn which is the lowest in the partial order. Let N (sn) =
(Osn ∧ ϕ1) ∨ ϕ2, where ϕ1, ϕ2 ∈ Φ(Σ, X).
Solving N (sn), one obtains the solution F (sn) as ϕ1 Wϕ2 if sn is an accepting location,
and as ϕ1 Unsϕ2 if sn is non-accepting.
In the running example, we obtain F (s`) = bW⊥ = �nsb F (sa) = (x < 1) Unsx > 1
Consider now some N (si) = (Osi∧ϕ1)∨ϕ2. First replace each s′ in ϕi with F (s′), and
call the resultant expression as F (ϕi), and F (si) is then obtained as F (ϕ1) WF (ϕ2) if
si is an accepting location, and as F (ϕ1) UnsF (ϕ2) if si is non-accepting.
Substituting F (sa) and F (s`), we obtainN (s0) = Os0∧[(a∧x.OF (sa))∨b]∨(a∧OF (s`)),
and hence F (s0) = [(a∧x.OF (sa))∨b]W(a∧OF (s`)) which is ((a∧(x.O[(x < 1)Unsx >

1])) ∨ b) W(a ∧ O�nsb)
The 1−TPTL formula equivalent to L(A) is then given by F (s0).

D.1 Correctness of Construction
The above algorithm is correct; that is, the 1−TPTL formula F (s0) indeed captures the
language accepted by the po-1-clock ATA.

For the proof of correctness, we define a 1-clock ATA with a TPTL look ahead. That is,
δ : S × Σ→ Φ(S ∪X ∪ χ(Σ ∪ {x})), where χ(Σ ∪ {x}) is a TPTL formula over alphabet Σ
and clock variable x. We allow open TPTL formulae for look ahead; that is, one which is not
of the form x.ϕ. All the freeze quantifications x. lie within ϕ. The extension now allows to
take a transition (s, ν)→ [κ ∧ ψ(x)], where ψ(x) is a TPTL formula, if and only if the suffix
of the input word with value of x being ν satisfies ψ(x). We induct on the level of the partial
order on the states.

Base Case: Let the level of the partial order be zero. Consider 1-clock ATA having
only one location s0. Let the transition function be δ(s0, a) = Ba(ψa(x), X, s0) for every
a ∈ Σ. By our construction, we reduce s0 into ∆(s0) =

∨
a∈Σ

[Ba(ψa(x), X,O(s0))]. Let

∆(s0) =
∨

(Pi ∧ψi(x)∧Xi ∧Os0)∨
∨

(Qj ∧ψj(x)∧Xj). δ(s0, a) = s0 ∧X1 ∧ψ1(x) specifies
that the clock constraints X1 are satisfied and the suffix satisfies the formulae ψ1(x) on
reading an a. Thus for this δ(s0, a), we have Os0∧X1∧ψ1(x)∧a as a corresponding disjunct
in ∆ which specifies the same constraints on the word. Thus the solution to the above will
be satisfied at a point with some x = ν if and only if there is an accepting run from s0 to
the final configuration with x = ν.

If the s0 is a final location, the solution to this is, ϕ =
∨

(Pi∧ψi(x)∧Xi∧Os0) W
∨

(Qj ∧
ψj(x) ∧Xj). If it is non-final, then it would be U instead of W. Note that this implies that
whenever s0 is invoked with value of x being ν, the above formulae would be true with x = ν

thus getting an equivalent 1− TPTL formulae.
Assume that for automata with n−1 levels in the partial order, we can construct 1−TPTL

formulae equivalent to the input automaton as per the construction. Consider any input
automaton with n levels. Consider all the locations at the lowest level (that is, the location

Krishna, Khushraj, Paritosh XX:29

can call only itself), s0, . . . , sk. Apply the same construction. As explained above, the
constructed formulae while eliminating a location will be true at a point if and only if there
is an accepting run starting from the corresponding location with the same clock value. Let
the formulae obtained for any si be ϕi.

The occurrence of an si in any ∆(si<n) can be substituted with ϕi as a look ahead. This
gives us an n− 1 level 1-clock ATA with TPTL look ahead. By by induction, we obtain that
every 1-clock po-ATA can be reduced to 1− TPTL formulae.

E Proof of Lemma 8

Proof. Let ρ be a timed word such that ρ, i |= RegI re. Note that re could be a compound
regular expression containing formulae of the form RegI′re′. As a first step, we introduce
an atomic proposition wI which evaluates to true at all points j in ρ such that τj − τi ∈ I.
Then it is easy to see that ρ, i |= RegI re iff ρ, i |= RegI(re ∧ wI), since RegI covers exactly
all points which are within the interval I from i. As the next step, we replace re, with an
atomic proposition w obtaining the formula RegI [w ∧ wI]. Assume that I is a bounded
interval. RegI [w ∧ wI] is equivalent to Reg[(w ∧ wI).(¬wI)∗], since Reg[] covers the entire
suffix of ρ starting at point i. Now, replace wI with the clock constraint x ∈ I, and rewrite
the formula as x.[(w ∧ (x ∈ I)).�(¬(x ∈ I))], which is in 1 − TPTL. Note that this step
also preserves equivalence of teh formulae. Replacing w with re now eliminates one level of
the Reg operator in the above formula. Doing the same technique as above to re which has
the form RegI′(re′), will eliminate one more level of Reg and so on. Continuing this process
will result in a 1−TPTL formula which has k freeze quantifications iff the starting SfrMTL
formula had k nestings of the Reg modality.

In case I is an unbounded interval, then we need not concatenate (¬wI)∗ at the end of
(w ∧ wI). The rest of the proof is the same. J J

F Example

Example. Consider the example of the po-1-clock ATA in the main paper. We now work
out a few steps to illustrate the construction. The lowest locations are s`, sa and we know
F (s`) = �nsb, F (sa) = (x < 1) Uns(x > 1) and F (s0) = [(a ∧ x.OF (sa)) ∨ b] W(a ∧OF (s`)).
The regions are R0, R1, R2, R3.

From this, we obtain Beh(sa, R) = {[>,>,�ns⊥,>]} for all R ∈ R \ {R2}. Note that as
there is no constraint of the form x = 1 in the formulae, Beh(sa, R2) = ∅. As there are no
clock constraints in s`, there is no need to compute the Beh for it. We do it here just for the
purpose of illustration. Beh(s`, R0) consists of BD’s

BD1 = [�nsb,�nsb,�nsb,�nsb]
BD2 = [>,�nsb,�nsb,�nsb]
BD3 = [>,>,�nsb,�nsb] and BD4 = [>,>,>,�nsb].

Beh(s`, R1) consists of BD1,BD2,BD3, Beh(s`, R2) consists of BD2,BD3, while Beh(s`, R3)
consists of BD3.

It can be seen that Expr(sa) is given by the disjunction of
[RegR0(>) ∧ RegR1(>) ∧ RegR2(∅) ∧ RegR3(>)]
[RegR0(∅) ∧ RegR1(Σ+)]→ [RegR1(>) ∧ RegR2(∅) ∧ RegR3(>)]
[RegR0(∅) ∧ RegR1(∅) ∧ RegR3(Σ+)]→ RegR3(>)

It can be seen that Expr(s`) will be equivalent to O�nsb. Let F ′(s0) be the formulae we get by
substituting sa with Expr(sa) and s` by �nsb. Again note that there are no clock constraints

XX:30 A Regular Metric Temporal Logic

in F (s0). thus we do not need to make Beh for it. The final formulae which is supposed to be
asserted at 0 is x.O(F ′(s0) which is equivalent to O(F ′(s0)(as there are no timing constraints
in F (s0)). Observe what is the behaviour of O(F ′(s0) = O[(a∧Expr(sa))∨ b] W(a∧O(�nsb)).
Note that if any point satisfies Expr(sa) if and only if there is no action point exactly after 1
unit time. Thus, O(F ′(s0)) = O[[(a ∧ Expr(sa)) ∨ b] W(a ∧O(�nsb))]] implies that from the
beginning of the timed word till the last occurrence of a, there is no a which has an action
point exactly after unit time from it. This is what exactly the input ATA was specifying.

F.1 Two Counter Machines

A deterministic k-counter machine is a k + 1 tupleM = (P,C1, . . . , Ck), where
1. C1, . . . , Ck are counters taking values in N ∪ {0} (their initial values are set to zero);
2. P is a finite set of instructions with labels p1, . . . , pn−1, pn. There is a unique instruction

labelled HALT. For E ∈ {C1, . . . , Ck}, the instructions P are of the following forms:
a. pg: Inc(E), goto ph,
b. pg: If E = 0, goto ph, else go to pd,
c. pg: Dec(E), goto ph,
d. pn: HALT.

A configuration W = (i, c1, . . . , ck) ofM is given by the value of the current program counter
i and values c1, c2, . . . , ck of the counters C1, C2, . . . , Ck. A move of the counter machine
(l, c1, c2, . . . , ck)→ (l′, c′1, c′2, . . . , c′k) denotes that configuration (l′, c′1, c′2, . . . , c′k) is obtained
from (l, c1, c2, . . . , ck) by executing the lth instruction pl. If pl is an increment or decrement
instruction, c′l = cl+1 or cl−1, while c′i = ci for i 6= l and p′l is the respective next instruction,
while if pl is a zero check instruction, then c′i = ci for all i, and p′l = pj if cl = 0 and pk
otherwise.

Incremental Error Counter Machine

An incremental error counter machine is a counter machine where a particular configuration
can have counter values with arbitrary positive error. Formally, an incremental error k-
counter machine is a k + 1 tupleM = (P,C1, . . . , Ck) where P is a set of instructions like
above and C1 to Ck are the counters. The difference between a counter machine with and
without incremental counter error is as follows:
1. Let (l, c1, c2 . . . , ck) → (l′, c′1, c′2 . . . , c′k) be a move of a counter machine without error

when executing lth instruction.
2. The corresponding move in the increment error counter machine is

(l, c1, c2 . . . , ck)→ {(l′, c′′1 , c′′2 . . . , c′′k)|c′′i ≥ c′i, 1 ≤ i ≤ k}

Thus the value of the counters are non deterministic.

I Theorem 15. [9] The halting problem for deterministic k counter machines is undecidable
for k ≥ 2.

I Theorem 16. [3] The halting problem for incremental error k-counter machines is non
primitive recursive.

Krishna, Khushraj, Paritosh XX:31

F.2 Non-punctual 1-TPTL is NPR
In this section, we show that non-punctuality does not provide any benefits in terms of com-
plexity of satisfiability for TPTL as in the case of MITL. We show that satisfiability checking
of non-punctual TPTL is itself non-primitive recursive. This highlights the importance of
our oversampling reductions from RegMTL and RegMITL to MTL and MITL respectively,
giving RegMITL an elementary complexity. It is easier to reduce RegMITL to 1-variable,
non-punctual, TPTL without using oversampling, but this gives a non-primitive recursive
bound on complexity.

Non-punctual TPTL with 1 Variable (1− OpTPTL)
We study a subclass of 1− TPTL called open 1− TPTL and denoted as 1− OpTPTL. The
restrictions are mainly on the form of the intervals used in comparing the clock x as follows:

Whenever the single clock x lies in the scope of even number of negations, x is compared
only with open intervals, and
Whenever the single clock x lies in the scope of an odd number of negations, x is compared
to a closed interval.

Note that this is a stricter restriction than non-punctuality as it can assert a property only
within an open timed regions.

F.2.1 Satisfiability Checking for 1− OpTPTL
In this section we will investigate the benefits of relaxing punctuality in TPTL by exploring
the hardness of satisfiability checking for 1− OpTPTL over timed words.

I Theorem 17. Satisfiability Checking of 1− OpTPTL[♦,O] is decidable with non primitive
recursive lower bound over finite timed words and it is undecidable over infinite timed words.

Proof. We encode the runs of k counter incremental error channel machine using 1− OpTPTL
formulae with ♦,O modalities. We will encode a particular computation of any CM using
timed words. The main idea is to construct an 1− OpTPTL[♦,O] formula ϕICM for any
given k-incremental counter machine ICM such that it is satisfied by only those timed words
that encode the halting computation of ICM. Moreover, for every halting computation C of
ICM at least one timed word ρC satisfies ϕICM such that ρC encodes C.

We encode each computation of some k-incremental counter machine ICM = (P,C)
where P = {p1, . . . , pn} and C = {c1, . . . , ck} using timed words over the alphabet ΣICM =⋃
i∈{1,...,k}(S ∪ F ∪ {aj , bj}) where S = {sp|p ∈ 1, . . . , n} and F = {fp|p ∈ 1, . . . , n} as

follows:
A ith configuration, (p, c1, . . . , ck) is encoded in the time region [i, i+ 1) with sequence :

sp((a1b1)c1(a2b2)c2 . . . (akbk)ckfp.

The concatenation of these time segments of a timed word encodes the whole computation.
Thus the untimed projection of our language will be of the form:

S(a1b1)∗(a2b2)∗ . . . (akbk)∗F)∗

where S =
∨

p∈{1,2,...,n}
sp and F =

∨
p∈{1,2,...,n}

fp.

To construct a formula ϕICM , the main challenge is to write down some finite specifications
which propagate the behaviour from the time segment [i, i+1) to the time segment [i+1, i+2)

XX:32 A Regular Metric Temporal Logic

such that the later encodes the i+ 1th configuration of ICM (in accordance with the program
counter value at ith configuration). The usual idea is to copy all the a’s from one configuration
to another using punctuality. This is not possible in a non-punctual logic. Thus we try to
preserve the number (or copy a time point) using following idea:

Given any non last (aj , t)(bj , t′) before F(for some counter cj) , of a timed word encoding
a computation. We assert that the last symbol in (t, t + 1) is aj and the symbol in
(t′, t′ + 1) is bj .
We can easily assert that the untimed sequence of the timed word is of the form

S(a1b1)∗(a2b2)∗ . . . (akbk)∗F)∗

The above two conditions imply that there is at least one aj within time(t1 + 1, t2 + 1).
Thus all the non last ajbj is copied to the segment encoding next configuration. Now
appending one ajbj ,two ajbj ’s or no ajbj ’s depends on whether the instruction was copy,
increment or decrement operation.

ϕICM is obtained as a conjunction of several formulae. Let S,F be a shorthand for∧
p∈{1,...,n}

sp and
∧

p∈{1,...,n}
fp, respectively. We also define macros Aj =

∨
w≥j

aw and Ak+1 = ⊥

We now give formula for encoding the machine. Let C = {1, . . . , k} and P = {1, . . . , n}.
Expressing untimed sequence: The words should be of the form

(S(a1b1)∗(a2b2)∗ . . . (akbk)∗F)∗

. This could be expressed in the formula below

ϕ1 =
∧

j∈C,p∈P
�ns[sp → O(A1 ∨ fp)] ∧�ns[aj → O(bj)] ∧

�ns[bj → O(Aj+1 ∨ fp)] ∧�ns[fp → O(S ∨�ns(false))]
Initial Configuration: There is no occurrence of ajbj within [0, 1]. The program
counter value is 1.

ϕ2 = x.{s1
1 ∧ O(f1

j ∧ T − x ∈ (0, 1))
Copying S,F : Every (S, u), (F , v) has a next occurrence (S, u′), (F , v′) in future such
that u′ − u ∈ (k, k + 1) and v′ − v ∈ (k − 1, k). Note that this condition along with ϕ1
and ϕ2 makes sure that S and F occur only within the intervals of the form [i, i + 1)
where i is the configuration number.

ϕ3 = [�nsx.{(S∧¬sn)→ ¬♦(T −x ∈ [0, 1]∧S)∧♦(S∧T −x ∈ (1, 2))}∧�nsx.{(F∧
¬fn)→ ♦(F ∧ T − x ∈ (0, 1))}]

Beyond pn=HALT, there are no instructions

ϕ4 = �ns[fn → �(false)]
At any point of time, exactly one event takes place. Events have distinct time stamps.

ϕ6 = [
∧

y∈ΣICM

�ns[y → ¬(
∧

ΣICM\{y}
(x))] ∧�ns[�(false) ∨ O(T − x ∈ (0,∞))]

Eventually we reach the halting configuration 〈pn, c1, . . . , ck〉: ϕ6 = ♦̃sn

Every non last (aj , t)(bj , t′) occurring in the interval (i, i + 1) should be copied in the
interval (i+ 1, i+ 2). We specify this condition by stating that from every non last aj
(before Aj+1 or fp) the last symbol within (0, 1) is aj . Similarly from every non last
bj(before Aj+1 or fp) the last symbol within (k − 1, k) is bj . Thus (aj , t)(bj , t′) will have

Krishna, Khushraj, Paritosh XX:33

a (bj , t′ + 1− ε) where ε ∈ (0, t′ − t). Thus all the non last ajbj will incur a bj in the next
configuration . ϕ2 makes sure that there is an aj between two bj ’s. Thus this condition
along with ϕ1 makes sure that the non last ajbj sequence is conserved. Note that there can
be some ajbj which are arbitrarily inserted. These insertions errors model the incremental
error of the machine. Thus if we consider a mapping where (aj , tins)(bj , t′ins) is mapped
to (aj , t)(bj , t′) such that t′ins ∈ {t+ 1, t′ + 1}, this is an injective function. Just for the
sake of simplicity we assume that ak+1 = false.

ϕ7 =
∧
j∈C
�nsx.[(nl(aj) ∧ ψnh) → ♦(aj ∧ T − x ∈ (0, 1) ∧ O(T − x ∈ (1, 2)))] ∧

�nsx.[(nl(bj) ∧ ψnh)→ ♦(bj ∧ T − x ∈ (0, 1) ∧ O(T − x ∈ (1, 2)))]

Let nl(aj) = aj ∧ last(aj), nl(bj) = bj ∧ last(bj), ψnh = ¬♦(fnk ∧ T − x ∈ [0, 1]),
last(aj) = aj ∧ O(O(F ∨Aj+1))) and last(bj) = bj ∧ O(F ∨Aj+1).

We define a short macro CopyC\W : Copies the content of all the intervals encoding
counter values except counters in W . Just for the sake of simplicity we denote

CopyC\W =
∧

j∈C\W
�nsx.{last(aj)→ (aj∧T−x ∈ (0, 1)∧O(bj∧T−x ∈ (1, 2)∧O(F)))}

Using this macro we define the increment,decrement and jump operation.

1. pg: If Cj = 0 goto ph, else goto pd. δ1 specifies the next configuration when the check for
zero succeeds. δ2 specifies the else condition.

ϕg,j=0
8 = CopyC\{∅} ∧ δ1 ∧ δ2

δ1 = �ns[{sx1 ∧ ((¬aj) UF)} → (¬S) Usy)]
δ2 = �ns[{sx1 ∧ ((¬aj) Uaj)} → (¬S) Usd)].

2. pg: Inc(Cj) goto ph. The increment is modelled by appending exactly one ajbj in the
next interval just after the last copied ajbj

ϕ
g,incj

8 = CopyC\∅ ∧�ns(sg → (¬S) Ush) ∧ ψinc0 ∧ ψinc1

The formula ψinc0 = �ns[(sg ∧ (¬aj Ufg))→ (¬S Ux.(sh ∧♦(T −x ∈ (0, 1)∧aj))] specifies
the increment of the counter j when the value of j is zero. The formula ψinc1 = �ns[{sg ∧
((¬F)U(aj))} → (¬F)Ux.{last(aj)∧♦(T−x ∈ (0, 1)∧(aj∧OO(last(aj)∧T−x ∈ (1, 2))))}]
specifies the increment of counter j when j value is non zero by appending exactly one
pair of ajbj after the last copied ajbj in the next interval.

3. pg: Dec(Cj) goto ph. Let second− last(aj) = aj∧O(O(last(aj))). Decrement is modelled
by avoiding copy of last ajbj in the next interval.

ϕ
g,decj

8 = CopyC\j ∧�ns(sg → (¬S) Ush) ∧ ψdec0 ∧ ψdec1

The formula ψdec0 = �ns[{sg ∧ (¬aj) Ufg)} → {(¬S) U{sh ∧ ((¬aj) U(F)}] specifies that
the counter remains unchanged if decrement is applied to the j when it is zero. The
formula ψdec1 = �ns[{sg ∧ ((¬F) U(aj))} → (¬F) Ux.{second − last(aj) ∧ ♦(T − x ∈
(0, 1) ∧ (aj ∧OO(Aj+1 ∧ T − x ∈ (1, 2))))}] decrements the counter j, if the present value
of j is non zero. It does that by disallowing copy of last ajbj of the present interval to
the next.

XX:34 A Regular Metric Temporal Logic

The formula ϕICM =
∧

i∈{1,...,7}
ϕi ∧

∧
p∈P

ϕp8. 2) To prove the undecidability we encode the

k counter machine without error. Let the formula be ϕCM . The encoding is same as above.
The only difference is while copying the non-last a in the ϕM we allowed insertion errors i.e.
there were arbitrarily extra a and b allowed in between apart from the copied ones in the
next configuration while copying the non-last a and b. To encode counter machine without
error we need to take care of insertion errors. Rest of the formula are same. The following
formula will avoid error and copy all the non-last a and b without any extra a and b inserted
in between.

ϕ9 =
∧
j∈C
�nsx.[(aj ∧ ¬last(aj))→ ♦−(x− T ∈ (1, 2) ∧ O(aj ∧ x− T ∈ (0, 1)))] ∧

�nsx.[(bk ∧ ¬last(bj))→ ♦−(x− T ∈ (1, 2) ∧ O(bj ∧ x− T ∈ (0, 1)))]

Now, ϕCM = ϕICM ∧ ϕ9

F.2.1.1 Correctness Argument

Note that increment errors occurred only while copying the non last ab sequence in (1).
The similar argument for mapping aj with a unique aj in the next configuration can be
applied in past and thus using ϕ9 mapping we can say that non last aj , bj in the previous
configuration can be mapped to a copied aj , bj in the next configuration with an injective
mapping. This gives as an existence of bijection between the set of non-last ak, bk in the
previous configuration and the set of copied ak, bk by ϕ7. Thus "there are no insertion
errors" is specified with ϕ9.

J

	Introduction
	Preliminaries
	Timed Temporal Logics
	Temporal Projections

	Satisfiability, Complexity, Expressiveness
	Equisatisfiable Reduction
	Construction of Simple Extension '
	Complexity

	Main Equivalences
	Automaton-Logic Characterization
	po-1-clock ATA to 1-TPTL

	1-TPTL and SfrMTL
	po-1-clock ATA to SfrMTL
	Discussion

	1-TPTL for Reg[l,u) atom
	Proof of Lemma 5 : Unbounded Intervals
	Complexity of RegMTL Fragments
	Proof of Theorem 2.2
	Construction of Simple Extension

	Proof of Theorem 2.3

	Details on Expressiveness
	po-1-clock ATA to 1-TPTL
	Correctness of Construction

	Proof of Lemma 8
	Example
	Two Counter Machines
	Non-punctual 1-TPTL is NPR
	Satisfiability Checking for 1-OpTPTL

