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We study an extension of MTL in pointwise time with regular expression guarded modality Reg I (re) where re is a regular expression over subformulae. We study the decidability and expressiveness of this extension, called RegMTL, as well as its fragment SfrMTL where only star-free extended regular expressions are allowed. Using the technique of temporal projections, we show that RegMTL has decidable satisfiability by giving an equisatisfiable reduction to MTL. Moreover, we identify a subset MITL[UReg] for which our (polynomial time computable) equi-satisfiable reduction gives rise to formulae of MITL. Thus, MITL[UReg] has elementary decidability. As our second main result, we show that SfrMTL is equivalent to partially ordered (or very weak) 1-clock alternating timed automata. We also identify natural fragments of logic TPTL which correspond to our logics.

Introduction

Temporal logics provide constructs to specify qualitative ordering between events in time. Real time logics are quantitative extensions of temporal logics with the ability to specify real time constraints amongst events. The main modality in Metric Temporal Logic (MTL) is the until modality a U I b which, when asserted at a point specifies that there is a future within a time distance in I where b holds, and a holds continuously till then. Two notions of MTL have been studied in the literature : continuous and pointwise. It is known [START_REF] Alur | The benefits of relaxing punctuality[END_REF] that satisfiability checking of MTL is undecidable in the continuous semantics even for finite words, while for the pointwise case, this is decidable [START_REF] Ouaknine | On the decidability of metric temporal logic[END_REF]. The complexity of the satisfiability problem for MTL over finite timed words is known to be non-primitive recursive (NPR) in the pointwise semantics, while if the intervals I allowed in the until modalities are non-punctual, then the complexity drops to EXPSPACE in both the pointwise and continuous semantics. The fragment of MTL with only non-punctual intervals is denoted MITL, and was introduced in [START_REF] Alur | The benefits of relaxing punctuality[END_REF]. A non-punctual interval has the form x, y where x < y, x ∈ N, y ∈ N ∪ {∞}.

There are various natural extensions of temporal logics have been studied both in classical and timed logic domain. Wolper extended LTL with certain grammar operators to achieve MSO completeness. Baziramwabo, McKenzie and Thérien extended LTL with modular and group modalities, and showed that the latter is as expressive as regular languages [START_REF] Baziramwabo | Modular temporal logic[END_REF]. Counting LTL is an extension of LTL with threshold counting. It has been shown that this extension does not increase the expressive power of LTL [START_REF] Laroussinie | Counting ltl. In TIME[END_REF]. As another extension, LTL with just modulo counting modalities has been studied by [START_REF] Lodaya | Ltl can be more succinct[END_REF]. In timed logics, Raskin's Ph.D thesis studied various extensions of MITL with the ability to count over the entire model. Rabinovich et. al. extended continuous MITL with counting (called the C modality) and Pnueli modalities [START_REF] Rabinovich | Complexity of metric temporal logic with counting and pnueli modalities[END_REF] and showed that these extensions are more expressive than MITL. The counting modalities C n (φ), specify that the number of points that satisfy φ within the next unit interval is at least n. The Pnueli modality, P n k is a generalization of the threshold counting modality : P n k (φ 1 , . . . , φ k ) specifies that there is an increasing sequence of timestamps t 1 , . . . , t k in the next unit interval such that φ i is true at t i .

Contributions This paper is on extensions of MTL in the point-wise semantics. Contributions of this paper are as follows:

Generalizations: We generalize some of these extended modalities(Pnueli, modulo counting) that has been studied in the literature with a Reg I and UReg I modality which allows us to specify a regular expression over subformulae within some time interval in the future. Let re(φ 1 , . . . , φ k ) be a regular expression over formulae φ 1 , . . . , φ k . The Reg I (re(φ 1 , . . . , φ k )) modality specifies that the pattern of the behaviour of the subformulae, φ 1 , . . . , φ k , in the time segment within interval I in the future is in accordance with re(φ 1 , . . . , φ k ), while the ψ 1 UReg I,re(φ1,...,φ k ) ψ 2 modality asserts that there exist a point j in the future within interval I where ψ 2 is true, and at all the points strictly between the present point and j, ψ 1 is true and the behaviour of φ 1 , . . . , φ k in this region is in accordance with re(φ 1 , . . . , φ k ). This extension of MTL is denoted as RegMTL. Satisfiability Checking: We show that RegMTL is decidable over finite timed words with non primitive recursive complexity using the technique of oversampled temporal projections. The check Reg I (re) at each point in the timed word is taken care of by annotating the timed word with an encoding of the runs of the DFA corresponding to the re. We show that the runs of the automaton can be captured in a way requiring only bounded amount of information, and that this can be captured in MTL, giving rise to an equisatisfiable MTL formula.

Automata-Logic Connection and Expressiveness:

We show that SfrMTL, the subclass of RegMTL where the regular expressions are star free, characterize exactly 1 clock partially ordered alternating timed automata. If K is the maximum constant used in the automaton, we show that the behaviour of each location of the automaton over time can be asserted using LTL formulae over timed regions [0, 0], (0, 1), . . . , [K, K], (K, ∞). This enables us to assert the behaviour of the automaton starting at any location as a Reg I (re) formula where the re is captured by an LTL formula. This also implies that SfrMTL is exactly equivalent to 1-TPTL (the most expressive decidable fragment of TPTL in pointwise semantics). This is the first such equivalence of logics with interval constraints (SfrMTL) and freeze quantifications (1-TPTL) in pointwise semantics to the best of our knowledge.

Complexity: We focus on non punctual fragments of RegMTL, and show that satisfiability with only UReg modality has a 2EXPSPACE upper bound, while, surprisingly, if one considers a special case of the Reg I modality which only specifies the parity of a proposition in the next unit interval (the iseven modality), the complexity is F ω ω -hard. Finally we also explore the complexity with UM, a restricted form of Ureg that allows to specify only modulo counting constraints, and show its satisfiability to be EXPSPACE-complete.

It is important to note that in spite of being a special case, UM is exponentially more succinct then UReg.

Novel Proof Techniques: The logic RegMTL uses modalities that can assert the truth of a regular expression within a time interval. The satisfiability of RegMTL requires one to check the truth of these regular expressions at arbitrary points of the model; we do this by encoding the runs of the automaton corresponding to the regular expression starting at each point in the model. We show that the information pertaining to the potentially unbounded number of runs originating from the unboundedly many points of the model can be stored using bounded memory, by merging the runs when they reach the same state. This idea of merging the runs and encoding them in the model is new, to the best of our knowledge. The other novelty in terms of proof techniques used is while proving that RegMTL is at least as expressive as partially ordered 1-clock alternating timed automata. The timed behaviours enforced by any state of the automaton is captured by writing LTL formulae over the clock regions, and putting them together as RegMTL formulae Reg I (re) where the re is a star-free expression obtained corresponding to the LTL formula asserted over clock region I.

Preliminaries

Timed Temporal Logics

We first describe the syntax and semantics of the timed temporal logics needed in this paper : MTL and TPTL. Let Σ be a finite set of propositions. A finite timed word over Σ is a tuple ρ = (σ, τ ). σ and τ are sequences σ 1 σ 2 . . . σ n and t 1 t 2 . . . t n respectively, with σ i ∈ 2 Σ -∅, and t i ∈ R ≥0 for 1 ≤ i ≤ n and ∀i ∈ dom(ρ), t i ≤ t i+1 , where dom(ρ) is the set of positions {1, 2, . . . , n} in the timed word. Given Σ = {a, b}, ρ = ({a, b}, 0.8)({a}, 0.99)({b}, 1.1) is a timed word. ρ is strictly monotonic iff t i < t i+1 for all i, i + 1 ∈ dom(ρ). Otherwise, it is weakly monotonic. The set of finite timed words over Σ is denoted T Σ * . Metric Temporal Logic (MTL) extends linear temporal logic (LTL) by adding timing constraints to the "until" modality of LTL. MTL is parameterized by using a permitted set of open, half-open or closed time intervals, denoted by Iν. The end points of these intervals are in N ∪ {0, ∞}. Such an interval is denoted a, b . For example, [START_REF] Alur | The benefits of relaxing punctuality[END_REF][START_REF] Laroussinie | Counting ltl. In TIME[END_REF], [3, ∞). For t ∈ R ≥0 and interval a, b , t + a, b stands for the interval t + a, t + b .

Metric Temporal Logic

Given a finite alphabet Σ, the formulae of MTL are built from Σ using boolean connectives and time constrained version of the modality U as follows:

ϕ ::= a(∈ Σ) |true |ϕ ∧ ϕ | ¬ϕ | ϕ U I ϕ, where I ∈ Iν. For a timed word ρ = (σ, τ ) ∈ T Σ * , a position i ∈ dom(ρ) ∪ {0}
, and an MTL formula ϕ, the satisfaction of ϕ at a position i of ρ is denoted (ρ, i) |= ϕ, and is defined as follows:

ρ, i |= a ↔ a ∈ σ i , ρ, i |= ¬ϕ ↔ ρ, i ϕ ρ, i |= ϕ 1 ∧ ϕ 2 ↔ ρ, i |= ϕ 1 and ρ, i |= ϕ 2 ρ, i |= ϕ 1 U I ϕ 2 ↔ ∃j > i, ρ, j |= ϕ 2 , t j -t i ∈ I, and ρ, k |= ϕ 1 ∀ i < k < j
We assume the existence of a special point called 0, outside dom(ρ). The time stamp of this point is 0 (t 0 = 0). 1 ρ satisfies ϕ denoted ρ |= ϕ iff ρ, 1 |= ϕ. The language of a MTL formula ϕ is L(ϕ) = {ρ | ρ, 0 |= ϕ}. Two formulae ϕ and φ are said to be equivalent denoted as ϕ ≡ φ iff L(ϕ) = L(φ). Additional temporal connectives are defined in the standard way: we have the constrained future eventuality operator ♦ I a ≡ true U I a and its dual I a ≡ ¬♦ I ¬a. We also define the next operator as O I φ ≡ ⊥ U I φ. Weak versions of operators are defined as

♦ ns I a = a ∨ ♦ I a, ns I a ≡ a ∧ I a, a U ns I b ≡ b ∨ [a ∧ (a U I b)] if 0 ∈ I, and [a ∧ (a U I b)] if 0 / ∈ I.
Also, a Wb is a shorthand for a ∨ (a Ub). The subclass of MTL obtained by restricting the intervals I in the until modality to non-punctual intervals is denoted MITL. Theorem 1 ([10]). Satisfiability checking of MTL is decidable over finite timed words and is non-primitive recursive.

Timed Propositional Temporal Logic (TPTL)

In this section, we recall the syntax and semantics of TPTL. A prominent real time extension of linear temporal logic is TPTL, where timing constraints are specified with the help of freeze clocks. The set of TPTL formulas are defined inductively as: TPTL is interpreted over finite timed words over Σ. The truth of a formula is interpreted at a position i ∈ N along the word. For a timed word ρ = (σ 1 , t 1 ) . . . (σ n , t n ), we define the satisfiability relation, ρ, i, ν |= φ saying that the formula φ is true at position i of the timed word ρ with valuation ν of all the clock variables.

ϕ ::= a(∈ Σ) |true |ϕ ∧ ϕ | ¬ϕ | ϕ Uϕ | y.ϕ | y ∈ I There is a set C of
1. ρ, i, ν |= a ↔ a ∈ σ i 2. ρ, i, ν |= ¬ϕ ↔ ρ, i, ν ϕ 3. ρ, i, ν |= ϕ 1 ∧ ϕ 2 ↔ ρ, i, ν |= ϕ 1 and ρ, i, ν |= ϕ 2 4. ρ, i, ν |= x.ϕ ↔ ρ, i, ν[x ← t i ] |= ϕ 5. ρ, i, ν |= x ∈ I ↔ t i -ν(x) ∈ I 6. ρ, i, ν |= ϕ 1 Uϕ 2 ↔ ∃j > i, ρ, j, ν |= ϕ 2 , and ρ, k, ν |= ϕ 1 ∀ i < k < j ρ satisfies φ denoted ρ |= φ iff ρ, 1, 0 |= φ.
Here 0 is the valuation obtained by setting all clock variables to 0. We denote by k-TPTL the fragment of TPTL using at most k clock variables. The fragment of TPTL with k clock variables is denoted k-TPTL.

MTL with Regular Expressions (RegMTL)

In this section, we introduce the extension of MTL with regular expressions, that forms the core of the paper. These modalities can assert the truth of a regular expression within a particular time interval with respect to the present point. For example, Reg (0,1) (ϕ 1 .ϕ 2 ) * when evaluated at a point i, asserts that either τ i+1 ≥ τ i + 1 (corresponds to ) or, there exist 2k points

τ i < τ i1 < τ i2 < • • • < τ i 2k < τ i+1 , k > 0, 0 < τ i+1 -τ i < 1, such that ϕ 1
evaluates to true at τ i2j+1 , and ϕ 2 evaluates to true at τ i2j+2 , for all j ≥ 0. RegMTL Syntax: Formulae of RegMTL are built from Σ (atomic propositions) as follows:

ϕ ::= a(∈ Σ) |true |ϕ ∧ ϕ | ¬ϕ | Reg I re | ϕUReg I,re ϕ re ::= ϕ | re.re | re + re | re * where I ∈ Iν.
An atomic regular expression re is any well-formed formula ϕ ∈ RegMTL. For a regular expression re, let Γ be the set of all subformulae and their negations appearing in re. For example, if re = aUReg (0,1),Reg [START_REF] Alur | The benefits of relaxing punctuality[END_REF][START_REF] Baziramwabo | Modular temporal logic[END_REF] [Reg (0,1) b] b, then Γ consists of Reg [START_REF] Alur | The benefits of relaxing punctuality[END_REF][START_REF] Baziramwabo | Modular temporal logic[END_REF] [Reg (0,1) b], Reg (0,1) b, b and their negations. Let Cl(Γ) denote consistent sets 2 in P(Γ). L(re) is the set of strings over Cl(Γ) defined as follows. Let S ∈ Cl(Γ).

L(re) =                      {S | a ∈ S} if re = a, {S | ϕ 1 , ϕ 2 ∈ S} if re = ϕ 1 ∧ ϕ 2 , {S | ϕ / ∈ S} if re = ¬ϕ, L(re 1 ).L(re 2 ) if re = re 1 .re 2 , L(re 1 ) ∪ L(re 2 ) if re = re 1 + re 2 , [L(re 1 )] * if re = (re 1 ) * .
If re is not an atomic regular expression, but has the form re 1 + re For ρ=({a}, 0.1)({a}, 0.3)({a, b}, 1.01), ρ, 1 |= ϕ, since a∈σ 2 , b∈σ 3 , τ 3 -τ 1 ∈(0, 1) and the untimed word obtained at position 2 is a which is in L(ab * ). For ρ = ({a}, 0.1)({a}, 0.3)({a}, 0.5)({a}, 0.9)({b}, 1.01), we know that ρ, 1 ϕ, since the untimed word obtained is aaa / ∈ L(ab * ). Example 2. Consider the formula ϕ = Reg (0,1) [¬Reg (0,1) a]. Then Γ = {¬Reg (0,1) a, Reg (0,1) a, a, ¬a}. 1. For the word ρ = ({a, b}, 0.1)({a, b}, 1.01)({a}, 1.2), TSeg(Γ, (0, 1), 1) = {a, Reg (0,1) a} is the marking of position 2. ρ, 2 |= Reg (0,1) a since ρ, 3 |= a. Hence, ρ, 1 ϕ. 2. For ρ = ({a, b}, 0.1)({b}, 0.7)({a, b}, 1.01)({a}, 1.2), TSeg(Γ, (0, 1), 1)={b}.{a, b, Reg (0,1) a}.

ρ, 1 ϕ.

2 a set S is consistent iff ϕ ∈ S ↔ ¬ϕ / ∈ S 3. Lastly, for ρ = ({a, b}, 0.1)({a, b}, 1.01)({b}, 1.2), we obtain ρ, 1 |= ϕ, since ρ, 3 a, and hence position 2 is not marked Reg (0,1) a. Example 3. Consider the formula ϕ = Reg (0,1) [Reg (0,1) a] * . For ρ = ({a, b}, 0.1)({a, b}, 0.8)({b}, 0.99)({a, b}, 1.5), we have ρ, 1 Reg (0,1) [Reg (0,1) a] * , since point 2 is not marked Reg (0,1) a, even though point 3 is.

The language accepted by a RegMTL formula ϕ is given by L(ϕ) = {ρ | ρ, 0 |= ϕ}.

Subclasses of RegMTL

As a special subclass of RegMTL, we consider the case when the regular expressions do only mod counting. With this restriction, the ϕUReg I,re ϕ modality is written as ϕUM I,θ ϕ where θ has the form #ψ = k%n, while the Reg I modality is written as MC k%n I . In both cases, k, n ∈ N and 0 ≤ k ≤ n -1. This restriction of RegMTL, written MTL mod has the form ϕ ::

= a(∈ Σ) |true |ϕ ∧ ϕ | ¬ϕ | ϕ | MC k%n I ϕ | ϕUM I,θ ϕ. The obvious semantics of ρ, i |= MC k%n I ϕ checks if the number of times ϕ is true in τ i + I is M (n) + k, where M (n)
denotes a non-negative integer multiple of n, and 0 ≤ k ≤ n -1. ρ, i |= ϕ 1 UM I,#ψ=k%n ϕ 2 checks the existence of j > i such that τ j -τ i ∈ I, and the number of times ψ is true in between i, j is

M (n) + k, 0 ≤ k ≤ n -1.
Example 4. The formula ϕ = ns (a → MC 0%2 (0,1) b) says that whenever there is an a at a time point t, the number of b's in the interval (t, t + 1) is even. The formula ψ = (a → trueUM (0,1),#b=0%2 (a ∨ b)) when asserted at a point i checks the existence of a point j > i such that a or b ∈ σ j , τ j -τ i ∈ (0, 1), a ∈ σ k for all i < k < j, and the number of points between i, j where b is true is even.

The subclass of RegMTL using only the UReg modality is denoted RegMTL[UReg]. Likewise, the subclass of MTL mod with only UM is denoted MTL mod [UM], while MTL mod [MC] denotes the subclass using just MC.

Temporal Projections

In this section, we discuss the technique of temporal projections used to show the satisfiability of RegMTL. Let Σ, X be finite sets of propositions such that Σ ∩ X = ∅. (Σ, X)-simple extensions and Simple Projections: A (Σ, X)-simple extension is a timed word ρ = (σ , τ ) over X ∪ Σ such that at any point i ∈ dom(ρ ), σ i ∩ Σ = ∅. For Σ={a, b}, X={c}, ({a}, 0.2)({a, c}, 0.3)({b, c}, 1.1) is a (Σ, X)-simple extension while ({a}, 0.2)({c}, 0.3)({b}, 1.1) is not. Given a (Σ, X)-simple extension ρ, the simple projection of ρ with respect to X, denoted ρ\X is the word obtained by deleting elements of X from each σ i . For Σ={a, b}, X={c} and ρ = ({a}, 0.1)({b}, 0.9)({a, c}, 1.1), ρ \ X = ({a}, 0.1)({b}, 0.9)({a}, 1.1). (Σ, X)-oversampled behaviours and Oversampled Projections: A (Σ, X)-oversampled behaviour is a timed word ρ = (σ , τ ) over X ∪ Σ, such that σ 1 ∩ Σ = ∅ and σ |dom(ρ )| ∩ Σ = ∅. Oversampled behaviours are more general than simple extensions since they allow occurrences of new points in between the first and the last position. These new points are called oversampled points. All other points are called action points. For Σ = {a, b}, X = {c}, ({a}, 0.2)({c}, 0.3)({b}, 0.7)({a}, 1.1) is a (Σ, X)-oversampled behaviour, while ({a}, 0.2)({c}, 0.3)({c}, 1.1) is not. Given a (Σ, X)-oversampled behaviour ρ = (σ , τ ), the oversampled projection of ρ with respect to Σ, denoted ρ ↓ X is defined as the timed word obtained by removing the oversampled points, and then erasing the symbols of X from the action points. ρ=ρ ↓ X is a timed word over Σ.

A temporal projection is either a simple projection or an oversampled projection. We now define equisatisfiability modulo temporal projections. Given MTL formulae ψ and φ, we say that φ is equisatisfiable to ψ modulo temporal projections iff there exist disjoint sets X, Σ such that (1) φ is over Σ, and ψ over Σ ∪ X, (2) For any timed word ρ over Σ such that ρ |= φ, there exists a timed word ρ such that ρ |= ψ, and ρ is a temporal projection of ρ with respect to X, (3) For any behaviour ρ over Σ ∪ X, if ρ |= ψ then the temporal projection ρ of ρ with respect to X is well defined and ρ |= φ. If the temporal projection used above is a simple projection, we call it equisatisfiability modulo simple projections and denote it by φ = ∃X.ψ. If the projection in the above definition is an oversampled projection, then it is called equisatisfiability modulo oversampled projections and is denoted φ ≡ ∃ ↓ X.ψ. Equisatisfiability modulo simple projections are studied extensively [START_REF] Kini | On construction of safety signal automata for MITL[U, S] using temporal projections[END_REF][START_REF] Prabhakar | On the expressiveness of MTL with past operators[END_REF][START_REF] Francois | Logics, Automata and Classical Theories for Deciding Real Time[END_REF]. It can be seen that if

ϕ 1 = ∃X 1 .ψ 1 and ϕ 2 = ∃X 2 .ψ 2 , with X 1 , X 2 disjoint, then ϕ 1 ∧ ϕ 2 = ∃(X 1 ∪ X 2 ).(ψ 1 ∧ ψ 2 ) [8].
Unlike simple projections, when one considers oversampled projections, there is a need to relativize the formula with respect to the original alphabet Σ to preserve satisfiability. As an example, let φ = (0,1) a be a formula over Σ = {a}, and let

ψ 1 = (b ↔ ¬a) ∧ (¬b U (0,1) b), ψ 2 = (c ↔ [0,1) a) ∧ c be two formulae over Σ 1 = Σ ∪ {b} and Σ 2 = Σ ∪ {c} respectively. Clearly, φ = ∃ ↓ {b}ψ 1 and φ = ∃ ↓ {c}ψ 2 . However, φ = ∃ ↓ {b, c}(ψ 1 ∧ ψ 2 )
, since the non-action point b contradicts the condition [0,1) a corresponding to c. However, if ψ 1 , ψ 2 are relativized with respect to Σ 1 , Σ 2 respectively, then we will not have this problem.

Relativizing

ψ 1 , ψ 2 with respect to Σ 1 , Σ 2 gives Rel(ψ 1 , Σ 1 ), Rel(ψ 1 , Σ 2 ) as (act 1 →(b↔¬a))∧[(act 1 →¬b) U (0,1) (b∧act 1 )], and (act 2 → (c ↔ [0,1) (act 2 → a))) ∧ (act 2 ∧ c).

This resolves the problem and indeed

φ = ∃ ↓ {b, c}(Rel(ψ 1 , Σ 1 ) ∧ Rel(ψ 2 , Σ 2 )).

Satisfiability, Complexity, Expressiveness

The main results of this section are as follows.

Theorem 2. 1. Satisfiability of RegMTL is decidable.

Satisfiability of MITL

mod [UM] is EXPSPACE-complete. 3. Satisfiability of MITL[UReg] is in 2EXPSPACE. 4. Satisfiability of MITL mod [MC] is F ω ω -hard.
We will use equisatisfiability modulo oversampled projections in the proof of Theorem 2. This technique is used to show the decidability of RegMTL, 2EXPSPACE-hardness of RegMITL[UReg], and Ackermannian-hardness of MITL mod [MC]. The proof of Theorem 2.1 follows from Lemmas 4 and 5, and from Theorem 1. Details of Theorems 2.2, 2.3, 2.4 can be found in Appendices B.2, B.3 and 3.3.

Theorem 3. RegMTL[UReg] ⊆ RegMTL[Reg], MTL mod [UM] ⊆ MTL mod [MC].
Theorem 3 shows that the Reg modality can capture UReg (and likewise, MC captures UM). Thus, RegMTL ≡ RegMTL[Reg]. The proofs can be seen in Appendix C.

Equisatisfiable Reduction

In this section, we describe the steps to obtain an equisatisfiable reduction from RegMTL to MTL which shows that satisfiability checking of RegMTL is decidable. Starting from a RegMTL formula ϕ, the following steps are taken.

1.

Flattening. Each of the modalities Reg I , UReg that appear in the formula ϕ are replaced with fresh witness propositions to obtain a flattened formula. For example, if

ϕ = Reg (0,1) [aUReg (1,2),Reg (0,1) (a+b) * b], then flattening yields ns [w 1 ↔ Reg (0,1) w 2 ] ∧ ns [w 2 ↔ aUReg (1,2),w3 b] ∧ ns [w 3 ↔ Reg (0,1) (a + b) * ],
where w 1 , w 2 , w 3 are fresh witness propositions. Let W be the set of fresh witness propositions such that Σ ∩ W = ∅. After flattening, the modalities Reg I , UReg appear only within temporal definitions. Temporal definitions are of the form ns [a ↔ Reg I atom] or ns [a ↔ xUReg I ,atom y], where atom is a regular expression over Σ ∪ W , W being the set of fresh witness propositions used in the flattening, and I is either a unit length interval or an unbounded interval. 2. Consider any temporal definition T and a timed word ρ over Σ ∪ W . Each of the regular expression atom has a corresponding minimal DFA recognizing it. We first construct a simple extension ρ which marks each position of ρ using the run information from the minimal DFA that accepts the regular expression atom. However, to check that the regular expression atom holds good in a particular time interval from a point in the timed word, we need to oversample ρ by introducing some extra points. Based on this oversampling, each point of ρ can be marked a as a witness of Reg I atom (or xUReg I ,atom y). The construction of the simple extension ρ is in section 3.2, while details of the elimination of Reg I atom, xUReg I ,atom y using oversampling are in the lemmas 4 and 5.

Construction of Simple Extension ρ

For any given ρ over Σ ∪ W , where W is the set of witness propositions used in the temporal definitions T of the forms ns [a ↔ Reg I atom] or ns [a ↔ xUReg I ,atom y], we construct a simple extension ρ that marks points of ρ with the run information of the minimal DFA accepting atom. This results in the extended alphabet Σ ∪ W ∪ Threads ∪ Merge for ρ . The behaviour of Threads and Merge are explained below.

Let AP denote the (sub)set of propositions over which atom is defined. Let A atom = (Q, 2 AP , δ, q 1 , Q F ) be the minimal DFA that accepts atom and let Q = {q 1 , q 2 , . . . , q m }. Let In = {1, 2, . . . , m} be the indices of the states. We have to mark every point i in dom(ρ ) with a or ¬a depending on the truth of Reg I atom or xUReg I,atom y at i. To do this, we "run" A atom starting from each point i in dom(ρ ). At any point i of dom(ρ ), we thus have the states reached in A atom after processing the i -1 prefixes of ρ , and we also start a new thread at position i. This way of book-keeping will lead to maintaining unbounded number of threads of the run of A atom . To avoid this, we "merge" threads i, j if the states reached at points i, j are the same, and maintain the information of the merge. It can be seen then that we need to maintain at most m distinct threads at each point, given m is the number of states of A atom . We mark the points in ρ with the state information on each thread and the information about which threads are being merged (if any), with the following set of propositions : 1. Let Th i (q x ) be a proposition that denotes that the ith thread is active and is in state q x , while Th i (⊥) be a proposition that denotes that the ith thread is not active. The set Threads consists of propositions Th i (q x ), Th i (⊥) for 1 ≤ i, x ≤ m. 2. If at a position e, we have Th i (q x ) and Th j (q y ) for i < j, and if δ(q x , σ e ) = δ(q y , σ e ), then we can merge the threads i, j at position e + 1. Let (i, j) be a proposition that signifies that threads i, j have been merged. In this case, (i, j) is true at position e + 1. Let Merge be the set of all propositions (i, j) for 1 ≤ i < j ≤ m. At most m threads can be running at any point e of the word. We now describe the conditions to be checked in ρ .

Initial condition-At the first point of the word, we start the first thread and initialize

q 1 q 1 q 1 q 1 T h(1) T h(2) T h(3) T h(4) q 2 q 3 q 4 q 1 q 2 q 3 q 4 q 2 q 3 q 4 q 2 q 2 × Merge(1, 4) × q 3 q 3 × Merge(2, 3) × Figure 2
Encoding runs and merging of threads.

c i-1 c i c i-1 c i c i⊕u τ v + l τ v + u τ v Th i (q 1 ) ¬Mrg(i) M(i 1 , i) ¬Mrg(i 1 ) M(i 2 , i 1 ) M(x, y) ¬Mrg(x) Th j (q f ) M(z, x) ¬Mrg(x) Figure 3 Linking of R pref and R suf .
all other threads as ⊥. This could be specified as

ϕ init = ((Th 1 (q 1 )) ∧ i>1 Th i (⊥)).

Initiating runs at all points-

To check the regular expression within an arbitrary interval, we need to start a new run from every point. ϕ start = ns ( i≤m Th i (q 1 ))

Disallowing Redundancy-At any point of the word, if i = j and Th i (q x ) and Th j (q y ) are both true, then

q x = q y . ϕ no-red = x∈In ns [¬ 1≤i<j≤m (Th i (q x ) ∧ Th j (q x ))]
Merging Runs-If two different threads Th i , Th j (i < j) reach the same state q x on reading the input at the present point, then we just keep one copy and merge thread Th j with Th i . We remember the merge with the proposition (i, j). We define a macro Nxt(Th i (q x )) which is true at a point e if and only if Th i (q y ) is true at e and δ(q y , σ e ) = q x , where σ e ⊆ AP is the maximal set of propositions true at e. Nxt(Th i (q x )) is true at e iff thread Th i reaches q x after reading the input at e. Nxt(Th i (q x ))= (qy,prop)∈{(q,p)|δ(q,p)=qx}

[prop∧Th i (q y )].
Let ψ(i, j, k, q x ) be a formula that says that at the next position, Th i (q x ) and Th k (q x ) are true for k > i, but for all j < i, Th j (q x ) is not. ψ(i, j, k, q x ) is given by Nxt(Th i (q x ))∧ j<i ¬Nxt(Th j (q x ))∧Nxt(Th k (q x )). In this case, we merge threads Th i , Th k , and either restart Th k in the initial state, or deactivate the kth thread at the next position. This is given by the formula

NextMerge(i, k) O[ (i, k) ∧ (Th k (⊥) ∨ Th k (q 1 )) ∧ Th i (q x )]. ϕ is defined as x,i,k∈In∧k>i ns [ψ(i, j, k, q x ) → NextMerge(i, k)]
Propagating runs-If Nxt(Th i (q x )) is true at a point, and if for all j < i, ¬Nxt(Th j (q x )) is true, then at the next point, we have Th i (q x ). Let NextTh(i, j, q x ) denote the formula Nxt(Th i (q x )) ∧ ¬Nxt(Th j (q x )). The formula ϕ pro is given by i,j∈In∧i<j ns [NextTh(i, j, q x )→O[Th i (q x ))∧¬ (i, j)]]. If Th i (⊥) is true at the current point, then at the next point, either Th i (⊥) or Th i (q 1 ). The latter condition corresponds to starting a new run on thread Th i .

ϕ N O-pro = i∈In ns {Th i (⊥)→O(Th i (⊥) ∨ Th i (q 1 ))}
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Once we construct the extension ρ , checking whether the regular expression atom holds in some interval I in the timed word ρ, is equivalent to checking that if a thread Th i is at q 1 at the first action point in I, then the corresponding thread is at q f at the last point in I. But the main challenge is that the indices of a particular thread might change because of merges. Thus the above condition reduces to checking that at the first action point u within I, if Th i (q 1 ) holds, then after a series of merges of the form (i 1 , i), (i 2 , i 1 ), . . . (j, i n ), at the last point v in the interval I, Th j (q f ) is true, for some final state q f . Note that the number of possible sequences are bounded(and a function of size of the DFA). Figure 2 illustrates the threads and merging. Let Run be the formula obtained by conjuncting all formulae explained above. This captures the run information of A atom . The formula Run then correctly captures the run information on ρ.

We can easily write a 1-TPTL formula that will check the truth of Reg [l,u) atom at a point v on the simple extension ρ (see Appendix A). However, to write an MTL formula that checks the truth of Reg [l,u) atom at a point v, we need to oversample ρ as shown below.

Lemma 4. Let T = ns [a ↔ Reg I atom] be a temporal definition built from Σ ∪ W . Then we synthesize a formula ψ ∈ MTL over Σ ∪ W ∪ X such that T ≡ ∃ ↓ X.ψ.
Proof. Lets first consider the case when the interval I is bounded of the form [l, u). Starting with the simple extension ρ having the information about the runs of A atom , we explain the construction of the oversampled extension ρ as follows:

We first oversample ρ at all the integer timestamps and mark them with propositions in C = {c 0 , . . . , c max-1 } where max is the maximum constant used in timing constraints of the input formulae. An integer timestamp k is marked c i if and only if k = M (max) + i where M (max) denotes a non-negative integral multiple of max and 0

≤ i ≤ max -1.
This can be done easily by the formula

c 0 ∧ i∈{0,...max-1} ns (c i → ¬♦ (0,1) ( C)∧♦ (0,1] c i⊕1 )
where x⊕y is addition of x, y modulo max.

Next, a new point marked ovs is introduced at all time points τ whenever τ -l or τ -u is marked with Σ. This ensures that for any time point t in ρ , the points t + l, t + u are also available in ρ . After the addition of integer time points, and points marked ovs, we obtain the oversampled extension (Σ ∪ W ∪ Threads ∪ Merge, C ∪ {ovs}) ρ of ρ . To check the truth of Reg [l,u) atom at a point v, we need to assert the following: starting from the time point τ v + l, we have to check the existence of an accepting run R in A atom such that the run starts from the first action point in the interval [τ v + l, τ v + u), is a valid run which goes through some possible sequence of merging of threads, and witnesses a final state at the last action point in [τ v + l, τ v + u). To capture this, we start at the first action point in [τ v + l, τ v + u) with initial state q 1 in some thread Th i , and proceed for some time with Th i active, until we reach a point where Th i is merged with some Th i1 . This is followed by Th i1 remaining active until we reach a point where Th i1 is merged with some other thread Th i2 and so on, until we reach the last such merge where some thread say Th n witnesses a final state at the last action point in [τ v + l, τ v + u). A nesting of until formulae captures this sequence of merges of the threads, starting with Th i in the initial state q 1 . Starting at v, we have the point marked ovs at τ v + l, which helps us to anchor there and start asserting the existence of the run.

The issue is that the nested until can not keep track of the time elapse since τ v + l. However, note that the greatest integer point in [τ v + l, τ v + u) is uniquely marked with c i⊕u whenever c i ≤ τ v ≤ c i⊕1 are the closest integer points to τ v . We make use of this by (i) asserting the run of A atom until we reach c i⊕u from τ v + l. Let the part of the run R that has been witnessed until c i⊕u be R pref . Let R = R pref .R suf be the accepting run. (ii) From τ v + l, we jump to τ v + u, and assert the reverse of R suf till we reach c i⊕u . This ensures that

R = R pref .R suf is a valid run in the interval [τ v + l, τ v + u). Let Mrg(i) = [ j<i (j, i) ∨ c i⊕u ].
We first write a formula that captures R pref . Given a point v, the formula captures a sequence of merges through threads i > i 1 > • • • > i k1 , and m is the number of states of A atom .

Let

ϕ P ref,k1 = m≥i>i1>•••>i k 1 MergeseqPref(k 1 )
where MergeseqPref(k 1 ) is the formula

♦ [l,l] {¬( Σ ∨ c i⊕u ) U[Th i (q 1 ) ∧ (¬Mrg(i) U[ (i 1 , i)∧ (¬Mrg(i 1 ) U[ (i 2 , i 1 ) ∧ . . . (¬Mrg(i k1 ) Uc i⊕u )])])]}
Note that this asserts the existence of a run till c i⊕u going through a sequence of merges starting at τ v + l. Also, Th i k 1 is the guessed last active thread till we reach c i⊕u which will be merged in the continuation of the run from c i⊕u . Now we start at τ v + u and assert that we witness a final state sometime as part of some thread Th i k , and walk backwards such that some thread i t got merged to i k , and so on, we reach a thread Th ic to which thread Th i k 1 merges with. Note that Th i k 1 was active when we reached c i⊕u . This thread Th i k 1 is thus the "linking point" of the forward and reverse runs. See Figure 3.

Let

ϕ Suf,k,k1 = 1≤i k <•••<i k 1 ≤m MergeseqSuf(k, k 1 ) where MergeseqSuf(k, k 1 ) is the for- mula ♦ [u,u] {¬( Σ∨c i⊕u )S[(Th i k (q f ))∧(¬Mrg(i k )S [ (i k , i k-1 )∧(¬Mrg(i k-1 )S[ (i k-1 , i k-2 )∧ • • • (i c , i k1 ) ∧ (¬Mrg(i k1 ) Sc i⊕u )])])]}. For a fixed sequence of merges, the formula ϕ k,k1 = k≥k1≥1 [MergeseqPref(k 1 )∧MergeseqSuf(k, k 1 )
] captures an accepting run using the merge sequence. Disjuncting over all possible sequences for a starting thread Th i , and disjuncting over all possible starting threads gives the required formula capturing an accepting run. Note that this resultant formulae is also relativized with respect to Σ and also conjuncted with Rel(Σ, Run) (where Run is the formula capturing the run information in ρ as seen in section 3.2) to obtain the equisatisfiable MTL formula. Note that S can be eliminated obtaining an equisatisfiable MTL[ U I ] formula modulo simple projections [START_REF] Prabhakar | On the expressiveness of MTL with past operators[END_REF].

If I was an unbounded interval of the form [l, ∞), then in formula ϕ k,k1 , we do not require MergeseqSuf(k, k 1 ); instead, we will go all the way till the end of the word, and assert Th i k (q f ) at the last action point of the word. Thus, for unbounded intervals, we do not need any oversampling at integer points.

Lemma 5. Let T = ns [a ↔ xUReg I,re y] be a built from Σ ∪ W . Then we synthesize a formula ψ ∈ MTL over Σ ∪ W ∪ X such that T ≡ ∃ ↓ X.ψ.
Proof. We discuss the case of bounded intervals here; the unbounded interval case can be seen in Appendix B. The proof technique is very similar to Lemma 4. The differences that arise are as below. 1. Checking re in Reg I re at point v is done at all points j such that τ j -τ v ∈ I. To ensure this, we needed the punctual modalities ♦ [u,u] , ♦ [l,l] . On the other hand, to check UReg I,re from a point v, the check on re is done from the first point after τ v , and ends at some point within [τ v + l, τ v + u). Assuming τ v lies between integer points c i , c i⊕1 , we can witness the forward run in MergeseqPref from the next point after τ v till c i⊕1 , and for the reverse run, go to some point in τ v + I where the final state is witnessed, and walk back till c i⊕1 . The punctual modalities are hence not required and we do not need points marked ovs.

2.

The formulae MergeseqPref(k 1 ), MergeseqSuf(k, k 1 ) of the lemma 4 are replaced as follows:

MergeseqPref(k 1 ) : {¬( Σ ∨ c i⊕1 ) U[Th i (q 1 ) ∧ (¬Mrg(i) U[ (i 1 , i) ∧ (¬Mrg(i 1 ) U [ (i 2 , i 1 ) ∧ . . . (¬Mrg(i k1 ) Uc i⊕1 )])])]}. MergeseqSuf(k, k 1 ) : ♦ I {[(Th i k (q f ))∧(¬Mrg(i k )S [ (i k , i k-1 )∧(¬Mrg(i k-1 )S[ (i k-1 , i k-2 )∧ • • • (i c , i k1 ) ∧ (¬Mrg(i k1 ) Sc i⊕1 )])]
)]} The above takes care of re in xUReg I,re y : we also need to say that x holds continously from the current point to some point in I. This is done by pushing x into re (see the translation of ϕ 1 UReg I,re ϕ 2 to Reg I re in Appendix C). The resultant formulae is relativized with respect to Σ and also conjuncted with Rel(Σ, Run) to obtain the equisatisfiable MTL formula.

The equisatisfiable reduction in Lemma 5 above hence gives an elementary upper bound for satisfiability checking when we work on MITL with UReg, since after elimination of UReg, we obtain an equisatisfiable MITL formula. This is very interesting since it shows an application of the oversampling technique : without oversampling, we can eliminate UReg using 1-TPTL as shown in Appendix A. However, 1-TPTL does not enjoy the benefits of non-punctuality. In particular, Appendix F.2 shows that non punctual 1-TPTL is already non-primitive recursive.

Complexity

In this section, we discuss the complexity of MITL mod [MC], proving Theorem 2.4. To prove this, we obtain a reduction from the reachability problem of Insertion Channel Machines with Emptiness Testing (ICMET). We now show how to encode the reachability problem of We first define error-free channel machines. Given A as above, a configuration of A is a pair (q, U ) where q ∈ S and U ∈ (M * ) C gives the contents of each channel. Let Conf denote the configurations of A. The rules in ∆ induce an Op-labelled transition relation on Conf, as follows.

ICMET in MITL mod [MC].
(a) (q, c!a, q ) ∈ ∆ yields a transition (q, U )

c!a -→ (q , U ) where U (c) = U (c).a, and U (d) = U (d) for d = c. (b) (q, c?a, q ) ∈ ∆ yields a transition (q, U ) c?a -→ (q , U ) where U (c) = a.U (c), and U (d) = U (d) for d = c. (c) (q, c = , q ) ∈ ∆ yields a transition (q, U ) c= -→ (q , U ) provided U (c) is the empty word.
All other channel contents remain the same. If the only transitions allowed are as above, then we call A an error-free channel-machine. Error-free channel machines are Turing-powerful. We now look at channel machines with insertion errors. These augment the transition relation on Conf with the following rule: (d) Insertion errors are then introduced by extending the transition relation on global states with the following clause: if (q, U ) α -→ (q , V ), and if U U and V V , then (q, U ) α -→ (q , V ). U U if U can be obtained from U by deleting any number of letters.

The channel machines as above are called ICMET. A run of an ICMET is a sequence of transitions γ 0

op0 → γ 1 • • • opn-1
→ γ n . . . that is consistent with the above operational semantics. Consider any ICMET C = (S, M, ∆, C), with set of states S = {s 0 , . . . , s n } and channels C = {c 1 , . . . , c k }. Let M be a finite set of messages used for communication in the channels.

We encode the set of all possible configurations of C, with a timed language over the alphabet where k refers to number of channels. 2. At time (2k + 2)j + (2k -1), the current state s w of the ICMET at configuration j is encoded by the truth of the proposition s w . 3. The jth configuration begins at the time point (2k + 2)j. At a distance [2i -1, 2i] from this point, 1 ≤ i ≤ k, the contents of the i th channel are encoded as shown in the point 7.

Σ = M a ∪ M b ∪ ∆ ∪ S ∪ {H}, where M a = {m a |m ∈ M } M b = {m b |m ∈ M },
The intervals of the form (2i, 2i + 1), 0 ≤ i ≤ k + 1 from the start of any configuration are time intervals within which no action takes place. 4. Lets look at the encoding of the contents of channel i in the jth configuration. Let m hi be the message at the head of the channel i. Each message m i is encoded using consecutive occurrences of symbols m i,a and m i,b . In our encoding of channel i, the first point marked m hi,a in the interval (2k + 2)j + [2i -1, 2i] is the head of the channel i and denotes that m hi is the message at the head of the channel. The last point marked m ti,b in the interval is the tail of the channel, and denotes that message m ti is the message stored at the tail of the channel. 5. Exactly at 2k + 1 time units after the start of the j th configuration, we encode the transition from the state at the j th configuration to the (j + 1) st configuration (starts at (2k + 2)(j + 1)). Note that the transition has the form (s, c!m, s ) or (s, c?m, s ) or (s, c = , s ). 6. We introduce a special symbol H, which acts as separator between the head of the message and the remaining contents, for each channel. 1. All the states must be at distance 2k + 2 from the previous state (first one being at 0) and all the propositions encoding transitions must be at the distance 2k + 1 from the start of the configuration.

ϕ S =s 0 ∧ [S ⇒ {♦ (0,2k+2] (S)∧ (0,2k+2) (¬S)∧♦ (0,2k+1] α∧ [0,2k+1) (¬α)∧♦ (2k+1,2k+2) (¬α)}]
2. All the messages are in the interval [2i -1, 2i] from the start of configuration. No action takes place at (2i -2, 2i -1) from the start of any configuration.

ϕ m = {S⇒ k i=1 [2i-1,2i] (M ∨H)∧ (2i-2,2i-1) (¬action)} 3.
Consecutive source and target states must be in accordance with a transition α. For example, s j appears consecutively after s i reading α i iff α i is of the form (s i , y, s j ) ∈ ∆, with y ∈ {c i !m, c i ?m, c i = ∅}. ϕ ∆ = s,s ∈S {(s∧♦ (0,2k+2] s )⇒(♦ (0,2k+1] ∆ s,s )} where ∆ s,s are possible α i between s, s .

XX:14 A Regular Metric Temporal Logic 4. We introduce a special symbol H along with other channel contents which acts as a separator between the head of the channel and rest of the contents. Thus H has following properties There is one and only one time-stamp in the interval (2i -1, 2i) from the start of the configuration where H is true. The following formula says that there is an occurrence of a H:

ϕ H1 = [(S∧♦ (2i-1,2i) M )⇒( k i=1 ♦ (2i-1,2i) (H))]
The following formula says that there can be only one H: ϕ H2 = (H⇒¬♦ (0,1) H) Every message m x is encoded by truth of proposition m x,a immediately followed by m x,b . Thus for any message m x , the configuration encoding the channel contents has a sub-string of the form (m x,a m x,b ) * where m x is some message in M .

ϕ m = [m x,a ⇒O (0,1] m x,b ]∧ [m x,b ⇒O (0,1) M a ∨O( ∆ ∨ H)]∧(¬M b UM a )
If the channel is not empty (there is at least one message m a m b in the interval (2i-1, 2i) corresponding to channel i contents) then there is one and only one m b before H. The following formula says that there can be at most one m b before H.

ϕ H3 = [¬{M b ∧ ♦ (0,1) (M a ∧ ♦ (0,1) H)}]
The following formula says that there is one M b before H in the channel, if the channel is non-empty.

ϕ H4 = [S⇒{ k j=1 (♦ [2j-1,2j] (M b )⇒ ♦ [2j-1,2j] (M b ∧ ♦ (0,1) H))}] Let ϕ H =ϕ H1 ∧ ϕ H2 ∧ ϕ H3 ∧ ϕ H4 .

Encoding transitions:

We first define a macro for copying the contents of the i th channel to the next configuration with insertion errors. If there were some m x,a , m 

[2g-1,2g] [ mx∈M (m x,a ∧iseven (0,2k+2) (m x,b ))⇒O(iseven (0,2k+2) (m x,b ))] ∧ [2i-1,2i] [ mx∈M (m x,a ∧¬iseven (0,2k+2) (m x,b ))⇒O(¬iseven (0,2k+2) (m x,b ))]
If the transition is of the form c i = . The following formulae checks that there are no events in the interval (2i -1, 2i) corresponding to channel i, while all the other channel contents are copied.

ϕ ci= =S ∧ (2i-1,2i) (¬action)∧ k g=1 copy g
If the transition is of the form c i !m x where m ∈ M . An extra message is appended to the tail of channel i, and all the m a m b 's are copied to the next configuration. M b ∧ (0,1) (¬M )) denotes the last time point of channel i; if this occurs at time t, we know that this is copied at a timestamp strictly less than 2k + 2 + t.Thus we assert that truth of ♦ (2k+2,2k+3) m x,b at t.

ϕ ci!m =S∧ k g=1 copy g ∧♦ [2i-1,2i) {(M ∧ (0,1) (¬M ))⇒(♦ (2k+2,2k+3) (m x,b ))}
If the transition is of the form c i ?m where m ∈ M . The contents of all channels other than i are copied to the intervals encoding corresponding channel contents in the next configuration. We also check the existence of a first message in channel i; such a message has a H at distance (0, 1) from it.

ϕ ci?mx =S∧ k j =i,g=1 copy g ∧♦ (2i-1,2i) {m x,b ∧♦ (0,1) (H)}∧ [2i-1,2i] [ mx∈M (m x,a ∧ iseven (0,2k+2) (m x,b )∧¬♦ (0,1) H)⇒O(iseven (0,2k+2) (m x,b ))]∧ [2i-1,2i] [ mx∈M (m x,a ∧¬iseven (0,2k+2) (m x,b )∧¬♦ (0,1) H)⇒O(¬iseven (0,2k+2) (m x,b ))] 6.
Channel contents must change in accordance to the relevant transition. Let L be a set of labels (names) for the transitions. Let l ∈ L and α l be a transition labeled l.

ϕ C = [S ⇒ l∈L (♦ (0,2k+1] ( α l ⇒ φ l ))]
where φ l are the formulae as seen in 5. 7. Let t be a state of the ICMET whose reachability we are interested in. Check s t is reachable from s 0 . φ reach = ♦(s t ) Thus the formula encoding ICMET is:

ϕ 3 = ϕ S ∧ ϕ ∆ ∧ ϕ m ∧ ϕ H ∧ ϕ C ∧ ϕ reach

Main Equivalences

In this section, we discuss the two equivalences : the equivalence between po-1-clock ATA and 1-TPTL, and that between po-1-clock ATA and SfrMTL. SfrMTL is the fragment of RegMTL where the regular expressions are all star-free. This gives the equivalence between 1-TPTL and SfrMTL.

Automaton-Logic Characterization

In this section, we show that partially ordered 1-clock alternating timed automata (po-1-clock ATA) capture exactly the same class of languages as 1-TPTL. We also show that 1-TPTL is equivalent to the class RegMTL where the regular expressions re involved in the formulae are star-free. We denote by SfrMTL this subclass RegMTL. This also shows for the first time in pointwise timed logics, an equivalence between freeze point logics and logics with interval constraints. A 1-clock ATA [START_REF] Ouaknine | On the decidability of metric temporal logic[END_REF] is a tuple A = (Σ, S, s 0 , F, δ), where Σ is a finite alphabet, S is a finite set of locations, s 0 ∈ S is the initial location and F ⊆ S is the set of final locations. Let x denote the clock variable in the 1-clock ATA, and x c denote a clock constraint where c ∈ N and ∈ {<, ≤, >, ≥}. Let X denote a finite set of clock constraints of the form x c. The transition function is defined as δ : S × Σ → Φ(S ∪ Σ ∪ X) where Φ(S ∪ Σ ∪ X) is a set of formulae defined by the grammar below. Let s ∈ S. The grammar is defined as

ϕ ::= |⊥|ϕ 1 ∧ ϕ 2 |ϕ 1 ∨ ϕ 2 |s|x c|x.ϕ
x.ϕ is a binding construct correspinding to resetting the clock x to 0.

The notation Φ(S ∪ Σ ∪ X) thus allows boolean combinations as defined above of locations, symbols of Σ, clock constraints and , ⊥, with or without the binding construct (x.). A configuration of a 1-clock ATA is a set consisting of locations along with their clock valuation. Given a configuration C, we denote by δ(C, a) the configuration D obtained by applying δ(s, a) to each location s such that (s, ν) ∈ C. A run of the 1-clock ATA starts from the initial configuration {(s 0 , 0)}, and proceeds with alternating time elapse transitions and discrete transitions obtained on reading a symbol from Σ. A configuration is accepting iff it is either empty, or is of the form {(s, ν) | s ∈ F }. The language accepted by a 1-clock ATA A, denoted L(A) is the set of all timed words ρ such that starting from {(s 0 , 0)}, reading ρ leads to an accepting configuration. A po-1-clock ATA is one in which there is a partial order denoted ≺ on the locations, such that whenever s j appears in Φ(s i ), s j ≺ s i , or s j = s i . Let ↓ s i = {s j | s j ≺ s i }.

x.s does not appear in δ(s, a) for all s ∈ S, a ∈ Σ.

Example. Consider A = ({a, b}, {s 0 , s a , s }, s 0 , {s 0 , s }, δ) with transitions δ(s

0 , b) = s 0 , δ(s 0 , a) = (s 0 ∧ x.s a ) ∨ s , δ(s a , a) = (s a ∧ x < 1) ∨ (x > 1) = δ(s a , b), and δ(s , b) = s , δ(s , a) = ⊥.
The automaton accepts all strings where every non-last a has no symbols at distance 1 from it. Note that this is a po-1-clock ATA.

Lemma 6. po-1-clock ATA and 1-TPTL are equivalent in expressive power.

po-1-clock ATA to 1-TPTL

In this section, we explain the algorithm which converts a po-1-clock ATA A into a 1-TPTL formula ϕ such that L(A) = L(ϕ). The translation from 1-TPTL to po-1-clock ATA is easy, as in the translation from MTL to po-1-clock ATA. We illustrate the key steps of the reverse direction, and apply it on the example above, while the step by step details can be seen in Appendix D. There are 4 main steps.

1.

In step 1, we write each transition δ(s, a) into a disjunction

C 1 ∨ C 2 or C 1 or C 2 , where C 1 = s ∧ ϕ 1 , with ϕ 1 ∈ Φ(↓ s ∪ {a} ∪ X), and C 2 = ϕ 2 , where ϕ 2 ∈ Φ(↓ s ∪ {a} ∪ X). 2.
In step 2, we combine all transitions possible from a location s by disjuncting them, and denote the resultant as ∆(s). In the example above, we obtain ∆(s 0 ) = s 0 ∧ [(a ∧ x.s a )) ∨ b] ∨ (a ∧ s ). 3. In step 3, we take the first step towards obtaining a 1-TPTL formula corresponding to each location, by replacing all locations s appearing in ∆(s) with Os . This is denoted N (s). Continuing with the example, we obtain

N (s 0 ) = Os 0 ∧ [(a ∧ x.Os a )) ∨ b] ∨ (a ∧ Os ), N (s a ) = (Os a ∧ x < 1) ∨ (x > 1), N (s ) = Os ∧ b. 4.
In the last step, we solve each N (s) starting with the lowest location in the partial order.

We make use of the fact that for the lowest locations s n in the partial order, we have

N (s n ) = (Os n ∧ ϕ 1 ) ∨ ϕ 2 , where ϕ 1 , ϕ 2 ∈ Φ(Σ, X).
Hence, a solution to this, denoted F (s n ) is ϕ 1 Wϕ 2 if s n is an accepting location, and as ϕ 1 U ns ϕ 2 if s n is non-accepting. This is recursively continued as we go up the partial order, where each N (s i ) has the form (Os i ∧ ϕ 1 ) ∨ ϕ 2 such that F (s ) is computed for all locations s appearing in ϕ 1 , ϕ 2 . Solving for s i is then similar to that of s n . F (s 0 ) then gives the TPTL formula that we are looking for.

In our example,

F (s ) = ns b, F (s a )=x < 1 U ns x > 1. Finally, F (s 0 ) = [(a ∧ x.OF (s a )) ∨ b] W(a ∧ OF (s )) as ((a ∧ (x.O[(x < 1) U ns x > 1])) ∨ b) W(a ∧ O ns b).

1-TPTL and SfrMTL

In this section, we prove the following result.

Theorem 7. 1-TPTL and SfrMTL are equivalent.

The proof uses Lemmas 8 and 9. We first show that starting from a SfrMTL formula ϕ, we can construct an equivalent 1-TPTL formula ψ.

Assume that there exist some k such that E j = C k . In this case, the LTL formulae that is satisfied in region R y is P k ( U| W)Q j . Thus the y th element of the sequence is

P k ( U| W)Q j .
Assume that there is no C k such that E j = C k . Then the LTL formula that is satisfied in R y is Q j . Thus the y th element of the sequence is Q j . For every sequence that has R y as one of the above, we have: * The assertion in all regions < R i is as there is no restriction on the region before the present point, since we only consider future temporal modalities. Similarly the formulae in regions R z > R y are also set to as there are no restrictions on the behaviour once we come out of the state s. * For all C g = x ∈ R w , where R y > R w > R i , the region R w will satisfy ns P g ∨ ns ⊥. Thus the assertion in R g in every sequence is ns P g or ns ⊥, depending on whether or not we have points lying in R g . Recall that ns ⊥ is the LTL formula whose only model is the empty word . If for some C g such that E j = C g and C g = x ∈ R i , then in region R i , we assert ns P g . Thus the i th entry is ns P g . * Note that all the remaining regions (if any), are between i and y. There is no behaviour allowed at this point. At these points ns ⊥ is true as only the empty string is accepted. Boolean combinations of Beh-Given two locations s 1 , s 2 , with F (s 1 ) = ϕ 1 and F (s 2 ) = ϕ 2 , we construct Beh(F (s 1 ), R) and Beh(F (s 2 ), R) as shown above for all R ∈ R. Given these Beh's we now define boolean operations ∧ and ∨ on these sets, such that

Beh(ϕ 1 , R) ∧ Beh(ϕ 2 , R) = Beh(ϕ 1 ∧ ϕ 2 , R). 1. For every R i ∈ R, we first take the cross product Beh(ϕ 1 , R i ) × Beh(ϕ 2 , R i ), obtaining
a set consisting of ordered pairs of BDs. All the possible behaviours of ϕ 1 ∧ ϕ 2 starting in region R i is equivalent to the conjunction of all possible behaviours of ϕ 1 conjuncted with all the possible behaviours of ϕ 2 .

For every pair (BD

1 , BD 2 )∈Beh(ϕ 1 , R i )×Beh(ϕ 2 , R i ), construct a behaviour BD ∈ Beh(ϕ 1 ∧ ϕ 2 , R i
) such that the i th entry of BD is equal to the conjunction of the i th entry of BD 1 with that of BD 2 . This will ensure that we take all the possible behaviours of F (s 1 ) at region R i and conjunct it with all the possible behaviours of F (s 2 ) in the same region. In a similar way we can also compute the Beh(ϕ 1 ∨ ϕ 2 , R). Elimination of nested Beh: Given any F (s) of the form andC i , E j being clock constraints of the form x ∈ R. Assume that we have calculated Beh(F (s i ), R) for all s i ∈↓ s. We construct Beh(F (s), R) as shown above. After the construction, there might be some propositions of the form O(s j ) as a conjunct in some of the BD's in Beh(F (s), R). This occurrence of s j is eliminated by stitching Beh(F (s j )) with BD as follows:

ϕ=[(P 1 ∧ C 1 ) ∨ (P 2 ∧ C 2 ) . . . (P n ∧ C n )]( U| W)[(Q 1 ∧ E 1 ) ∨ (Q 2 ∧ E 2 ) . . . (Q m ∧ E m )] with P i , Q j ∈ Φ(Σ ∪ OS),
1. Given a sequence BD=[X 0 , . . . , X g-1 , Q j ∧ O(T j ), X g+1 , . . . , X 2K ],
we show how to eliminate T j in the g th entry. 2. There are 2K -g + 1 possibilities, depending on which region ≥ g the next point lies with respect to Q j ∧ O(T j ). 3. Suppose the next point can be taken in R g itself. This means that from the next point, all the possible behaviours described by Beh(F (T j ), R g ) would apply along with the behaviour in this sequence BD. Thus, we first take a cross product BD × Beh(F (T j ), R g ) which will give us pairs of sequences of the form [X 0 , . . . ,

X g-1 , Q j ∧ O(T j ), X g+1 , . . . , X 2K ], [Y 0 , . . . , Y 2K ].
We define a binary operation combine which combines two sequences. Let [X 0 , . . . , X 2K ] denote the combined sequence. To combine

BD 1 =[X 0 , . . . , X g-1 , α 1 U ns α 2 , X g+1 , . . . , X 2K ] BD 2 =[X 0 , . . . , X g-1 , ns (α 1 ), X g+1 , . . . , X 2K ].
For BD 1 and BD 2 , we apply the operations defined previously. Finally, we show that given a Beh for F (s), how to construct an SfrMTL formula, Expr(s), equivalent to x.O(s). That is, ρ, i |= Expr(s) if and only if ρ, i, ν |= x.O(F (s)), for any ν. We give a constructive proof as follows:

Assume ρ, i, ν |= x.O(F (s)). Note that according to the syntax of TPTL, every constraint x ∈ I checks the time elapse between the last point where x was frozen. Thus satisfaction of formulae of the form x.φ at a point is independent of the clock valuation.

ρ, i, ν |= x.O(F (s)) iff ρ, i, ν[x ← τ i ] |= OF (s). We have precomputed Beh(F (s), R) for all regions R. Thus, ρ, i, ν |= x.O(F (s)) iff for all w ∈ 0, . . . , 2K, ρ, i + 1, τ i |= (x ∈ R w ).
This implies that there exists BD ∈ Beh(F (s), R w ) such that for all j ∈ {0, . . . , 2K}, the jth entry BD[j] of BD is the LTL formulae satisfied within region R j . Note that, 

ρ, i + 1, τ i |=(x ∈ R w ) is true, iff, ρ, i |= g∈{1,...,w-1} [Reg Rg ∅] ∧ Reg Rw Σ + .
Reg Rg ∅∧Reg Rw Σ + and * ψ 2 = BD∈Beh(F (s),Rw) j∈{1,...,2K} Reg Rj (re(BD[j]))}].
where E is the set of regions such that, for all e ∈ E, Beh(F (s), R e ) is an empty set. The SfrMTL formula Expr(s 0 ) is such that ρ, 1 |= F (s 0 ) iff ρ, 0 |= Expr(s 0 ).

Discussion

Generalization of other Extensions:

In this paper, we study extensions of MTL with ability to specify periodic properties by adding constructs which can specify regular expressions over subformulae within a time interval. This construct also generalizes most of the extensions studied in the literature (for example, Pnueli modalities, threshold counting, modulo counting and so on) still retaining decidability. To the best of our knowledge this is the most expressive decidable extension of MTL in the literature in point-wise semantics.

Automaton Logic Connection:

We give an interval logic characterization for po-1clock-ATA. The only other such equivalences we know of are [START_REF] Paritosh | The unary fragments of metric interval temporal logic: Bounded versus lower bound constraints[END_REF] is between the logic MITL with only unary future and past modalities, restricted to unbounded intervals and partially ordered 2-way deterministic timed automata. Unlike interval logics, automata and logics with freeze quantifiers do not enjoy the perks of non punctuality see Appendix F.2.

Interval Constraint vs. Freeze point quantification:

This was always an interesting question in the literature. Ours is the first such equivalence in point wise semantics. In continuous semantics, these logics are equivalent if we extend it with counting modality [START_REF] Hunter | When is metric temporal logic expressively complete?[END_REF].

Exploiting Non-punctuality: We also give two natural non-punctual fragments

RegMITL[UReg] and MITL mod [UM] of our logic having elementary complexity for satisfiability over both finite and infinite words proving the benefits of characterization using interval logics. We claim that these logics are the most expressive logics in pointwise semantics which have elementary satisfiability checking for both finite and infinite timed words. Finally, we show that if we allow mod counting within the next unit interval, we fail to achieve benefits of relaxing punctuality.

cond1 cond2 x.♦(x < l ∧ O[(x ≥ l) ∧ GoodRun]) ϕ chk2 = cond1 cond2 x.(O[(x ≥ l) ∧ GoodRun]) ϕ chk3 = cond1 cond2
x.GoodRun where GoodRun is the formula which describes the run starting in q 1 , going through a sequence of merges, and witnesses q f at a point when x ∈ [l, u), and is the maximal point in [l, u). GoodRun is given by Th

i (q 1 ) ∧ [{¬Mrg(i)} U[ (i n , i) ∧ {¬Mrg(i n )} U[ (i n-1 , i n ) . . . {¬Mrg(i 2 )} U[ (i 1 , i 2 ) ∧ q∈Q F Nxt(Th i1 (q)) ∧ x ∈ [l, u) ∧ O(x > u)] . . .]]]] where Mrg(i) = j<i (j, i).
The idea is to freeze the clock at the current point e, and start checking a good run from the first point in the interval [l, u). ϕ chk1 is the case when the first point in [l, u) is not the next point from the current point e, while ϕ chk2 handles the case when the next point is in [l, u). In both cases, l > 0. Let Th i be the thread having the initial state q 1 in the start of the interval I. Let i 1 be the index of the thread to which Th i eventually merged (at the last point in the interval [l, u) from e). The next expected state of thread Th i1 is one of the final states if and only if the sub-string within the interval [l, u) from the point e satisfies the regular expression atom. Note that when the frozen clock is ≥ l, we start the run with Th i (q 1 ), go through the merges, and check that x ∈ I when we encounter a thread Th i1 (q), with q being a final state. To ensure that we have covered checking all points in τ e + I, we ensure that at the next point after Th i1 (q), x > u. The decidability of 1-TPTL gives the decidability of RegMTL.

B Proof of Lemma 5 : Unbounded Intervals

The major challenge for the unbounded case is that the point from where we start asserting Th i (q f ) (call this point w) and the point from where we start the counting, (this point is v) may be arbitrarily far. This may result in more than one point marked c i⊕1 . In the bounded interval case, the unique point marked c i⊕1 was used as the "linking point" to stitch the sequences of the run after v till c i⊕1 , and from some point in τ v + I witnessing a final state back to c i⊕1 . The possible non-uniqueness of c i⊕1 thus poses a problem in reusing what we did in the bounded interval case. Thus we consider two cases: Case 1: In this case, we assume that our point w lies within [τ v + l, τ v + l ). Note that τ v + l is the nearest point from v marked with c i⊕l⊕1 . This can be checked by asserting ¬c i⊕l⊕1 all the way till c i⊕1 while walking backward from w, where Th i k (q f ) is witnessed.
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The formula MergeseqPref(k 1 ) does not change. MergeseqSuf(k, k 1 ) is as follows:

♦ [l,l+1) {[(Th i k (q f )) ∧ (¬Mrg (i k ) S[ (i k , i k-1 ) ∧ (¬Mrg (i k-1 ) S[ (i k-1 , i k-2 ) ∧ • • • (i c , i k1 ) ∧ (¬Mrg (i k1 ) Sc i⊕1 )])])]}
where

Mrg (i) = [ j<i (j, i) ∨ c i⊕l⊕1 ]
Case 2: In this case, we assume the complement. That is the point w occurs after τ v + l .

In this case, we assert the prefix till c i⊕l⊕1 and then continue asserting the suffix from this point in the forward fashion unlike other cases. The changed MergeseqPref and MergeseqSuf are as follows:

MergeseqPref(k 1 ):

{¬( Σ ∨ c i⊕l⊕1 ) U[Th i (q 1 ) ∧ (¬Mrg(i) U[ (i 1 , i)∧ (¬Mrg(i 1 ) U[ (i 2 , i 1 ) ∧ . . . (¬Mrg(i k1 ) Uc i⊕l⊕1 )])])]} MergeseqSuf(k, k 1 ): ♦ [l+1,l+2) {[c i⊕l⊕1 ∧ (¬Mrg(i k1 ) U[ (i c , i k1 ) ∧ (¬Mrg(i c ) U[ (i c , i k1 ) ∧ • • • (i k-1 , i k-2 ) ∧ (¬Mrg(i k-1 ) U (Th i k (q f ))])])]} where Mrg(i) = [ j<i (j, i)]

B.1 Complexity of RegMTL Fragments

To prove the complexity results we need the following lemma.

Lemma 10. Given any MITL formulae ϕ with O(2 n ) modalities and maximum constant used in timing intervals K, the satisfiability checking for ϕ is EXPSPACE in n, K.

Proof. Given any MITL formula with expn = O(2 n ) number of modalities, we give a satisfiability preserving reduction from ϕ to ψ ∈ MITL[ U 0,∞ , S] as follows:

(a) Break each U I formulae where I is a bounded interval, into disjunctions of U Ii modality, where each I i is a unit length interval and union of all I i is equal to I. That is,

φ 1 U l,u φ 2 ≡ φ 1 U l,l+1) φ 2 ∨ φ 1 U [l+1,l+2) φ 2 . . . ∨ φ 1 U [u-1,u φ 2 .
This at most increases the number of modalities from expn to expn × K. (b) Next, we flatten all the modalities containing bounded intervals. This results in replacing subformulae of the form φ 1 U [l,l+1) φ 2 with new witness variables. This results in the conjunction of temporal definitions of the form ns [a ↔ φ 1 U [l,l+1) φ 2 ] to the formula. This will result in linear blow up in number of temporal modalities (2

× expn × K). (c) Now consider any temporal definition ns [a ↔ φ 1 U [l,l+1) φ 2 ].
We show a reduction to an equisatisfiable MITL formula containing only intervals of the form 0, u or l, ∞).

First we oversample the words at integer points C = {c 0 , c 1 , c 2 , . . . , c K-1 }. An integer timestamp k is marked c i if and only if k = M (K)+i, where M (K) denotes a non-negative integer multiple of K, and 0 ≤ i ≤ K -1. This can be done easily by the formula

c 0 ∧ i∈{0,...K-1} ns (c i →¬♦ (0,1) ( C) ∧ ♦ (0,1] c i⊕1 )
where x ⊕ y is (x + y)%K (recall that (x + y)%K = M (K) + (x + y), 0 ≤ x + y ≤ K -1).
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Consider any point i within a unit integer interval marked c i-1 , c i . Then φ 1 U [l,l+1) φ 2 is true at that point i if and only if, φ 1 is true on all the action points till a point j in the future, such that either j occurs within [l, ∞) from i and there is no c i⊕l between i and j (τ j ∈

[τ i + l, τ + l ] ) φ C1,i = (φ 1 ∧ ¬c i⊕l ) U [l,∞) φ 2
or, j occurs within [0, l + 1) from i, and j is within a unit interval marked c i⊕l and c i⊕l⊕1 (τ j ∈ [ τ + l , τ i + l + 1) ).

φ C2,i = φ 1 U [0,l+1) (φ 2 ∧ (¬( C)) Sc i⊕l ) The temporal definition ns [a ↔ φ 1 U [l,l+1) φ 2 ] is then captured by K-1 i=1 ns [{a ∧ (¬( C) Uc i )} ↔ φ C1,i ∨ φ C2,i ]
To eliminate each bounded interval modality as seen (a)-(c) above, we need O(K) modalities. Thus the total number of modalities is O(2 n ) × O(K) × O(K) and the total number of propositions 2 Σ ∪ {c 0 , . . . , c K-1 }. Assuming binary encoding for K, we get a MITL[ U 0,∞ , S] formulae of exponential size. As the satisfiability checking for MITL[ U 0,∞ , S] is in PSPACE [START_REF] Alur | The benefits of relaxing punctuality[END_REF], we get EXPSPACE upper bound. EXPSPACE hardness of MITL can be found in [START_REF] Alur | The benefits of relaxing punctuality[END_REF].

B.2 Proof of Theorem 2.2

Starting from an MITL mod [UM] formula, we first show how to obtain an equisatisfiable MITL formula modulo simple projections.

Elimination of UM

In this section, we show how to eliminate UM from MTL mod [UM] over strictly monotonic timed words. This can be extended to weakly monotonic timed words. Given any MTL mod [UM] formula ϕ over Σ, we first "flatten" the UM modalities of ϕ and obtain a flattened formula. Example. The formula ϕ = [a U(e ∧ (f U (2,3),#b=2%5 y))] can be flattened by replacing the UM with a fresh witness proposition w to obtain

ϕ f lat = [a U(e ∧ w)]∧ ns {w ↔ (f U (2,3),#b=2%5 y)}.
Starting from χ ∈ MTL mod [UM], in the following, we now show how to obtain equisatisfiable MTL formulae corresponding to each temporal projection containing a UM modality. 1. Flattening : Flatten χ obtaining χ f lat over Σ ∪ W , where W is the set of witness propositions used, Σ ∩ W = ∅.

Eliminate Counting : Consider, one by one, each temporal definition T

i of χ f lat . Let Σ i = Σ ∪ W ∪ X i , where X i is a set of fresh propositions, X i ∩ X j = ∅ for i = j.
For each temporal projection T i containing a UM modality of the form x U I,#b=k%n y, Lemma 11 gives ζ i ∈ MTL over Σ i such that T i ≡ ∃X i .ζ i .

Putting it all together : The formula ζ=

k i=1 ζ i ∈ MTL is such that k i=1 T i ≡ ∃X. k i=1 ζ i where X = k i=1 X i .
For elimination of UM, marking witnesses correctly is ensured using an extra set of symbols B = {b 0 , ..., b n } which act as counters incremented in a circular fashion. Each time a witness of the formula which is being counted is encountered, the counter increments, else it remains same. The evaluation of the mod counting formulae can be reduced to checking the difference Lets consider trueUReg I,re φ 2 when I = [l, l + 1). Let Γ be the set of subformulae and their negations occurring in re . When evaluating trueUReg [l,l+1),re φ 2 at a point i, we know that φ 2 holds good at some point j such that τ j -τ i ∈ [l, l + 1), and that Seg(re , i, j) ∈ L(re ). We know that by the above lemma, any word σ ∈ L(re ),for any decomposition σ = σ 1 .σ 2 , there exist an i ∈ {1, 2, . . . , n} such that σ 1 ∈ L(R i 1 ) and σ 2 ∈ L(R i 2 ). Thus we decompose at j with every possible

R k 1 .R k 2 pair such that τ j ∈ τ i + [l, l + 1), TSeg(Γ, (0, l), i) ∈ L(R k 1 ), TSeg(Γ, [l, l + 1), i) ∈ L(R k
2 ).S.Σ * , where φ 2 ∈ S, S ∈ Cl(Γ). Note that φ 2 holds good at the point j such that τ j ∈ [τ i + l, τ i + l + 1), and in [l, τ j ), the expression R k 2 evaluates to true. We simply assert Σ * on the remaining part (τ j , l + 1) of the interval. Thus trueUReg [l,l+1),re φ 2 ≡ i∈{1,2...,n}

Reg (0,l) R i 1 ∧ Reg [l,l+1) R i 2 .φ 2 .Σ * .
2. We first show that the UM modality can be captured by MC. Consider any formula φ 1 UM I,#φ3=k%n φ 2 . At any point i this formulae is true if and only if there exists a point j in future such that τ j -τ i ∈ I and the number of points between i and j where φ 3 is true is k%n, and φ 1 is true at all points between i and j. To count between i and j, we can first count the behaviour φ 3 from i to the last point of the word, followed by the counting from j to the last point of the word. Then we check that the difference between these counts to be k%n.

Let cnt φ (x, φ 3 ) = {φ ∧ MC x%n (0,∞) (φ 3 )}. Using this macro, φ 1 UM I,#φ3=k%n φ 2 is equivalent to n-1 k1=0 [ψ 1 ∨ ψ 2 ] where ψ 1 ={cnt true (k 1 , φ 3 ) ∧ (φ 1 U I cnt φ2∧¬φ3 (k 2 , φ 3 ))}, ψ 2 ={cnt true (k 1 , φ 3 ) ∧ (φ 1 U I cnt φ2∧φ3 (k 2 -1, φ 3 ))}, k 1 -k 2 =k
The only difference between ψ 1 , ψ 2 is that in one, φ 3 holds at position j, while in the other, it does not. The k 2 -1 is to avoid the double counting in the case φ 3 holds at j.

D

po-1-clock ATA to 1-TPTL

In this section, we explain the algorithm which converts a po-1-clock ATA A into a 1-TPTL formula ϕ such that L(A) = L(ϕ). 1.

Step 1. Rewrite the transitions of the automaton. Each δ(s, a) can be written in an equivalent form C 1 ∨ C 2 or C 1 or C 2 where C 1 has the form s ∧ ϕ 1 , where ϕ 1 ∈ Φ(↓ s ∪ {a} ∪ X), C 2 has the form ϕ 2 , where ϕ 2 ∈ Φ(↓ s ∪ {a} ∪ X) In particular, if s is the lowest location in the partial order, then ϕ 1 , ϕ 2 ∈ Φ({a} ∪ X). Denote this equivalent form by δ (s, a). For the example above, we obtain δ (s can call only itself), s 0 , . . . , s k . Apply the same construction. As explained above, the constructed formulae while eliminating a location will be true at a point if and only if there is an accepting run starting from the corresponding location with the same clock value. Let the formulae obtained for any s i be ϕ i . The occurrence of an s i in any ∆(s i<n ) can be substituted with ϕ i as a look ahead. This gives us an n -1 level 1-clock ATA with TPTL look ahead. By by induction, we obtain that every 1-clock po-ATA can be reduced to 1 -TPTL formulae.

0 , a) = (s 0 ∧ (a ∧ x.s a )) ∨ (a ∧ s ), δ (s 0 , b) = s 0 ∧ b, δ (s a , a) = (s a ∧ x < 1) ∨ (x > 1) δ (s ) = (s ∧ b) 2. Step 2.

E

Proof of Lemma 8

Proof. Let ρ be a timed word such that ρ, i |= Reg I re. Note that re could be a compound regular expression containing formulae of the form Reg I re . As a first step, we introduce an atomic proposition w I which evaluates to true at all points j in ρ such that τ j -τ i ∈ I. In case I is an unbounded interval, then we need not concatenate (¬w I ) * at the end of (w ∧ w I ). The rest of the proof is the same.

F Example

Example. Consider the example of the po-1-clock ATA in the main paper. We now work out a few steps to illustrate the construction. The lowest locations are s , s a and we know F (s ) = ns b, F (s a ) = (x < 1) U ns (x > 1) and F (s 0 ) = [(a ∧ x.OF (s a )) ∨ b] W(a ∧ OF (s )).

The regions are R 0 , R 1 , R 2 , R 3 .

From this, we obtain Beh(s a , R) = {[ , , ns ⊥, ]} for all R ∈ R \ {R 2 }. Note that as there is no constraint of the form x = 1 in the formulae, Beh(s a , R 2 ) = ∅. As there are no clock constraints in s , there is no need to compute the Beh for it. We do it here just for the purpose of illustration. Beh(s , R 0 ) consists of BD's BD ] implies that from the beginning of the timed word till the last occurrence of a, there is no a which has an action point exactly after unit time from it. This is what exactly the input ATA was specifying. 

F.1 Two Counter Machines

Incremental Error Counter Machine

An incremental error counter machine is a counter machine where a particular configuration can have counter values with arbitrary positive error. Formally, an incremental error kcounter machine is a k + 1 tuple M = (P, C 1 , . . . , C k ) where P is a set of instructions like above and C 1 to C k are the counters. The difference between a counter machine with and without incremental counter error is as follows:

1. Let (l, c 1 , c 2 . . . , c k ) → (l , c 1 , c 2 . . . , c k ) be a move of a counter machine without error when executing l th instruction.

2.

The corresponding move in the increment error counter machine is

(l, c 1 , c 2 . . . , c k ) → {(l , c 1 , c 2 . . . , c k )|c i ≥ c i , 1 ≤ i ≤ k}
Thus the value of the counters are non deterministic.

Theorem 15. [START_REF] Minsky | Finite and Infinite Machines[END_REF] The halting problem for deterministic k counter machines is undecidable for k ≥ 2. Theorem 16. [START_REF] Demri | LTL with the freeze quantifier and register automata[END_REF] The halting problem for incremental error k-counter machines is non primitive recursive.

Figure 1

 1 Figure 1 Big picture of the paper. The interval logic star-free MTL denoted SfrMTL is equivalent to the freeze logic 1 -TPTL, which is equivalent to po-1-clock-ATA. All the logics in blue have an elementary complexity, while SfMITL[UReg] is strictly more expressive than MITL, and RegMITL[UReg] is more expressive than its star-free counterpart SfMITL[UReg].

  clock variables progressing at the same rate, y ∈ C, and I is an interval of the form <a, b> a, b ∈ N with <∈ {(, [} and >∈ {], )}.

ICMETA

  channel machine is a tuple A = (S, M, ∆, C) where S is a finite set of states, M is a finite channel alphabet, C is a finite set of channel names, and ∆ ⊆ S × Op × S is the transition relation, where Op = {c!a, c?a, c = | c ∈ C, a ∈ M } is the set of transition operations. c!a corresponds to writing message a to the tail of channel c, c?a denotes reading the message a from the head of channel c, and c = tests channel c for emptiness.

and H is a new symbol. 1 .

 1 The jth configuration for j ≥ 0 is encoded in the interval [(2k + 2)j, (2k + 2)(j + 1) -1)

7 .

 7 A sequence of messages w 1 w 2 w 3 . . . w z in any channel is encoded as a sequence w 1,a w 1,b Hw 2,a w 2,b w 3,a w 3,b . . . w z,a w z,b . Let S = n i=0 s i denote the states of the ICMET, α = m i=0 α i , denote the transitions α i of the form (s, c!m, s ) or (s, c?m, s ) or (s, c = , s ). Let action = true and let M a = mx∈M (m x,a ), M b = mx∈M (m x,b ), with M = M a ∨ M b .

3 .

 3 For each location s, construct ∆(s) which combines δ (s, a) for all a ∈ Σ, by disjuncting them first, and again putting them in the form in step 1. Thus, we obtain ∆(s) = D 1 ∨ D 2 or D 1 or D 2 where D 1 , D 2 have the forms s ∧ ϕ 1 and ϕ 2 respectively, where ϕ 1 , ϕ 2 ∈ Φ(↓ s ∪ Σ ∪ X). For the example above, we obtain ∆(s0 ) = s 0 ∧ [(a ∧ x.s a )) ∨ b] ∨ (a ∧ s ) ∆(s a ) = (s a ∧ x < 1) ∨ (x > 1) ∆(s ) = s ∧ b.Step 3. We now convert each ∆(s) into a normal form N (s). N (s) is obtained from ∆(s) as follows.

  Then it is easy to see that ρ, i |= Reg I re iff ρ, i |= Reg I (re ∧ w I ), since Reg I covers exactly all points which are within the interval I from i. As the next step, we replace re, with an atomic proposition w obtaining the formulaReg I [w ∧ w I ]. Assume that I is a bounded interval. Reg I [w ∧ w I ] is equivalent to Reg[(w ∧ w I ).(¬w I ) * ], since Reg[]covers the entire suffix of ρ starting at point i. Now, replace w I with the clock constraint x ∈ I, and rewrite the formula as x.[(w ∧ (x ∈ I)). (¬(x ∈ I))], which is in 1 -TPTL. Note that this step also preserves equivalence of teh formulae. Replacing w with re now eliminates one level of the Reg operator in the above formula. Doing the same technique as above to re which has the form Reg I (re ), will eliminate one more level of Reg and so on. Continuing this process will result in a 1-TPTL formula which has k freeze quantifications iff the starting SfrMTL formula had k nestings of the Reg modality.

  1 = [ ns b, ns b, ns b, ns b] BD 2 = [ , ns b, ns b, ns b] BD 3 = [ , , ns b, ns b] and BD 4 = [ , , , ns b].Beh(s , R 1 ) consists of BD 1 , BD 2 , BD 3 , Beh(s , R 2 ) consists of BD 2 , BD 3 , while Beh(s , R 3 ) consists of BD 3 .It can be seen that Expr(s a ) is given by the disjunction of[Reg R0 ( ) ∧ Reg R1 ( ) ∧ Reg R2 (∅) ∧ Reg R3 ( )] [Reg R0 (∅) ∧ Reg R1 (Σ + )] → [Reg R1 ( ) ∧ Reg R2 (∅) ∧ Reg R3 ( )] [Reg R0 (∅) ∧ Reg R1 (∅) ∧ Reg R3 (Σ + )] → Reg R3( ) It can be seen that Expr(s ) will be equivalent to O ns b. Let F (s 0 ) be the formulae we get by substituting s a with Expr(s a ) and s by ns b. Again note that there are no clock constraints in F (s 0 ). thus we do not need to make Beh for it. The final formulae which is supposed to be asserted at 0 is x.O(F (s 0 ) which is equivalent to O(F (s 0 )(as there are no timing constraints in F (s 0 )). Observe what is the behaviour of O(F (s 0 ) = O[(a ∧ Expr(s a )) ∨ b] W(a ∧ O( ns b)). Note that if any point satisfies Expr(s a ) if and only if there is no action point exactly after 1 unit time. Thus, O(F (s 0 )) = O[[(a ∧ Expr(s a )) ∨ b] W(a ∧ O( ns b))]

A

  deterministic k-counter machine is a k + 1 tuple M = (P, C 1 , . . . , C k ), where 1. C 1 , . . . , C k are counters taking values in N ∪ {0} (their initial values are set to zero);2. P is a finite set of instructions with labels p 1 , . . . , p n-1 , p n . There is a unique instruction labelled HALT. For E ∈ {C 1 , . . . , C k }, the instructions P are of the following forms: a. p g : Inc(E), goto p h , b. p g : If E = 0, goto p h , else go to p d , c. p g : Dec(E), goto p h , d. p n : HALT. A configuration W = (i, c 1 , . . . , c k ) of M is given by the value of the current program counter i and values c 1 , c 2 , . . . , c k of the counters C 1 , C 2 , . . . , C k . A move of the counter machine(l, c 1 , c 2 , . . . , c k ) → (l , c 1 , c 2 , . . . , c k ) denotes that configuration (l , c 1 , c 2 , . . . , c k ) is obtained from (l, c 1 , c 2 , .. . , c k ) by executing the l th instruction p l . If p l is an increment or decrement instruction, c l = c l +1 or c l -1, while c i = c i for i = l and p l is the respective next instruction, while if p l is a zero check instruction, then c i = c i for all i, and p l = p j if c l = 0 and p k otherwise.

. ϕ = Reg I re. As above, let Γ be the set of all subformulae appearing in re. Then for

  RegMTL formula ϕ, we define the satisfaction of ϕ at a position i as follows. Consider the formula ϕ = aUReg (0,1),ab * b. Then re=ab * and Γ={a, b, ¬a, ¬b}.

	1. ϕ = ϕ 1 UReg I,re ϕ 2 .
	Consider first the case when re is any atomic regular expression. Let Γ be the set of
	all subformulae appearing in re. For positions i < j ∈ dom(ρ), let Seg(Γ, i, j) denote
	the untimed word over Cl(Γ) obtained by marking the positions k ∈ {i + 1, . . . , j -1}
	of ρ with ψ ∈ Γ iff ρ, k |= ψ. Then ρ, i |= ϕ 1 UReg I,re ϕ 2 ↔ ∃j>i, ρ, j|= ϕ 2 , t j -t i ∈I,
	ρ, k |= ϕ 1 ∀i<k<j and, Seg(Γ, i, j) ∈ L(re), where L(re) is the language of the regular
	expression re.
	2a
	position i∈dom(ρ) and an interval I, let TSeg(Γ, I, i) denote the untimed word over Cl(Γ)
	obtained by marking all the positions k such that τ k -τ i ∈ I of ρ with ψ ∈ Γ iff ρ, k |= ψ.
	Then ρ, i |= Reg I re ↔ TSeg(Γ, I, i) ∈ L(re).
	Example 1.

2 or re 1 .re 2 or (re 1 ) * , then we use the standard definition of L(re) as L(re 1 ) ∪ L(re 2 ), L(re 1 ).L(re 2 ) and [L(re 1 )] * respectively. RegMTL Semantics: For a timed word ρ = (σ, τ ) ∈ T Σ * , a position i ∈ dom(ρ) ∪ {0}, and a

Lemma 8. SfrMTL ⊆ 1 -TPTL

The proof can be found in Appendix E. We illustrate the technique on an example here. Example. Consider ϕ = Reg (0,1) [Reg (1,2) (a+b) * ]. We first obtain Reg (0,1) (w (0,1) ∧[Reg [START_REF] Alur | The benefits of relaxing punctuality[END_REF][START_REF] Baziramwabo | Modular temporal logic[END_REF] (a+ b) * ]), followed by Reg (0,1) (w (0,1) ∧ w) where w is a witness for Reg (1,2) (a + b) * . This is then rewritten as Reg((w (0,1) ∧ w).(¬w (0,1) ) * ), and subsequently as Reg((x ∈ (0, 1) ∧ w) ∧ [¬(x ∈ (0, 1)])). This is equivalent to x.[x ∈ (0, 1) ∧ w ∧ [¬(x ∈ (0, 1)]]. Now we replace w, and do one more application of this technique to obtain the formula x.[x ∈ (0, 1) ∧ [x.(ψ ∧ x ∈ (1, 2) ∧ [¬(x ∈ (1, 2))])] ∧ [¬(x ∈ (0, 1))]], where ψ is the LTL formula equivalent to (a + b) * .

po-1-clock ATA to SfrMTL

Lemma 9. Given a po-1-clock ATA A, we can construct a SfrMTL formula ϕ such that L(A) = L(ϕ).

Let A be a po-1-clock ATA with locations S = {s 0 , s 1 , . . . , s n }. Let K be the maximal constant used in the guards x ∼ c occurring in the transitions. The idea of the proof is to partition the behaviour of each location s i across the regions R 0 =[0, 0], R 1 =(0, 1), . . . , R 2K =[K, K], R + K =(K, ∞) with respect to the last reset of the clock. Let R denote the set of regions. Let R h < R g denote that the region R h comes before R g .

The behaviour in each region is captured as an LTL formula that is invariant in each region. From this, we obtain an SfrMTL formula that represents the behaviour starting from each region while at location s. The fact that the behaviours are captured by LTL formulae asserts the star-freeness of the regular expressions in the constructed RegMTL formulae. In the following, we describe this construction step by step. Let a behaviour distribution (BD) be described as a sequence of length 2K + 1 of the form [ϕ 0 , ϕ 1 , . . . , ϕ 2K ] where each ϕ i is a LTL formula (which does not evaluate to false) that is asserted in region R i . For any location s in A, and a region R we define a function that associates a set of possible behaviours. As seen in section 4.1.1, assume that we have computed F (s) for all locations s. Let F (S) = {F (s) | s ∈ S}. Let B(F (S)) represent the boolean closure of F (S) (we require only conjunctions and disjunctions of elements from F (S)). We define Beh : B(F (S)) × R → 2 BD . Intuitively, Beh(F (s), R i ) provides all the possible behaviours in all the regions of R, while asserting F (s) at any point in R i . Thus,

where α is a number that depends on the number of locations and the transitions of A and the maximal constant K. Now we describe the construction of Beh(F (s), R i ). If s is the lowest in the partial order, then F (s) has the form ϕ 1 Wϕ 2 or ϕ 1 U ns ϕ 2 , where ϕ 1 , ϕ 2 are both disjunctions of conjunctions over Φ(Σ, X). Each conjunct has the form ψ ∧ x ∈ I where ψ ∈ Φ(Σ) and I ∈ R.

Let s be a lowest location in the partial order. F (s) then has the form

where P i and Q j are propositional formulae in Φ(Σ) and C i and E j are clock constraints. Without loss of generality, we assume that clock constraints are of the form x ∈ R y , where R y ∈ R, and that no two C i and no two E j are the same. We now construct Beh(F (s), R) for F (s). 1. Beh(F (s), R i ) = ∅ if and only if there are no constraints x ∈ R i in F (s). This is because F (s) does not allow any behaviour within R i and Beh(F (s), R i ) asserts the behaviour when the clock valuation lies in R i .

Consider an

For each such E j , a behaviour BD is added to the set Beh(F (s), R i ) as follows.

XX:19

the behaviours from the point where T j was called, we substitute T j with the LTL formula asserted at region R g in Beh(F (T j ), R g ). This is done by replacing T j with Y g . For all w < g, X w = X w . For all w > g, X w = X w ∧ Y w . Let the set of BDs obtained thus be called Seq g . 4. Now consider the case when the next point is taken a region > R g . In this case, we consider all the possible regions from R g+1 onwards. For every b ∈ {g + 1, . . . , 2K} we do the following operation: we first take the cross product of [X 0 , . . . , X g-1 , Q j ∧ O(T j ), X g+1 , . . . , X 2K ] and Beh(F

We define an operation stitch(b) on this pair which gives us a sequence [X 0 , . . . , X 2K ]. For all w < g, X w = X w . For w = g, X w = Q j . For all b > w > g, X w = X w ∧ ns ⊥. This implies the next point from where the assertion

This combines the assertions of both the behaviours from the next point onwards. Let the set of BDs we get in this case be Seq ≥g . 5. The final operation is to substitute [X 0 , . . . , X g-1 , Q j ∧O(T j ), X g+1 , . . . , X 2K ] with BDs from any of Seq g , Seq g+1 , . . . , Seq 2K . 6. Note that a similar technique will work while eliminating U j from BD = [X 0 , . . . , X g-1 , ns P j ∧ O(U j ), X g+1 , . . . , X 2K ]. Given BD=[X 0 , . . . , X g-1 , P i ∧O(U i ) U ns Q j ∧O(T j ), X g+1 , . . . , X 2K ], we need to eliminate both the U i and T j . The formulae says either Q j ∧O(T j ) is true at the present point or, P i ∧ O(U i ) true until some point in the future within the region R g , when Q j ∧ O(T j ) becomes true. Thus, we can substitute BD with two sequences BD 1 =[X 0 , . . . , X g-1 , Q j ∧O(T j ), X g+1 , . . . , X 2K ], and BD 2 =[X 0 , . . . , X g-1 , P i ∧O(U i ) UQ j ∧O(T j ), X g+1 , . . . , X 2K ]. We can eliminate T j from BD 1 as shown before. Consider BD 2 which guarantees that the next point from which the assertion

and that U i is called for the last time within R g . Such a BD 2 has to be combined with Beh(F (U i ), R g ). T j can be called from any point either within region R g or succeeding regions. Consider the case where T j is called from within the region R g . First let us take a cross product of BD with Beh(F (U i ), R g ) × Beh(F (T j ), R g ). This gives a triplet of sequences of the form [X 0 , . . . , X g-1 , Q j ∧ O(T j ), X g+1 , . . . , X 2K ], [Y U,0 , . . . , Y U,2K ], [Y T,0 , . . . , Y T,2K ]. We now show to combine the behaviours and get a sequence [X 0 , . . . , X 2K ].

For every w < g, X w = X w . For w = g, X g is obtaining by replacing U i with Y U,g and T j with Y T,g in the gth entry of BD 2 . For all w > g, X w = X w ∧ Y U,g ∧ Y T,g . Let the set of these BDs be denoted Seq g . Now consider the case where T j was called from any region R b >R g . Take a cross product of BD with Beh(F

]. The one difference in combining this triplet as compared to the last one is that we have to assert that from the last point in R g , the next point only occurs in the region R b . Thus all the regions between R g and R b should be conjuncted with ns ⊥. We get a sequence [X 0 , . . . , X 2K ] after combining, such that For all w < g, X w = X w . For w = g, X g = (

. , X 2K ] and can be replaced by 2 BDs

Appendix

A 1-TPTL for Reg [l,u) atom

To encode an accepting run going through a sequence of merges capturing Reg [l,u) atom at a point e, we assert ϕ chk1 ∨ ϕ chk2 at e, assuming l = 0. If l = 0, we assert ϕ chk3 . Recall that m is the number of states in the minimal DFA accepting atom.

between indices between the first and the last symbol in the time region where the counting constraint is checked.

B.2.1 Construction of Simple Extension

Consider a temporal definition T = ns [a ↔ xUM I,#b=k%n y], built from Σ ∪ W . Let ⊕ denote addition modulo n + 1.

1. Construction of a (Σ ∪ W, B)-simple extension. We introduce a fresh set of propositions

and construct a family of simple extensions ρ = (σ , τ ) from ρ = (σ, τ ) as follows:

C3: σ i has exactly one symbol from B for all 1 ≤ i ≤ |dom(ρ)|.

2. Formula specifying the above behaviour. The variables in B help in counting the number of b's in ρ. C1, C2 and C3 are written in MTL as follows:

Proof. 1. Construct a simple projection ρ as shown in B.2.1.

2. Now checking whether at point i in ρ, x U I,#b=k%n y is true, is equivalent to checking that at point i in ρ there exist a point j in the future where y is true and for all the points between j and i, x is true and the difference between the index values of the symbols from B at i and j is k%n.

) where j = k + i%n. Note that φ 1 UReg I,re φ 2 ≡ trueUReg I,re φ 2 , where re is a regular expression obtained by conjuncting φ 1 to all formulae ψ occurring in the top level subformulae of re. For example, if we had aUReg (0,1),(Reg [START_REF] Alur | The benefits of relaxing punctuality[END_REF][START_REF] Baziramwabo | Modular temporal logic[END_REF] [Reg (2,3) (b+c) * ]) d, then we obtain trueUReg (0,1),(a∧Reg [START_REF] Alur | The benefits of relaxing punctuality[END_REF][START_REF] Baziramwabo | Modular temporal logic[END_REF] [Reg (2,3) (b+c) * ]) d. When evaluated at a point i, the conjunction ensures that φ 1 holds good at all the points between i and j, where τ j -τ i ∈ I. To reduce trueUReg I,re φ 2 to a Reg I formula, we need the following lemma.

The formula

Lemma 14. Given any regular expression R, there exist finitely many regular expressions

That is, for any string σ ∈ R and for any decomposition of σ as σ 1 .σ 2 , there exists some i ≤ n such that

Proof. Let A be the minimal DFA for R. Let the number of states in A be n. The set of strings that leads to some state q i from the initial state q 1 is definable by a regular expression R i 1 . Likewise, the set of strings that lead from q i to some final state of A is also definable by some regular expression R i 2 . Given that there are n states in the DFA A, we have

Consider any string σ ∈ L(A), and any arbitrary decomposition of σ as σ 1 .σ 2 . If we run the word σ 1 over A, we might reach at some state q i . Thus σ 1 ∈ L(R i 1 ). If we read σ 2 from q i , it should lead us to one of the final states (by assumption that σ ∈ R) . Thus σ 2 ∈ L(R i 2 ).

If s occurs in ∆(s), replace it with Os.

Replace each s occurring in each Φ i (↓ s) with Os . Let N (s) = N 1 ∨ N 2 , where N 1 , N 2 are normal forms. Intuitively, the states appearing on the right side of each transition are those which are taken up in the next step. The normal form explicitely does this, and takes us a step closer to 1--TPTL. Continuing with the example, we obtain

Start with the state s n which is the lowest in the partial order. Let N (s n ) = (Os n ∧ ϕ 1 ) ∨ ϕ 2 , where ϕ 1 , ϕ 2 ∈ Φ(Σ, X). Solving N (s n ), one obtains the solution F (s n ) as ϕ 1 Wϕ 2 if s n is an accepting location, and as ϕ 1 U ns ϕ 2 if s n is non-accepting.

In the running example, we obtain 

The 1-TPTL formula equivalent to L(A) is then given by F (s 0 ).

D.1 Correctness of Construction

The above algorithm is correct; that is, the 1-TPTL formula F (s 0 ) indeed captures the language accepted by the po-1-clock ATA.

For the proof of correctness, we define a 1-clock ATA with a TPTL look ahead. That is, δ : S × Σ → Φ(S ∪ X ∪ χ(Σ ∪ {x})), where χ(Σ ∪ {x}) is a TPTL formula over alphabet Σ and clock variable x. We allow open TPTL formulae for look ahead; that is, one which is not of the form x.ϕ. All the freeze quantifications x. lie within ϕ. The extension now allows to take a transition (s, ν) → [κ ∧ ψ(x)], where ψ(x) is a TPTL formula, if and only if the suffix of the input word with value of x being ν satisfies ψ(x). We induct on the level of the partial order on the states.

Base Case: Let the level of the partial order be zero. Consider 1-clock ATA having only one location s 0 . Let the transition function be δ(s 0 , a) = B a (ψ a (x), X, s 0 ) for every a ∈ Σ. By our construction, we reduce

specifies that the clock constraints X 1 are satisfied and the suffix satisfies the formulae ψ 1 (x) on reading an a. Thus for this δ(s 0 , a), we have Os 0 ∧ X 1 ∧ ψ 1 (x) ∧ a as a corresponding disjunct in ∆ which specifies the same constraints on the word. Thus the solution to the above will be satisfied at a point with some x = ν if and only if there is an accepting run from s 0 to the final configuration with x = ν.

If the s 0 is a final location, the solution to this is, ϕ

If it is non-final, then it would be U instead of W. Note that this implies that whenever s 0 is invoked with value of x being ν, the above formulae would be true with x = ν thus getting an equivalent 1 -TPTL formulae.

Assume that for automata with n-1 levels in the partial order, we can construct 1-TPTL formulae equivalent to the input automaton as per the construction. Consider any input automaton with n levels. Consider all the locations at the lowest level (that is, the location

F.2 Non-punctual 1-TPTL is NPR

In this section, we show that non-punctuality does not provide any benefits in terms of complexity of satisfiability for TPTL as in the case of MITL. We show that satisfiability checking of non-punctual TPTL is itself non-primitive recursive. This highlights the importance of our oversampling reductions from RegMTL and RegMITL to MTL and MITL respectively, giving RegMITL an elementary complexity. It is easier to reduce RegMITL to 1-variable, non-punctual, TPTL without using oversampling, but this gives a non-primitive recursive bound on complexity.

Non-punctual TPTL with 1 Variable (1 -OpTPTL)

We study a subclass of 1 -TPTL called open 1 -TPTL and denoted as 1 -OpTPTL. The restrictions are mainly on the form of the intervals used in comparing the clock x as follows:

Whenever the single clock x lies in the scope of even number of negations, x is compared only with open intervals, and Whenever the single clock x lies in the scope of an odd number of negations, x is compared to a closed interval. Note that this is a stricter restriction than non-punctuality as it can assert a property only within an open timed regions.

F.2.1 Satisfiability Checking for 1 -OpTPTL

In this section we will investigate the benefits of relaxing punctuality in TPTL by exploring the hardness of satisfiability checking for 1 -OpTPTL over timed words.

Theorem 17. Satisfiability Checking of 1 -OpTPTL[♦, O] is decidable with non primitive recursive lower bound over finite timed words and it is undecidable over infinite timed words.

Proof. We encode the runs of k counter incremental error channel machine using 1 -OpTPTL formulae with ♦, O modalities. We will encode a particular computation of any CM using timed words. The main idea is to construct an 1 -OpTPTL[♦, O] formula ϕ ICM for any given k-incremental counter machine ICM such that it is satisfied by only those timed words that encode the halting computation of ICM. Moreover, for every halting computation C of ICM at least one timed word ρ C satisfies ϕ ICM such that ρ C encodes C.

We encode each computation of some k-incremental counter machine ICM = (P, C) where P = {p 1 , . . . , p n } and C = {c 1 , . . . , c k } using timed words over the alphabet Σ ICM = i∈{1,...,k} (S ∪ F ∪ {a j , b j }) where S = {s p |p ∈ 1, . . . , n} and F = {f p |p ∈ 1, . . . , n} as follows: A i th configuration, (p, c 1 , . . . , c k ) is encoded in the time region [i, i + 1) with sequence :

The concatenation of these time segments of a timed word encodes the whole computation. Thus the untimed projection of our language will be of the form:

To construct a formula ϕ ICM , the main challenge is to write down some finite specifications which propagate the behaviour from the time segment [i, i+1) to the time segment [i+1, i+2) XX:32 A Regular Metric Temporal Logic such that the later encodes the i + 1 th configuration of ICM (in accordance with the program counter value at i th configuration). The usual idea is to copy all the a's from one configuration to another using punctuality. This is not possible in a non-punctual logic. Thus we try to preserve the number (or copy a time point) using following idea:

Given any non last (a j , t)(b j , t ) before F(for some counter c j ) , of a timed word encoding a computation. We assert that the last symbol in (t, t + 1) is a j and the symbol in (t , t + 1) is b j . We can easily assert that the untimed sequence of the timed word is of the form

The above two conditions imply that there is at least one a j within time(t 1 + 1, t 2 + 1). Thus all the non last a j b j is copied to the segment encoding next configuration. Now appending one a j b j ,two a j b j 's or no a j b j 's depends on whether the instruction was copy, increment or decrement operation.

ϕ ICM is obtained as a conjunction of several formulae. Let S, F be a shorthand for . This could be expressed in the formula below

Initial Configuration: There is no occurrence of a j b j within [0, 1]. The program counter value is 1.

)) Copying S, F: Every (S, u), (F, v) has a next occurrence (S, u ), (F, v ) in future such that u -u ∈ (k, k + 1) and v -v ∈ (k -1, k). Note that this condition along with ϕ 1 and ϕ 2 makes sure that S and F occur only within the intervals of the form [i, i + 1) where i is the configuration number.

Beyond p n =HALT, there are no instructions

At any point of time, exactly one event takes place. Events have distinct time stamps.

Eventually we reach the halting configuration p n , c 1 , . . . , c k : ϕ 6 = ♦s n Every non last (a j , t)(b j , t ) occurring in the interval (i, i + 1) should be copied in the interval (i + 1, i + 2). We specify this condition by stating that from every non last a j (before A j+1 or f p ) the last symbol within (0, 1) is a j . Similarly from every non last b j (before A j+1 or f p ) the last symbol within (k -1, k) is b j . Thus (a j , t)(b j , t ) will have Krishna, Khushraj, Paritosh XX:33 a (b j , t + 1 -) where ∈ (0, t -t). Thus all the non last a j b j will incur a b j in the next configuration . ϕ 2 makes sure that there is an a j between two b j 's. Thus this condition along with ϕ 1 makes sure that the non last a j b j sequence is conserved. Note that there can be some a j b j which are arbitrarily inserted. These insertions errors model the incremental error of the machine. Thus if we consider a mapping where (a j , t ins )(b j , t ins ) is mapped to (a j , t)(b j , t ) such that t ins ∈ {t + 1, t + 1}, this is an injective function. Just for the sake of simplicity we assume that a k+1 = f alse.

We define a short macro Copy C\W : Copies the content of all the intervals encoding counter values except counters in W . Just for the sake of simplicity we denote

Using this macro we define the increment,decrement and jump operation.

1. p g : If C j = 0 goto p h , else goto p d . δ 1 specifies the next configuration when the check for zero succeeds. δ 2 specifies the else condition.

2. p g : Inc(C j ) goto p h . The increment is modelled by appending exactly one a j b j in the next interval just after the last copied a j b j ϕ g,incj 8

=

] specifies the increment of the counter j when the value of j is zero. The formula

specifies the increment of counter j when j value is non zero by appending exactly one pair of a j b j after the last copied a j b j in the next interval. 3. p g : Dec(C j ) goto p h . Let second -last(a j ) = a j ∧ O(O(last(a j ))). Decrement is modelled by avoiding copy of last a j b j in the next interval. The formula ψ dec 0 = ns [{s g ∧ (¬a j ) Uf g )} → {(¬S) U{s h ∧ ((¬a j ) U(F)}] specifies that the counter remains unchanged if decrement is applied to the j when it is zero. The formula ψ dec 1 = ns [{s g ∧ ((¬F) U(a j ))} → (¬F) Ux.{second -last(a j ) ∧ ♦(T -x ∈ (0, 1) ∧ (a j ∧ OO(A j+1 ∧ T -x ∈ (1, 2))))}] decrements the counter j, if the present value of j is non zero. It does that by disallowing copy of last a j b j of the present interval to the next.

XX:34 A Regular Metric Temporal Logic

The formula ϕ ICM = i∈{1,...,7} ϕ i ∧ p∈P ϕ p 8 . 2) To prove the undecidability we encode the k counter machine without error. Let the formula be ϕ CM . The encoding is same as above. The only difference is while copying the non-last a in the ϕ M we allowed insertion errors i.e. there were arbitrarily extra a and b allowed in between apart from the copied ones in the next configuration while copying the non-last a and b. To encode counter machine without error we need to take care of insertion errors. Rest of the formula are same. The following formula will avoid error and copy all the non-last a and b without any extra a and b inserted in between. 

F.2.1.1 Correctness Argument

Note that increment errors occurred only while copying the non last ab sequence in (1). The similar argument for mapping a j with a unique a j in the next configuration can be applied in past and thus using ϕ 9 mapping we can say that non last a j , b j in the previous configuration can be mapped to a copied a j , b j in the next configuration with an injective mapping. This gives as an existence of bijection between the set of non-last a k , b k in the previous configuration and the set of copied a k , b k by ϕ 7 . Thus "there are no insertion errors" is specified with ϕ 9 .