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Abstract

We develop a novel Hybrid High-Order method for the simulation of Darcy flows in frac-
tured porous media. The discretization hinges on a mixed formulation in the bulk region and
on a primal formulation inside the fracture. Salient features of the method include a seamless
treatment of nonconforming discretizations of the fracture, as well as the support of arbitrary
approximation orders on fairly general meshes. For the version of the method corresponding to
a polynomial degree k ě 0, we prove convergence in hk`1 of the discretization error measured in
an energy-like norm. In the error estimate, we explicitly track the dependence of the constants
on the problem data, showing that the method is fully robust with respect to the heterogeneity
of the permeability coefficients, and it exhibits only a mild dependence on the square root of the
local anisotropy of the bulk permeability. The numerical validation on a comprehensive set of
test cases confirms the theoretical results.

Keywords: Hybrid High-Order methods, finite volume methods, finite element methods, frac-
tured porous media flow, Darcy flow

MSC2010 classification: 65N08, 65N30, 76S05

1 Introduction

In this work we develop a novel Hybrid High-Order (HHO) method for the numerical simulation of
steady flows in fractured porous media.

The modelling of flow and transport in fractured porous media, and the correct identification of the
fractures as hydraulic barriers or conductors are of utmost importance in several applications. In
the context of nuclear waste management, the correct reproduction of flow patterns plays a key role
in identifying safe underground storage sites. In petroleum reservoir modelling, accounting for the
presence and hydraulic behaviour of the fractures can have a sizeable impact on the identification of
drilling sites, as well as on the estimated production rates. In practice, there are several possible ways
to incorporate the presence of fractures in porous media models. Our focus is here on the approach
developed in [2626], where an averaging process is applied, and the fracture is treated as an interface
that crosses the bulk region. The fracture is additionally assumed to be filled of debris, so that the
flow therein can still be modelled by the Darcy law. To close the problem, interface conditions are
enforced that relate the average and the jump of the bulk pressure and of the normal flux, and the
fracture pressure. Other works where fractures are treated as interfaces include, e.g., [22,66,2424].

Several discretization methods for flows in fractured porous media have been proposed in the litera-
ture. In [1414], the authors consider lowest-order vertex- and face-based Gradient Schemes, and prove
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convergence in h for the energy-norm of the discretization error; see also [1212] and the very recent
work [2222] on two-phase flows. Extended Finite Element methods (XFEM) are considered in [55, 88] in
the context of fracture networks, and their convergence properties are numerically studied. In [77], the
authors compare XFEM with the recently introduced Virtual Element Method, numerically observ-
ing in both case a behaviour in h1{2 for the energy-norm of the discretization error. Discontinuous
Galerkin methods are also considered in [44] for a single-phase flow; see also [33]. Therein, a hp-error
analysis is carried out for the energy-norm of the discretization error as well as numerical experiments
on polytopal meshes. A discretization method based on a mixed formulation in the mortar space has
also been very recently proposed in [1111], where an energy-error estimate in h is proved.

Our focus is here on the Hybrid High-Order (HHO) methods originally introduced in [1818] in the con-
text of linear elasticity, and later applied in [11,1919–2121] to anisotropic heterogeneous diffusion problems.
HHO methods are based on degrees of freedom (DOFs) that are broken polynomials on the mesh and
on its skeleton, and rely on two key ingredients: (i) physics-dependent local reconstructions obtained
by solving small, embarassingly parallel problems and (ii) high-order stabilization terms penalizing
face residuals. These ingredients are combined to formulate local contributions, which are then as-
sembled as in standard FE methods. In the context of fractured porous media flows, HHO methods
display several key advantages, including: (i) the support of general meshes enabling a seamless
treatment of nonconforming geometric discretizations of the fractures (see Remark 33 below); (ii) the
robustness with respect to the heterogeneity and anisotropy of the permeability coefficients (see Re-
mark 88 below); (iii) the possibility to increase the approximation order to capture complex phenomena
such as viscous fingering or instabilities linked to thermal convection; (iv) the availability of mixed
and primal formulations, whose intimate connection is now well-understood [1010]; (v) the possibility
to obtain efficient implementations thanks to static condensation (see Remark 55 below).

The HHO method proposed here hinges on a mixed formulation in the bulk coupled with a primal
formulation inside the fracture. To keep the exposition as simple as possible while retaining all the key
difficulties, we focus on the two-dimensional case, and we assume that the fracture is a line segment
that cuts the bulk region in two. For a given polynomial degree k ě 0, two sets of DOFs are used
for the flux in the bulk region: (i) polynomials of total degree up to k on each face (representing
the polynomial moments of its normal component) and (ii) fluxes of polynomials of degree up to k
inside each mesh element. Combining these DOFs, we locally reconstruct (i) a discrete counterpart of
the divergence operator and (ii) an approximation of the flux one degree higher than element-based
DOFs. These local reconstructions are used to formulate discrete counterparts of the permeability-
weighted product of fluxes and of the bluk flux-pressure coupling terms. The primal formulation inside
the fracture, on the other hand, hinges on fracture pressure DOFs corresponding to (i) polynomial
moments of degree up to k inside the fracture faces and (ii) point values at face vertices. From these
DOFs, we reconstruct inside each fracture face an approximation of the fracture pressure of degree
pk`1q, which is then used to formulate a tangential diffusive bilinear form in the spirit of [2020]. Finally,
the terms stemming from interface conditions on the fractures are treated using bulk flux DOFs and
fracture pressure DOFs on the fracture faces.

A complete theoretical analysis of the method is carried out. In Theorem 66 below we prove stability
in the form of an inf-sup condition on the global bilinear form collecting the bulk, fracture, and
interface contributions. An important intermediate result is the stability of the bulk flux-pressure
coupling, whose proof follows the classical Fortin argument based on a commuting property of the
divergence reconstruction. In Theorem 77 below we prove an optimal error estimate in hk`1 for an
energy-like norm of the error. The provided error estimate additionally shows that the error on the
bulk flux and on the fracture pressure are (i) fully robust with respect to the heterogeneity of the
bulk and fracture permeabilities, and (ii) partially robust with respect to the anisotropy of the bulk
permeability (with a dependence on the square root of the local anisotropy ratio). These estimates
are numerically validated, and the performance of the method is showcased on a comprehensive set
of problems. The numerical computations additionally show that the L2-norm of the errors on the
bulk and fracture pressure converge as hk`2.

The rest of the paper is organized as follows. In Section 22 we introduce the continuous setting and state
the problem along with its weak formulation. In Section 33 we define the mesh and the corresponding
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notation, and recall known results concerning local polynomial spaces and projectors thereon. In
Section 44 we formulate the HHO approximation: in a first step, we describe the local constructions
in the bulk and in the fracture; in a second step, we combine these ingredients to formulate the
discrete problem; finally, we state the main theoretical results corresponding to Theorems 66 (stability)
and 77 (error estimate). Section 55 contains an extensive numerical validation of the method. Finally,
Sections 66 and 77 contain the proofs of Theorems 66 and 77, respectively. Readers mainly interested in
the numerical recipe and results can skip these sections at first reading.

2 Continuous setting

2.1 Notation

We consider a porous medium saturated by an incompressible fluid that occupies the space region
Ω Ă R2 and is crossed by a fracture Γ. We next give precise definitions of these objects. The
corresponding notation is illustrated in Figure 11. The extension of the following discussion to the
three-dimensional case is possible (and, actually, rather straightforward), but is not considered here
in order to alleviate the exposition.

From the mathematical point of view, Ω is an open, bounded, connected, polygonal set with Lipschitz
boundary BΩ, while Γ is an open line segment of nonzero length. We additionally assume that Ω
lies on one side of its boundary. The set ΩB – ΩzΓ represents the bulk region. We assume that
the fracture Γ cuts the domain Ω into two disjoint connected polygonal subdomains with Lipschitz
boundary, so that the bulk region can be decomposed as ΩB – ΩB,1 Y ΩB,2.

We denote by BΩB –
Ť2
i“1 BΩB,izΓ the external boundary of the bulk region, which is decomposed

into two subsets with disjoint interiors: the Dirichlet boundary BΩD
B , for which we assume strictly posi-

tive 1-dimensional Haussdorf measure, and the (possibly empty) Neumann boundary BΩN
B. We denote

by nBΩ the unit normal vector pointing outward ΩB. For i P t1, 2u, the restriction of the boundary
BΩD

B (respectively, BΩN
B) to the ith subdomain is denoted by BΩD

B,i (respectively, BΩN
B,i).

We denote by BΓ the boundary of the fracture Γ with the corresponding outward unit tangential vector
τ BΓ. BΓ is also decomposed into two disjoint subsets: the nonempty Dirichlet fracture boundary
BΓD and the (possibly empty) Neumann fracture boundary BΓN. Notice that this decomposition is
completely independent from that of BΩB. Finally, nΓ and τΓ denote, respectively, the unit normal
vector to Γ with a fixed orientation and the unit tangential vector on Γ such that pτΓ,nΓq is positively
oriented. Without loss of generality, we assume in what follows that the subdomains are numbered
so that nΓ points out of ΩB,1.

For any function ϕ sufficiently regular to admit a (possibly two-valued) trace on Γ, we define the
jump and average operators such that

rrϕssΓ – ϕ|ΩB,1
´ ϕ|ΩB,2

, ttϕuuΓ –
ϕ|ΩB,1

` ϕ|ΩB,2

2
.

When applied to vector functions, these operators act component-wise.

2.2 Continuous problem

We discuss in this section the strong formulation of the problem: the governing equations for the
bulk region and the fracture, and the interface conditions that relate these subproblems.
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Figure 1: Illustration of the notation introduced in Section 2.12.1.

2.2.1 Bulk

In the bulk region ΩB, we model the motion of the incompressible fluid by Darcy’s law in mixed form,
so that the pressure p : ΩB Ñ R and the flux u : ΩB Ñ R2 satisfy

K∇p` u “ 0 in ΩB, (1a)

∇ ¨ u “ f in ΩB, (1b)

p “ gB on BΩD
B , (1c)

u ¨ nBΩ “ 0 on BΩN
B, (1d)

where f P L2pΩBq denotes a volumetric source term, gB P H
1{2pBΩD

Bq the boundary pressure, and
K : ΩB Ñ R2ˆ2 the bulk permeability tensor, which is assumed to be symmetric, piecewise constant
on a fixed polygonal partition PB “ tωBu of ΩB, and uniformly elliptic so that there exist two strictly
positive real numbers KB and KB satisfying, for a.e. x P ΩB and all z P R2 such that |z| “ 1,

0 ă KB ďKpxqz ¨ z ď KB.

For further use, we define the global anisotropy ratio

%B –
KB

KB

. (2)

2.2.2 Fracture

Inside the fracture, we consider the motion of the fluid as governed by Darcy’s law in primal form,
so that the fracture pressure pΓ : Γ Ñ R satisfies

´∇τ ¨ pKΓ∇τpΓq “ `ΓfΓ ` rrussΓ ¨ nΓ in Γ, (3a)

pΓ “ gΓ on BΓD, (3b)

KΓ∇τpΓ ¨ τ BΓ “ 0 on BΓN, (3c)

where fΓ P L2pΓq and KΓ – κτΓ`Γ with κτΓ : Γ Ñ R and `Γ : Γ Ñ R denoting the tangential
permeability and thickness of the fracture, respectively. The quantities κτΓ and `Γ are assumed
piecewise constant on a fixed partition PΓ “ tωΓu of Γ, and such that there exist strictly positive
real numbers KΓ,KΓ such that, for a.e. x P Γ,

0 ă KΓ ď KΓpxq ď KΓ.

In (33),∇τ and∇τ ¨ denote the tangential gradient and divergence operators along Γ, respectively.
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2.2.3 Coupling conditions

The subproblems (11) and (33) are coupled by the following interface conditions:

λΓttuuuΓ ¨ nΓ “ rrpssΓ on Γ,

λξΓrrussΓ ¨ nΓ “ ttpuuΓ ´ pΓ on Γ,
(4)

where ξ P p 1
2 , 1s is a model parameter chosen by the user and we have set

λΓ –
`Γ
κnΓ
, λξΓ – λΓ

ˆ

ξ

2
´

1

4

˙

. (5)

As above, `Γ is the fracture thickness, while κnΓ : Γ Ñ R represents the normal permeability of the
fracture, which is assumed piecewise constant on the partition PΓ of Γ introduced in Section 2.2.22.2.2,
and such that, for a.e. x P Γ,

0 ă λΓ ď λΓpxq ď λΓ, (6)

for two given strictly positive real numbers λΓ and λΓ.

Remark 1 (Extension to discrete fracture networks). The model could be extended to fracture net-
works. In this case, additional coupling conditions enforcing the mass conservation and pressure
continuity at fracture intersections should be included; see e.g., [1313,1414].

2.3 Weak formulation

The weak formulation of problem (11)–(33)–(44) hinges on the following function spaces:

U – tu PHpdiv; ΩBq | u ¨ nBΩ “ 0 on BΩN
B and pu|ΩB,1

¨ nΓ,u|ΩB,2
¨ nΓq P L

2pΓq2u,

PB – L2pΩBq, PΓ – tpΓ P H
1pΓq | pΓ “ 0 on BΓDu,

where Hpdiv; ΩBq is spanned by vector-valued functions on ΩB whose restriction to every bulk sub-
region ΩB,i, i P t1, 2u, is in Hpdiv; ΩB,iq.

For any X Ă Ω, we denote by p¨, ¨qX and }¨}X the usual inner product and norm of L2pXq or
L2pXq2, according to the context. We define the bilinear forms aξ : U ˆ U Ñ R, b : U ˆ PB Ñ R,
c : U ˆ PΓ Ñ R, and d : PΓ ˆ PΓ Ñ R as follows:

aξpu,vq – pK´1u,vqΩB ` pλ
ξ
ΓrrussΓ¨nΓ, rrvssΓ¨nΓqΓ ` pλΓttuuuΓ¨nΓ, ttvuuΓ¨nΓqΓ,

bpu, qq – p∇ ¨ u, qqΩB ,

cpu, qΓq – prrussΓ ¨ nΓ, qΓqΓ,

dppΓ, qΓq – pKΓ∇τpΓ,∇τqΓqΓ.

(7)

With these spaces and bilinear forms, the weak formulation of problem (11)–(33)–(44) reads: Find
pu, p, pΓ,0q P U ˆ PB ˆ PΓ such that

aξpu,vq´bpv, pq ` cpv, pΓ,0q “ ´ pgB,v ¨ nBΩqBΩD
B

@v P U ,

bpu, qq “ pf, qqΩB
@q P PB,

´cpu, qΓq ` dppΓ,0, qΓq “ p`ΓfΓ, qΓqΓ ´ dppΓ,D, qΓq @qΓ P PΓ,

(8)

where pΓ,D P H
1pΓq is a lifting of the fracture Dirichlet boundary datum such that ppΓ,Dq|BΓD “ gΓ.

The fracture pressure is then computed as pΓ “ pΓ,0 ` pΓ,D. This problem is well-posed; we refer the
reader to [55, Proposition 2.4] for a proof.
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Figure 2: Treatment of nonconforming fracture discretizations.

3 Discrete setting

3.1 Mesh

The HHO method is built upon a polygonal mesh of the domain Ω defined prescribing a set of mesh
elements Th and a set of mesh faces Fh.

The set of mesh elements Th is a finite collection of open disjoint polygons with nonzero area such
that Ω “

Ť

TPTh T and h “ maxTPTh hT , with hT denoting the diameter of T . We also denote by
BT the boundary of a mesh element T P Th. The set of mesh faces Fh is a finite collection of open
disjoint line segments in Ω with nonzero length such that, for all F P Fh, (i) either there exist two
distinct mesh elements T1, T2 P Th such that F Ă BT1XBT2 (and F is called an interface) or (ii) there
exist a (unique) mesh element T P Th such that F Ă BT X BΩ (and F is called a boundary face). We
assume that Fh is a partition of the mesh skeleton in the sense that

Ť

TPTh BT “
Ť

FPFh F .

Remark 2 (Mesh faces). Despite working in two space dimensions, we have preferred the terminology
“face” over “edge” in order to (i) be consistent with the standard HHO nomenclature and (ii) stress
the fact that faces need not coincide with polygonal edges (but can be subsets thereof); see also
Remark 33 on this point.

We denote by F i
h the set of all interfaces and by Fb

h the set of all boundary faces, so that Fh “ F i
hYFb

h .
The length of a face F P Fh is denoted by hF . For any mesh element T P Th, FT is the set of faces
that lie on BT and, for any F P FT , nTF is the unit normal to F pointing out of T . Symmetrically, for
any F P Fh, TF is the set containing the mesh elements sharing the face F (two if F is an interface,
one if F is a boundary face).

To account for the presence of the fracture, we make the following

Assumption 1 (Geometric compliance with the fracture). The mesh is compliant with the fracture,
i.e., there exists a subset FΓ

h Ă F i
h such that Γ “

Ť

FPFΓ
h
F . As a result, FΓ

h is a (1-dimensional)

mesh of the fracture.

Remark 3 (Polygonal meshes and geometric compliance with the fracture). Fulfilling Assumption 11
does not pose particular problems in the context of polygonal methods, even when the fracture
discretization is nonconforming in the classical sense. Consider, e.g., the situation illustrated in
Figure 22, where the fracture lies at the intersection of two nonmatching Cartesian submeshes. In this
case, no special treatment is required provided the mesh elements in contact with the fracture are
treated as pentagons with two coplanar faces instead of rectangles. This is possible since, as already
pointed out, the set of mesh faces Fh need not coincide with the set of polygonal edges of Th.

The set of vertices of the fracture is denoted by Vh and, for all F P FΓ
h , we denote by VF the vertices

of F . For all F P FΓ
h and all V P VF , τFV denotes the unit vector tangent to the fracture and

oriented so that it points out of F . Finally, VD
h is the set containing the points in BΓD.

To avoid dealing with jumps of the problem data inside mesh elements, as well as on boundary and
fracture faces, we additionally make the following

6



Assumption 2 (Compliance with the problem data). The mesh is compliant with the data, i.e., the
following conditions hold:

(i) Compliance with the bulk permeability. For each mesh element T P Th, there exists a unique
sudomain ωB P PB (with PB partition introduced in Section 2.2.12.2.1) such that T Ă ωB;

(ii) Compliance with the fracture thickness, normal, and tangential permeabilities. For each fracture
face F P FΓ

h , there is a unique subdomain ωΓ P PΓ (with PΓ partition introduced in Section 2.2.22.2.2)
such that F Ă ωΓ;

(iii) Compliance with the boundary conditions. There exist subsets FD
h and FN

h of Fb
h such that

BΩN
B “

Ť

FPFN
h
F and BΩD

B “
Ť

FPFD
h
F .

For the h-convergence analysis, one needs to make assumptions on how the mesh is refined. The notion
of geometric regularity for polygonal meshes is, however, more subtle than for standard meshes. To
formulate it, we assume the existence of a matching simplicial submesh, meaning that there is a
conforming triangulation Th of the domain such that each mesh element T P Th is decomposed into
a finite number of triangles from Th, and each mesh face F P Fh is decomposed into a finite number
of edges from the skeleton of Th. We denote by % P p0, 1q the regularity parameter such that (i) for
any triangle S P Th of diameter hS and inradius rS , %hS ď rS and (ii) for any mesh element T P Th
and any triangle S P Th such that S Ă T , %hT ď hS . When considering h-refined mesh sequences, %
should remain uniformly bounded away from zero. We stress that the matching triangular submesh
is merely a theoretical tool, and need not be constructed in practice.

3.2 Local polynomial spaces and projectors

Let an integer l ě 0 be fixed, and let X be a mesh element or face. We denote by PlpXq the space
spanned by the restriction to X of two-variate polynomials of total degree up to l, and define the
L2-orthogonal projector πlX : L1pXq Ñ PlpXq such that, for all v P L1pXq, πlXv solves

pπlXv ´ v, wqX “ 0 @w P PlpXq. (9)

By the Riesz representation theorem in PlpXq for the L2-inner product, this defines πlXv uniquely.

It has been proved in [1717, Lemmas 1.58 and 1.59] that the L2-orthogonal projector on mesh elements
has optimal approximation properties: For all s P t1, . . . , l`1u, all T P Th, and all v P HspT q,

|v ´ πlT v|HmpT q ď Chs´mT |v|HspT q @m P t0, . . . , su, (10a)

|v ´ πlT v|HmpFT q ď Ch
s´m´1{2

T |v|HspT q @m P t0, . . . , s´ 1u, (10b)

with real number C ą 0 only depending on %, l, s, and m, and HmpFT q spanned by the functions on
BT that are in HmpF q for all F P FT . More general W s,p-approximation results for the L2-orthogonal
projector can be found in [1515]; see also [1616] concerning projectors on local polynomial spaces.

4 The Hybrid High-Order method

In this section we illustrate the local constructions in the bulk and in the fracture on which the HHO
method hinges, formulate the discrete problem, and state the main results.

4.1 Local construction in the bulk

We present here the key ingredients to discretize the bulk-based terms in problem (88). First, we
introduce the local DOF spaces for the bulk-based flux and pressure unknowns. Then, we define local
divergence and flux reconstruction operators obtained from local DOFs.

In this section, we work on a fixed mesh element T P Th, and denote by KT – K |T P P0pT q2ˆ2 the
(constant) restriction of the bulk permeability tensor to the element T . We also introduce the local
anisotropy ratio

%B,T –
KB,T

KB,T

, (11)
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Figure 3: Local DOF space Uk
T for a hexagonal mesh element and k P t0, 1, 2u.

where KB,T and KB,T denote, respectively, the largest and smallest eigenvalue of KT . In the error
estimate of Theorem 77, we will explicitly track the dependence of the constants on ρB,T in order to
assess the robustness of our method with respect to the anisotropy of the diffusion coefficient.

4.1.1 Local bulk unknowns

For any integer l ě 0, set U l
T – KT∇PlpT q. The local DOF spaces for the bulk flux and pressure

are given by (see Figure 33)

Uk
T – Uk

T ˆ

˜

ą

FPFT

PkpF q

¸

, P kB,T – PkpT q. (12)

Notice that, for k “ 0, we have U0
T “KT∇P0pT q “ t0u, expressing the fact that element-based flux

DOFs are not needed. A generic element vT P U
k
T is decomposed as vT “ pvT , pvTF qFPFT q. We

define on Uk
T and on P kB,T , respectively, the norms }¨}U ,T and }¨}B,T such that, for all vT P U

k
T and

all qT P P
k
B,T ,

}vT }
2
U ,T – K

´1

B,T

˜

}vT }
2
T `

ÿ

FPFT

hF }vTF }
2
F

¸

, }qT }B,T – }qT }T . (13)

Letting U`pT q – H1pT q2, we define the local interpolation operator IkT : U`pT q Ñ Uk
T such that,

for all v P U`pT q,
IkTv – pKT∇yT , pπkF pv ¨ nTF qqFPFT q, (14)

where yT P PkpT q is the solution (defined up to an additive constant) of the following Neumann
problem:

pKT∇yT ,∇qT qT “ pv,∇qT qT @qT P PkpT q. (15)

Remark 4 (Domain of the interpolator). The regularity in U`pT q beyond Hpdiv;T q is classically
needed for the face interpolators to be well-defined; see, e.g., [99, Section 2.5.1] for further insight into
this point.

4.1.2 Local divergence reconstruction operator

We define the local divergence reconstruction operator Dk
T : Uk

T Ñ P kB,T such that, for all vT “

pvT , pvTF qFPFT q P U
k
T , Dk

TvT solves

pDk
TvT , qT qT “ ´pvT ,∇qT qT `

ÿ

FPFT

pvTF , qT qF @qT P P
k
B,T . (16)

By the Riesz representation theorem in P kB,T for the L2-inner product, this defines the divergence
reconstruction uniquely. The right-hand side of (1616) is designed to resemble an integration by parts
formula where the role of the function represented by vT is played by element-based DOFs in volu-
metric terms and face-based DOFs in boundary terms. With this choice, the following commuting
property holds (see [1919, Lemma 2]): For all v P U`pT q,

Dk
T I

k
Tv “ πkT p∇ ¨ vq. (17)
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We also note the following inverse inequality, obtained from (1616) setting qT “ Dk
TvT and using

Cauchy–Schwarz and discrete inverse and trace inequalities (see [1919, Lemma 8] for further details):
There is a real number C ą 0 independent of h and of T , but depending on % and k, such that, for
all vT P U

k
T ,

hT }D
k
TvT }T ď CK

1{2

B,T }vT }U ,T . (18)

4.1.3 Local flux reconstruction operator and permeability-weighted local product

We next define the local discrete flux operator F k`1
T : Uk

T Ñ Uk`1
T such that, for all vT “

pvT , pvTF qFPFT q P U
k
T , F k`1

T vT solves

pF k`1
T vT ,∇wT qT “ ´pDk

TvT , wT qT `
ÿ

FPFT

pvTF , wT qF @wT P Pk`1pT q. (19)

By the Riesz representation theorem in Uk`1
T for the pK´1

T ¨, ¨qT -inner product, this defines the flux
reconstruction uniquely. Also in this case, the right-hand side is designed so as to resemble an
integration by parts formula where the role of the divergence of the function represented by vT is
played by Dk

TvT , while its normal traces are replaced by boundary DOFs.

We now have all the ingredients required to define the permeability-weighted local product mT :
Uk
T ˆU

k
T Ñ R such that

mT puT ,vT q – pK´1
T F

k`1
T uT ,F

k`1
T vT qT ` JT puT ,vT q, (20)

where the first term is the usual Galerkin contribution responsible for consistency, while JT : Uk
T ˆ

Uk
T Ñ R is a stabilization bilinear form such that, letting µTF – KTnTF ¨nTF for all F P FT ,

JT puT ,vT q –
ÿ

FPFT

hF
µTF

pF k`1
T uT ¨ nTF ´ uTF ,F

k`1
T vT ¨ nTF ´ vTF qF .

The role of JT is to ensure the existence of a real number ηm ą 0 independent of h, T , and KT , but
possibly depending on % and k, such that, for all vT P U

k
T ,

η´1
m }vT }

2
U ,T ď }vT }

2
m,T – mT pvT ,vT q ď ηmρB,T }vT }

2
U ,T , (21)

with norm }¨}U ,T defined by (1313); see [1919, Lemma 4] for a proof. Additionally, we note the following
consistency property for JT proved in [1919, Lemma 9]: There is a real number C ą 0 independent of h,
T , andKT , but possibly depending on % and k, such that, for all v “KT∇q with q P Hk`2pT q,

JT pI
k
Tv, I

k
Tvq

1{2 ď C%
1{2

B,TK
1{2

B hk`1
T |q|Hk`2pT q. (22)

4.2 Local construction in the fracture

We now focus on the discretization of the fracture-based terms in problem (88). First, we define the
local space of fracture pressure DOFs, then a local pressure reconstruction operator inspired by a
local integration by parts formula. Based on this operator, we formulate a local discrete tangential
diffusive bilinear form. Throughout this section, we work on a fixed fracture face F P FΓ

h and we let,
for the sake of brevity, KF – pKΓq|F P P0pF q with KΓ defined in Section 2.2.22.2.2.

4.2.1 Local fracture unknowns

Set PkpV q – spant1u for all V P VF . The local space of DOFs for the fracture pressure is

P kΓ,F – PpF qk ˆ

˜

ą

V PVF

PkpV q

¸

.

9



In what follows, a generic element qΓ
F
P P kΓ,F is decomposed as qΓ

F
“ pqΓ

F , pq
Γ
V qV PVF q. We define on

P kΓ,F the seminorm }¨}Γ,F such that, for all qΓ
F
P P kΓ,F ,

}qΓ
F
}2Γ,F – }K

1{2

F ∇τqΓ
F }

2
F `

ÿ

V PVF

KF

hF
pqF ´ qV q

2pV q.

We also introduce the local interpolation operator IkF : H1pF q Ñ P kΓ,F such that, for all q P

H1pF q,

IkF q – pπkF q, pqpV qqV PVF q.

4.2.2 Pressure reconstruction operator and local tangential diffusive bilinear form

We define the local pressure reconstruction operator rk`1
F : P kΓ,F Ñ Pk`1pF q such that, for all

qΓ
F
“ pqΓ

F , pq
Γ
V qV PVF q P P

k
Γ,F , rk`1

F qΓ
F

solves

pKF∇τrk`1
F qΓ

F
,∇τwΓ

F qF “ ´pq
Γ
F ,∇τ ¨ pKF∇τwΓ

F qqF `
ÿ

V PVF

qΓ
V pKF∇τwΓ

F ¨ τFV qpV q.

By the Riesz representation theorem in∇Pk`1pF q for the pKF ¨, ¨qF -inner product, this relation defines
a unique element ∇τrk`1

F qΓ
F

, hence a polynomial rk`1
F qΓ

F
P Pk`1pF q up to an additive constant. This

constant is fixed by additionally imposing that

prk`1
F qΓ

F
´ qΓ

F , 1qF “ 0.

We can now define the local tangential diffusive bilinear form dF : P kΓ,F ˆP
k
Γ,F Ñ R such that

dF pp
Γ
F
, qΓ
F
q – pKF∇τrk`1

F pΓ
F
,∇τrk`1

F qΓ
F
qF ` jF pp

Γ
F
, qΓ
F
q,

where the first term is the standard Galerkin contribution responsible for consistency, while jF :
P kΓ,F ˆ P

k
Γ,F Ñ R is the stabilization bilinear form such that

jF pp
Γ
F
, qΓ
F
q –

ÿ

V PVF

KF

hF
pRk`1

F pΓ
F
pV q ´ pΓ

V qpR
k`1
F qΓ

F
pV q ´ qΓ

V q,

with Rk`1
F : P kΓ,F Ñ Pk`1pF q such that, for all qΓ

F
P P kΓ,F , Rk`1

F qΓ
F

– qΓ
F ` pr

k`1
F qΓ

F
´ πkF r

k`1
F qΓ

F
q.

The role of jT is to ensure stability and boundedness, expressed by the existence of a real number
ηd ą 0 independent of h and of F , but possibly depending on k and %, such that, for all qΓ

F
P P kΓ,F ,

the following holds (see [2020, Lemma 4]):

η´1
d }q

Γ
F
}2Γ,F ď dF pq

Γ
F
, qΓ
F
q ď ηd}q

Γ
F
}2Γ,F . (23)

4.3 The discrete problem

We define the global discrete spaces together with the corresponding interpolators and norms, for-
mulate the discrete problem, and state the main results.

4.3.1 Global discrete spaces

We define the following global spaces of fully discontinuous bulk flux and pressure DOFs:

qU
k

h –
ą

TPTh

Uk
T , P kB,h –

ą

TPTh

P kB,T ,
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with local spaces Uk
T and P kB,T defined by (1212). We will also need the following subspace of qU

k

h

that incorporates (i) the continuity of flux unknows at each interface F P F i
hzFΓ

h not included in the
fracture and (ii) the strongly enforced homogeneous Neumann boundary condition on BΩN

B:

Uk
h,0 – tvh P

qU
k

h | rrvhssF “ 0 @F P F i
hzFΓ

h and vF “ 0 @F P FN
h u, (24)

where, for all F P Fb
h , we have set vF – vTF with T denoting the unique mesh element such that

F P FT , while, for all F P F i
h with F Ă BT1 X BT2 for distinct mesh elements T1, T2 P Th, the jump

operator is such that
rrvhssF – vT1F ` vT2F .

Notice that this quantity is the discrete counterpart of the jump of the normal flux component since,
for i P t1, 2u, vTiF can be interpreted as the normal flux exiting Ti.

We also define the global space of fracture-based pressure unknowns and its subspace with strongly
enforced homogeneous Dirichlet boundary condition on BΓD as follows:

P kΓ,h –

˜

ą

FPFΓ
h

PkpF q

¸

ˆ

˜

ą

V PVh

PkpV q

¸

, P kΓ,h,0 – tqΓ
h
P P kΓ,h | q

Γ
V “ 0 @V P VD

h u.

A generic element qΓ
h

of P kΓ,h is decomposed as qΓ
h
“ ppqF qFPFΓ

h
, pqV qV PVhq and, for all F P FΓ

h , we

denote by qΓ
F
“ pqΓ

F , pq
Γ
V qvPVF q its restriction to P kΓ,F .

4.3.2 Discrete norms and interpolators

We equip the DOF spaces qU
k

h, P kB,h, and P kΓ,h respectively, with the norms }¨}U ,ξ,h and }¨}B,h, and

the seminorm }¨}Γ,h such that for all vh P U
k
h, all qh P P

k
B,h, and all qΓ

h
P P kΓ,h,

}vh}
2
U ,ξ,h –

ÿ

TPTh

}vT }
2
U ,T ` |vh|

2
ξ,h, |vh|

2
ξ,h –

ÿ

FPFΓ
h

´

λξF }rrvhssF }
2
F ` λF }ttvhuuF }

2
F

¯

,

}qh}
2
B,h –

ÿ

TPTh

}qT }
2
B,T , }qΓ

h
}2Γ,h –

ÿ

FPFΓ
h

}qΓ
F
}2Γ,F ,

where, for the sake of brevity, we have set λF – pλΓq|F and λξF – pλξΓq|F (see (55) for the definition of

λΓ and λξΓ), and we have defined the average operator such that, for all F P FΓ
h and all vh P

qU
k

h,

ttvhuuF –
1

2

ÿ

TPTF

vTF pnTF ¨ nΓq.

Using the arguments of [1818, Proposition 5], it can be proved that }¨}Γ,h is a norm on P kΓ,h,0.

Let now U`pThq denote the space spanned by vector-valued functions whose restriction to each mesh
element T P Th lies in the space U`pT q “ H1pT q2 introduced in Section 4.1.14.1.1. We define the global

interpolators Ikh : U`pThq Ñ qU
k

h and Ikh : H1pΓq Ñ P kΓ,h such that, for all v P U`pThq and all

q P H1pΓq,
Ikhv –

`

IkTv|T
˘

TPTh
, Ikhq –

`

pπkF qqFPFΓ
h
, pqpV qqV PVh

˘

, (25)

where, for all T P Th, the local interpolator IkT is defined by (1414). We also denote by πkh the global
L2-orthogonal projector onto P kB,h such that, for all q P L1pΩBq,

pπkhqq|T – πkT q|T @T P Th.
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4.3.3 Discrete problem

At the discrete level, the counterparts of the continuous bilinear forms defined in Section 2.32.3 are the

bilinear forms aξh : qU
k

hˆ
qU
k

h Ñ R, bh : qU
k

hˆP
k
B,h Ñ R, ch : qU

k

hˆP
k
Γ,h Ñ R, and dh : P kΓ,hˆP

k
Γ,h Ñ R

such that

aξhpuh,vhq –
ÿ

TPTh

mT puT ,vT q `
ÿ

FPFΓ
h

´

pλξF rruhssF , rrvhssF qF ` pλF ttuhuuF , ttvhuuF qF

¯

, (26)

bhpuh, phq –
ÿ

TPTh

pDk
TuT , pT qT , (27)

chpuh, p
Γ
h
q –

ÿ

FPFΓ
h

prruhssF , p
Γ
F qF , (28)

dhpp
Γ
h
, qΓ
h
q –

ÿ

FPFΓ
h

dF pp
Γ
F
, qΓ
F
q. (29)

The HHO discretization of problem (88) reads : Find puh, ph, p
Γ
h,0
q P Uk

h,0 ˆ P
k
B,h ˆ P

k
Γ,h,0 such that,

for all pvh, qh, q
Γ
h
q P Uk

h,0 ˆ P
k
B,h ˆ P

k
Γ,h,0,

aξhpuh,vhq´bhpvh, phq ` chpvh, p
Γ
h,0
q “ ´

ÿ

FPFD
h

pgB, vF qF , (30a)

bhpuh, qhq “
ÿ

TPTh

pf, qT qT , (30b)

´chpuh, q
Γ
h
q ` dhpp

Γ
h,0
, qΓ
h
q “

ÿ

FPFΓ
h

p`F fΓ, q
Γ
F qF ´ dhpp

Γ
D,h

, qΓ
h
q, (30c)

where, for all F P FD
h , we have set vF – vTF with T P Th unique element such that F Ă BT X BΩ

in (30a30a), while pΓ
D,h

“
`

ppΓ
D,F qFPFΓ

h
, ppΓ

D,V qV PVh
˘

P P kΓ,h is such that

pΓ
D,F ” 0 @F P FΓ

h , pΓ
D,V “ gΓpV q @V P VD

h , pΓ
D,V “ 0 @V P VhzVD

h .

The discrete fracture pressure pΓ
h
P P kΓ,h is finally computed as pΓ

h
“ pΓ

h,0
` pΓ

D,h
.

Remark 5 (Implementation). In the practical implementation, all bulk flux DOFs and all but one bulk
pressure DOF per element can be statically condensed by solving small saddle point problems inside
each element. This corresponds to the first static condensation procedure discussed in [1919, Section 3.4],
to which we refer the reader for further details.

We next write a more compact equivalent reformulation of problem (3030). Define the Cartesian product

space Xk
h – Uk

h,0 ˆ P
k
B,h ˆ P

k
Γ,h,0 as well as the bilinear form Aξh : Xk

h ˆX
k
h Ñ R such that

Aξhppuh, ph, pΓ
h
q, pvh, qh, q

Γ
h
qq – aξhpuh,vhq ` bhpuh, qhq ´ bhpvh, phq

` chpvh, p
Γ
h
q ´ chpuh, q

Γ
h
q ` dhpp

Γ
h
, qΓ
h
q.

(31)

Then, problem (3030) is equivalent to: Find puh, ph, p
Γ
h,0
q PXk

h such that, for all pvh, qh, q
Γ
h
q PXk

h,

Aξhppuh, ph, pΓ
h,0
q, pvh, qh, q

Γ
h
qq “

ÿ

TPTh

pf, qT qT `
ÿ

FPFΓ
h

p`F fΓ, q
Γ
F qF ´

ÿ

FPFD
h

pgB, vF qF ´ dhpp
Γ
D,h

, qΓ
h
q. (32)

4.4 Main results

In this section we report the main results of the analysis of our method, leaving the details of the
proofs to Section 66. For the sake of simplicity, we will assume that

BΩN
B “ H, gB ” 0, BΓN “ H, gΓ ” 0 (33)
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which means that homogeneous Dirichlet boundary conditions on the pressure are enforced on both
the external boundary of the bulk region and on the boundary of the fracture. This corresponds to
the situation when the motion of the fluid is driven by the volumetric source terms f in the bulk
region and fΓ in the fracture. The results illustrated below and in Section 66 can be adapted to more
general boundary conditions at the price of heavier notations and technicalities that we want to avoid
here.

In the error estimate of Theorem 77 below, we track explicitly the dependence of the multiplicative
constants on the following quantites and bounds thereof: the bulk permeability K, the tangential
fracture permeability κτΓ, the normal fracture permeability κnΓ, and the fracture thickness `Γ, which
we collectively refer to in the following as the problem data.

We equip the space Xk
h with the norm }¨}X,h such that, for all pvh, qh, q

Γ
h
q PXk

h,

}pvh, qh, q
Γ
h
q}2X,h – }vh}

2
U ,ξ,h ` }qh}

2
B,h ` }q

Γ
h
}2Γ,h. (34)

Theorem 6 (Stability). Assume (3333). Then, there exists a real number γ ą 0 independent of h,
but possibly depending on the problem geometry, on %, k, and on the problem data, such that, for all
zh PX

k
h,

}zh}X,h ď γ sup
y
h
PXk

h,}yh
}X,h“1

Aξhpzh,yhq. (35)

Consequently, problem (3232) admits a unique solution.

Proof. See Section 66.

We next provide an a priori estimate of the discretization error. Let pu, p, pΓq P U ˆ PB ˆ PΓ and
puh, ph, p

Γ
h
q P Xh denote, respectively, the unique solutions to problems (88) and (3030) (recall that,

owing to (3333), pΓ “ pΓ,0 and pΓ
h
“ pΓ

h,0
). We further assume that u P U`pThq (see Section 4.3.24.3.2 for

the definition of this space), and we estimate the error defined as the difference between the discrete
solution puh, ph, p

Γ
h
q and the following projection of the exact solution:

ppuh, pph, pp
Γ

h
q – pIkhu, π

k
hp, I

k
hpΓq PXh. (36)

Theorem 7 (Error estimate). Let (3333) hold true, and denote by pu, p, pΓq P U ˆ PB ˆ PΓ and
puh, ph, p

Γ
h
q PXk

h the unique solutions to problems (88) and (3030), respectively. Assume the additional

regularity p|T P H
k`2pT q for all T P Th and ppΓq|F P H

k`2pF q for all F P FΓ
h . Then, there exist a

real number C ą 0 independent of h and of the problem data, but possibly depending on % and k, such
that

}uh ´ puh}U ,ξ,h ` }p
Γ
h
´ ppΓ

h
}Γ,h ` χ}ph ´ pph}B,h

ď C

¨

˝

ÿ

TPTh

%B,TKB,Th
2pk`1q
T }p}2Hk`2pT q `

ÿ

FPFΓ
h

KFh
2pk`1q
F }pΓ}

2
Hk`2pF q

˛

‚

1{2

,
(37)

with χ ą 0 independent of h but possibly depending on %, k, and on the problem geometry and data.

Proof. See Section 66.

Remark 8 (Error norm and robustness). The error norm in the left-hand side of (3737) is selected so as
to prevent the right-hand side from depending on the global bulk anisotropy ratio %B (see (22)). As a
result, for both the error on the bulk flux measured by }uh ´ puh}U ,ξ,h and the error on the fracture

pressure measured by }pΓ
h
´ ppΓ

h
}Γ,h, we have: (i) full robustness with respect to the heterogeneity of

K and KΓ, meaning that the right-hand side does not depend on the jumps of these quantities; (ii)
partial robustness with respect to the anisotropy of the bulk permeability, with a mild dependence
on the square root of %B,T (see (1111)). As expected, robustness is not obtained for the L2-error on the
pressure in the bulk, which is multiplied by a data-dependent real number χ.

13



(a) Triangular (b) Cartesian (c) Locally refined

Figure 4: Mesh families for the numerical tests

Remark 9 (L2-supercloseness of bulk and fracture pressures). Using arguments based on the Aubin–
Nitsche trick, one could prove under further regularity assumptions on the problem geometry that
the L2-errors }ph ´ pph}B,h and }pΓ

h ´ ppΓ
h}Γ,h converge as hk`2, where we have denoted by pΓ

h and ppΓ
h

the broken polynomial functions on Γ such that ppΓ
hq|F – pΓ

F and pppΓ
hq – ppΓ

F for all F P FΓ
h . This

supercloseness behaviour is typical of HHO methods (cf., e.g., [1919, Theorem 7] and [2020, Theorem 10]),
and is confirmed by the numerical example of Section 5.15.1; see, in particular, Figure 55.

5 Numerical results

We provide an extensive numerical validation of the method on a set of model problems.

5.1 Convergence

We start by a non physical numerical test that demonstrates the convergence properties of the method.
We approximate problem (3030) on the square domain Ω “ p0, 1q2 crossed by the fracture Γ “ tx P
Ω | x1 “ 0.5u with BΩN

B “ BΓ
N “ H. We take here K “ I2, ξ “ 3{4, κnΓ “ κτΓ “ 1, and `Γ “ 0.5. We

consider the exact solution corresponding to the bulk and fracture pressures

ppxq “

#

sinp4x1q cospπx2q if x1 ă 0.5

cosp4x1q sinpπx2q if x1 ą 0.5
, pΓpxq “

3pcosp2q ` sinp2qq

4
cospπx2q,

and let u|ΩB,i
“ ´∇p|ΩB,i

for i P t1, 2u. The expression of the source terms f , fΓ, and of the Dirichlet
data gB and gΓ are inferred from (3030). It can be checked that, with this choice, the quantities rrpssΓ,
rrussΓ, and ttuuuΓ are non identically zero on the fracture. We consider the triangular, Cartesian, and
locally refined mesh families of Figure 44 and monitor the following errors:

eh – uh ´ puh, εh – ph ´ pph, εΓh – pΓ
h
´ ppΓ

h
, εΓh – pΓ

h ´ ppΓ
h, (38)

where puh, pph, and ppΓ

h
are the broken fracture pressures defined by (3636), while pΓ

h and ppΓ
h are defined

as in Remark 99. Notice that the local refinement in the mesh of Figure 4c4c has no specific meaning
here, and its sole purpose is to show the seamless treatment of nonconforming interfaces inside the
bulk region. We display in Figure 55 various error norms as a function of the meshsize. The orders
of convergence predicted by Theorem 77 are confirmed numerically for }eh}U ,ξ,h and }εΓh}Γ,h, while
convergence in hk`2 is observed for the L2-norms of the bulk and fracture pressures, corresponding
to }εh}B,h and }εΓh}Γ, respectively; see Remark 99 on this point.

5.2 Quarter five-spot problem

The five-spot pattern is a standard configuration in petroleum engineering used to displace and extract
the oil in the basement by injecting water, steam, or gas. The injection well sits in the center of a
square, and four production wells are located at the corners. Due to the symmetry of the problem,
we consider here only a quarter five-spot pattern on Ω “ p0, 1q2 with injection and production wells
located in p0, 0q and p1, 1q, respectively, and modelled by the source term f : ΩB Ñ R such that

fpxq “ 10.1
”

tanh
´

200
´

0.2´ px2
1 ` x

2
2q

1{2
¯¯

´ tanh
´

200
´

0.2´ ppx1 ´ 1q2 ` px2 ´ 1q2q
1{2
¯¯ı

.
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Figure 5: Errors vs. h for the test case of Section 5.15.1 on the mesh families introduced in Figure 44
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´6.31 ¨ 10´2 8.08 ¨ 10´1

(a) No fracture

´6.64 ¨ 10´2 8.07 ¨ 10´1

(b) Permeable fracture

´6.40 ¨ 10´2 1.34

(c) Impermeable fracture

Figure 6: Bulk pressure for the test cases of Section 5.25.2 on a triangular mesh (h “ 1.54 ¨ 10´2) with
k “ 2

Test 1: No fracture. In Figure 6a6a, we display the pressure distribution when the domain Ω
contains no fracture, i.e. ΩB “ Ω; see Figure 7a7a. The bulk tensor is given by K “ I2, and we enforce
homogeneous Neumann and Dirichlet boundary conditions, respectively, on (see Figure 7a7a)

BΩN
B “ tx P BΩB | x1 “ 0 or x2 “ 0u and BΩD

B “ tx P BΩB | x1 “ 1 or x2 “ 1u.

Since the bulk permeability is the identity matrix and there is no fracture inside the domain, the
pressure decreases continuously going from the injection to the production well.

Test 2: Permeable fracture. We now let the domain Ω be crossed by the fracture Γ “ tx P
Ω | x2 “ 1 ´ x1u of constant thickness `Γ “ 10´2, and we let fΓ ” 0. In addition to the bulk
boundary conditions described in Test 1, we enforce homogeneous Dirichlet boundary conditions on
BΓD “ BΓ; see Figure 7a7a. The bulk and fracture permeability parameters are such that

K “ I2 κnΓ “ 1, κτΓ “ 100,

and are chosen in such a way that the fracture is permeable, which means that the fluid should be
attracted by it. The bulk pressure corresponding to this configuration is depicted in Figure 6b6b. We
remark that in ΩB,1 we have a lower pressure, and that the pressure decreases faster from the injection
well to the fracture than in Test 1. In ΩB,2, the flow caused by the production well attracts, less
significantly than in Test 1, the flow outside the fracture.

Test 3: Impermeable fracture. We next consider the case of an impermeable fracture: we keep
the same domain configuration as before, but we let

κnΓ “ 10´2, κτΓ “ 1.

Unlike before, we observe in this case a significant jump of the bulk pressure across the fracture Γ, see
Figure 6c6c. This can be better appreciated in Figure 7b7b, which contains the plots of the bulk pressure
over the line x1 “ x2 for the various configurations considered.

Flow across the fracture. Since an exact solution is not available for the previous test cases, we
provide a quantitative assessment of the convergence by monitoring the quantity

Mk,h
p{i

–
ÿ

FPFΓ
h

ż

F

rruhssF ,

which corresponds to the global flux entering the fracture for the permeable (subscript p) and imper-
meable (subscript i) fractured test cases. The index k refers to the polynomial degree k P t0, 1, 2u, and
the index h to the meshsize. Five refinement levels of the triangular mesh depicted in Figure 4a4a are
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p “ 0

p
“

0

‘

a

ΩB,1

Γ

ΩB,2

u
¨
n
B
Ω
“

0

u ¨ nBΩ “ 0
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(a) Domain configurations without (left) and with (right) fracture (b) Bulk pressure over x1 “ x2
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k “ 1
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(d) εi vs. h

Figure 7: Domain configurations, pressure along the line x1 “ x2, and errors on the flow across the
fracture vs. h for the test cases of Section 5.25.2.

considered. We plot in Figure 7c7c and 7d7d the errors εp{i – |Mr
p{i
´Mk,h

p{i
| for the permeable/impermeable

case (p{i), where Mr
p{i

denotes the reference value obtained with k “ 2 on the fifth mesh refinement

corresponding to h “ 9.60 ¨ 10´4. In both cases we have convergence, with respect to the polynomial
degree and the meshsize, to the reference values Mr

p “ 3.47061 ¨10´1 and Mr
i “ 1.02702 ¨10´1. For the

permeable test case depicted in Figure 7c7c, increasing the polynomial degree only modestly affect the
error decay, which suggests that convergence is limited by the local regularity of the exact solution.
For the impermeable test case depicted in Figure 7d7d, on the other hand, the local regularity of the
exact solution seems enough to benefit from the increase of the approximation order.

5.3 Porous medium with random permeability

To show the influence of the bulk permeability tensor on the solution, we consider two piecewise
constants functions µ1, µ2 : ΩB Ñ p0, 2q and the heterogeneous and possibly anisotropic bulk tensor
K given by

K –

„

µ1 0
0 µ2



.

For the following tests, we use a 64 ˆ 64 uniform Cartesian mesh (h “ 3.91 ¨ 10´3) and k “ 2. The
domain Ω – p0, 1q2 is crossed by a fracture Γ – t0.5u ˆ p0, 1q of constant thickness `Γ – 10´2.
We set the fracture permeability parameters κnΓ – 1 and κτΓ – 100, corresponding to a permeable
fracture. The source terms are constant and such that f ” 4 and fΓ ” 4. We enforce homogeneous
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ΩB

Γ

ΩB

u
¨
n
B
Ω
“

0
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“
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p “ 1

p “ 0

p “ 1pΓ “ 1

pΓ “ 0

(a) Domain configuration

1.05

0

(b) Bulk pressure p

Figure 8: Bulk pressure for the first test case of Section 5.35.3 (homogeneous permeability).

2

10´2

(a) Values of µ1 (left) and µ2 (right)

1.14

´2.76 ¨ 10´3

(b) Bulk pressure p

Figure 9: Permeability components distribution and bulk pressure for the second test case of of
Section 5.35.3 (random permeability).

Neumann boundary condition on BΩN
B – tx P BΩB | x1 P t0, 1uu and Dirichlet boundary conditions

on BΩD
B – tx P BΩB | x2 P t0, 1uu and BΓD – BΓ with

gBpxq – x2 @x P BΩD
B , gΓpxq – x2 @x P BΓD.

Test 1: Homogeneous permeability. In Figure 88, we depict the bulk pressure distribution
corresponding to µ1 “ µ2 – 1. As expected, the flow is moving towards the fracture but less and less
significantly when we approach the bottom of the domain since the pressure decreases with respect
to the boundary conditions.

Test 2: Random permeability. We next define inside the bulk region ΩB horizontal layers of
random permeabilities which are separated by the fracture, and let the functions µ1 and µ2 take
random values between 0 and 1 on one side of each layer, and between 1 and 2 on the other side; see
Figure 9a9a. High permeability zones are prone to let the fluid flow towards the fracture, in contrast to
the low permeability zones in which the pressure variations are larger; see Figure 9b9b, where dashed
lines represent the different layers described above. This qualitative behaviour is well captured by
the numerical solution.

6 Stability analysis

This section contains the proof of Theorem 66 preceeded by the required preliminary results. We
recall that, for the sake of simplicity, we work here under the assumption that homogeneous Dirichlet
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boundary conditions are enforced on both the bulk and the fracture pressures; see (3333). This simplifies
the arguments of Lemma 1010 below.

Recalling the definition (2626) of aξh, and using (2121) together with Cauchy–Schwarz inequalities, we
infer the existence of a real number ηa ą 0 independent of h and of the problem data such that, for

all vh P
qU
k

h,

η´1
a }vh}

2
U ,ξ,h ď }vh}

2
a,ξ,h – aξhpvh,vhq ď ηa%B}vh}

2
U ,ξ,h, (39)

with global bulk anisotropy ratio %B defined by (22). Similarly, summing (2323) over F P FΓ
h , it is readily

inferred that it holds, for all qΓ
h
P P kΓ,h,

η´1
d }q

Γ
h
}2Γ,h ď dhpq

Γ
h
, qΓ
h
q ď ηd}q

Γ
h
}2Γ,h. (40)

The following lemma contains a stability result for the bilinear form bh.

Lemma 10 (Inf-sup stability of bh). There is a real number β ą 0 independent of h, but possibly
depending on %, k, and on the problem geometry and data, such that, for all qh P P

k
B,h,

}qh}B,h ď β sup
whPU

k
h,0,}wh}U,ξ,h“1

bhpwh, qhq. (41)

Proof. We use the standard Fortin argument relying on the continuous inf-sup condition. In what
follows, a À b stands for the inequality a ď Cb with real number C ą 0 having the same dependencies
as β in (4141). Let qh P P

k
B,h. For each i P t1, 2u, the surjectivity of the continuous divergence operator

fromHpdiv; ΩB,iq onto L2pΩB,iq (see, e.g., [2525, Section 2.4.1]) yields the existence of vi PHpdiv; ΩB,iq

such that
∇ ¨ vi “ qh in ΩB,i and }vi}Hpdiv;ΩB,iq À }qh}ΩB,i

, (42)

with hidden multiplicative constant depending on ΩB,i. Let v : ΩB Ñ R2 be such that v|ΩB,i
“ vi

for i P t1, 2u. This function cannot be interpolated through Ikh, as it does not belong to the space
U`pThq introduced in Section 4.3.24.3.2; see also Remark 44 on this point. However, since we have assumed
Dirichlet boundary conditions (cf. (3333)), following the procedure described in [2525, Section 4.1] one
can construct smoothings ṽi P H

1pΩB,iq
2, i P t1, 2u, such that

∇ ¨ ṽi “ ∇ ¨ vi in ΩB,i and }ṽi}H1pΩB,iq2 À }vi}Hpdiv;ΩB,iq. (43)

Let now ṽ : ΩB Ñ R2 be such that ṽ|ΩB,i
“ ṽi for i P t1, 2u. The function ṽ belongs to U XU`pThq,

and it can be easily checked that Ikhṽ P U
k
h,0. Recalling the definition (1313) of the }¨}U ,T -norm and

using the boundedness of the L2-orthogonal projector in the corresponding L2-norm together with
local continuous trace inequalities (see, e.g., [1717, Lemma 1.49]), one has that

ÿ

TPTh

}IkT ṽ}
2
U ,T À

2
ÿ

i“1

}ṽi}
2
H1pΩB,iq2

À

2
ÿ

i“1

}vi}
2
Hpdiv;ΩB,iq

À }qh}
2
B,h, (44)

where we have used (4343) in the second inequality and (4242) in the third. The hidden constant depends

here on K´1
B . Moreover, using a triangle inequality, the fact that λξF ď λF “ pλΓq|F ď λΓ (see (66)) for

all F P FΓ
h , the boundedness of the L2-orthogonal projector, and a global continuous trace inequality

in each bulk subdomain ΩB,i, i P t1, 2u, we get

|Ikhṽ|
2
ξ,h À

2
ÿ

i“1

}pṽiq|Γ ¨ nΓ}
2
Γ À

2
ÿ

i“1

}ṽi}
2
H1pΩB,iq2

À }qh}
2
B,h, (45)

where we have used (4343) and (4242) in the third inequality. The hidden constant depends here on λΓ

and on the inverse of the diameters of the bulk subdomains. Combining (4444) and (4545), and naming
β the hidden constant, we conclude that

}Ikhṽ}U ,ξ,h ď β}qh}B,h. (46)
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Finally, (4343) together with the commuting property (1717) of the local divergence reconstruction oper-
ator gives

πkT p∇ ¨ vq “ πkT p∇ ¨ ṽq “ Dk
T I

k
T ṽ|T @T P Th. (47)

Gathering all of the above properties, we infer that

}qh}
2
B,h “ bpv, qhq “ bpṽ, qhq “ bhpI

k
hṽ, qhq,

where we have used (4242) together with the definition (77) of b in the first equality, (4343) in the second,
and (4747) along with the definition (30b30b) of bh to conclude. Finally, factoring }Ikhṽ}U ,ξ,h, using the
linearity of bh in its first argument, and denoting by $ the supremum in (4141), we get

}qh}
2
B,h ď $}Ikhṽ}U ,ξ,h ď β$}qh}B,h,

where the conclusion follows from (4646). This proves (4141).

We next recall the following Poincaré inequality, which is a special case of the discrete Sobolev
embeddings proved in [1515, Proposition 5.4]: There exist a real number CP ą 0 independent of h and of
the problem data (but possibly depending on Γ and k) such that, for all qΓ

h
“ ppqΓ

F qFPFΓ
h
, pqΓ

V qV PVhq P

P kΓ,h,0,

}qΓ
h}Γ ď CPK

´1{2

Γ }qΓ
h
}Γ,h, (48)

where qΓ
h is the piecewise polynomial function on Γ such that pqΓ

hq|F “ qΓ
F for all F P FΓ

h .

Using the Cauchy–Schwarz inequality together with the fact that λξF “ pλξΓq|F ě λΓ

´

ξ
2 ´

1
4

¯

for

all F P FΓ
h (see (55) and and (66)) and the Poincaré inequality (4848), we can prove the following

boundedness property for the bilinear form ch defined by (2828): For all vh P U
k
h,0 and all qΓ

h
P P kΓ,h,0,

it holds that

|chpvh, q
Γ
h
q| ď ηcλ

´1{2

Γ |vh|ξ,h}q
Γ
h
}Γ,h, ηc – CP

ˆ

ξ

2
´

1

4

˙´1{2

. (49)

We are now ready to prove Theorem 66.

Proof of Theorem 66. Let zh – pwh, rh, r
Γ
hq P X

k
h. In the spirit of [2323, Lemma 4.38], the proof

proceeds in three steps.

Step 1: Control of the flux in the bulk and of the pressure in the fracture. Using the
coercivity (3939) of the bilinear form aξh and (4040) of the bilinear form dh, it is inferred that

Aξhpzh, zhq ě η´1
a }wh}

2
U ,ξ,h ` η

´1
d }r

Γ
h}

2
Γ,h. (50)

Step 2: Control of the pressure in the bulk. The inf-sup condition (4141) on the bilinear form
bh gives the existence of vh P U

k
h,0 such that

}rh}
2
B,h “ ´bhpvh, rhq and }vh}U ,ξ,h ď β}rh}B,h. (51)

Using the definition (3131) of Aξh, it is readily inferred that

Aξhpzh, pvh, 0, 0qq “ }rh}2B,h ` a
ξ
hpwh,vhq ` chpvh, r

Γ
hq ě }rh}

2
B,h ´ |a

ξ
hpwh,vhq| ´ |chpvh, r

Γ
hq|. (52)

Using the continuity of aξh expressed by the second inequality in (3939) followed by Young’s inequality,
we infer that it holds, for all ε ą 0,

|aξhpwh,vhq| ď ηa%B}wh}U ,ξ,h}vh}U ,ξ,h ď
ε

4
}vh}

2
U ,ξ,h `

pηa%Bq
2

ε
}wh}

2
U ,ξ,h. (53)
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Similarly, the boundedness (4949) of ch followed by Young’s inequality gives

|chpvh, r
Γ
hq| ď ηcλ

´1{2

Γ }vh}U ,ξ,h}r
Γ
h}Γ,h ď

ε

4
}vh}

2
U ,ξ,h `

η2
c

ελΓ

}rΓ
h}

2
Γ,h. (54)

Plugging (5353) and (5454) into (5252), selecting ε “ β´2, and using the bound in (5151), we arrive at

Aξhpzh, pvh, 0, 0qq ě
1

2
}rh}

2
B,h ´ C1}wh}

2
U ,ξ,h ´ C2}r

Γ
h}

2
Γ,h, (55)

with C1 – pηaβ%Bq
2 and C2 – pηcβq

2{λΓ.

Step 3: Conclusion. Setting α – p1` C1ηa ` C2ηdq
´1{2 and combining (5050) with (5555), we infer

that

Aξhpzh, p1´ αqzh ` αpvh, 0, 0qq
ě
α

2
}rh}

2
B,h ` η

´1
a p1´ αp1` C1ηaqq }wh}

2
U ,ξ,h ` η

´1
d p1´ αp1` C2ηdqq }r

Γ
h}

2
Γ,h.

Denoting by $ the supremum in the right-hand side of (3535), we infer from the previous inequality
that

C3}zh}
2
X,h ď Aξhpzh, p1´ αqzh ` αpvh, 0, 0qq ď $}p1´ αqzh ` αpvh, 0, 0q}X,h (56)

with C3 – min
`

α{2, η´1
a p1´ αp1` C1ηaqq, η

´1
d p1´ αp1` C2ηdqq

˘

ą 0. Finally, observing that, by
the definition (3434) of the }¨}X,h-norm together with (5151), it holds that }pvh, 0, 0q}X,h ď β}ph}B,h ď
β}zh}X,h, (5656) gives (3535) with γ “ C´1

3 p1` βq.

7 Error analysis

This section contains the proof of Theorem 77 preceeded by the required preliminary results. As in
the previous section, we work under the assumption that homogeneous Dirichlet boundary conditions
are enforced on both the bulk and the fracture pressures; see (3333). In what follows, a À b means
a ď Cb with real number C ą 0 independent of h and of the problem data, but possibly depending
on %, k, and on the problem geometry.

For all T P Th, we define the local elliptic projection qpT P Pk`1pT q of the bulk pressure p such
that

pKT∇pqpT ´ pq,∇wqT “ 0 for all w P Pk`1pT q and pqpT ´ p, 1qT “ 0. (57)

Adapting the results of [2020, Lemma 3], it can be proved that the following approximation properties
hold for all T P Th provided that p|T P H

k`2pT q:

}K
1{2

T ∇pp´ qpT q}T ` h
1{2

T }K
1{2

T ∇pp|T ´ qpT q}BT

`K
1{2

B,Th
´1
T }p´ qpT }T `K

1{2

B,Th
´1{2

T }p|T ´ qpT }BT À K
1{2

B,Th
k`1
T }p}Hk`2pT q.

(58)

Note that we need to specify that the trace of p and of the corresponding flux are taken from the side
of T in boundary norms, since these quantities are two-valued on fracture faces. We also introduce
the broken polynomial function qph such that

pqphq|T “ qpT @T P Th.

The following boundedness result for the bilinear form bh defined by (2727) can be proved using (1818):

For all vh P
qU
k

h and all qh P P
k
B,h,

|bhpvh, qhq| À

˜

ÿ

TPTh

}vT }
2
U ,T

¸1{2

ˆ

˜

ÿ

TPTh

KB,Th
´2
T }qT }

2
T

¸1{2

À }vh}m,h

˜

ÿ

TPTh

KB,Th
´2
T }qT }

2
T

¸1{2

, (59)
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where, to obtain the second inequality, we have used the first bound in (2121) and summed over T P Th
to infer

ÿ

TPTh

}vT }
2
U ,T À }vh}

2
m,h —

ÿ

TPTh

}vT }
2
m,T .

Finally, we note the following consistency property for the bilinear form dh defined by (2929), which
can be inferred from [2020, Theorem 8]: For all q P H1

0 pΓq such that q P Hk`2pF q for all F P FΓ
h ,

sup
rΓ
hPP

k
Γ,h,0,}r

Γ
h}Γ,h“1

¨

˝

ÿ

FPFΓ
h

p∇τ ¨pKF∇τqq, rΓ
F qF ` dhpI

k
hq, r

Γ
hq

˛

‚À

¨

˝

ÿ

FPFΓ
h

KFh
2pk`1q
F }q}2Hk`2pF q

˛

‚

1{2

. (60)

We are now ready to prove the error estimate.

Proof of Theorem 77. The proof proceeds in five steps: in Step 1 we derive an estimate for the
discretization error measured by the left-hand side of (3737) in terms of a conformity error; in Step
2 we bound the different components of the conformity error; in Step 3 we combine the previous
results to obtain (3737). Steps 4-5 contain the proofs of technical results used in Step 2.

Remark 11 (Role of Step 1). The discretization error in the left-hand side of (3737) can be clearly

estimated in terms of a conformity error using the inf-sup condition on Aξh proved in Theorem 66.
Proceeding this way, however, we would end up with constants depending on the problem data in
the right-hand side of (3737) (and, in particular, on the global bulk anisotropy ratio %B defined by (22)).
This is to be avoided if one wants to have a sharp indication of the behaviour of the method for
strongly anisotropic bulk permeability tensors.

In what follows, we use the shortcut notation for the error components introduced in (3838).

Step 1: Basic error estimate. Recalling the definitions (3131) of Aξh and (3939) of the norm }¨}a,ξ,h,
and using the coercivity of dh expressed by the first inequality in (4040), we have that

}eh}
2
a,ξ,h ` }ε

Γ
h}

2
Γ,h À Aξhppeh, εh, εΓhq, peh, εh, εΓhqq “ Eh,1pvhq ` Eh,2pεhq ` Eh,3pεΓhq, (61)

where the linear forms Eh,1 : Uk
h,0 Ñ R, Eh,2 : P kB,h Ñ R, and Eh,3 : P kΓ,h,0 Ñ R correspond to the

components of the conformity error and are defined such that

Eh,1pvhq – ´aξhppuh,vhq ` bhpvh, pphq ´ chpvh,pp
Γ

h
q, (62a)

Eh,2pqhq –
ÿ

TPTh

pf, qT qT ´ bhppuh, qhq, (62b)

Eh,3pqΓ
h
q –

ÿ

FPFΓ
h

p`F fΓ, q
Γ
F qF ` chppuh, q

Γ
h
q ´ dhppp

Γ

h
, qΓ
h
q. (62c)

We next estimate the error εh on the bulk pressure. The inf-sup condition (4141) yields the existence
of vh P U

k
h,0 such that

}εh}
2
B,h “ ´bhpvh, εhq and }vh}U ,ξ,h ď β}εh}B,h. (63)

Hence,
}εh}

2
B,h “ bhpvh, phq ´ bhpvh, pphq

“ aξhpuh,vhq ` chpvh, p
Γ
h
q ´ bhpvh, pphq

“ aξhpeh,vhq ` chpvh, ε
Γ
hq ´ Eh,1pvhq,

where we have used the linearity of bh in its second argument in the first line, (30a30a) in the second

line (recall that gB ” 0 owing to (3333)), and we have inserted ˘
`

aξhppuh,vhq ` chpvh,pp
Γ

h
q
˘

to conclude.
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Using the Cauchy–Schwarz inequality togeher with (3939) for the first term, the boundedness (4949) of
the second, and the linearity of Eh,1 together with the second bound in (3939) for the third, we get

}εh}
2
B,h À

´

%
1{2

B }eh}a,ξ,h ` λ
´1{2

Γ }εΓh}Γ,h ` %
1{2

B Eh,1pvh{}vh}a,ξ,hq
¯

}vh}U ,ξ,h.

Using the inequality in (6363) to bound the second factor, and naming χ the hidden constant, we arrive
at

χ}εh}B,h ď }eh}a,ξ,h ` }ε
Γ
h}Γ,h ` Eh,1pvh{}vh}U ,ξ,hq. (64)

Step 2: Bound of the conformity error components. We proceed to bound the conformity
error components for a generic pvh, qh, q

Γ
h
q PXh.

To bound Eh,1, we use the following reformulations of the first and second contribution, whose proofs
are given in Steps 4-5 below:

aξhppuh,vhq “ ´
ÿ

TPTh

p∇p,F k`1
T vT qT `

ÿ

FPFΓ
h

´

pλξF rrussΓ ¨ nΓ, rrvhssF qF ` pλF ttuuuΓ ¨ nΓ, ttvhuuF qF

¯

`
ÿ

TPTh

ÿ

FPFT

pKT∇pqpT ´ p|T q ¨ nTF , πkFwT ´ πkTwT qF ´
ÿ

TPTh

JT ppuT ,vT qT ,
(65)

where, for all T P Th, wT P Pk`1pT q is such that F k`1
T vT “KT∇wT and

bhpvh, pphq “ bhpvh, π
k
hpp´ qphqq `

ÿ

TPTh

ÿ

FPFT

pqpT ´ p|T , vTF qF ` chpvh,pp
Γ

h
q

´
ÿ

TPTh

p∇p,F k`1
T vT qT `

ÿ

FPFΓ
h

´

pλξF rrussΓ ¨ nΓ, rrvhssF qF ` pλF ttuuuΓ ¨ nΓ, ttvhuuF qF

¯

.
(66)

Using (6565) and (6666) in (62a62a), we infer that

Eh,1pvhq “ bhpvh, π
k
hpp´ qphqq `

ÿ

TPTh

ÿ

FPFT

pqpT ´ p|T , vTF qF

`
ÿ

TPTh

ÿ

FPFT

pKT∇pqpT ´ p|T q ¨ nTF , πkFwT ´ πkTwT qF ´
ÿ

TPTh

JT ppuT ,vT qT .

Using the boundedness (5959) of bh together with the third bound in (5858) to estimate the first term,
Cauchy–Schwarz inequalities together with the fourth bound in (5858) and the first bound in (2121) to esti-

mate the second term, Cauchy–Schwarz inequalities together with the fact that h
´1{2

T }πkFwT ´ π
k
TwT }F À

h´1
T }wT ´ π

k
TwT }T À K

´1{2

B,T }F
k`1
T vT }T (a consequence of the L2pF q-boundedness of πkF and (10b10b)

with l “ k ` 1, m “ 0, and s “ 1) to estimate the third term, and (2222) to estimate the fourth term,
we infer that

|Eh,1pvhq| À
˜

ÿ

TPTh

%B,TKB,Th
2pk`1q
T }p}2Hk`2pT q

¸1{2

}vh}m,h. (67)

For the second error component, using (1b1b), the definition (2727) of the bilinear form bh, and the
commuting property (1717) of the local divergence reconstruction, we get

Eh,2pvhq “
ÿ

TPTh

p∇ ¨ u´ πkT p∇ ¨ uq, qT qT “ 0, (68)

where we have used the fact that qT P PkpT q and the definition (99) of πkT to conclude.

We next observe that, for all F P FΓ
T such that F Ă BT1XBT2 for distinct mesh elements T1, T2 P Th,

rrpuhssF “ πkF
`

u|T1
¨ nT1F ` u|T2

¨ nT2F

˘

“ πkF prruss ¨ nΓq , (69a)

ttpuhuuF “
1

2
πkF

`

u|T1
¨ nΓ ` u|T2

¨ nΓ

˘

“ πkF pttuuu ¨ nΓq . (69b)
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For the third error component, we can then write

Eh,3pqhq “
ÿ

FPFΓ
h

p`F fΓ ` rrpuhssF , q
Γ
F qF ´ dhppp

Γ

h
, qΓ
h
q

“
ÿ

FPFΓ
h

p`F fΓ ` rrussΓ ¨ nΓ, q
Γ
F qF ´ dhppp

Γ

h
, qΓ
h
q

“ ´
ÿ

FPFΓ
h

p∇τ ¨ pKF∇τpΓq, q
Γ
F qF ´ dhppp

Γ

h
, qΓ
h
q,

where we have expanded the bilinear form ch according to its definition (2828) in the first line, we have
used (69a69a) followed by (99) and the fact that qΓ

F P PkpF q to remove πkF in the second line, and we have
concluded invoking (3a3a). The consistency property (6060) then gives

|Eh,3pqhq| À

¨

˝

ÿ

FPFΓ
h

KFh
2pk`1q
F }pΓ}

2
Hk`2pF q

˛

‚}qΓ
h
}Γ,h. (70)

Step 3: Conclusion. Using (6767), (6868), and (7070) with pvh, qh, q
Γ
h
q “ peh, εh, ε

Γ
hq to estimate the

right-hand side of (6161), and recalling that }eh}m,h ď }eh}a,ξ,h, we infer that

}eh}a,ξ,h ` }ε
Γ
h}Γ,h À

¨

˝

ÿ

TPTh

%B,TKB,Th
2pk`1q
T }p}2Hk`2pT q `

ÿ

FPFΓ
h

KFh
2pk`1q
F }pΓ}

2
Hk`2pF q

˛

‚

1{2

, (71)

which, in view of the first inequality in (3939), gives the bounds on the first and second term in the
left-hand side of (3737). Plugging (7171) and (6767) into (6464), and recalling that }vh}m,h ď }vh}a,ξ,h gives
the estimate for the third term in the left-hand side of (3737).

Step 4: Proof of (6565). For every mesh element T P Th, we have that

pK´1
T F

k`1
T puT ,F

k`1
T vT qT “ pF

k`1
T puT ,∇wT qT

“ ´pDk
T puT , wT qT `

ÿ

fPFT

ppuTF , wT qF

“ ´pπkT p∇ ¨ uq, wT qT `
ÿ

fPFT

pπkF pu ¨ nTF q, wT qF

“ ´p∇ ¨ u, πkTwT qT `
ÿ

fPFT

pu ¨ nTF , π
k
FwT qF

“ pu,∇πkTwT qT `
ÿ

fPFT

pu ¨ nTF , π
k
FwT ´ π

k
TwT qF ,

(72)

where we have used the fact that F k`1
T vT “KT∇wT in the first line, the definition (1919) of F k`1

T puT
in the second line, the commuting property (1717) together with the definition (2525) of Ikh in the third
line, the definition (99) of the L2-orthogonal projectors πkT and πkF to pass to the fourth line, and an
integration by parts to conclude.

On the other hand, recalling again that F k`1
T vT “KT∇wT and using the definition (5757) of the local

elliptic projection, we have that

p∇p,F k`1
T vT qT “ pKT∇p,∇wT qT “ pKT∇qpT ,∇wT qT

“ ´p∇ ¨ pKT∇qpT q, wT qT `
ÿ

FPFT

pKT∇qpT ¨ nTF , wT qT

“ ´p∇ ¨ pKT∇qpT q, πkTwT qT `
ÿ

FPFT

pKT∇qpT ¨ nTF , πkFwT qT

“ pKT∇p,∇πkTwT qT `
ÿ

FPFT

pKT∇qpT ¨ nTF , πkFwT ´ πkTwT qF ,

(73)
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where we have used an integration by parts to pass to the second line, the definition (99) of the L2-
orthogonal projectors πkT and πkF together with the fact that ∇ ¨ pKT∇qpT q P Pk´1pT q Ă PkpT q and
pKT∇qpT q|F ¨ nTF P PkpF q for all F P FT (since wT P Pk`1pT q and KT P P0pT q2ˆ2) in the second
line, and again an integration by parts together with the definition (5757) to replace qpT by p in the first
term and conclude.

Summing (7272) and (7373), using (1a1a) to replace u by ´K∇p, and rearranging the terms, we finally
obtain

pK´1
T F

k`1
T puT ,F

k`1
T vT qT “ ´p∇p,F k`1

T vT qT `
ÿ

FPFT

pKT∇pqpT ´ pq ¨ nTF , πkFwT ´ πkTwT qF . (74)

Using (7474) for the consistency term in mT ppuT ,vT q (see (2020)), plugging the resulting relation into

the expression of aξhppuh,vhq (see (2626)), and accounting for (6969) in the fracture terms of aξhppuh,vhq

(where πkF can be cancelled using (99) after observing that λξF rrvhssF P PkpF q and λF rrvhssF P PkpF q
for all F P FΓ

h ) gives (6565).

Step 5: Proof of (6666). We have that

bhpvh, pphq “ bhpvh, π
k
hpp´ qphqq ` bhpvh, π

k
hqphq

“ bhpvh, π
k
hpp´ qphqq `

ÿ

TPTh

pqpT , D
k
TvT qF

“ bhpvh, π
k
hpp´ qphqq `

ÿ

TPTh

˜

ÿ

FPFT

pqpT , vTF qF ´ p∇qpT ,F k`1
T vT qT

¸

“ bhpvh, π
k
hpp´ qphqq `

ÿ

TPTh

ÿ

FPFT

pqpT ´ p|T , vTF qF ´
ÿ

TPTh

p∇p,F k`1
T vT qT `

ÿ

TPTh

ÿ

FPFT

pp|T , vTF qF ,

(75)

where we have inserted ˘πkhqph into the second argument of bh and used its linearity in the first
line, expanded the second term according to its definition (2727) and cancelled the projector since
Dk
TvT P PkpT q for all T P Th in the second line, used the definition (1919) of F k`1

T vT (with wT “ qpT ) in
the third line, and we have inserted ˘

ř

TPTh
ř

FPFT pp|T , vTF qF to pass to the fourth line, where (5757)
was also used to write p instead of qpT in the third term.

Let us consider the last term in (7575). Rearranging the sums and using the fact that p “ 0 on every
boundary face F P Fb

h owing to (3333), it is inferred that

ÿ

TPTh

ÿ

FPFT

pp|T , vTF qF “
ÿ

FPFh

ÿ

TPTF

pp|T , vTF qF “
ÿ

FPF i
h

FĂBT1XBT2

ż

F

`

p|T1
vT1F ` p|T2

vT2F

˘

.

If F P F i
hzFΓ

h , the integrand vanishes since vT1F ` vT2F “ 0 (see the definition (2424) of Uk
h,0) and

p|T1
´ p|T2

“ 0 since the jumps of the bulk pressure vanish across interfaces in the bulk region. If, on

the other hand, F P FΓ
h , assuming without loss of generality that Ti Ă ΩB,i for i P t1, 2u, it can be

checked that p|T1
vT1F ` p|T2

vT2F “ rrpssΓttvhuuF ` ttpuuΓrrvhssF . In conclusion, we have that

ż

F

`

p|T1
vT1F ` p|T2

vT2F

˘

“

#

0 if F P F i
hzFΓ

h ,

prrpssΓ, ttvhuuF qF ` pttpuuΓ, rrvhssF qF if F P FΓ
h .

(76)

Plugging (7676) into (7575), and using (44) to replace rrpssΓ and ttpuuΓ, (6666) follows.
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network simulations. Comput. Meth. Appl. Mech. Engrg., 280:135–156, 2014.
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