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INTRODUCTION

Otoliths are calcified structures found in the inner
ear of teleostean fish. They are organised into 3 pairs
and assist with auditory and balance functions of fish.
They are critical tools in fisheries science and man-
agement. Their structure allows aging of individual
fish and the determination of population age struc-
ture for stock assessment (e.g. Worthington et al.
1995, Caldow & Wellington 2003). Their morphology
can be used for individual assignment to (sub-)popu-
lations and to infer population structure (e.g. Cas-
tonguay et al. 1991, Stransky et al. 2008). The sagit-

tae (the most studied otolith pair because of their
large size) are mainly composed of calcium carbon-
ate in aragonite form deposited on an organic matrix
which represents 0.1 to 10% of total material
(Degens et al. 1969). The organic matrix, although
present in small to minute amounts in otoliths, is
thought to play a key role in its formation as in all
biomineralization processes (Nagasawa 2013). Bio-
mineralization of the sagittal otolith (referred to here-
after as ‘otolith’) is an acellular process that takes
place in the saccule (otic sac). Otoliths grow by accre-
tion and precipitation of organic and ionic precursors
contained in the saccular endolymph in which they
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ABSTRACT: Previous studies have shown that the amount of food influences fish otolith structure,
opacity and shape and that diet composition has an effect on otolith chemical composition. This
study investigated the potential correlation between diet and otolith shape in 5 wild marine fish
species by addressing 4 complementary questions. First, is there a global relationship between
diet and otolith shape? Second, which prey categories are involved in this relationship? Third,
what are the respective contributions of food quantity and relative composition to diet−otolith
shape co-variation? Fourth, is diet energetic composition related to otolith shape? For each spe-
cies, we investigated how otolith shape varies with diet. These questions were tackled by describ-
ing diet in the analysis in 4 different ways, while also including individual-state variables to
remove potential confounding effects. First, besides the strong effect of individual-state, a global
relationship between diet and otolith shape was detected for 4 out of 5 fish species. Second, both
main and secondary prey categories were related to variability in otolith shape, and otolith outline
reconstructions revealed that both otolith global shape and its finer details co-varied with these
prey categories. Third, the contribution of relative diet composition to diet−otolith shape co-varia-
tion was much higher than that of ingested food quantity. Fourth, the energetic composition of diet
was related to otolith shape of only 1 species. These results suggest that diet in marine fish species
may influence the quantity and composition of saccular endolymph proteins which play an impor-
tant role in otolith biomineralization and their resulting 3D structure.
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are bathing. Otolith biomineralization is therefore
totally dependent on the endolymph composition and
precursors that are either synthesized (organic) or
transported (ionic) by secretory cells and ionocytes,
respectively, belonging to the saccular epithelium
(Payan et al. 2004). Moreover, the spatial distribution
of these cells in the saccular epithelium induces con-
centration gradients of both ions and organic precur-
sors in the endolymph that are involved in otolith bio-
mineralization processes (Pisam et al. 1998, Payan et
al. 1999, Borelli et al. 2001).

Otolith biomineralization results from multi-causal
processes due to the interaction of many internal
(physiological) and external (environmental) factors
(Allemand et al. 2007), which generate high morpho-
logical variability in otolith shape at both intra- and
inter-specific level. First, otolith shape is species-spe-
cific (Tuset et al. 2006), reflecting genetic determin-
ism (L’Abée-Lund 1988, Vignon & Morat 2010). Sec-
ond, factors or processes acting on fish metabolism
and physiology have an impact on otolith morphol-
ogy, such as ontogenetic development (size: Hüssy,
2008; age: Castonguay et al. 1991; sexual maturation
Mérigot et al. 2007; sex: Castonguay et al. 1991,
Bolles & Begg 2000). Third, environmental factors
such as water temperature produce otolith growth
variation, and thus shape variability (Cardinale et al.
2004). Food quantity can also impacts otolith shape
both directly and indirectly. It has an indirect effect
on global otolith shape through its effect on otolith
growth and a direct effect on otolith crenation
(Gagliano & McCormick 2004, Cardinale et al. 2004,
Hüssy 2008).

Consequences of fish nutrition on otolith structure
and growth, especially the impact of starvation or
food restriction and satiation, have been well-studied
(Molony & Choat 1990, Molony & Sheaves 1998,
Hüssy & Mosegaard 2004, Fernandez-Jover &
Sanchez-Jerez 2015). A decrease in the otolith incre-
ment widths and thus in otolith growth was observed
after reduced feeding periods (Massou et al. 2002).
The deposited material is more translucent in res -
ponse to severe (long period and low ration) food
restriction, which can lead to otolith structural dis-
continuities that do not conform to the seasonal
opaque and translucent layers of annuli (Høie et al.
2008), referred to as ‘checks’ (Panfili et al. 2002).
Such changes in opacity are the consequences of
variation in the composition of inorganic and organic
otolith compounds (Jolivet et al. 2013) and precur-
sors. A starvation period leads to change in blood
plasma composition, which generates a decrease in
the acid−base equilibrium in the saccular endolymph

and thus induces a reduction of aragonite precipita-
tion rate. As a consequence, a reduction of daily
growth rate due to starvation could be observed even
if calcium concentration was not affected (Payan et
al. 1998). Concerning the organic precursors, only
the protein ‘factor retarding crystallization’ (FRC)
concentration decreases during starvation periods,
especially in the proximal zone (Guibbolini et al.
2006). This change may play a key role in the inten-
sity of aragonite deposition and thus otolith growth.
In conclusion, food amounts may affect otolith
growth, opacity (or structure) and biomineralization.

Several papers have also documented a link be -
tween energy metabolism and otolith growth. Otolith
growth is closely related to standard metabolic rate
(Mosegaard et al. 1988, Fablet et al. 2011) and otolith
accretion appears to be regulated by feeding-
induced thermogenesis (Huuskonen & Karjalainen
1998). Otolith growth in larvae and juveniles is also
related to individual condition index, estimated from
fish lipid composition (Amara et al. 2007), which in
turn depends on zooplankton biomass (Suthers et al.
1992). Besides the fact that lipid quantity such as tri-
acylglycerol content can be used as a condition index
for fish (Fraser 1989), taken together, these results
suggest that lipid content in diet and energy metabo-
lism may influence otolith growth. Given that lipid
content of prey is the primary determinant of their
energy density (Anthony et al. 2000, Spitz et al.
2010), diet energy content or composition in terms of
energetic prey categories is a good candidate for
encompassing both effects.

Along with food abundance and energy content,
diet composition can also affect otoliths, especially
their chemical composition (Sanchez-Jerez et al.
2002). For instance, Barium (Ba) and strontium (Sr)
concentrations in Pomatomus saltatrix otoliths were
related to the concentration of these elements in their
prey (Buckel et al. 2004). Here, the authors assumed
the diet effect on Ba and Sr concentration in otoliths
could be either direct or indirect through diet-based
growth rate changes that induce element incorpora-
tion rate variation in otoliths. Even if around 80% of
Sr and Ba in otoliths comes from water (Walther &
Thorrold 2006) and not from diet, a trophic transfer
may be considered as a potential source of element
accumulation in fish otoliths. The concentration of
manganese (Mn) in the habitat and prey items was
also related to its accumulation in otoliths (Sanchez-
Jerez et al. 2002). The fact that the Mn:Ca ratio in
otoliths is not correlated to the same ratio in water
suggests a trophic transfer of metallic elements, such
as Mn (Thorrold et al. 1997). Moreover, variations in
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δ13C otolith values were observed to correlate with
variations in muscular δ13C values among diet treat-
ment (Elsdon et al. 2010).

In summary, previous experimental work has
revealed that the food ration level affects otolith
structure, opacity and shape. Studies in the labora-
tory and in situ have shown that metabolic rate and
food energy content influence otolith growth, and
that diet composition affects otolith chemical com-
position. In the present study, we investigated the
potential relationship between diet, described as a
combination of both food composition and quantity,
and the otolith shape at the intra-population level in
5 marine fish species, including 3 roundfishes and 2
flatfishes sampled in the wild. More specifically, we
addressed 4 related questions. We first tested for a
global relationship between diet (represented by
the weight of each taxonomic prey category) and
otolith shape. Second, in case of significant diet
effect, taxonomic prey categories involved in the
relationship with otolith shape were identified.
Third, we quantified the respective contributions of
food quantity and taxonomic composition to diet−

otolith shape co-variation. Fourth, we tested for the
relationship between diet composition in terms of
energetic prey categories and otolith shape. For all
questions, the effect of potential confounding fac-
tors, i.e. individual-state variables (age, length, sex
and maturity status), on otolith shape was quantified
and removed to obtain unbiased estimates of food
effects.

MATERIALS AND METHODS

Sample collection

Five marine fish, 3 roundfishes and 2 dextral flat-
fishes, were sampled in the eastern English Channel
(Fig. 1): 47 striped red mullets Mullus surmuletus,
28 tub gurnards Chelidonichthys lucerna, 32 red
gurnards C. cuculus, 42 European plaices Pleuro -
nectes platessa and 36 common soles Solea solea
(Table 1). These species were chosen because of
their commercial significance, the fact that they rep-
resent a combination of round and flat fish, and that

they are among the most
abundant species in the
area. For each species, indi-
viduals sampled belonged
to a single population. All
fish were caught during the
annual Channel Ground
Fish Survey (CGFS) oper-
ated on board the RV
‘Gwen Drez’ in October
2009. The fishing gear was
a Grande Ouverture Verti-
cale bottom trawl, with a
10 mm stretched mesh size
in the codend, that was
towed for 30 min at an aver-
age speed of 3.5 knots
(Coppin et al. 2002). Fol-
lowing their capture, fish
were identified at species
level and sampled individu-
als were frozen in liquid
nitrogen on board.

Back in the laboratory,
individuals were defrosted,
measured (total length, LT)
to the nearest cm, and sex
and maturity status were
determined by macroscopic
observation of gonads ac -
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Fig. 1. Maps of sampling areas in the
eastern English Channel according to
species. Each circle represents a fishing
site, and circle size gives the relative 
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cording to the recommendations of international ex -
pert groups (ICES 2014). The digestive tract was
extracted and its contents removed and stored in a
Petri-dish for analysis. Sagittal otoliths were also
removed from each individual, one of them being
used to estimate the individual’s age by interpreting
macrostructures according to accepted standard age-
ing protocols (ICES 2010, 2012) and the second one
for shape analysis, each of them coming always from
the same side. For striped red mullet, age was esti-
mated by reading macrostructures on the sagittal
otolith pair. The left otolith was read under transmit-
ted light while the right one was read under reflected
light before being burned to confirm the age estima-
tion done previously (ICES 2012). The left otolith (not
burned) was then used for shape analysis. Even
though recommendations from ICES expert groups
do not exist for tub and red gurnards, the same meth-
ods were effective when applied to these species. For
European plaice, the entire left otolith was used to
estimate age as well as for shape analysis (ICES
2010), whereas, for common sole, a transversal sec-
tion of the left otolith was necessary for age reading
(Mahé et al. 2012) so that the right otolith was used
for shape analysis.

Otolith shape analysis

Each otolith was cleaned in an ultrasonic bath in
water at room temperature for a duration of 10 min,
then brushed to remove residual tissues and stored
dry in tubes. Batches of otoliths were automatically
digitized using orthogonal projection at a high

 resolution (3200 dpi) using a scanner
EPSON V750 and individual images
were extracted. An Elliptical Fourier
analysis was performed on each
otolith contour delineated and ex -
tracted after image binarization. This
method reconstructs any type of
shape with a closed 2-dimensional
contour (Kuhl & Giardina 1982) using
ellipses named harmonics. Each har-
monic (Hi) is characterized by 4 co -
efficients (Ai, Bi, Ci and Di), called
elliptic Fourier descriptors (EFDs),
which correspond to the parameters
of the trigonometric equations de -
scribing the corresponding ellipse.
The number of harmonics n used to
reconstruct each otolith outline in
the sample was determined as fol-

lows using the cumulated Fourier power (PF(nk)).
This parameter was calculated for each otolith k as
the sum of the proportion of variation in contour
coordinates accounted for by each harmonic; this is
equal to:

(1)

The number of harmonics nk was then chosen such
that PF(nk) reaches 99.99% of variation in contour
coordinates or, in other words, such that shape is
reconstructed at 99.99% (Lestrel 2008). A majority of
studies (e.g. Mérigot et al. 2007, Lestrel 2008) com-
pute the cumulated Fourier power PF using EFDs
averaged across the full sample or part of it, so that
the selected harmonics describe the average otolith
shape. In this study, PF(nk) and nk were calculated for
each individual otolith k in order to ensure that each
individual otolith in the sample was reconstructed
with a precision of 99.99% The maximum number of
harmonics n = max

k
(nk) across all otoliths was then

used to reconstruct each individual otolith of the
sample.

After extracting the n harmonics for each individ-
ual otolith, their EFDs were normalized by the first
harmonic providing EFDs invariant with respect to
size, rotation and starting point (Kuhl & Giardina
1982), and resulting in the degeneration of the first 3
EFDs (Ai, Bi and Ci), respectively equal to 1, ≈0 and 
≈ 0 for each individual. EFDs were then gathered in a
matrix F with EFDs as columns and individuals as
rows.

All otolith images and EFDs were obtained using
the software TNPC 7.0 (www.tnpc.fr).
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Species N NF/NM/NU % Mat Age (yr) Total length (cm)
Mean ± SD Mean ± SD

Range Range

Striped red mullet 47 08/16/23 48.94 0.62 ± 0.79 16.51 ± 5.60
0−3 9−32

Tub gurnard 28 10/18/00 32.14 1.75 ± 0.84 25.86 ± 6.61
0−3 16−40

Red gurnard 32 12/19/01 37.5 2.69 ± 0.74 24.91 ± 2.85
1−4 20−31

European plaice 42 26/14/02 76.19 1.81 ± 1.38 27.33 ± 7.45
0−7 9−43

Common sole 36 18/17/01 91.67 2.44 ± 1.61 25.94 ± 5.81
1−6 17−38

Table 1. Characteristics of the samples studied. Number of samples analyzed
(N), number of females (NF), number of males (NM), number of individuals
with undetermined sex (NU), proportion of mature individuals (% Mat), 

age and total length distributions of the samples
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Diet analysis

For each fish, taxonomic identification of prey
items in the stomach content was carried out using a
binocular loupe. Prey items were identified to the
lowest possible taxonomic level before being
weighed (wet weight, g). In view of their high diver-
sity, prey were grouped into 22 taxonomic categories
(Table S1 in the Supplement at www.int-res.com/
articles/suppl/m555p167_supp.pdf) based mainly on
their main taxonomic level. Prey were categorized at
least to phylum-level in the taxonomic hierarchy (e.g.
Annelida, Cnidaria). If further taxonomic determina-
tion was possible, taxonomic prey categories were
based on class (e.g. Cephalopoda, Gastropoda),
order (e.g. Amphipoda, Isopoda) or infra-order (e.g.
Brachyoura, Anomoura). Teleosts were split into 2
taxonomic prey categories depending on their ener-
getic value. The energy content of each fish prey
(found at www.nutraqua.com/) was plotted. Fish
 species gathered in 2 main groups (fat and lean)
were separated by a threshold of 1 kcal g−1.

Alternatively, prey were regrouped into 3 cate-
gories based on their energetic content (low/
medium/high; Table S1 and Fig. S3 in the Supple-
ment) estimated from appropriate literature (Norrbin
& Båmstedt 1984, Steimle & Terranova 1985, Dauvin
& Joncourt 1989, Spitz et al. 2010) and following the
3 energetic categories proposed by Spitz et al. (2010).

For each studied species, stomach content data
were grouped in a diet composition matrix in terms
of weight, based either on taxonomic Wt or ener-
getic prey categories We, with each cell correspon-
ding to wt,ij or we,ij of prey category j (columns) in
the digestive tract of individual i (rows). In addition,
the relative contribution of taxonomic prey cate-
gories to diet composition by weight (%Wt,j =
Σiwt,ij /ΣiΣ j ’wt,ij ’) and the relative frequency of
occurrence (%F t,j) of each taxonomic prey category
(Godfriaux 1969), were computed for each studied
species (Fig. 2).

Statistical analyses

A principal component analysis (PCA) combined
with broken stick principal component selection
(Borcard et al. 2011) was performed on the EFDs
matrix F. The aim was to decrease the number of
dimensions used to describe otolith shape variability
while avoiding collinearity between them and ensur-
ing that the main sources of shape variation were
kept (Rohlf & Archie 1984). The selected principal

components were gathered to construct the otolith
shape matrix S with principal components of EFDs as
columns and individuals as rows.

The otolith shape matrix S was modelled using
redundancy analysis (RDA), depending on 3 ex -
planatory matrices: an individual matrix I grouping
individual-state variables and a diet matrix D derived
from the diet composition:
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Fig. 2. Contribution of taxonomic prey categories to species
specific diet, measured in terms of relative weight and 
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S ~ I + D (2a)

The matrix I was included in the model to disentan-
gle and remove the effect of individual-state as
 possible confounding factors on otolith shape. It was
composed of fish age A as a factor and total length LT

as a continuous effect to represent the ontogenetic
effect on otolith shape, sex Se and maturity status M
of the individual as factors potentially affecting fish
physiology and metabolism, and thus indirectly
otolith biomineralization. The resulting model was:

S ~ A + LT + Se + M + D (3a)

Alternatively, the potential confounding effect of
environmental factors was also accounted for by
including an environmental matrix E grouping exter-
nal environmental factors in model 2:

S ~ I + E + D (2b)

Matrix E contained 4 variables to describe environ-
mental conditions that may also affect otolith biomin-
eralization: temperature T and salinity Sa that were
extracted from the hydrodynamic model MARS 3D
(Lazure & Dumas 2008) and averaged over the month
of October 2009, depth Dp that was measured at each
sampling station during the survey, and longitude
and latitude (Lo × La) of the sampling station. The
resulting model was:

S ~ A + LT + Se + M + T + Sa + Dp + 
Lo + La + Lo × La + D

(3b)

The complete model described by Eq. (3) (Eq. 3a
and Eq. 3b for the model without and with the envi-
ronmental variables, respectively) was reduced by
stepwise selection based on  significance (p-values) of
the effects determined by permutation tests (Borcard
et al. 2011). Potential collinearity between explana-
tory variables was checked by computing their vari-
ance inflation factors (VIF) before and after model
reduction (Borcard et al. 2011). No strong collinearity
(VIF < 10) was detected after model reduction. Then,
a variation partitioning was performed to estimate
the percent contribution of the two (I and D) or three
(I, E and D) reduced matrices to otolith shape varia-
tion. The strict contribution of each reduced matrix to
variation was tested using partial redundancy ana -
lysis (pRDA) followed by a permutation tests, with
the matrix for which the contribution was estimated
as an ex planatory matrix and the other matrix or
matrices depending on model version (3a or 3b) as
covariables. SD was computed for all fractions of
variation by bootstrapping. Five hundred bootstrap
samples (random sampling with replacement) were

enough to obtain stable standard deviation estimates
in all cases.

In order to answer the 4 main questions of the
study, the previously described analysis was per-
formed with the diet matrix D constructed in 4 differ-
ent ways (Fig. 3) as described below.

Global relationship between diet and otolith shape
(model 1, Fig. 3A)

In order to estimate the potential global relation-
ship between diet and otolith shape, matrix D was
composed of a number of selected correspondence
axes resulting from a correspondence analysis (CA)
applied to the diet composition matrix based on taxo-
nomic prey categories Wt. Correspondence axes
were selected according to the broken stick method.
As for the PCA applied to EFDs, this analysis was
chosen to decrease the number of dimensions used to
describe fish diet variation and to remove collinearity
between prey categories. Moreover, CA is a method
adapted to the analysis of species abundance data
without pre-transformation because abundance data
within taxonomic prey categories are not normally
distributed (Borcard et al. 2011). Model reduction
was performed while considering variables of matrix
I (and E) separately and matrix D as a whole. Hence,
matrix I (and E) used in variation partitioning was
(were) reduced, while matrix D was not when kept in
the reduced model.

Prey categories involved in the relationship between
diet and otolith shape (model 2, Fig. 3B)

In this analysis, matrix D was simply set equal to
the diet composition matrix based on taxonomic prey
 categories Wt and model reduction was directly
 performed on Eq. (3). Hence, matrices I, (E) and D
used in variation partitioning were all reduced. In
 order to identify the main prey categories involved in
diet−otolith shape co-variation, permutation tests
were performed for each selected prey category to
test their significance. Moreover, to illustrate the
 relationship between the prey categories selected
and otolith shape, 8 predicted otolith outlines were
produced for each species in the following way: a
pRDA was performed on the otolith shape matrix S
with the selected prey categories as explanatory
 variables and the selected individual-state (and
 environmental  variables) as covariables. From this
pRDA, 8 sets of coordinates in the matrix S space

Equation corrected
after publication



were  predicted at the 8 combinations of ±1 SD
along the 2 first axes of the pRDA {(+SD1,0),
(–SD1, 0),(+ SD1,+ SD2), (– SD1,+  SD2),  (+ SD1,– SD2),
(–SD1,–SD2), (0,+SD2),(0,–SD2)} representing varia-
tion in linear combinations of the selected prey cate-
gories. Predictions in the matrix S space were then
projected back to the matrix F space to produce pre-
dicted EFDs that were then used to draw predicted
otolith shapes on the pRDA biplot.

Contribution of diet relative composition vs. food
quantity to diet−otolith shape co-variation 

(model 3, Fig. 3C)

In this analysis, matrix D was decomposed into a
matrix representing the relative diet composition
based on taxonomic prey categories C and a vector
representing food quantity Q. The relative diet
composition matrix C was obtained by performing
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D. Relationship between diet energy composition and otolith shape (model 4) 

Fig. 3. Schematic representation of
the sequential steps of the 4 RDA sta-
tistical analyses performed to investi-
gate the 4 questions of the study: (A)
the global relationship between diet
and otolith shape (model 1), (B) the
prey categories involved in this rela-
tionship (model 2), (C) the relative
contributions of diet relative composi-
tion and quantity to diet−otolith shape
co-variation (model 3) and (D) the re-
lationship between diet energy com-
position and otolith shape (model 4)
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a CA on the matrix of relative contribution of taxo-
nomic prey categories to diet composition %Wt,j

and selecting correspondence axes according to the
broken stick method. The vector Q gathered the
total weight of the stomach content of each individ-
ual, in other words the sums along rows Σjwt,ij of
the diet composition matrix Wt. In order to ensure
that matrices C and Q were kept in the reduced
model (with the ultimate aim to estimate their rela-
tive contribution to otolith shape variation), model
reduction was based on a pRDA where the otolith
shape matrix S was explained by matrix I (and E)
while matrices C and Q were considered as covari-
ables. Hence, matrix I (and E) used in variation
partitioning were reduced, while matrices C and Q
were not.

Relationship between diet energy composition and
otolith shape (model 4, Fig. 3D)

In this last analysis, matrix D was set equal to the
diet composition matrix based on energetic prey
 categories We. Model reduction and variation parti-
tioning were then performed as for model 1.

All statistical analyses were performed using the
package vegan (Oksanen et al. 2013) in the statistical
environment R.3.1.1 (R Core Team 2014). The R
codes used in this study are available from the
authors upon request.

RESULTS

Only results based on models without environ-
mental confounding factors (Eq. 3a) are presented
in details in this section. The rationale is that con-
sidering environmental variables at sampling site as
related to otolith shape implies assuming that these
environmental conditions are representative of
those experienced by individuals during a substan-
tial part of their life, which is subject to controversy
for mobile organisms such as fish (see ‘Discussion:
Limitations of the study’). Only important differ-
ences between the results without and with envi-
ronmental factors are highlighted here. Detailed
results when accounting for environmental factors
(Eq. 3b) can be found in Tables S2, S4 & S5 and
Figs. S1 & S2 in the Supplement at www.int-res.
com/articles/ suppl/ m555 p167 _ supp. pdf. In addition,
the effects of individual-state variables on otolith
shape have already been studied in detail (Hüssy
2008, Capoccioni et al. 2011). They were accounted

for in the analyses to avoid potential confounding
effects but were not the main focus of this study.
Consequently, their effects are not detailed here but
can be found in Tables S3 & S4.

Global relationship between diet and 
otolith shape (model 1)

The reduced models explained between 11 and
26% of otolith shape variability for roundfish species.
For flatfish species, percentages of explained
 variation were higher: 14 and 38% for plaice and
sole, respectively (Table 2). Variation partitioning
revealed that the individual matrix I explained the
greatest part of variation in otolith shape for all spe-
cies, between 19 and 27%, except for red gurnard
and European plaice for which it was not significant
(Fig. 4, first column). For all species, a significant diet
contribution was detected at an alpha threshold of
5%, except for tub gurnard and European plaice for
which it was significant at an alpha threshold of 10%
only. Matrix D explained between 10 and 16% of
otolith shape variability (Fig. 4). When including the
environmental matrix E in the analysis, a significant
diet contribution was detected at an alpha threshold
of 5% for European plaice that accounted for 13% of
variation (Fig. S1, first column, & Table S2 in the
 Supplement).

Prey categories involved in the relationship
between diet and otolith shape (model 2)

Between 2 and 7 taxonomic prey categories were
selected in the reduced model according to species
(Table 2), except for tub gurnard for which no tax-
onomic prey category was selected and hence no
reduced model was tested. Explained variation by
model 2 varied between 25 and 35% according to
species. As in model 1, the individual matrix I had
a significant effect on otolith shape for all species
(Fig. 4, second column). It explained between 14
and 23% of shape variability. Concerning taxo-
nomic prey categories, a significant contribution to
otolith shape variation was detected for all species
except one, tub gurnard. The selected categories
ex plained between 11 and 20% of otolith shape
variability, which was slightly higher than the
global effect of diet in model 1. According to spe-
cies, the taxonomic prey categories contributing
significantly differed in terms of relative frequency
of occurrence %Fj and relative contribution of prey
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categories to diet %Wj . For striped red mullet, the
significant taxonomic prey categories (Fig. 5) were
either primary ones, i.e. characterized by a high
%Ft,j and high %Wt,j such as Annedlida, or inter-
mediary ones, i.e. characterized by a small %Wj

with respect to %Fj such as Caridea, or secondary
ones, i.e. with a low %Fj and small %Wj such as
Bivalvia, Brachyoura, and Decapoda larvae (Fig.
2). Similarly for red gurnard, influential taxonomic
prey categories were either  primary ones such as
Caridea or secondary ones such as Gastropoda.

For European plaice, only a primary taxonomic
prey category was related to otolith shape, namely
Echinodermata, contrary to common sole, for
which only a secondary taxonomic prey category,
Cnidaria, was linked to otolith shape. When
including the environmental matrix E in the analy-
sis, the contribution of taxonomic prey categories
to otolith shape variation increased to 40% for red
gurnard but was relatively stable for the other spe-
cies (Fig. S1, second column, & Table S2 in the
Supplement).
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Species Otolith shape S Individual I Diet D Model selected
N PCs % df F p %

Global relationship between diet and otolith shape (model 1) N CAs %

Striped red mullet 4 77.00 Size, Sex 10 99.85 13 2.22 0.002 25.61
Tub gurnard 2 70.18 Age, Sex 4 90.59 8 2.06 0.016 23.95
Red gurnard 3 77.84 – 4 94.01 4 1.97 0.039 11.11
European plaice 3 74.02 Maturity 4 93.53 5 2.29 0.011 13.56
Common sole 3 78.23 Age, Size, Sex 8 95.32 16 2.31 0.003 37.50

Taxonomic prey categories involved in the relationship Taxonomic prey
between diet and otolith shape (model 2) category

Striped red mullet 4 77.00 Size, Sex Annelida, Anomura, Bi- 10 3.49 0.001 35.11
valvia, Brachyura, Caridea,

Decapod larvae, Isopoda
Tub gurnard 2 70.18 – – – – – –
Red gurnard 3 77.84 Age, Maturity Amphipoda, Gastro- 7 2.51 0.003 25.40

poda, Caridea
European plaice 3 74.02 Age Amphipoda, 8 2.94 0.004 27.51

Echinodermata
Common sole 3 78.23 Age, Size, Sex Anomura, Cni- 11 2.64 0.002 34.05

daria, Gebiidea

Contribution of diet relative composition vs. food quantity N CAs %
to diet-otolith shape co-variation (model 3)

Striped red mullet 4 77.00 Size, Sex 10 99.87 14 2.19 0.001 26.66
Tub gurnard 2 70.18 – – – – – – –
Red gurnard 3 77.84 – 4 94.23 5 1.61 0.012 9.02
European plaice 3 74.02 Age 4 92.64 16 2.12 0.005 30.44
Common sole 3 78.23 Age, Size, Sex 9 96.78 18 2.12 0.01 36.54

Relationship between diet energy composition Energetic prey 
and otolith shape (model 4) category

Striped red mullet 4 77.00 Size, Sex – 3 3.94 0.001 16.09
Tub gurnard 2 70.18 Age, Size Low/medium/high 7 2.53 0.003 28.45
Red gurnard 3 77.84 Size – 1 2.53 0.047 4.70
European plaice 3 74.02 Age Low/medium/high 9 2.27 0.014 21.76
Common sole 3 78.23 Age – 5 2.38 0.007 16.43

Table 2. Results of the 3 RDA models (as detailed in Fig. 3) for the 5 studied fish species. ‘Otolith shape’ gives the number of
principal components (N PCs) in the response matrix S used to describe otolith shape and the percentage of variance
explained (%) in elliptical Fourier descriptors. ‘Individual’ and ‘Diet’ correspond to explanatory matrices I, and D in reduced
models. More precisely, ‘Individual’ gives the selected individual-state variables. ‘Diet’ indicates the variables matrix D, i.e.
the number of correspondence axes (N CAs) and the percentage of variance they explain (%) in diet composition Wt and rel-
ative diet composition %Wt,j in models 1 and 3, respectively, and the selected prey categories in models 2 and 4. ‘Model
selected’ gives the degrees of freedom (df), the F-statistic, the corresponding p-value and the percentage of variation 

explained (%) by the reduced model
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Predicted otolith shapes as reconstructed in Fig. 5 re-
vealed that diet was related to global otolith shape
through the length/width ratio and thus otoliths’ ellip-
ticity, but also to finer details. Variations occurred in the

otolith crenations, the width of the excisura major (the
indentation between the rostrum and the antirostrum;
Panfili et al. 2002), the length of the rostrum and the
 antirostrum, and the posterior part of the otolith shape.
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Contribution of relative diet composition vs. food
quantity to diet-otolith shape co-variation (model 3)

For tub gurnard, model 3 was not estimated given
the absence of diet effect in model 1 (and subse-
quently model 2). For the other species, model 3
explained between 9 and 37% of otolith shape vari-
ability (Table 2). Variation partitioning gave similar
results in terms of individual effects to those obtained
with model 1, except for European plaice for which
the explained variation by the individual matrix I
increased strongly (Fig. 4, first and third columns,

fourth line). Regarding diet, relative composition C
contributed significantly to otolith shape variation for
striped red mullet, red gurnard and common sole. Its
effect explained 12 to 16% of variation. No signifi-
cant contribution of C was found for European plaice
even if variation partitioning attributed 8% of otolith
shape variation to this matrix. In contrast, when the
environmental matrix E was added in the model, a
significant contribution of C was detected for
 Euro pean plaice while significance disappeared for
common sole, despite the slight decrease in percent-
age of variation explained (Fig. S1, third column, &
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Table S2). Contrary to diet relative composition C,
food quantity Q did not contribute significantly to
otolith shape variation whatever the species, includ-
ing and excluding the environmental matrix E in the
model.

Relationship between diet energy composition and
otolith shape (model 4)

The reduced models explained between 5 and
28% of otolith shape variation (Table 2). Variation
partitioning revealed that the individual matrix I
explained the greatest part of variation in otolith
shape for all species, between 5% and 27 (Fig. 4,
fourth column). A significant contribution of diet
energetic composition was detected for tub gurnard
and European plaice only and at an alpha threshold
of 5 and 10%, respectively. Matrix D explained 12
and 8% of otolith shape variation, respectively
(Fig. 4, fourth column).

DISCUSSION

First, in this study, we found that individual-state
variables contributed the largest fraction of otolith
shape variation in most cases. This result was
expected, given the already well described effect of
individual-state variables on otolith shape (see Car-
dinale et al. 2004, Hüssy 2008, Capoccioni et al. 2011
for further discussion). Besides this known effect, we
showed an intra-population relationship between
diet and otolith shape for all fish species studied,
although the relationship was less robust for tub
gurnard. For the latter, only the relationship between
diet energetic composition and otolith shape was sig-
nificant at an alpha threshold of 5%, the global rela-
tionship between diet weight composition and otolith
shape being significant at an alpha threshold of 10%
only. A small sample size of this species compared to
the others may explain a lower power of signal detec-
tion. Second, we were able to relate either primary,
intermediary or secondary prey categories to otolith
shape variations. Moreover, otolith reconstructions
suggest that these variations could affect both global
shape and its finer details. Third, by comparing the
contributions of food composition and quantity, we
showed that food composition on the whole con-
tributed more to otolith shape variation than the
quantity of food ingested by fish. For 2 species, a
dietary influence based on energetic content cate-
gories was detected to be significant.

The role of organic matrix composition in otolith
biomineralization

Although the organic matrix of sagittal otoliths
 represents a minor fraction of the total material
 (Carlström 1963, Degens et al. 1969), it plays an im-
portant role in otolith formation. It controls the nucle-
ation, the crystallization, the orientation and the mor-
phology as well as the polymorphism of crystal units
the otolith is composed of (Nagasawa 2013). The or-
ganic matrix is mainly composed of  proteins, amino
acids (AAs), collagens and proteoglycans, of which
precursors are secreted by the saccular epithelium in
the endolymph (Payan et al. 2004). However, only 3
major proteins are present both in the endo lymph
and the otolith. This suggests that the organic matrix
is not only directly composed of compounds present
in endolymph, but also of proteins derived from the
modification of precursors during their deposition
into the otolith (Borelli et al. 2001). McMahon et al.
(2010) observed that AA δ13C values in fish muscle
and in their diet co-varied, with significant differen -
ces among diet treatments. Moreover, they showed
that AA δ13C values in muscles and in oto liths were
correlated with a slope of around 1, and thus dis-
played identical dietary information (McMahon et al.
2011). This suggests that the AAs found in otolith pro-
teins come from the food consumed by fish.

Otolith shape is determined by its crystalline archi-
tecture (calcium carbonate, CaCO3). Several proteins
are known to control CaCO3 polymorphism (arago-
nite, calcite or vaterite) and the morphology of its
crystal units. Starmaker (Söllner et al. 2003) and
otolith matrix macromolecule-64 (OMM-64) (Tohse
et al. 2009) are both water-soluble and acidic (due to
a  calcium-binding region rich in glutamate) glyco -
proteins involved in the control of crystal poly -
morphism (Nagasawa 2013). The otolith matrix
 protein-1 (OMP-1) is another water-soluble protein
required for normal otolith growth and for the depo-
sition of another otolith protein, otolin-1. The latter is
a collagenous protein that makes up the structural
network for subsequent calcification, and thus stabi-
lizes otolith mineral and organic fractions and insures
the correct arrangement of otoliths on the sensory
epithelium (Murayama et al. 2005).

Potential mechanisms underlying the relationship
between diet composition and otolith shape

In the present study, a significant relationship be-
tween diet taxonomic composition and otolith shape
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was detected for all species except for one. According
to the taxonomic prey categories consumed, otolith
shape presented some variations in both global shape,
such as the degree of ellipticity, and finer details, such
as otolith crenation or the width of the excisura major.
Two hypotheses, or a combination of both, could ex-
plain the correlation between otolith shape and diet
taxonomic composition. First, the total quantity of pro-
teins in the saccular endolymph could vary according
to the quantity of proteins in the prey consumed,
which would affect the rate of organic  matrix
synthesis and thus CaCO3 deposition and ultimately
otolith growth. Protein consumption has been known
to have the highest regulatory impact on  protein syn-
thesis (Houlihan et al. 1988). Consequently, diet taxo-
nomic composition could influence ‘global’ otolith
shape through effects on otolith growth.  Secondly, the
proteic composition of the  organic  matrix, i.e. the rela-
tive quantity of water-s oluble,  water-insoluble and in-
soluble proteins, may change according to food com-
position, which would impact the crystal structure
(orientation, morphology, and polymorphism) of pre-
cipitated CaCO3 and, thus, otolith shape. More pre-
cisely, food composition varies in terms of proteins or
even AAs, whether essential (e.g. leucine) or not (e.g.
glutamic acid), that are necessary for the synthesis of
some otolith matrix proteins involved in the control of
crystal structure (Asano & Mugiya 1993, Davis et al.
1995, Sasagawa & Mugiya 1996, Nagasawa 2013).
Consequently, food proteic composition could have a
direct contribution to variations in otolith crenation
or/and an indirect contribution through its effect on
otolith growth, which affects global otolith shape. In
addition, some proteoglycans and polysaccharides
are present in both the saccular endolymph and the
organic matrix (Murayama et al. 2005). Even if their
role in otolith biomineralization is unknown, variabil-
ity in their quantity and composition in prey could also
affect otolith shape in the same way as variability in
proteins.

Diet energetic composition was significantly related
to otolith shape in 2 species only. Contrary to proteins
and glucids, lipids are not components of the otolith
organic matrix, which could explain the absence of a
strong relationship between the diet energetic com-
position and otolith shape. Lipids are indeed the main
determinant of prey energetic content as energy per
unit of mass in prey is positively correlated to their
lipid content and generally negatively correlated to
their protein content (Spitz et al. 2010). The fact that
diet taxonomic composition was better correlated
with otolith shape variation than diet energetic
 composition suggests that prey lipid versus protein

content is less related to otolith shape variation than
prey composition in terms of proteins and carbonates.
This result seems rather logical given the composition
of the otolith and its precursors, when thinking about
a direct effect on otolith shape through its organic
matrix. In contrast, when a lipid–otholith-shape rela-
tionship exists, this may be through an indirect effect
on otolith shape via otolith growth. High dietary lipid
levels can improve body size growth (Vergara et al.
1999, Boujard et al. 2004). Diet lipid content is thus
likely to be related to otolith growth and thus shape.
The lack of a strong relationship could result from
several aspects. First, high dietary protein levels also
favour faster growth. Given that lipid and protein lev-
els in diet are oppositely correlated to diet energy
content (Spitz et al. 2010), the 2 effects could cancel
each other out when considering the effect of diet en-
ergetic composition. Second, some of the reduced
models included a size effect that could absorb the in-
direct effect of diet energetic composition through
growth. Third, diet energetic composition was based
on 3 qualitative, relatively coarse, energetic prey cat-
egories, which may not be precise enough to detect a
relationship. Studies based on a proper quantification
of diet energy content, through bomb calori metry of
stomach contents for instance, or on the lipid compo-
sition of prey, would allow further investigation of the
potential relationship between diet energy content
and otolith shape.

In this study, locations of otolith shape variation
related to food composition were identified from
reconstructed shapes. Although these reconstruc-
tions were ‘caricatures’ predicted from a statistical
model limited to individuals from the eastern English
Channel and to our observations in terms of individ-
ual-state, they highlighted the large number of
otolith shape areas co-varying with food composition,
suggesting the importance of understanding otolith
biomineralization 3D processes. Otolith shape varia-
tion could be also explained by variations in spatial
precursor distribution, due to physical constraints on
the saccule which would impact the otolith shape.
However, the current lack of knowledge regarding
such processes prevents clear evaluation of the like-
lihood of this hypothesis.

Absence of a relationship between food quantity
and otolith shape

No significant relationship between food quantity
and otolith shape was detected in this study. This re-
sult contrasts with several works that showed experi-
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mentally that food quantity impacted otolith shape
both indirectly via variation in otolith growth
creating variation in ‘global’ otolith shape, and di-
rectly on otolith crenations (Gagliano & Mc Cormick
2004, Cardinale et al. 2004, Hüssy 2008). A possible
explanation is that in the present study, the quantity
of ingested food did not differ  sufficiently between
individuals to be able to observe a significant in -
fluence on otolith shape. Likewise, Hüssy et al.
(2004) did not observed any effect of food quantity on
otolith opacity and on the ratio between water-
soluble and water-insoluble proteins in the organic
matrix, whereas, under more severe food restriction
for a longer period, Høie et al. (2008) observed that
more translucent otolith material was deposited.
Such apparent discrepancies are well reconciled in
the light of temperature and food effect interactions
(either synergetic or antagonistic) on otolith opacity
(Fablet et al. 2011). Moreover, here food quantity was
measured as the sum of the weights of all prey items
found in an individual’s stomach. However, prey
items in stomach contents are digested at varying de-
grees according to individuals, which can introduce a
bias in the estimation of inter-individual differences
in ingested food quantity (Gannon 1976).

Limitations of the study

The imprecision of food quantity measures high-
lights a potential, more general, limitation of stomach
content analysis, in that it only provides a snapshot of
a fishes’ diet (and in this precise case, for a single sea-
son, since all fish in this study were sampled in Octo-
ber). The interpretation of the results in the present
study rely on the assumption that observed inter-indi-
vidual differences in diet are consistent over a suffi-
ciently long time period to be able to relate this to
 inter-individual otolith shape differences. The as-
sumption is concerned with the representativeness of
inter-individual differences, i.e. an individuals’ spe-
cialization, and not of an individuals’ diet itself. In
other words, the assumption is that inter-individual
differences in diet at a given time gives an index of di-
etary specialization even though an individuals’ diet
may vary through time. To our knowledge, such an
assumption has never been directly confirmed nor in-
validated in fish, given that no longitudinal study on
fish diet, i.e. with repeated observations of prey selec-
tivity or stomach content on the same individuals, was
performed for testing. Although the possibility that
this hypothesis does not hold cannot be totally ruled
out, several arguments can be brought in its support.

There is ample literature on the importance and
prevalence of individual diet specialization (see re-
views in Bolnick et al. 2003; Araújo et al. 2011), no-
tably long-term trophic specialization in freshwater
and marine vertebrates (e.g. Bearhop et al. 2006,
Newsome et al. 2009, Hückstädt et al. 2012, Rosenblatt
et al. 2015) including fish (e.g. Beaudoin et al. 1999,
Svanbäck & Persson 2004, Matich et al. 2011), that
support this assumption based on isotopic data. Con-
sistent inter-individual differences in several behav-
ioural traits that may affect diet have also been docu-
mented in fish (see review in Mittelbach et al. 2014)
such as habitat use and movements (e.g. Matich &
Heithaus 2015) or boldness (e.g. Ward et al. 2004,
Harcourt et al. 2009). A more technical argument is
that the presence of multiple prey items per stomach
ensures that cross-sectional samples of an individuals’
diet are relevant to estimating individual diet special-
ization (Araújo et al. 2011). An additional argument in
support of our assumption comes from the relative sta-
bility of our results across the 3 different analyses
based on taxonomic prey categories for each species,
and the relatively low SDs of fractions in variation
partitioning obtained from bootstrapping analyses
(Table 3, Table S5 in the Supplement). It should also
be noted that, despite its limitations, stomach content
analysis is the only way to obtain an indication of in-
gested food quantity in natural conditions. In contrast,
carbon stable isotope ratios could provide a temporally
integrated view of an individuals’ diet composition
and account for seasonal changes in diet, but without
allowing the quantification of the amount of food in-
gested. Additionally, the precise identification of the
consumed prey items from carbon stable isotope
ratios by using so-called mixing models requires
knowledge of the isotopic ratios of all potential preys
and of the isotopic fractionation between preys and
consumers (Post 2002, Fry 2007). Still, variation of
 carbon stable isotope ratio (in muscles and/or otoliths)
across individuals could be used to describe variability
in individual diet composition with the aim of linking
it to the otolith shape variability. This would comple-
ment the results obtained in this study.

Likewise, the environmental variables considered
in our supplementary analyses (see Figs. S1 & S2 and
Tables S2 & S4 in the Supplement), i.e. temperature,
depth, salinity, longitude and latitude, were a snap-
shot of the environment experienced by individuals
as they were measured at sampling site, and aver-
aged over a single month. Similar to stomach con-
tents, their use in the analyses (Eqs. 2b & 3b) relies on
the assumption that they are representative of inter-
individual differences in the environment experi-
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enced over a sufficiently long time period to be
related to otolith shape. Such an assumption may
seem unlikely for a majority of fish given their mobil-
ity, which could explain the fact that for a majority of
the studied species, the environmental matrix was
not significantly related to otolith shape (Fig. S1).
However, for European plaice, the inclusion of the
environmental matrix in the analysis has enabled the
description of a supplementary part of otolith shape
variation that, it seems, was obscuring the diet signal
since the diet matrix became significant with the
addition of the environmental variables in the model.
This result may be linked to the supposedly lower
mobility of benthic flatfish such as plaice. In order to
have a temporally integrated view of the environ-
ment experienced by individuals, possibly also
accounting for seasonality, otolith chemistry (such as
the variation of oxygen isotopic ratios as an index for
temperature [Kalish 1991], or the Sr:Ca ratio as an
index for the salinity [Secor 1992]) could be used in
future studies. Moreover, all fish in this study were
sampled in October, i.e. during a single season. The
influence of seasonality on the relationship between

diet and environment on the one hand and otolith
shape on the other should also be studied.

In summary, an intra-population relationship be-
tween diet and otolith shape was detected for some
common roundfish and flatfish species from the east-
ern English Channel. Detailed analyses revealed that
both main and secondary prey categories were in-
volved in this relationship, and that variations influ-
enced both otolith global shape and some finer de -
tails. The contribution of relative diet taxonomic
composition to otolith shape variation was much
higher than that of ingested food quantity represented
by the weight of prey items. Finally, diet energetic
composition was correlated with otolih shape of only
one species and marginally for another. Gagliano &
McCormick (2004) suggest that otolith shape could be
used to discriminate fine-scale events, such as the
magnitude and periodicity of feeding in wild fish pop-
ulations, in addition to discrimination between stocks
and populations based on coarser aspects such as dif-
ferences in life-history. The present study shows that
diet composition may also be a source of otolith shape
variability within populations through direct and/or
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Global relationship between diet and otolith shape (model 1)
D D & I I Res

Striped red mullet 10 ± 8.29 0 ± 7.31 20 ± 8.51 74 ± 10.94
Tub gurnard 11 ± 11.73 0 ± 8.66 19 ± 15.72 76 ± 17.54
Red gurnard 11 ± 9.71 0 ± 9.44 0 ± 11.30 89 ± 13.26
European plaice 7 ± 9.09 4 ± 9.54 3 ± 10.18 86 ± 12.95
Common sole 16 ± 10.28 0 ± 11.37 27 ± 11.26 62 ± 9.69

Taxonomic prey categories involved in the relationship between diet and otolith shape (model 2)
D D & I I Res

Striped red mullet 19 ± 9.30 0 ± 7.00 19 ± 8.05 65 ± 11.64
Tub gurnard
Red gurnard 20 ± 13.98 0 ± 15.25 14 ± 12.76 75 ± 14.52
European plaice 14 ± 12.41 0 ± 10.29 19 ± 12.20 72 ± 11.95
Common sole 11 ± 11.30 0 ± 14.15 23 ± 11.93 68 ± 10.12

Contribution of diet relative composition vs. food quantity to diet-otolith shape co-variation (model 3)
C Q I C & Q Q & I C & I C & Q & I Res

Striped red mullet 12 ± 9.46 1 ± 3.54 18 ± 7.78 0 ± 3.44 2 ± 4.89 0 ± 7.07 1 ± 5.54 73 ± 11.39
Tub gurnard
Red gurnard 12 ± 10.04 0 ± 4.05 0 ± 11.39 0 ± 3.88 0 ± 4.31 0 ± 10.09 0 ± 4.20 91 ± 13.72
European plaice 8 ± 8.68 0 ± 3.86 17 ± 10.47 0 ± 4.45 0 ± 3.93 0 ± 10.12 2 ± 4.75 83 ± 13.53
Common sole 16 ± 10.50 0 ± 4.31 24 ± 12.10 2 ± 5.34 6 ± 6.55 0 ± 11.90 0 ± 7.05 63 ± 11.49

Relationship between diet energy composition and otolith shape (model 4)
D D & I I Res

Striped red mullet 0 ± 4.34 0 ± 2.87 16 ± 7.67 84 ± 8.84
Tub gurnard 12 ± 11.73 0 ± 8.66 27 ± 15.72 72 ± 17.54
Red gurnard 0 ± 9.18 0 ± 7.30 5 ± 11.78 95 ± 15.01
European plaice 8 ± 9.12 0 ± 7.68 18 ± 11.54 78 ± 11.10
Common sole 0 ± 6.76 0 ± 5.96 16 ± 9.00 84 ± 11.08

Table 3. Percent contribution with bootstrapped standard deviation of the diet matrix (D), the individual matrix (I), the food
composition matrix (C), the food quantity matrix (Q) and  residuals (Res), obtained from variation partitioning performed on the 

reduced model for the 4 questions investigated and each studied species
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indirect (via otolith growth) processes. This introduces
a novel potential interpretation of 3 classically known
effects on otolith shape. First, otolith shape variation
across age and size is generally assigned to ontoge-
netic changes in metabolism and physiology (Cam-
pana & Casselman 1993, Mérigot et al. 2007). Ontoge-
netic changes in diet composition could also contribute
directly to otolith shape variation, thereby acting as a
confounding factor (Morat et al. 2012, Vignon 2012).
Likewise, sexual dimorphism in otolith shape is
 generally attributed to physiological differences be-
tween sexes. However, sexual dimorphism in diet
composition, especially at the time of mating, has
been documented in several fish species (Casselman
& Schulte-Hostedde 2004, Tsuboi et al. 2012) and
could thus also explain otolith shape dimorphism. Fi-
nally, environmental abiotic factors, such as tempera-
ture and salinity, are also known to influence otolith
shape (Lombarte & Lleonart 1993) and spatial varia-
tions in otolith shape are often interpreted as resulting
from habitat differentiation (Morat et al. 2012). How-
ever, such variation in abiotic factors is generally re-
lated to differences in prey categories available to an
individual predator, such that geographical variations
in diet composition could also generate geographical
variations in otolith shape (Vignon 2012). Such conse-
quences call for further investigations of the sources
of otolith shape variation and their mechanistic effect
on biomineralization, notably those related to diet.
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