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The importance of the atmospheric deposition of
biologically essential trace elements, especially
iron, is widely recognized, as are the difficulties of
accurately quantifying the rates of trace element
wet and dry deposition and their fractional
solubility. This paper summarizes some of the
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recent progress in this field, particularly that driven by the GEOTRACES, and other,
international research programmes. The utility and limitations of models used to estimate
atmospheric deposition flux, for example, from the surface ocean distribution of tracers
such as dissolved aluminium, are discussed and a relatively new technique for quantifying
atmospheric deposition using the short-lived radionuclide beryllium-7 is highlighted. It is
proposed that this field will advance more rapidly by using a multi-tracer approach, and that
aerosol deposition models should be ground-truthed against observed aerosol concentration
data. It is also important to improve our understanding of the mechanisms and rates that
control the fractional solubility of these tracers. Aerosol provenance and chemistry (humidity,
acidity and organic ligand characteristics) play important roles in governing tracer solubility.
Many of these factors are likely to be influenced by changes in atmospheric composition in the
future. Intercalibration exercises for aerosol chemistry and fractional solubility are an essential
component of the GEOTRACES programme.

This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element
chemistry’.

1. Introduction
A great deal of research activity has focused on addition of material to the ocean across the
air–sea interface, because the realizations that iron (Fe) plays a key role as a limiting nutrient
for primary productivity or biological nitrogen fixation in large areas of the global ocean
[1–3] and that the deposition of mineral dust from the atmosphere was a major source of Fe
to the remote ocean [4]. That research has led to huge advances in the understanding of the
impact of Fe biogeochemistry on the marine carbon cycle [5], the sources and composition of
Fe-bearing material to the atmosphere [6,7] and the chemical and physical processing of that
material during transportation through the atmosphere [8]. Alongside those advances has come
the understanding that a number of other trace elements (TEs) that are deposited across the air–
sea interface (e.g. manganese (Mn), cobalt (Co), zinc (Zn), nickel (Ni), cadmium (Cd), copper (Cu)
[9]) have micronutrient functions for marine microbial organisms or have potentially toxic effects
(e.g. Cu [10]).

In that context, one of the goals of the international GEOTRACES programme is to extend
knowledge of the exchange across the air–sea interface, based on the understanding that mineral
dust constitutes a vector for a wider range of important trace elements and their isotopes (TEI)
than Fe alone and that the sources of TEI in atmospheric deposition to the ocean are not limited
to mineral dust [7,11].

This paper aims to highlight recent progress in this field, with a focus on research driven
by the international GEOTRACES programme, and identify topics for which further effort is
still required. Two long-standing problems—the difficulties in making accurate estimates of the
atmospheric flux of material to the ocean and in determining the fraction of the atmospheric
flux of bioactive substances that is available to marine biota—continue to challenge our
understanding. The extent to which anthropogenic emissions contribute to the atmospheric flux
to the oceans and their biogeochemical response to that flux is also of increasing interest.

2. Highlights of recent progress

(a) Estimation of deposition flux
Atmospheric deposition is an important source of biologically essential TEs to the open ocean.
Knowledge of these fluxes helps us understand and model ocean productivity, yet these fluxes
are extremely difficult to measure. Although autonomous buoys capable of collecting aerosol
samples over extended periods have been developed and deployed at remote ocean sites [12],
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long-term monitoring of the composition of aerosols and rainfall over the vast majority of the
remote ocean is effectively impossible due to limitations associated with the lack of suitable
island sampling locations and the expense of ship deployment to areas where island sites are
not available. In a few regions, where long-term records from island sampling sites exist (e.g.
[13]) or where specific ocean areas are subject to relatively intense research ship activity [14–17],
flux estimates based on direct atmospheric sampling can be made. By combining observations of
aerosol and rainwater chemistry made during 28 research cruises of the GEOTRACES and other
research programmes (such as the Atlantic Meridional Transect (AMT) and the Surface Ocean
Lower Atmosphere Study (SOLAS)), Powell et al. [16] were able to estimate seasonally resolved
10-year average atmospheric fluxes for NO3

− and NH4
+ and soluble and total Fe, aluminium

(Al) and Mn, for the eastern tropical North Atlantic. However, the uncertainties associated with
such deposition estimates are considerable [14–16]. Aerosol dry deposition to the ocean surface
cannot be directly measured, necessitating the use of highly uncertain dry deposition velocities
to convert measured aerosol concentrations into dry deposition flux. Direct measurements of wet
deposition fluxes are hampered by either biases in rainfall patterns (compared to the open ocean)
at island sites, or the difficulty in measuring precipitation rates and the collection of sufficient
rainfall samples to represent the wet deposition flux effectively from ships.

With trace metals that partially solubilize from mineral dust, such as Al, titanium (Ti), gallium
or thorium (Th), one can indirectly estimate dust deposition using the dissolved distribution
of these metals in seawater. The use of stable (non-radioactive) tracers to estimate dust fluxes
often relies on variations in equation (2.1) (where dissolved Al is used as an example). The
concentration of dissolved Al in the surface ocean has been widely used as a dust deposition
proxy because Al is abundant in dust (about 8% by mass) and is not biologically essential (e.g.
[18–23]):

d[Al]
dt

=
(

Fdustf (Aldust)f (Alsol)
MLD

)
−

(
[Al]
τ

)
− ∇ · (v[Al]) + ∇ · (K · ∇[Al]), (2.1)

where [Al] = dissolved Al concentration (g m−3) in the surface ocean mixed layer, Fdust = flux
of dust (g m−2 d−1), f (Aldust) = fraction of Al in dust (typically approx. 0.08 g total Al g−1

dust), f (Alsol) = fraction of soluble Al in dust (variable (see below), but typically assumed to be
approximately 0.03 g soluble Al g−1 total Al), MLD = mixed layer depth (m), τ = residence time
of dissolved Al in the MLD (typically of the order of 5 years), ∇ · (v [Al]) = effects of advection (in
x, y and z) on the concentration of dissolved Al, ∇ · (K · ∇[Al]) = effects of turbulent mixing (in x,
y and z) on the concentration of dissolved Al.

The dust flux term is assumed to dominate the input of the tracer. The residence time can be
separated into components influenced by multiple removal processes such as particle adsorption
(scavenging removal) or incorporation into biogenic particles (biological uptake). The removal
rates are modelled as first order with respect to dissolved Al. For tracers with short residence
times, advection and mixing are often thought to be small and therefore insignificant (the
implications of this simplification are discussed below). Assuming steady-state conditions, and
neglecting physical mixing and advection, equation (2.1) resolves to

Fdust = ([Al]MLD)
(τ f (Aldust)f (Alsol))

, (2.2)

which represents the MADCOW model [24], where the numerator is the inventory of the tracer
in the mixed layer. A comparison between this model (applied to dissolved Al and dissolved
232Th) and other methods for estimating dust deposition is presented in Anderson et al. [23].
This intercomparison also demonstrates very dramatically how different methods for measuring
aerosol TEI solubility have a significant influence on the dust flux estimates.

Whenever possible, it is preferable to make use of the full equation (equation (2.1)) and to
make measurements that are relevant for the region and time of year. Rates of particle scavenging
and uptake into biogenic material can vary from regime to regime and season to season. The
depth of tracer penetration can also vary in space and time, as can the sources and chemical
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Figure 1. Distribution of the ratio of advection to scavenging timescales (Y) for Al in the global ocean (after [26]). This
is a measure of the relative importance of scavenging versus advection for Al export. Regions where Y is higher than one
are scavenging-driven, those where Y is smaller than one are advection-driven. Where advection dominates (blue) the
one-dimensional MADCOWmodel is predicted to be unreliable.

nature of the aerosols. The physical transport terms (particularly horizontal advection) may not
be insignificant. Van Hulten et al. [25,26] showed how important this can be, using a general ocean
circulation model to take into account the effects of particle scavenging, biogenic particle uptake
and physical transport. These authors compare the timescales (residence times) for dissolved Al
in the upper water column with respect to advection and particle scavenging

Y = τadv

τscav
, (2.3)

and use this ratio to recommend where one-dimensional models, like MADCOW, might be
applied with confidence (when Y � 1, e.g. the North Pacific Ocean and Mediterranean Sea) and
where not (when Y � 1, e.g. the equatorial Atlantic Ocean) (figure 1).

Because the fractional solubility of aerosol Al exhibits significant variability (e.g. [27–30]) and
because dissolved Al has a somewhat complicated behaviour in the upper ocean (with respect to
abiotic and biotic scavenging; e.g. [31]), it has been suggested to use dissolved Ti as an alternative
dust input proxy [32].

A tracer that shows promise as a way to estimate atmospheric deposition is the natural
radionuclide beryllium-7 (7Be: half-life 53.3 days—comparable to the lifetime of particles in
the surface ocean [33]; gamma energy 0.4776 MeV). It is produced in the upper atmosphere
from cosmic ray spallation, quickly attaches to aerosol particles, and is transported to the lower
troposphere by atmospheric circulation processes. Because it is associated with sub-micrometre
aerosols, the deposition of aerosol 7Be is dominated by rainfall scavenging [34,35]. Given the
relatively short half-life of 7Be, at steady state the input flux of 7Be (atoms m−2 min−1) is balanced
by the 7Be inventory, or decay rate, integrated over the upper water column (dpm m−2). The
important point is that the ability to derive the atmospheric flux of 7Be from its ocean inventory
provides a key linkage between the atmospheric concentration of chemical species and their
deposition to the ocean [34,35].

The flux (Fi) of an aerosol element into the ocean can be described as the sum of wet and dry
deposition processes, respectively:

Fi = CaiRSρ + CaiVd = Cai[RSρ + Vd], (2.4)
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where Fi = flux to the oceans (µg m−2 d−1), Cai = aerosol concentration (µg m−3
air ), R =

precipitation rate (mrain d−1), S = washout ratio (kgair kg−1
rain; i.e. the concentration in rain

(µg kg−1
rain) divided by the aerosol concentration (µg kg−1

air )), ρ = ratio of the densities of water
and air ((∼1000 kgrain m−3

rain)/(∼1.2 kgair m−3
air ) = ∼833(kgrain m−3

air )/(m3
rain kgair)), Vd = aerosol dry

deposition velocity (m d−1).
The bracketed term on the right-hand side of equation (2.4) represents the effective ‘bulk

deposition velocity’, combining wet and dry deposition.
The aerosol dry deposition velocity (Vd) to the ocean surface is a function of humidity, wind

speed and particle size and has been estimated to vary by a factor of 3 for sub-micrometre aerosol
particles [36]. There are also large uncertainties associated with wet deposition estimates [37]. The
rain rate over the ocean is very difficult to constrain as direct measurement of patchy and episodic
rain events over vast, remote areas is impractical. Remote determinations from, for example,
microwave imager and precipitation radar suffer in accuracy (e.g. [38]). However, we can use the
known flux of 7Be (calculated from the ocean 7Be decay inventory) to avoid the pitfalls associated
with determination of these parameters.

The ratio of the atmospheric flux of any aerosol component to that of 7Be is

Fi

F7Be
= Cai[RSρ + Vd]I

CaBe[RSρ + Vd]7Be
. (2.5)

Assuming that the right-hand terms in brackets roughly cancel

Fi ∼= F7BeCai

CaBe
, (2.6)

such that the flux of any aerosol component can be estimated by multiplying the 7Be flux by the
ratio of that component to 7Be in aerosols. For many ocean areas [34], this formulation works well
because seasonal variation in the aerosol 7Be concentrations and the resulting ocean inventory of
7Be are small. In regions where there is large seasonal variability in the 7Be aerosol concentrations,
such as the Arctic Ocean, the expected 7Be inventory resulting from the input and decay of aerosol
7Be can be described by the following equation [39]:

λ Inventory7Be =
∑

[Ca7Be,n + Ca7Be,n−1 e−λ](RSρ + Vd), (2.7)

where λ is the 7Be decay constant (0.013 d−1), Inventory7Be is the predicted 7Be inventory to
the depth of 7Be penetration (100–200 m; dpm m−2), Ca7Be,n = 7Be aerosol concentration on day
‘n’ (dpm m−3

air ), Ca7Be,n−1 e−λ is the 7Be aerosol concentration on the previous day corrected for
radioactive decay (dpm m−3

air ).
As in equation (2.4), the right-hand terms in parentheses represent the effective bulk deposition

velocity (m d−1) that combines precipitation plus dry deposition.
This approach has been used in the central Arctic Ocean, yielding a bulk deposition velocity

of approximately 1350 m d−1 [39]. For the subtropical North Atlantic, using equation (2.6), a bulk
deposition velocity of approximately 2400 m d−1 was derived [34]. In both cases, the estimated
bulk deposition velocity is higher than the dry deposition velocity that is often used to estimate
mineral aerosol dry deposition (1 cm s−1 = 864 m d−1); this is consistent with the conclusion that
7Be deposition is dominated by wet deposition. These bulk deposition velocities from a given
region of the ocean can then be used to estimate the flux of any other aerosol component, despite
the complication that larger mineral dust aerosols may have higher dry deposition velocities
and lower rainfall scavenging ratios. Considering Fe in mineral dust, for example, one might
use Vd = 1000 m d−1 and a rainfall scavenging ratio (S) of 200 [36], while for 7Be one might use
Vd = 86 m d−1 and S = 500 [40]. Using these estimates (and equation (2.5)), for a rainfall rate of 4
mm d−1, the bulk deposition velocity for aerosol Fe would only be 5% lower than that for 7Be [34].
The higher proportions of larger mineral dust particles immediately downwind of sources like
the Sahara may impact on the choice of deposition velocities and scavenging ratios for modelling
deposition in those regions.
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(b) Trace element solubility
Understanding the fraction of the atmospheric flux of bioactive substances that is available to
marine biota is a key part of assessing the biogeochemical impact of that atmospheric flux.
Defining the bioavailable fraction is extremely complex, but in many cases the soluble fraction
of TE deposition constitutes a major part of the bioavailable fraction [41,42].

In laboratory studies, a positive relationship has been reported between the solubility of
aerosol Fe (and other TEs) and aerosol acidity (e.g. [43,44]). These studies were undertaken,
in part, to simulate pH changes that occur when aerosol particles cycle through clouds (a
process that can also affect other factors that influence solubility, such as aerosol constituent
mixing). Despite these results, and there being a general consensus in the community that aerosol
chemistry is a key control on aerosol TE solubility, field observations have failed to convincingly
reproduce this relationship for the most part. In the Atlantic Ocean, no relationship between acid
species, such as non-sea salt sulfate (nss-SO4

2−) and nitrate (NO3
−), or net potential acidity (i.e.

the difference between total acid species concentrations and total alkaline species concentrations)
and fractional Fe solubility has been observed [30,45]. By contrast, in the Pacific Ocean, a
significant relationship between aerosol acid species, but not oxalate concentration, and soluble
aerosol Fe has been observed (e.g. [27]). Similar observations were made of the relationships
between aerosol Al solubility and acid species concentrations at Hawaii [46]. This led Buck et al.
[27] to conclude that aerosol provenance was the dominant control on TE solubility.

There are a number of theories suggested to explain why field data generally fail to capture
a relationship between aerosol TE solubility and aerosol acidity. For example, the large buffering
capacity of CaCO3 means that mineral dust particles do not easily become acidic. The pH
of the aqueous solution surrounding dust aerosols is controlled by the ionic balance between
acidic species (e.g. sulfate, nitrate, chloride anions) and basic species, including ammonium and
components of mineral dust itself, i.e. calcite (CaCO3). Before Fe can be effectively mobilized
from the particle through proton-promoted dissolution processes [47], the concentration of acidic
species must be sufficiently high to overcome the alkalinity of mineral dust (which will vary
according to the source and composition of the dust), and decrease the pH of the aqueous solution
surrounding the dust particle. Alternatively, part of the problem in linking aerosol acidity and TE
solubility may lie in the difficulty of determining the acidity of aerosol particles directly, and
therefore proxies are frequently used [48]. Hennigan et al. [48] found from their model study that
approaches that combined aerosol and gas inputs showed the best agreement with the aerosol
pH predicted from the phase partitioning of ammonia, and that ionic balance or molar ratio
approaches failed to accurately predict aerosol pH. The highly complex nature of atmospheric
aerosol suspensions, in which aerosol components may be fully externally mixed (present in the
same volume of air but in different particles), fully internally mixed (present within the same
particles within that air volume) or at some point on a continuum between these two extremes,
also makes a complete understanding of field observations of TE solubility very challenging.
At present, it is not possible to acquire measurements of TE solubility on individual aerosol
particles and hence it is not possible to distinguish between observations for which acid species
are externally mixed with TE-containing particles and those for which internal mixing might lead
to increased solubility.

In the future, in contrast to the ocean, the atmosphere is predicted to become more basic [49].
Emissions of SO2 and NOx are expected to continue to decline as a result of stricter and/or more
commonplace regulation and technological advances, whereas global ammonia emissions (the
majority, approx. 80%, of which come from the agriculture sector) are difficult to control and are
relatively unchecked [50]. Gaseous ammonia is the most abundant alkaline gas in the atmosphere,
and global emissions have increased over the last few decades. A more basic atmosphere might
be expected to reduce aerosol TE solubility.

Recent work has highlighted the impact of organic matter on TE speciation and solubility in
aerosols and rainfall. Aerosol particles and rainwater are known to contain Fe-binding organic
ligands such as formate, acetate and oxalate [51]. These ligands facilitate the dissolution of
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Figure 2. Fe solubility as a function of Fe/WSOCmolar ratio formodel estimates (red squares) andmeasurements (black circles,
from [62,63]) of aerosol samples collected over the Atlantic Ocean. Reproduced from [53].

Fe in aerosol and stabilize soluble Fe [52–57]. Kieber et al. [58] estimated that 69–100% of
Fe(III) in rainwater was organically complexed. The concentrations of the Fe organic ligands
and their conditional stability constants have been directly measured in rainwater only very
recently with a new sensitive method using competitive ligand exchange–adsorptive cathodic
stripping voltammetry [59]. Ligand concentrations in the first measured samples of coastal
rainwater were as high as 336 ± 19 nM, with log K′

Fe3+L around 21.1–22.8 at pH = 5.45 [59].
These K′

Fe3+L values correspond to the strong ligand class in seawater [60] and imply that 80–
100% of Fe in rainwater is organically complexed [59], confirming the estimation of Kieber et al.
[58]. The presence in rainwater of ligands capable of complexing other TEs, e.g. Cu [61], has also
been demonstrated. However, the exact nature and origin of these atmospheric ligands are still
largely unknown.

The molar ratios of Fe/water soluble organic carbon (WSOC) in aerosols collected during two
GEOTRACES cruises were found to be anti-correlated with Fe solubility (figure 2), suggesting
a possible role of organic ligands in enhancing Fe solubility [62,63]. Using a global chemical
transport model that considered the oxalate-promoted Fe dissolution in aerosols, Ito & Shi [53]
successfully reproduced the inverse relationship of Fe solubility and Fe/WSOC ratio over the
cruise tracks (figure 2). The process-based modelling by Ito & Shi [53] suggested that proton-
and oxalate-promoted Fe dissolution in the aerosol aqueous phase and mixing with combustion
aerosols are the main mechanisms to cause the high Fe solubility at low Fe loading in the North
Atlantic. This is consistent with observations (e.g. [64,65]) and previous modelling [66].

Primary biological aerosol particles, also called bioaerosols, include fungi, pollen, spores,
plant debris, epithelial cells, algae, protozoa, viruses and bacteria. They are ubiquitous in the
atmosphere [67,68] and cover a very large size range from viruses (about 1 nm diameter)
to pollen (up to 300 µm diameter) [69]. A recent campaign over the Caribbean Sea revealed
that viable bacterial cells represented on average 20% of the total particles in the 0.25–1 µm
diameter range and were at least one order of magnitude more abundant than fungal cells,
suggesting that bacteria represented an important and underestimated fraction of micrometre-
sized atmospheric aerosols [70]. Bacteria could directly influence the atmospheric chemistry of
TEs, for example, through the degradation TE-complexing carboxylic compounds [71,72] and
the release of metabolic compounds, such as siderophores [73]. Despite these advances, airborne
microorganisms above the oceans remain essentially uncharacterized, as most work to date is
restricted to samples taken close to the continents.

Other atmospheric compounds that could complex Fe are humic-like substances (HULIS)
[74,75] and/or sugars. These have been detected in rainwater samples and in the water-soluble
fraction of aerosol particles (e.g. [55]) and have been shown to bind Fe, at least in the ocean [76].
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Figure 3. Conceptual model of aerosol TEI solubility controls proposed (for Fe) by Baker & Croot [8], with the addition of a new
control factor in the atmosphere: ligand complexation, which may be linked to bioaerosols (see text for more details).

The expanded range of TEs studied under the GEOTRACES programme not only provides
information about additional micronutrients (Zn, Co, Cd, Cu, Ni, etc.), but has also allowed
further progress in understanding the solubility behaviour of Fe through the synergies with
elements with similar sources or chemistry. For instance, over the spatial scale of the North
and South Atlantic Ocean the variation in fractional solubility with total element aerosol
concentration of Fe, Al and silicon (Si) has been found to be very similar [77], suggesting that
redox processes and anthropogenic inputs are relatively minor controls of aerosol Fe solubility
over that spatial scale.

(c) Biogeochemical impact of trace element deposition
Ultimately, the biogeochemical impact of TEs that enter the ocean via the air–sea interface is
dependent on the characteristics of the marine waters into which they are deposited, in addition to
the characteristics of the TEs at the point of deposition [78]. The combination of atmospheric and
marine influences on solubility has been discussed for Fe by Baker & Croot [8], who suggested
a conceptual model of aerosol iron solubility controls in which the various competing and
inter-related processes that influence (Fe) solubility in the atmosphere and seawater are likened
to electrical resistors connected in parallel in each compartment. In figure 3, we revisit that
conceptual model, adding (Fe-) binding ligands in the atmosphere and revising it to describe TE
dissolution in general. Whether these newly considered organic ligands result from atmospheric
biological activity or have a significant impact on TE solubility in seawater still needs further
investigation.

The combined effects of atmospheric and seawater influences on TE dissolution have been
studied by addition of mineral dust to natural seawater at scales ranging from bottle incubations
to mini- and meso-cosm experiments. For example, an initial addition of dust during the DUNE
mesocosm experiment led to decreased dissolved Fe concentrations due to adsorption [79,80].
A second addition of dust to the DUNE mesocosms produced a very different response, with
increased dissolved Fe concentrations facilitated by higher Fe-binding ligand concentrations
[80]. The percentage of dust Fe released into seawater can be dependent on season and
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related to surface water-dissolved organic matter concentrations and character [81]. The DUNE
experiments, involving the addition of controlled amounts of well-characterized dust to large
volumes of isolated in situ seawater, have provided the opportunity to study the fate and impact
of deposited dust in a manner not possible through either laboratory or field experiments.

The biological response of oceanic waters to dust or ambient aerosol addition has been studied
in a number of short-term bottle incubation experiments [82–85]. In many of these experiments,
responses to dust addition were different from the systems’ responses to the addition of
macronutrients (nitrogen (N) and phosphorus (P)) and Fe, or additions of combinations of these.
It is apparent that a multi-element approach to such studies is necessary in order to interpret their
results [85].

(d) Non-dust sources of trace elements and their isotopes
Although mineral dust probably constitutes the major atmospheric source of TEIs to the ocean
on a global scale, other sources, including volcanic ash [86,87], ship exhaust [88] and land-based
anthropogenic emissions [7,89,90], can also be significant on smaller scales. In a similar manner to
the behaviour of mineral dust, the deposition of volcanic ash has the potential to decrease surface
water Fe concentrations through scavenging, as well as acting as a source of dissolved Fe [91].
Anthropogenic sources of Fe have been found to be significantly more soluble than mineral dust
Fe (e.g. [92,93]). Gas-phase emissions from ship exhaust include CO2, NOx and SO2 [88], with
the latter two being precursors of atmospheric acidity. Particulate emissions from shipping have
been found to contain a number of TEIs including Ni, vanadium (V), lead (Pb), Fe and Zn (e.g.
[94–96]). In general, little is known about whether such emissions might have a significant effect
on the aeolian delivery of TEIs to the ocean around major shipping routes. However, global ship
traffic is projected to increase over the coming decades and one modelling study has indicated
that ship emissions might constitute a significant source of soluble Fe to some ocean regions by
2100 [97].

Isotopic data on aerosol TEs may also be useful in distinguishing sources, such as between
biomass burning or mineral dust for Fe [11], between anthropogenic emissions or mineral dust
for Zn [98] or between combustion aerosols from different regions with Pb isotopes (e.g. [99]).

(e) Value of coordinated international research programmes
The large amount of new observational data acquired through work by the GEOTRACES and
other international research programmes are useful for validation of numerical models and
serve to enhance our understanding of TE air–sea interactions. These studies have highlighted
the importance of atmospheric transport regimes and deposition modes in determining the
overall air–sea flux of TEIs and their impacts on marine biogeochemistry. GEOTRACES data are
particularly valuable in this context because the programme’s sampling strategy aims to produce
a co-collected, corresponding set of TEI data for surface waters.

The collection of a coherent set of TEI data for aerosols through the GEOTRACES programme
has been underpinned by the successful aerosol intercalibration/intercomparison exercise [100].
GEOTRACES standardization and intercalibration protocols for oceanic samples generally entail
sharing of replicate samples among various laboratories/analysts and sampling at common
locations (crossover stations). For atmospheric aerosols, air mass origin and aerosol composition
are highly variable, so the applicability of crossover stations is problematic and the best options
for aerosol intercalibration are a readily available reference material and/or plentiful marine
aerosol sample replicates. During the 2008 GEOTRACES aerosol intercalibration [100], a set
of replicate aerosol samples consisting of a mixture of marine, lithogenic and anthropogenic
components was successfully analysed for many total element and soluble ion concentrations.
It was recommended that digestions for ‘total’ TEI concentrations should use nitric acid,
hydrofluoric acid, heat and pressure to achieve total dissolution of aerosol material. The exercise
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also revealed discrepancies in the measurement of soluble aerosol TEI concentrations, most
importantly Fe, a key parameter in many observational and modelling studies.

3. Recommendations for further research

(a) Analytical issues
The continuation and expansion of intercalibration/intercomparison exercises will be necessary
to provide coherent datasets for future work. Because aerosols may be analysed for a broad
spectrum of TEIs and soluble species (e.g. chloride, nitrate, sulfate and soluble organic
compounds), a substantial amount of aerosol material for intercalibration is required. A suitable
‘reference’ material is required to facilitate this intercalibration work. It should be very fine-
grained (to mimic aerosol particle sizes), homogeneous at small scales (less than 20 mg) and be
readily available at low cost.

— To address the lack of a suitable aerosol certified reference material (CRM), the Arizona
Test Dust (ATD) produced by Powder Technology, Inc. is currently being evaluated. ATD
is a dry aerosol powder that has been oven dried and sieved, but has not been subjected
to washing or leaching. ATD is available in several different size ranges, including A1
Ultrafine (PN 12103-1) whose particle size distribution shows approximately 70% less
than 5.5 µm and approximately 98% less than 11 µm. It has a composition very similar to
mineral (desert) dust: http://www.powdertechnologyinc.com/product/iso-12103-1-a1-
ultrafine-test-dust/. A large quantity has been purchased and our preliminary tests show
that it is homogeneous at subsample masses of 10–20 mg.

— A second round of intercalibration tests has begun in 2016; subsamples of the A1 Ultrafine
ATD have already been sent to a number of international laboratories to measure total TEI
and soluble TEI concentrations, and we hope to recruit additional collaborators for this
effort. As part of this intercalibration effort, we also want to encourage the use of ATD
for intercomparison of various aerosol solubilization schemes. Our goal is to avoid the
cost and time delays needed to produce a true CRM or standard reference material, and
to use the ATD material to intercalibrate analysis of aerosol TEIs in much the same way
that the SAFe and GT seawater samples have been used to intercalibrate the sampling
and analysis for TEIs in seawater. Subsamples of our large batch of the A1 Ultrafine ATD
are freely available (contact W.M.L. at wlanding@fsu.edu or P.L.M. at pmorton@fsu.edu).

— Finally, we are also investigating the availability of replicate aerosol samples collected
during research cruises to further advance aerosol intercalibration. Members of the
international aerosol community are encouraged to facilitate this intercalibration by
communicating and collaborating; discussion is underway regarding establishment of
a SCOR Working Group on aerosol chemistry and solubility.

(b) Deposition
— A multi-tracer approach shows promise in reducing the uncertainties associated with

quantifying dust deposition fluxes to the ocean [23]. GEOTRACES products are likely to
expand the range of tracers and isotopes that can be used for this purpose which should
lead to further reduction of this key uncertainty.

— Modelling of dust and TEI deposition to the oceans is an essential part of the study
of the Earth system, since it allows estimation of TEI fluxes over spatial and temporal
scales which will never be accessible through direct observation. Modelling activities
of this nature are inherently uncertain, however, because they inevitably involve the
simplification of highly complex systems that are themselves incompletely understood.
The modelling community conducts occasional intercomparison exercises [101,102] in
order to assess the variability between models and to aid in model development. Since
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the ultimate product of these models is the deposition flux of TEIs to the ocean, it makes
sense for the intercomparison exercises to report comparisons of deposition flux. We note,
however, that comparison to observations is also an important part of validation and
development of models. We would therefore suggest that future model intercomparisons
should also report model mean aerosol surface-level concentrations, since these are
directly available from observations, whereas deposition fluxes to the ocean are not.

(c) Solubility
Ultimately, we wish to provide the modelling community with sufficient information to include
realistic descriptions of TE solubilization in numerical models in the most computationally
efficient manner possible. In order to do this, we need to clarify several outstanding issues.

— To what extent do anthropogenic emissions influence the solubility of TEI in aerosols?
(How significant, on global and regional scales, are direct anthropogenic emissions
of TEIs in determining the overall deposition of soluble forms of those TEIs to the
ocean? What is the indirect impact of anthropogenic emissions of acidic (NOx, SO2) and
alkaline (NH3) substances on the evolution of aerosol TEI solubility during atmospheric
transport?)

— Further improvement in our understanding of the influence of organic matter and
bioaerosols on TEI solubility in aerosols and in seawater after deposition, as well as their
potential impact on bioavailability, is required.

— Deposition of aerosol particles and rainfall to the surface ocean requires the transfer
of material across the sea surface microlayer (SSM), a region whose biogeochemical
characteristics are quite distinct from the properties of bulk seawater [103]. In all
probability, the SSM has a significant influence on TEI solubility, but our understanding
of the extent of this influence is still in its infancy.

— Similarly, conditions in bulk seawater will also have a significant (perhaps dominant
for Fe) influence on TE solubility. We still need to improve our understanding of TEI
dissolution ‘length scales’ and kinetics in relation to particle residence times in the ocean.
Some of that understanding may only be accessible via process studies or meso-scale
oceanic enrichment experiments.

(d) Anthropogenic impacts
— There has been much recent interest in the role played by anthropogenic emissions

in introducing TEIs into the atmosphere (e.g. for soluble Fe, as stated above).
Characterization of exemplar source end-members for these emissions will be required
in order for them to be incorporated into numerical models. Emissions from shipping are
of particular interest in this context as shipping has seen rapid growth in recent decades
and this growth is projected to increase further into the near future. Elements such as Ni
and V are of particular concern with regard to ship emissions, as are acid precursors (NOx

and SO2), although changes in regulations relating to ship emissions may influence this
[104,105].

— The introduction of routine sampling for black carbon (QMA filters) into GEOTRACES
protocols will help to link aerosol TEI concentrations to anthropogenic emissions and
will also aid in the validation of anthropogenic emissions and transport in numerical
models.

Although our paper has focused primarily on studies conducted under the international
GEOTRACES programme, we note that other international scientific programmes (e.g. SOLAS)
share many of the goals of GEOTRACES. We encourage the development of links between these
programmes through the sharing of data and expertise. For example, the SOLAS Aerosol and
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Rainwater Chemistry database (http://www.bodc.ac.uk/solas_integration/implementation_
products/group1/aerosol_rain/) contains a large amount of GEOTRACES-relevant data and
open access to results obtained by both programmes is of clear benefit to both communities.
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