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We flow a 2D foam through a model 2D porous medium and study experimentally and numerically
how the bubble size distribution evolves along the medium. The dominant mechanism of bubble
creation is a fragmentation process occurring when bubbles pinched against obstacles are split in two
smaller bubbles. We infer the statistics of these individual and local fragmentation events from the
experimental data and propose a fragmentation equation to relate that statistics to the evolution
of the global size distribution. The predicted evolution shows very good agreement with direct
experimental measurements of the bubble size distribution.

PACS numbers:

Among the various applications of liquid foams [1],
foam flows in porous media are particularly important in
various subsurface applications. They were first used in
enhanced oil recovery more than 50 years ago [2] due to
their viscosity ratio with oil less unfavorable than that
of water, and later, for the same reason, to remediate
aquifers contaminated with nonaqueous phase liquids [3].
More recently they have been utilized in the remedia-
tion of polluted soils [4], because of their low cost, much
smaller sensitivity to gravity than aqueous liquids, and
of the biodegradation enhancement that they offer [5].
Common to all these applications is the good sweep effi-
ciency of foams, which has been related to their complex
mobility in porous media [6, 7], characterized by their
shear thinning behavior which holds even under confine-
ment in narrow pores [8-10], and by processes of destruc-
tion and creation of films (the so-called leave-behind,
lamella division and snap-off mechanisms [11-13]), which
impact the bubble size distribution. The foam mobility
in porous media is known to strongly depend on this
bubble size distribution [6]. A good understanding of its
evolution is thus crucial for all situations in which the
pressure drop and foam velocity need to be controlled.
However, it is difficult to characterize foams in core flood-
ing units or column experiments in situ, which has led
us to study foam flows in transparent porous media. In
this context, we have investigated the local rheology of a
two-dimensional (2D) foam flowing in a transparent 2D
porous medium (shown in Fig. 1), and characterized its
phenomenology as a function of various control param-
eters [14]. We observed an irreversible evolution of the
bubble size distribution, mostly dependent on the water
content and initial mean bubble area. We have identi-
fied lamella division as the predominant mechanism of
bubble size evolution for that medium. It consists in the
splitting of a bubble (henceforth called mother bubble)
in two fragments (henceforth called daughter bubbles)
when its upstream film spans two obstacles and impinges
on a third one (the “fragmenting obstacle”, see Fig. 1),

FIG. 1: (a) Snapshot of the whole foam flow cell.
d) Close-ups on a bubble fragmentation. The time interval
between frames (b), (c¢) and (d) is 50 ms. The obstacle diam-
eter is 7.5 mm. In (c), an arrow shows the location where the
splitting lamella touches the obstacle, triggering the fragmen-
tation event. The mother bubble (b) and the two fragments
(c, d) are colored in cyan.
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In this Letter, we propose the first model of the evo-
lution of the bubble size distribution as a foam flows
along a porous medium in which bubbles are subjected to
lamella division. We relate this evolution to the individ-
ual fragmentation events. Obtaining from their statistics
a size-dependent fragmentation rate and a distribution of
fragment sizes, we propose a model based on a fragmen-
tation equation [15], which fits our data quantitatively.
Notably, we show that such a model allows to rescale
different experiments, thereby offering a universal pre-
diction of the size evolution based on a small number
of parameters. Our study thus pertains to the general
field of fragmentation processes, which are ubiquitous in
chemical engineering [16], polymer degradation [17], cel-



lular division [18], grinding or liquid atomization [19].

We used a Hele-Shaw cell of gap 2 mm, width 9.6 cm
and length 27 cm. The porous medium spans a length
of 17.8 c¢cm in the middle of this channel. It consists of
an assembly of monodisperse plastic disks of thickness
2 mm and diameter 7.5 mm, which were inserted and
glued manually. The positions of these obstacles were
defined from a computer-generated geometry obtained
by perturbing a diagonal regular mesh with a random
displacement drawn from a Gaussian distribution. The
average pore size, defined as the distance between two
neighboring disks (in the sense of their Delaunay trian-
gulation), is 4 mm. The porosity of the porous medium
thus created is 0.5. The cell is connected upstream with
a vertical chamber filled with a solution of sodium do-
decyl sulfate of concentration 10 g/L in ultrapure water.
The foam is created by bubbling nitrogen in the solu-
tion through needles; it is then pushed into the cell at
a prescribed flux. Bubbles are large enough to form a
monolayer, i.e. a two-dimensional foam, when confined
within the cell gap. The foam is initially fairly monodis-
perse, the bubble area distribution being peaked around
a characteristic value ag. Both the fluxes of the gas, @,
and of the solution, (), are controlled and constant, so
that our experiments correspond to steady flows of mean
velocity Vp. The flux ratio, @ = Q¢/Q, controls the
liquid fraction [14].

If the bubble size of the foam entering the channel is
larger than the pore size, snapshots of the experiments
(Fig. 1) show clearly that the bubbles at the outlet are on
average smaller than those at the inlet. To quantify this
observation, we measure the evolution of the bubble area
distribution along the porous medium as follows. We
measured bubble sizes after skeletonization of the raw
images. We meshed the porous medium into 16 slices,
each of streamwise length Az = 1.1 cm and spanning
the full width of the channel. On each slice and each
image, we recorded the area of the bubbles whose cen-
ter lies inside the slice. This gives the density of bubble
numbers per unit length and bubble area n(a,x), where
x is the longitudinal coordinate of the system, and a the
bubble area, n(z,a)AxAa is the number of bubbles of
area between a and a + Aa comprised in the longitu-
dinal range [z,z + Az]. The origin x = 0 is taken at
the inlet of the porous medium. Data are accumulated
over time (2000 images per run at 20 fps) to increase
the statistics, thanks to the steady character of the mean
flow. The resulting evolution of the bubble area distri-
bution is plotted in Fig. 2 for two experiments A and B
of different initial bubble area a¢ and liquid fraction, as
a function of the reduced area @ = a/ag. As x increases,
the initial peak decreases, and a skewed peak of smaller
bubbles grows. Accordingly, the average bubble size (a)
decreases, as shown in Fig. 3b for experiment A.

The elementary mechanism responsible for the de-
crease of bubble sizes is readily found by visual inspection

of the movies: it is the aforementioned process of lamella
division (Fig. 1). It is reminiscent of the fragmentation on
an obstacle of drops or bubbles confined in microchannels
[20, 21]. No fragmentation in a higher number of frag-
ments was observed, nor other fragmentation processes;
in particular, the snap-off of films [12, 13] does not occur
in our experiments because the pore size is much larger
than the soap films coating them. On the other hand,
we observed no lamella destruction events [22]. Hence,
our experimental conditions enabled us to focus on the
influence of the sole bubble splitting by lamellar division
on the bubble size distribution.

To model this fragmentation process, we assume that
for a given streamwise distance Ax, the probability of a
bubble of a given size a to break between x and x + Az
is of the form F(a)Az and does not depend on z. In-
deed, due to the randomness of the porous geometry, it
is reasonable to assume a uniform distribution of frag-
mentation sites. As a mother bubble splits, it yields
fragments of sizes b and a — b according to a distri-
bution G(bla), defined for b € ]0,a[. Since only two
fragments are produced for each event, and since frag-
mentation conserves the area, the following three con-
straints apply: foa G(bla)db = 2, G(bla) = G(a — b|a),
and [ bG(bla)db = a. Hence, the evolution of the
bubble area distribution is ruled by a fragmentation
equation of the form: dn(a,x)/0x = —F(a)n(a,z) +
[ G(a|b)F(b)n(b, z)db. The first term in the right-hand
side quantifies the loss of bubbles of size a by fragmen-
tation, while the second one quantifies its gain as big-
ger bubbles split, resulting in fragments of size a. This
equation is well documented in contexts such as crushing,
grinding or polymer degradation [15, 17, 23]. Note that
if the integral in the right-hand side of the fragmentation
equation above vanishes, the equation reduces to a sim-
ple differential equation of exponential solution. Since
there are very few bubbles of size larger than the initial
mean bubble size ag, this assumption is actually valid
for the number density of bubbles of size ag, hence we
expect n(ag, z) o< e~ F@) = Plotting n(ag,z) as a func-
tion of x indeed yields an exponential decrease (Fig. 3a),
which provides F(ag) = 14.5 £ 2.1 m~!. We then de-
fine the dimensionless variables of the system: a = a/aq,
T =x F(ap), f(a) = F(a)/F(ap) and g(bla) = ag G(bla).
The number density of bubbles, n(a,z), then follows a
fragmentation equation:

Hon) = —famen)+ [ g

b)f(B)n(b, z)db . (1)

At small enough velocities, the fragmentation events
are controlled by the porous geometry and bubble shape,
and can be reproduced numerically [24]. However, the
inferred statistics for f and ¢ in random media is still
unknown, and needs to be measured. To achieve this
goal, we used a statistical sample of splitting events in
experiment A. We identified the 10 fragmenting obstacles
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FIG. 2: Evolution of the bubble size distributions at several positions along the porous medium. The blue and green continuous
lines denote the experimental measurements. The dashed lines indicate the simulations predictions, based on the sole knowledge
of the functions f, g and of the initial size distribution. Top (blue curves, experiment A): wet foam, flow parameters: Qg4 =
100 mL/min, Q; = 10.7 mL/min, ap = 19.2 mm?®. Bottom (green curves, experiment B): dry foam, flow parameters: Q, =

100 mL/min, @; = 1.5 mL/min, ag = 12.5 mm?.
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FIG. 3: For experiment A: (a) evolution of the number of
bubbles of size ap along the mean flow direction. The blue
dots are measurements across the channel and the dashed red
line is the exponential fit n(ao) e F(@0)® with best fitting
parameter F(ag) = 14.5 £ 2.1 m™*. (b) Evolution of the av-
erage bubble size. Blue dots are experimental measurements,
and the continuous red line is the simulation prediction.

(marked by a star in Fig. 1) at which most fragmentation
events occurred, and detected all fragmentation events
at these sites by automatic image treatment. For each
site and each fragmentation, we measure the size of the
mother bubble and the sizes of the two daughter bubbles,
using a procedure described in the Supplementary Ma-
terials, which includes Refs. [25-27]. We thus recorded
a list of 563 mother bubble areas, Npag(a), with a mini-
mum api, and a maximum Gpax.

To deduce the fragmentation rate from these records,
we need to account for the local bubble size distribution.
We thus record the area of all bubbles touching the se-

lected fragmenting obstacles on each image, which gives
a second list of areas, N(a), of the bubbles surround-
ing these obstacles. Bubbles can thus be counted sev-
eral times, but this does not bias the distribution since
the residence time in a given site was observed to be
roughly constant for all bubbles. To estimate the frag-
mentation rate, we mesh the interval [amin, Gmax] into ten
bins of equal size, and for each bin we compute the ratio
Npag(a)/N(a), which is proportional to the fragmenta-
tion rate. To keep a reasonable statistical significance,
we discard the bins with less than ten mother bubbles;
they concern most sizes above the initial peak distribu-
tion, where both Ngae(a) and N(a) are small. The six
remaining data points for Npag(a)/N(a) are well fitted
by a power law, of exponent 1.9 & 0.3 (Fig. 4). At this
stage, the prefactor is arbitrary, since it depends on the
frame rate and on the number of chosen fragmentation
sites: to correct this, we rescale the fitting curve of Fig. 4
by the value for F(ag), known from the fitting procedure
of Fig. 3a. This process finally yields:

f(a) = F(a)/F(ao) = (a/ag)". (2)

Concerning the fragmentation kernel, we assume for
simplicity that it does not depend on a and b indepen-
dently, but on the sole relative size b/a of the fragments.
This amounts to assuming that g has a self-similar form
g(bla) = go(b/a)/a. Our procedure yields the experimen-
tal kernel in Fig. 4b. As expected, it is symmetric with
respect to a/b = 1/2. Interestingly, it is bimodal, with
peaks for a/b = 0.3 and 0.7 and a shallow minimum at
0.5, and it decreases strongly towards 0 and 1, mean-
ing that a fragmentation in two daughter bubbles of very
different sizes is an unlikely event.

We then relate this local characterization to the evolu-
tion of the bubble size distribution along the channel for
experiment A. We plug the experimentally determined
form (2) of the frequency rate f, and a polynomial fit of
the fragmentation kernel g (Fig. 4), in the fragmentation
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FIG. 4: Fragmentation functions obtained for experiment A.
Left panel: f(a) (inset: corresponding log-log plot), and right
panel: g(b/a). The lines are respectively a power law fit for
f, yielding as a best fitting parameter an exponent 1.9 £ 0.3,
and an empirical polynomial fit of degree 12 for g, symmetric
with respect to b/a = 1/2.

equation (1), and simulate this equation with an explicit
Euler discretization detailed in the Supplementary Ma-
terial. The results of the simulation are overlaid with
the experimental measurements in Fig. 2 (top). They
show good agreement: the erosion of the initial peak is
well captured as expected (since f has been calibrated
from that erosion), but more importantly the bubble size
distribution at the medium outlet is well predicted as
a skewed population of bubbles smaller than the initial
bubble size, ag. The agreement is better towards the
outlet. As a likely reason, the foam exiting the channel
has undergone all possible fragmentation events, which
makes the validity of the mean-field approximation un-
derlying the fragmentation equation more potent than
close to the inlet, where the first deviation from the ini-
tial distribution is dictated by a few specific events. Note
also that the simulated distribution features an initial rise
from 0 at the smallest bubble sizes, which is not always
seen in the experimental data. This is due to possible ar-
tifacts in the skeletonization of very small bubbles during
image processing.

To assess the generality of the functions f and g, we
keep their values obtained from experiment A, and now
perform the comparison on experiment B. We only mea-
sure the decay of the initial bubble area on this new
experiment, which provides F(ag) = 8.2 4 0.7 m~* for
experiment B. Here again, the agreement between the
experiments and the simulations is excellent (Fig. 2, bot-
tom). More generally, our model based on (1), if com-
bined with the assumption that the functions f and g are
only controlled by the medium’s geometry, suggests that
for a given initial distribution, the evolution of the size
distribution should be similar when the bubble area is
rescaled by the mean bubble area ag of the foam entering
the porous medium, and when z is rescaled by the frag-
mentation rate of bubbles of size ag. To test this, we plot
n(a,z) at T = 1 for 8 different experiments in Fig. 5 with
different initial mean bubble areas ag, mean velocities
W, flux ratios o = Q¢/Q, and slightly different realiza-

tions of the geometrical disorder of the porous medium,
but similar initial bubble size distributions: they are all
symmetrical (to a good approximation) around the mean
bubble size and of standard deviation da = 0.10 + 0.02.
It shows that within some scatter on the measurements
of the distributions, all rescaled distributions collapse on
a single master curve. Hence, the assumption that the
functions f and g do not depend on the initial mean
bubble size, mean flow velocity, and water content of the
foam, is reasonable. Likewise, the power law exponent of
Eq. (2) also seems to hold for all experiments. In other
words, f and g appear to be universal features of the
foam fragmentation in the sense that they depend pri-
marily on the medium geometry, irrespective of the foam
properties, which set F(ap). The impact of a stronger
polydispersity of the initial bubble size distribution on
the fragmentation process has been studied numerically
(see the Supp. Mat.). The evolution at small Z was
found to depend on the initial polydispersity, but not
the asymptotic size distribution at large enough .

The sole dependence of f and g on the medium ge-
ometry can only be asserted on the investigated range of
bubbles sizes, though; in particular, a lower cutoff is ex-
pected in the power law form of the fragmentation rate,
since bubbles that are sufficiently small with respect to
the obstacle size are expected to slide around the obsta-
cles rather than experience fragmentation. On the other
hand, the lamella division process is purely local: it in-
volves one lamella and three obstacles, regardless of the
size of the mother bubble. In particular, we expect f
to remain scale invariant, as (2), for larger bubbles, un-
til they span the full channel length. We observed that
long bubbles align along single preferential paths, which
sets an upper bound of bubble areas for the validity of
our model, of the order of the product of the average
pore size by the medium length, i.e. 7 x 10> mm? in our
case. In addition, since the porous geometries used for
the different experimental runs are slightly different real-
izations of a porous medium defined by its porosity and
the statistical description of its disorder and connectiv-
ity, we can even argue that f and g are universal for a
given such statistical description of the geometry.

The independence of f and g on the mean flow ve-
locity is valid for the experimentally explored velocities,
but may falter at mean flow velocities sufficiently large
for the flow to depart from the quasistatic regime, for
which lamella shapes are controlled by minimum surface
laws, so that the viscoelastic properties of the bubble sur-
faces do not impact the displacement of lamellas. For the
solution used in our experiments, the quasistatic regime
holds up to velocities up to 40 cm/s [28]. Since the maxi-
mal velocity within the porous medium reaches 13V} [14],
it thus holds up to Vp ~ 3 cm/s.

In conclusion, we have characterized in details, at the
local and global scale, the process of fragmentation of a
foam in a porous medium in which lamella division is the
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FIG. 5: Plot of bubble size distributions for various experi-
ments, rescaled by the mean area ao of each initial distribu-
tion, at a given rescaled location £ = 1 within the porous
media. The parameters of the experiments are indicated in
the legend.

dominant mechanism of change in the number of flowing
lamellas. The experimentally characterized evolution is
well captured by a predictive fragmentation model based
on statistical functions (fragmentation rate and fragmen-
tation kernel) that are inferred from the experimental
data. This study opens several interesting questions:
what are the mechanisms explaining the power law be-
havior of the fragmentation rate and the detailed form
of the fragmentation kernel, and how are these impacted
by the statistical properties of the porous medium. This
could lead to a rational control of the bubble size distri-
bution, and thus of the foam mobility, reached at a given
travel length in a porous medium where bubble frag-
mentation by lamella division is the main mechanism of
lamella creation. Another perspective would be to study
foam fragmentation dominated by snap-off mechanisms,
which are expected to be promoted in conditions opposite
to ours: higher liquid fraction, smaller pores (e.g. in the
micrometric range) forming long, slender interconnected
channels [11, 29].
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