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NOTE ON BOLTHAUSEN-DEUSCHEL-ZEITOUNI’S PAPER ON THE

ABSENCE OF A WETTING TRANSITION FOR A PINNED HARMONIC CRYSTAL

IN DIMENSIONS THREE AND LARGER

LOREN COQUILLE AND PIOTR MIŁOŚ

ABSTRACT. The article [1] provides a proof of the absence of a wetting transition for the discrete

Gaussian free field conditioned to stay positive, and undergoing a weak delta-pinning at height 0.

The proof is generalized to the case of a square pinning-potential replacing the delta-pinning, but

it relies on a lower bound on the probability for the field to stay above the support of the potential,

the proof of which appears to be incorrect. We provide a modified proof of the absence of a wetting

transition in the square-potential case, which does not require the aforementioned lower bound. An

alternative approach is given in a recent paper by Giacomin and Lacoin [2].

1. DEFINITIONS AND NOTATIONS

We keep the notations of [1] except for the field which we call φ instead of X. Let A be a finite

subset of Zd, let φ = (φx)x∈Zd ∈ RZd

and the Hamiltonian defined as

HA(φ) =
1

8d

∑

x,y∈A∪∂A : |x−y|=1

(φx − φy)2 (1)

where ∂A is the outer boundary of A. The following probability measure on RA defines the discrete

Gaussian free field on A (with zero boundary condition) :

PA(dφ) =
1

ZA

e−HA(φ)dφAδ0(dφAc ) (2)

where dφA =
∏

x∈A dφx and δ0 is the Dirac mass at 0. The partition function ZA is the normalization

ZA =

∫

RA exp(−H(φA))dφA. We will also need the following definition of a set A being ∆-sparse

(morally meaning that it has only one pinned point per cell of side-length ∆), which we reproduce

from [1, page 1215] :

Definition 1. Let N ∈ Z, ∆ > 0, ΛN = {−⌊N⌋/2, . . . , ⌊N⌋/2}d and let l∆
N
= {zi}

|l∆
N
|

i=1
denote a finite

collection of points zi ∈ ΛN such that for each y ∈ ΛN ∩ ∆Zd there is exacly one z ∈ l∆
N

such that

|z − y| < ∆/10. Let Al∆
N
= ΛN\l∆N .

2. LOWER BOUND ON THE PROBABILITY OF THE HARD WALL CONDITION

The proof of [1, Theorem 6] relies on [1, Proposition 3]. Unfortunately, the proof provided in

the paper, when applied with t > 0 provides a lower bound which is a little bit weaker than what is

claimed, namely

Proposition 2. Correction of [1, Proposition 3] :

Assume d ≥ 3 and let t ≥ 0. Then there exist three constants c1, c2, c3 > 0 depending on t, and

c4 > 0 independent of t, such that, for all ∆ integer large enough

lim inf
N→∞

inf
l∆
N

1

(2N + 1)d
log PA

l∆
N

(Xi ≥ t, i ∈ Al∆
N
) ≥ −

d log∆

∆d
+ c1

log log∆

∆d
−

c2ec4t
√

log∆

∆d(log∆)c3
(3)

The statement of [1, Proposition 3] only contains the first two terms. The dependence in t

vanishes between equations (2.4) and (2.5) in [1]. Note that for t = 0 the third term is irrelevant

and the bound coincides with the one stated in the paper.
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3. PROOF OF THE ABSENCE OF A WETTING TRANSITION IN THE SQUARE-POTENTIAL CASE

Let us introduce the following notations

ξ̂N =

∑

x∈ΛN

1[|φx |≤a], ξ̃N =

∑

x∈ΛN

1[φx∈[0,a]],

Ω
+

A = {φx ≥ 0, ∀x ∈ A}, Ω
+

N = {φx ≥ 0, ∀x ∈ ΛN}
A = {x ∈ ΛN : φx ∈ [0, a]}

and the following probability measure with square-potential pinning :

P̃N,a,b(dφ) =
1

Z̃N,a,b

exp




−H(φ) +

∑

x∈ΛN

b1[φx∈[0,a]]




dφΛN

δ0(dφΛc
N

)

in contrast with the measure used in [1] :

P̂N,a,b(dφ) =
1

ẐN,a,b

exp




−H(φ) +

∑

x∈ΛN

b1[φx∈[−a,a]]




dφΛN

δ0(dφΛc
N

).

Observe that

P̃N,a,b(ξ̃N < ǫNd |Ω+N) = P̂N,a,b(ξ̂N < ǫNd |Ω+N)

Theorem 3. (Absence of wetting transition, [1, Theorem 6])

Assume d ≥ 3 and let a, b > 0 be arbitrary. Then there exists ǫb,a, ηb,a > 0 such that

P̃N,a,b(ξ̃N > ǫb,aNd |Ω+N) ≥ 1 − exp(−ηb,aNd). (4)

provided N is large enough.

Proof. Let us compute the probability of the complementary event and provide bounds on the

numerator and the denominator corresponding to the conditional probability :

P̃N,a,b(ξ̃N < ǫNd |Ω+N) =
P̃N,a,b({ξ̃N < ǫNd} ∩ Ω+

N
)

P̃N,a,b(Ω+
N

)
(5)

3.1. Lower bound on the denominator. Writing

exp(
∑

x∈ΛN

b1[φx∈[0,a]]) =
∏

x∈ΛN

((eb − 1)1[φx∈[0,a]] + 1) (6)

and using the FKG inequality, we get

P̃N,a,b(Ω+N)
FKG
≥ ZN

Z̃N,a,b

∑

A⊂ΛN

(eb − 1)|A| PN(A ⊃ A)
︸        ︷︷        ︸

(∗)

PN(Ω+Ac |A ⊃ A)
︸              ︷︷              ︸

(∗∗)

PN(Ω+A|A ⊃ A)
︸             ︷︷             ︸

=1

. (7)

Let us first bound the term (∗∗):

(∗∗) = PN(φ ≥ 0 on Ac |φ ∈ [0, a] on A) =

∫

[0,a]A

PN(φ ≥ 0 on Ac |φ = ψ on A)g(ψ)dψ (8)

for some density function g. Let ψ̃ be the harmonic extension of ψ to ΛN\A. Since ψ̃ ≥ 0, we have

(∗∗) =
∫

[0,a]A

PN(φ + ψ̃ ≥ 0 on Ac |φ = 0 on A)g(ψ)dψ (9)

=

∫

[0,a]A

PAc(φ + ψ̃ ≥ 0 on Ac)g(ψ)dψ (10)

≥ PAc(Ω+Ac) (11)
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For the term (∗), we write A = {x1, . . . , x|A|}, and Ai = {xi+1, . . . , x|A|},

(∗) = PN(φ ∈ [0, a] on A) (12)

=

|A|∏

i=1

PN(φxi
∈ [0, a]|φxi+1

, . . . , φx|A| ∈ [0, a]) (13)

=

|A|∏

i=1

∫

[0,a]Ai

PN(φxi
∈ [0, a]|φ = ψ on Ai)gi(ψ)dψ (14)

for some density function gi. Let ψ̃ be the harmonic extension of ψ to ΛN\Ai, we have

(∗) =
|A|∏

i=1

∫

[0,a]Ai

PN(φxi
+ ψ̃xi

∈ [0, a]|φ = 0 on Ai)gi(ψ)dψ (15)

=

|A|∏

i=1

∫

[0,a]Ai

PAc
i
(φxi
+ ψ̃xi

∈ [0, a])gi(ψ)dψ (16)

≥
|A|∏

i=1

PAc
i
(φxi
∈ [0, a]) (17)

≥ [c(1/2 ∧ a)]|A| (18)

for some c = c(d) > 0, since the variance of the free field is bounded in d ≥ 3. The inequality (17)

comes from the fact that PAc
i
(φxi
+ ψ̃xi

∈ [0, a]) ≥ PAc
i
(φxi
∈ [0, a]) since ψ̃xi

∈ [0, a] and φxi
is a

centered Gaussian variable.

Hence,

P̃N,a,b(Ω+N)≥ ZN

Z̃N,a,b

∑

A⊂ΛN

exp(J′|A|)PAc(Ω+Ac) (19)

with J′ = log(eb − 1) + log c + log(1/2 ∧ a).

3.2. Upper bound on the numerator.

P̃N,a,b({ξ̃N < ǫNd} ∩Ω+N) =
ZN

Z̃N,a,b

∑

A:|A|<ǫNd

(eb − 1)|A| PN(A ⊃ A)
︸        ︷︷        ︸

≤(1/2∧a)|A|

PN(Ω+N |A ⊃ A)
︸             ︷︷             ︸

≤1

(20)

≤ ZN

Z̃N,a,b

♯{A : |A| < ǫNd} exp(JǫNd) (21)

with J = log(eb − 1) + log(1/2 ∧ a), where ♯X denotes the cardinality of the set X.

3.3. Upper bound on (5).

P̃N,a,b(ξ̃N < ǫNd |Ω+N) ≤
exp(JǫNd)♯{A : |A| < ǫNd}
∑

A⊂ΛN
exp(J′|A|)PAc(Ω+

Ac)
(22)

And now we proceed similarily as for the proof with δ-pinning potential:

1

Nd
log P̃N,a,b(ξ̃N < ǫNd |Ω+N) ≤ 1

Nd
log

(

exp(JǫNd)♯{A : |A| < ǫNd}
)

(23)

− 1

Nd
log

∑

A⊂ΛN

exp(J′|A|)PAc(Ω+Ac) (24)

The right hand side of (23) can be bounded by ǫ(J + 1 − log ǫ) as N tends to infinity (by a rough

approximation and the Stirling formula), which in turn can be made as close to 0 as we want by

choosing ǫ = ǫ(J) sufficiently small. See [1].
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To bound (24) we use [1, Proposition 3] with t = 0 which matches to our Proposition 2 :

(24) ≤ −
1

Nd
log

∑

A⊂ΛN : A is∆−sparse

exp(J′|A|)PAc(Ω+Ac) (25)

≤ −
1

Nd

((
N

∆

)d

[(d log∆ + c0) + J′ − d log∆ + c1 log log∆]

)

(26)

= − J′ + c0 + c1 log log∆

∆d
< 0 for ∆ = ∆(J′) large enough. (27)

where ∆-sparseness corresponds to Definition 1 : a set A ⊂ ΛN is ∆-sparse if it equals Al∆
N
, for

some set l∆
N

.
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