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Abstract

Log-linear models are popular tools to analyze contingency tables, particularly to
model row and column effects as well as row-column interactions in two-way tables.
In this paper, we introduce a regularized log-linear model designed for denoising and
visualizing count data, which can incorporate side information such as row and column
features. The estimation is performed through a convex optimization problem where
we minimize a negative Poisson log-likelihood penalized by the nuclear norm of the
interaction matrix. We derive an upper bound on the Frobenius estimation error,
which improves previous rates for Poisson matrix recovery, and an algorithm based
on the alternating direction method of multipliers to compute our estimator. To
propose a complete methodology to users, we also address automatic selection of the
regularization parameter. A Monte Carlo simulation reveals that our estimator is
particularly well suited to estimate the rank of the interaction in low signal to noise
ratio regimes. We illustrate with two data analyses that the results can be easily
interpreted through biplot vizualization. The method is available as an R code.

Keywords: count data, low-rank matrix recovery, dimensionality reduction, EM algorithm,
quantile universal threshold
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1 Introduction

High dimensional count data are collected in many scientific and engineering tasks in-

cluding image processing (Luisier et al., 2011), single-cell RNA sequencing (Pierson and

Christopher, 2015; O. Stegle and Marioni, 2015) and ecological studies (Peres-Neto et al.,

2016). In this latter field, scientists often aim at understanding how species interact with

different sites or biological environments. The data consist of contingency tables collecting

the abundance of species across sampling sites, along with explanatory covariates provid-

ing additional information about species and environmental traits. The goal is then to

uncover the interactions that cause some species to thrive or decay in particular environ-

ments. Consider an m1 × m2 observation matrix of counts Y = (yij) with independent

cells of means E[yij] = exp(x̄ij). Log-linear models (Agresti, 2013; Christensen, 2010) aim

at describing the structure of the mean matrix X̄ = (x̄ij). The saturated model can be

written as follows:

x̄ij = ᾱi + β̄j + Θ̄ij, (1.1)

where ᾱi (resp. β̄j) accounts for the main additive effect of row i (resp. column j) while

Θ̄ij is a row-column interaction term. In the ecological application mentioned above, pa-

rameters ᾱi correspond to environment effects, while the β̄j correspond to species effects.

Model (1.1) is overparametrized but can be restricted using the log-bilinear model, also

known as the RC(K) model (RC for row-column) or the generalized additive main effects

and multiplicative interaction (GAMMI) model (Goodman, 1985; de Falguerolles, 1998;

Gower et al., 2011; Fithian and Josse, 2017). The GAMMI model assumes that the in-

teraction matrix Θ̄ has fixed rank K ≤ min(m1 − 1,m2 − 1). This procedure requires to

estimate the rank of the interaction from data, which is a difficult task. The estimation

of the means exp(x̄ij) is then often done by minimizing a negative Poisson log-likelihood,
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defined for X ∈ Rm1×m2 by

ΦY (X) = − 1

m1m2

m1∑
i=1

m2∑
j=1

(yijxij − exp(xij)) . (1.2)

In this paper, we propose a regularized generalized bilinear model, named GAMMIT that

stands for generalized additive main effects and multiplicative interaction thresholded, for

denoising and visualization of two-way contingency tables. It extends the log-bilinear

model (1.1) in two ways. First, it allows to account for general covariates instead of only

row and column effects. Secondly, it improves on the maximum likelihood estimation by

including a regularization through the nuclear norm penalty of the interaction matrix. Let

us explain the former point in details to show that it allows subtle incorporation of all the

variability explained by the known covariates. Let R ∈ Rm1×K1 (resp. C ∈ RK2×m2) be

matrices of known row (resp. column) covariates, and ᾱ ∈ RK1×m2 (resp. β̄ ∈ Rm1×K2) be

unknown parameters. We model the matrix X̄ as follows:

X̄ = Rᾱ + β̄C + Θ̄. (1.3)

In our example in ecology, the row features R embed geographical information about the

environments (slope, temperature, etc.), and C codes physical traits about species (height,

mass, etc.). If ᾱ has constant rows, ᾱij denotes the effect of the j-th environment covariate

for all i. Then ᾱij will be large if large values of the j-th environment covariate, say the

temperature, lead to large abundances of all species. Similarly if β̄ has constant columns, β̄ij

denotes the effect of the i-th species covariate for all j. Then β̄ij will be large if large values

of the i-th species covariate, say the weight, lead to large abundances in all environments.

The matrices ᾱ and β̄ can also incorporate interactions, and will not be constant in this

case. The coefficient ᾱij will then be large if large values of the j-th environment covariate

leads to large abundances of species i. Similarly the coefficient β̄ij will be large if large
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values of the i-th species covariate leads to large abundances in environment j. We consider

this latter general case in this article. The matrix Rᾱ therefore models the main effects of

row covariates plus the interaction between columns and row covariates. The matrix β̄C

models the main effects of the columns covariates plus the interaction between columns

covariates and rows. Then Θ̄, that we want to uncover, corresponds to the interaction

between species and environments, which is unexplained by the known covariates R and

C, but nonetheless influences the observations.

The paper is organized as follows. In Section 2, we define our estimator through the

minimization of a negative Poisson log-likelihood term (1.2) penalized by the nuclear norm

of the interaction matrix Θ̄. Then, we propose an algorithm based on the alternating

descent method of multipliers (ADMM) to solve the convex optimization problem and

compute this estimator. Under mild assumptions on the true parameter matrix X̄, we

derive in Section 3 an upper bound for the Frobenius estimation error of this estimator

that holds with high probability. Another main contribution is to propose in Section 4 two

methods to choose the regularization parameter. The first one is based on cross-validation

and thus requires to define an EM algorithm to deal with missing values; as an aside,

it gives a new method to impute contingency tables. The second approach is inspired

by the work of Giacobino et al. (2016) on quantile universal thresholds (QUT). QUT

also interestingly yields a new test of independence that can be used as an alternative to

the χ2 test. Finally, we illustrate the performance of our procedure in Section 5 on synthetic

data, and the analysis of an ecological data set is detailed in Section 6. We highlight the

interpretability of the results using biplots visualization. The experiments presented in

this article are reproducible and available as an R code (R Core Team, 2016) on Github at

https://github.com/genevievelrobin/GAMMIT.

Related approaches for Poisson matrix recovery and dimensionality reduction can be
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embedded within the framework of low-rank exponential family estimation (Collins et al.,

2001; de Leeuw, 2006; Li and Tao, 2013; Josse and Wager, 2016; Liu et al., 2016). Existing

models impose low-rank either to the natural parameter matrix with cells x̄ij (Collins

et al., 2001) or to the mean with cells exp(x̄ij) (Liu et al., 2016; Josse and Wager, 2016).

Some procedures maximize a Poisson log-likelihood subject to a nuclear norm penalty,

leading to non-quadratic and non-separable problems. Proposed optimization approaches

include iterative partial updates of the parameters (Salmon et al., 2014) and augmented

Lagrangian methods (Figueiredo and Bioucas-Dias, 2010; Chambolle and Pock, 2011; Jeong

et al., 2013). The theoretical performances of nuclear norm penalized estimators have been

studied in Cao and Xie (2016), where the authors prove uniform bounds on the empirical

error risk by extending results of compressed sensing and 1-bit matrix completion (Raginsky

et al., 2010; Davenport et al., 2012). Our results improve on the rates reported in these

works. Poisson matrix denoising has also been considered through singular value shrinkage,

extending the Gaussian setting (Shabalin and Nobel, 2013; Gavish and Donoho, 2014b,a;

Josse and Sardy, 2015a). Bigot et al. (2016) studied optimal singular value shrinkage for

low-rank matrix denoising in the exponential family, while Liu et al. (2016) suggested a new

shrinker for covariance matrix estimation. None of the methods reviewed so far accounts for

effects of known covariates. Attempts to include row and column effects in matrix recovery

and completion have nonetheless been made in the context of the Netflix challenge. Some

are reviewed in Feuerverger et al. (2012), and Hastie et al. (2014) briefly addressed this

issue through centering and scaling steps. The GAMMI model introduced by Goodman

(1985) takes into account main additive effects and multiplicative interactions.
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2 Method

The main idea is that we want to decompose the parameter matrix in X̄ = X̄0 + Θ̄, where

X̄0 is explained by the known covariates while Θ̄ is not, with X̄0 ⊥ Θ̄ in the sense of the

trace scalar product. To do so, we first need to introduce some notations. Let V1 (resp. V2)

be the linear span of the columns of R (resp. rows of C) in model (1.3) of dimension K1

(resp. K2). Define Π1 ∈ Rm2×m2 (resp. Π2 ∈ Rm1×m1) the orthogonal projection matrices

on subspace V1 (resp. V2). For ease of notation we call I the identity matrices of Rm1×m1

and Rm2×m2 . Let X̄.,j be the j-th column of X̄, we write X̄.,j = Π2X̄.,j + (I − Π2)X̄.,j.

Similarly X̄i,. = X̄,.Π1 + X̄i,.(I −Π1). The parameter matrix X̄ can now be decomposed in

X̄ = X̄0 + Θ̄ with Θ̄ = (I − Π2)X̄(I − Π1). We now identify

X̄0 = X̄Π1 + Π2X̄ − Π2X̄Π1

X̄0 = Rᾱ + β̄C
(2.1)

As detailed in the introduction, the interpretation ofX0 is subtle since it contains the effects

of the covariates, namely Rα the main effects of the row covariates plus their interaction

with the columns and βC the main effects of the column covariates plus their interaction

with the rows. Note that Π2X̄Π1 denotes the interaction between row covariates and

column covariates and has to be substracted from X̄0 since it is contained in both X̄Π1

and Π2X̄. Let V be the linear span of dimension K1m2 +m1K2−K1K2 of matrices of the

form Π2X̄ + X̄Π1 − Π2X̄Π1. We define the orthogonal projection operator T on V⊥. In

other words T : X̄ 7→ (I − Π2)X̄(I − Π1), which implies Θ̄ = T (X̄) and X̄0 ⊥ Θ̄. In the

sequel, for X ∈ Rm1×m2 we write the Schatten s-norm (Bhatia and Kittaneh, 2000) with

s ∈ [1,∞) ‖X‖σ,s =
(∑m1∧m2

i=1 σsi (X)
)1/s, and ‖X‖σ,∞ the largest singular value of X. We

finally define our estimator for a given regularization parameter λ as the minimizer of the
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penalized negative log-likelihood:

X̂λ = argmin
X

Φλ
Y (X), (2.2)

Φλ
Y (X) = ΦY (X) + λ ‖T (X)‖σ,1 . (2.3)

We now describe an optimization algorithm to solve (2.2). Consider the following assump-

tion.

H 1. (i) There exist
¯
µ > 0 and µ̄ <∞ such that for all i, j ∈ [m1]×[m2],

¯
µ ≤ E[yij] ≤ µ̄.

(ii) There exist
¯
σ > 0 and σ̄ <∞ such that for all i, j ∈ [m1]× [m2],

¯
σ2 ≤ Var(yij) ≤ σ̄2.

Under H 1 and setting
¯
γ = log(

¯
µ) and γ̄ = log(µ̄), the entries of X̄ satisfy

¯
γ ≤ x̄ij ≤ γ̄

for all i, j ∈ {1, . . . ,m1} × {1, . . . ,m2}. In the sequel we write K = [
¯
γ, γ̄]m1×m2 . The

parameter set K is compact and Φλ
Y is strongly convex on K, which guarantee existence

and uniqueness of the solution of (2.2). Assumption H 1 is common in the Poisson matrix

denoising and completion litterature. We solve (2.2) by using the alternating directions

method of multipliers (ADMM, Glowinski and Marrocco (1974)), whose convergence stems

from Boyd et al. (2011, Theorem 3.2.1). We solve the following reparametrized program:

argmin
X∈K, Θ∈KT

ΦY (X) + λ ‖Θ‖σ,1 s.t. T (X)−Θ = 0, (2.4)

where KT is the image of set K by the projector T , and is therefore also compact. The

reparametrized problem (2.4) is strongly convex on a compact set, linearly constrained

and separable in X and Θ. ADMM is a variant of the augmented Lagrangian method of

multipliers which solves the dual problem through iterated partial updates. The augmented

Lagrangian indexed by τ is written

Lτ (X,Θ,Γ) = ΦY (X) + λ ‖Θ‖σ,1 + 〈Γ, T (X)−Θ〉+
τ

2
‖T (X)−Θ‖2

σ,2 , (2.5)
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where 〈., .〉 denotes the trace scalar product on Rm1×m2 . ADMM consists in separate

updates of the primal variables X, Θ and of the dual variable Γ to maximize (2.5) according

to the following rules

Xk+1 = argminX∈K Lτ (X,Θk,Γk)

Θk+1 = argminΘ∈KT
Lτ (Xk+1,Θ,Γk)

Γk+1 = Γk + τ(T (Xk+1)−Θk+1).

(2.6)

The function ΦY and ‖.‖ are closed, proper and convex on Rm1×m2 → R. This guarantees

the solvability of the minimization problems defined in the ADMM update (2.6). Moreover

ΦY is differentiable, therefore the optimization in X can be done using gradient descent.

The update of U can itself be done in closed form and involves singular value decomposition

and thresholding (Cai et al., 2010):

Θk+1 = Dλ/τ
(
T (Xk+1) + Γ/τ

)
,

where Dλ/τ is the soft-thresholding operator of singular values at level λ/τ . To speed up

ADMM to convergence, we implemented a warm-start strategy (Friedman et al., 2007;

Hastie et al., 2015): we start by running the algorithm with λ = λ0(Y ), the smallest value

of the regularization parameter that sets the interaction to 0 (see Section 4); we then solve

the optimization problem for decreasing values of λ, each time using the previous estimator

as an initial value.

3 Statistical guarantees

In this section we present statistical guarantees on the Frobenius estimation error of esti-

mator (2.2) under mild assumptions on the true parameter matrix X̄. Our first result gives
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an upper bound on the Frobenius estimation error of X̂λ that depends on the regularization

parameter λ. Our second result gives a theoretical value of λ for which we control the esti-

mation error with high probability. We denote by rk(X) the rank of X, and m = m1 ∧m2,

M = m1 ∨m2, d = m1 +m2.

Theorem 3.1. Assume H 1 and λ ≥ 2
∥∥∇ΦY (X̄)

∥∥
σ,∞. Then∥∥∥X̄ − X̂λ

∥∥∥2

σ,2

m1m2

≤ λ2/
¯
µ2m1m2

(
18 rk(T (X̄)) +K1 +K2

)
. (3.1)

Proof. See Appendix A.

We now discuss conditions under which λ ≥ 2
∥∥∇ΦY (X̄)

∥∥
σ,∞ holds with high probabil-

ity, based on concentration inequalities for the largest eigenvalue of subexponential random

matrices.

H 2. There exists δ > 0 such that for all i, j ∈ [m1]× [m2], E[exp(|yij|/δ)] < +∞.

Theorem 3.2. Under H 1 and H 2, set λ = 2cδσ̄
√

2M log(m1 +m2)/(m1m2) and assume

m1 +m2 ≥ max {δ2(2σ̄2

¯
σ2)−1, (4δ2/σ̄2)4} . Then with probability at least 1− (m1 +m2)−1,∥∥∥X̄ − X̂λ

∥∥∥2

σ,2

m1m2

≤ 4cδσ̄
2/

¯
µ2M

(
18 rkT (X̄) +K1 +K2

)
log(m1 +m2)

m1m2

, (3.2)

where cδ is a numerical constant that depends only on δ.

Proof. See Appendix B.

4 Choice of λ

We propose two approaches for the automatic selection of λ: cross validation and a rule

inspired by the universal threshold of Donoho and Johnstone (1994). We discuss their

respective characteristics on practical cases in Section 5.
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4.1 Cross-validation

The procedure consists in erasing a fraction of the observed values in Y , estimating a

complete parameter matrix X̂λ for a range of λ values, and choosing the parameter λ

that minimizes the error on the prediction of the removed values. This requires an es-

timation procedure that handles missing data. We derive an expectation-maximization

(EM, Dempster et al. (1977)) algorithm to do so. We denote by Yobs (resp. Ymis) the

observe (resp. missing, i.e. removed) entries of Y . The kth iteration of the EM algorithm

goes as follows. In the E-step, we compute the expectation of the complete likelihood

Φ(Yobs,Ymis)(X) with respect to the conditional distribution of the missing values Ymis given

the observed values Yobs and the current parameter X̂k
λ . This boils down to replacing the

missing entries Ymis by their expected values. We obtain Y k+1
obs = Yobs (unchanged) and

Y k+1
mis = exp(X̂k

λ,mis), where exp(X) denotes the cell-wise exponential of matrix X. In the

M-step, we maximize the objective function Φλ
(Y k+1)

(X) with respect to parameter X, giv-

ing X̂λ
k+1 = arg max

X
Φλ

(Y k+1)
(X). This maximization step can be done using the ADMM

algorithm described in Section 2. These two steps are iterated until convergence. Repeat-

ing this procedure, say N times, for a grid of λ, we select the value of λ that minimizes

the prediction square error PSEλ = 1/N
∑N

i=1

∥∥∥Ymis − X̂(i)
λ,mis

∥∥∥2

2
, which is a proxy for the

regularization parameter that minimizes
∥∥∥X̄ − X̂λ

∥∥∥2

σ,2
. Notice that in the process, we have

defined an algorithm to estimate X̄ from incomplete observations. This method can there-

fore also be seen as a matrix completion or single imputation method (Little and Rubin,

2002), and could be used as an alternative to existing techniques to complete contingency

tables with missing values. This point definitely deserves further investigation.
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4.2 Quantile Universal Threshold

Cross-validation is computationally intensive. It is well-suited to find a value of the reg-

ularization parameter λ with good prediction errors, but is not designed to estimate the

rank of T (X̄). We suggest an alternative method to select λ, which is based on the work

of Giacobino et al. (2016). They propose a generic approach to select regularization pa-

rameters for thresholding estimators based on the concept of a zero-thresholding statistic.

Estimator (2.2) is a thresholding estimator in the sense that there exists a value λ0(Y )

that depends on the data, for which the estimated interaction matrix is null, and the same

estimate T (X̂λ) = 0 is obtained for any λ ≥ λ0(Y ). λ0(Y ) defines the zero-thresholding

statistic for (2.2), that we derive in Proposition 1.

Proposition 1. The interaction estimator T (X̂λ) associated to regularization parameter λ

is null if and only if λ ≥ λ0(Y ), where λ0(Y ) is the zero-thresholding statistic given by

λ0(Y ) = (m1m2)−1
∥∥∥T (Y − exp(X̂0))

∥∥∥
σ,∞

,

where X̂0 = argmin
X∈K, T (X)=0

ΦY (X).

Proof. See Appendix C

Note that in the log-bilinear model (1.1), X̂0 has an explicitly expression (Kateri, 2014,

Section 4.2). We propose to use the value of the zero-thresholding statistic λ0(Y ) as the

regularization parameter in our method, mainly because it has the nice property of setting

the estimated interaction to 0 when the true interaction is indeed null. We now describe

how it can be employed to test the null hypothesis H0 : T (X̄) = 0 against the alternative

H1 : T (X̄) 6= 0, which boils down to testing if the measured covariates are sufficient

to explain the observations. Suppose that for any λ we have access to the distribution
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function PH0 (λ0(Y ) < λ). Proposition 1 ensures that model (2.2) gives T (X̂λ) = 0 if and

only if λ ≥ λ0(Y ). For any threshold λ, under H0, the estimate T (X̂λ) will therefore be

equal to 0 with probability PH0 (λ0(Y ) < λ). For 0 < ε < 1, consider a threshold λε that

satisfies PH0 (λ0(Y ) < λε) > 1 − ε. We define the following test procedure of level ε, to

which we refer as the thresholding test. We compute the estimator X̂λε , and accept H0 if

T (X̂λε) = 0, otherwise we reject it. This thresholding test is an alternative to the χ2 test

for independence. We compare the levels of the two tests in Section 5.3.

In practice we do not have access to the distribution PH0 (λ0(Y ) < λ), but we use

the following procedure based on the parametric bootstrap (Efron, 1979) to compute a

proxy for the threshold λε, that we denote by λQUT. For a given observation matrix Y ,

estimate X̂0, generate M1 Poisson matrices (Y`)
M1
`=1 ∼ P(exp(X̂0)) and set λQUT(Y ) to the

(1 − ε) quantile of the distribution of (m1m2)−1
∥∥∥T (Y` − exp(X̂0)

)∥∥∥
σ,∞

. Under the null

hypothesis T (X̄) = 0, assume X̂0 is consistent, we obtain T (X̂λQUT(Y )) = 0 with asymptotic

probability 1− ε. In the experiments we see that λQUT(Y ) proves useful to select the rank

of the interaction T (X̄).

5 Experiments

To assess the performance of our procedure we first consider synthetic data. We start by

generating a contingency table according to the model Y ∼ P(exp(X̄)) with X̄ = X̄0 + Θ̄,

(X̄0)ij = ᾱi + β̄j. The row and column effects ᾱi and β̄j are drawn uniformly and we

generate the interaction Θ̄ of rank K as Θ̄ = UDV T with random orthonormal matrices

U = (uij) and V = (vij), D ∈ RK×K being a diagonal matrix with the singular values of Θ

on its diagonal. The parameters of our simulation are the size of X̄ (m1 ×m2), the rank

K of Θ̄ and the ratio of the nuclear norm of the interaction Θ̄ to the nuclear norm of the
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additive part X̄0: we define the signal to noise ratio (SNR) as
∥∥Θ̄
∥∥
σ,1
/
∥∥X̄0

∥∥
σ,1

.

5.1 Empirical assessment of CV and QUT

To compare the two methods for choosing λ described in Section 4, we consider a repre-

sentative setting with m1 = 20, m2 = 15 and K = 3. Figure 1 represents the L2 error of

recovery between the estimated matrix X̂λ and the true parameter matrix X̄ as a function

of λ. The maximum likelihood estimation in the independence model (Θ̄ = 0) can be used

as a benchmark. When λ is close to 0 we recover the saturated model while as λ increases

we tend to the independence model. The rank of the estimator T (X̂λ) (number of singu-

lar values above 5.10−6) decreases with λ. The two proposed procedures for choosing λ

prove useful: λQUT selects the correct rank (K = 3) for the interaction and cross-validation

achieves the best prediction error. An alternative procedure is a two-step approach where

we fit the MLE with the rank found by QUT. Table 1 compares the estimated models based

on the L2 loss and the rank.

method L2 loss rank

CV 7.37 10

QUT 13.38 3

MLE independence RC(0) 19.51 0

MLE oracle rank RC(3) 9.96 3

2 steps: MLE QUT rank RC(3) 9.96 3

Table 1: L2 loss and rank for m1 = 20, m2 = 15 and K = 3.
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Figure 1: L2 loss (black triangles) of ADMM estimator for λ ∈ [1e − 4, 10] m1 = 20,

m2 = 15, K = 3. Comparison of λCV (cyan dashed line) and λQUT (red dashed line) with

the independence model (purple squares) and the MLE with oracle rank (blue points). The

rank of the interaction is written on the top axis for every λ.

5.2 GAMMIT estimation

We compare our estimator in terms of L2 error to the maximum likelihood estimators of the

log-bilinear models with different ranks: the independence model RC(0), the oracle rank

RC(K) and the rank estimated by QUT RC(KQUT). We did not include cross-validation

in our experiments because it was extremely costly in terms of computation time. For

K > 5, the estimation of the RC(K) model implemented in R (Turner and Firth, 2015)

often fails, the errors of RC(K) and RC(KQUT) are therefore sometimes missing. Figure

2 highlights three interaction regimes. We start by looking at the rank 2 interaction (top

three plots). In the small interaction regime (Figure 2 top left, SNR = 0.2), the interaction

is too small to be distinguished from the Poisson noise, such that the independence model
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achieves a better performance than RC(K) and GAMMIT. The rank selected by QUT is

of 1, and we see that the error of RC(1) is very close to that of RC(0). In the medium

interaction regime (Figure 2 top center, SNR = 0.7) we recover the correct rank of 2 with

Figure 2: 50×20 matrices. Comparison of the L2 error of GAMMIT (black triangles) with

the independence model (purple squares), the rank oracle RC(K) model (blue points) and

the RC(KQUT) (green diamonds). Results are drawn for a grid of λ with λQUT (red dot).

The rank of the interaction is written on the top axis for every λ. Top K = 2, middle

K = 5, bottom K = 10. From left to right SNR = 0.2, 0.7, 1.7.
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QUT but obtain a highest error than the oracle RC(2). These two situations suggest to

use GAMMIT with the two-step procedure. In the high interaction setting (Figure 2, top

right SNR = 1.7), QUT overestimates the rank (here six instead of two), for which RC fails

to calculate the maximum likelihood estimation (possibly because of numerical issues that

occur in the available R libraries). In the medium rank setting (K = 5) we observe a very

similar behavior. Looking at the high rank setting (K = 10), we observe similar results

with an underestimation of the rank with QUT.

We further assess the rank recovery with a Monte-Carlo simulation. Table 2 gives

the mode of the rank recovered with λQUT in various settings. These simulations provide

good insights into the regimes for which λQUT is well suited: moderate interaction regimes

with small ranks. The method tends to underestimate the rank when it is equal to 5.

Unsurprisingly this tendency is exacerbated in the more difficult case when the rank is 10.

size rank
SNR

0.2 0.3 0.4 0.5 0.7 1.7

50× 20 2 0 2 2 2 2 4

50× 20 5 1 2 2 4 4 4

50× 20 10 0 0 1 1 2 5

Table 2: Mode of the estimated rank over 100 simulations using λQUT for different interac-

tion intensities.
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5.3 Thresholding test

We now perform the thresholding test defined in Section 4.2 and compare it to the χ2 test

for tables of size 50 × 20. λQUT is computed as described in Section 4.2 with ε = 0.05

and generating M1 = 1e5 Poisson matrices. The procedure is repeated M2 = 1e5 times

and the results are given in Table 3, for increasing values of the total number of counts

N in the contingency table. As N increases we recover the asymptotic regime where the

test has level 0.05. The results of the thresholding test are very similar to those of the χ2

test. These first results highlight the potential of this approach in a testing setting and

encourage further investigation.

N chisq thresh

13 1.00 1.00

673 0.95 0.96

4537 0.95 0.95

89556 0.95 0.94

990027 0.95 0.95

Table 3: Comparison of the levels of the thresholding and χ2 tests for M1 = M2 = 1e5.

6 Data analyses

We start by demonstrating the interpretability of the GAMMIT interaction estimate on

the Death data dataset and compare our results with that of the log-bilinear model. We

then show how our method handles explanatory variables on an ecological example.
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6.1 Causes of mortality per age

The contingency table Death (available at http://factominer.free.fr/book/death.

csv) described in Husson et al. (2010) crosses causes of death with age categories for

the French population in the year 2006. Age is encoded as a categorical variable with 12

categories (0−1, 1−4, 5−14, etc.) and 65 possible mortality causes are considered. A cell

of the table therefore contains the number of people who died from a particular cause in a

particular age category during the year 2006. GAMMIT is applied on this dataset, using

row and column indicators as covariates (as in model (1.1)) and the threshold λQUT for the

regularization parameter. We compare the results with the RC(3) analysis; the rank K = 3

was selected according to previous analyses on this data (Husson et al., 2010). We repre-

sent on Figure 3 biplot visualizations of the data in the two first dimensions of interaction.

Models such as log-bilinear models provide a distance interpretation as follows. Two age

categories or two mortality causes that are close to one another have similar profiles in the

contingency table whereas an age category and a mortality cause that are close interact

highly. More details about interpretation rules for these models can be found in Fithian

and Josse (2017). Note also that correspondence analysis (Greenacre, 2007) can be applied

to visualize such contingency tables. Biplot representation of correspondence analysis (not

shown here) leads to interpretations which are very similar to those obtained with the RC

model (Fithian and Josse, 2017). The interaction coefficients estimated with RC(3) are

very large in amplitude and largest coefficients correspond to rare events. In particular,

the age category 0− 1 and related mortality causes such as Sudden infant death syndrome

and Complications in pregnancy and childbirth completely drive the first dimension. Our

regularized approach prevents such behaviors. The effect of the 0−1 category is also visible

but shrunk, which reveals other important interactions that are not observed on the RC(3)

biplot. The shape of the biplot and in particular the structure of the age categories (in red)
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is known as the Guttman or horseshoe effect (Diaconis et al., 2008). The smallest distances

found with GAMMIT concern the youngest age categories. In particular Congenital defects

are very close to the children age categories, while Road accidents and Alcohol abuse are

very close to the young categories 15− 24 and 25− 34.
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Figure 3: Visualization of the age categories (red) and mortality causes with largest con-

tributions (blue) in the two first dimensions of interaction with the RC(3) model (left) and

GAMMIT (right).

6.2 Distribution of Alpine plants in Aravo

Our second example is an ecological dataset that counts the abundance of 82 species of

Alpine plants in 75 sites in France. Species traits providing physical information about the

plants (height, spread, etc.) as well as environmental variables about the geography and

climate of the different sites are also available. The data was initially published in Choler

(2005) where ecologists looked for links between shifts in plant traits and environmental

characteristics. The purpose of this analysis is to assess how incorporating covariates in our
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model impacts the interpretation. We first apply GAMMIT without using the covariates,

and obtain a rank of 3 for the interaction matrix.
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Figure 4: Correlation between environment (left) and species (right) covariates with the

two first GAMMIT dimensions.
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Figure 5: Scatterplot in the two first dimensions of interaction with GAMMIT with row-

column indices as covariates of the environments (red) and 16 species (blue) with highest

contribution to the dimensions.
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Figure 4 (left) shows that environment covariates (not used in the analysis) and the two

first directions of interaction are highly correlated: the first direction with the amount of

Snow and the variable PhysD (which denotes the amount of physical disturbance causing

unvegetated soil); the second with the Aspect variable (which denotes the compass direction,

i.e. south, north, etc. that the site faced). On Figure 6 the first direction therefore separates

environments with respect to the amount of snow, while the second direction separates the

environments with respect to the compass direction. Similarly, the species covariates are

highly correlated with the estimated directions of interaction (Figure 4, right): on Figure 6

the first direction separates the plants with respect to their SLA (Specific Leaf Area, defined

as the ratio of the leaf surface to its dry mass) and to their mass based Nitrogen content

(Nmass).

We then applied GAMMIT again, this time using the given traits as known covariates

in our model. That is, we define R as the environment covariates and C as the species

traits. The obtained results are very much interpretable and prove that we successfully

separate the effect of the covariates from the interaction term. Indeed, the correlations

between the known traits and the interaction directions is reduced by a factor between 3

and 10 (they are now too small to be represented on a plot). The rank of the estimated

interaction matrix (using λQUT) is 1, which suggests that an additional variable, other than

the measured explanatory covariates, summarizes the remaining interactions. Note that

this is the first method available to select the rank in such models. Since the rank is 1 we

cannot use a biplot representation, but we can compare the distances between species and

environments before and after discarding the main effects. Figure 6 shows the species and

environments that have the 10 highest interactions (smallest distances on the biplot), for

the GAMMIT model without using the covariates (left) and the GAMMIT incorporating

the covariates (right). We see that the species and environments involved differ, which
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shows that our procedure could possibly lead to new interpretations. In particular, after

incorporating the covariates, we extract species-environment couples much more clearly.
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Figure 6: Visualization of the 10 largest interactions between environments (blue) and

species (red) in the two first dimensions of interaction with GAMMIT for row-column

indices (left) and explanatory covariates (right).

7 Discussion

We have proposed a regularized extension of the log-bilinear model for the analysis of

contingency tables. We proved a theoretical upper bound for the estimation risk of our

method and provided an algorithm that is available as an R code. We suggested two

approaches to estimate the regularization parameter and showed how the results of our

method can be interpreted through biplot representations. We finish by discussing some

opportunities for further research.

First, the prediction performances of our method could possibly be improved by pe-

nalizing the singular values σi of Θ with different regularization parameters λi, such that
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λi increases with i in the vein of adaptive lasso, as it was suggested in Josse and Sardy

(2015b); Gavish and Donoho (2014b). Indeed, using a unique λ tends to shrink too much

the first singular values which can lead to high errors. Second, since we do not regularize

the main covariate effects, our method might have convergence issues when the contingency

table has many zero counts. To prevent this, an option would be to add regularization in

the X̄0 parameter.

There appears to be many potential extensions of GAMMIT. One possibility would

be to use GAMMIT as a method to impute count data. We have indeed built an EM

algorithm for cross-validation that handles and imputes missing values. GAMMIT could be

a competitive alternative to single imputation methods for contingency tables. Directions

of investigation are also to reduce the computational cost of this procedure for instance

using approximations of the cross-validation and to extend the theoretical guarantees to

the missing data setting. We are also eager to investigate further the thresholding test

that we defined with the QUT procedure. In particular the power of the test should be

assessed for different interaction settings. This could be a way to evaluate the difficulty of

the problem of detecting and estimating interactions. The test statistic that we defined is

not pivotal since it depends on the estimate of X̄0 under the independence model. This is

an important issue, since the power of the test will depend on the quality of these estimates

as was pointed out in Giacobino et al. (2016), and we wish to investigate the construction

of a pivotal test statistic to overcome this issue. Finally, we would like to consider other

sparsity inducing penalties. In particular, penalizing the Poisson log-likelihood by the

absolute values of the coefficients of interaction matrix Θ could possibly lead to solutions

where some interactions are driven to 0 and a small number of large interactions is selected.

We are definitely interested in comparing GAMMIT with the results that would be obtained

in this setting.
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A Proof of Theorem 3.1

For sake of clarity, we write in the sequel X̂ instead of X̂λ. We begin the proof of The-

orem 3.1 by some preparatory notations ans lemmas. Given a matrix X1 ∈ Rm1×m2 , we

denote S1(X1) (resp. S2(X1)) the span of left (resp. right) singular vectors of X1. We first

define the orthogonal projection operator P⊥X1 : X2 7→ P⊥S1(X1)X
2P⊥S2(X1), where P

⊥
S1(X1)

(resp. P⊥S2(X1)) is the orthogonal projector on S1(X1)⊥ (resp. S2(X1)⊥). We also define

PX1 : X2 7→ X2 − P⊥S1(X1)X
2P⊥S2(X1).

Lemma A.1. For X ∈ Rm1×m2

(i)
∥∥∥T (X̄) + P⊥T (X̄)

(T (X̄))
∥∥∥
σ,1

=
∥∥T (X̄)

∥∥
σ,1

+
∥∥∥P⊥T (X̄)

(T (X̄))
∥∥∥
σ,1
,

(ii)
∥∥T (X̄)

∥∥
σ,1
− ‖T (X)‖σ,1 ≤

∥∥PT (X̄)(T (X − X̄))
∥∥
σ,1
−
∥∥∥P⊥T (X̄)

(T (X − X̄))
∥∥∥
σ,1
,

(iii)
∥∥PT (X̄)(T (X − X̄))

∥∥
σ,1
≤
√

2rk(T (X̄))
∥∥X − X̄∥∥

σ,2
.

Proof. (i) The definition of PT (X̄) implies that the singular vector spaces of T (X̄) and

of P⊥T (X̄)
(T (X̄)) are orthogonal. Therefore∥∥∥T (X̄) + P⊥T (X̄)(T (X̄))

∥∥∥
σ,1

=
∥∥T (X̄)

∥∥
σ,1

+
∥∥∥P⊥T (X̄)(T (X̄))

∥∥∥
σ,1
.

(ii) Writing T (X) = T (X̄) + P⊥T (X̄)
(T (X − X̄)) + PT (X̄)(T (X − X̄)) we get

‖T (X)‖σ,1 ≥
∥∥T (X̄)

∥∥
σ,1

+
∥∥∥P⊥T (X̄)(T (X − X̄))

∥∥∥
σ,1
−
∥∥PT (X̄)(T (X − X̄))

∥∥
σ,1
,
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using the triangular inequality and the orthonormality of the left and right singular vector

spaces of T (X̄) and P⊥T (X̄)
(T (X − X̄)). This shows that∥∥T (X̄)

∥∥
σ,1
− ‖T (X)‖σ,1 ≤

∥∥PT (X̄)(T (X − X̄))
∥∥
σ,1
−
∥∥∥P⊥T (X̄)(T (X − X̄))

∥∥∥
σ,1
. (A.1)

(iii) For all X ∈ Rm1×m2 , PT (X̄)(T (X)) = PS1(T (X̄))T (X − X̄)P⊥
S2(T (X̄))

+ T (X −

X̄)PS2(T (X̄)) implies that rk(PT (X̄)(T (X − X̄))) ≤ 2rk(T (X̄)). This and the Cauchy-

Schwarz inequality give∥∥PT (X̄)(T (X − X̄))
∥∥
σ,1

≤
√

2rk(T (X̄))
∥∥T (X − X̄)

∥∥
σ,2

≤
√

2rk(T (X̄))
∥∥X − X̄∥∥

σ,2
,

.

Lemma A.2. Assume λ > 2
∥∥∇ΦY (X̄)

∥∥
σ,∞. Then,

(i)
∥∥∥P⊥T (X̄)

T (X̄ − X̂)
∥∥∥
σ,1
≤ 3

∥∥∥PT (X̄)T (X̄ − X̂)
∥∥∥
σ,1

+
∥∥∥(I − T )(X̄ − X̂)

∥∥∥
σ,1
,

(ii)
∥∥∥X̂ − X̄∥∥∥

σ,1
≤
(

1 +
√

32rk(T (X̄)) +
√

2
)∥∥∥X̄ − X̂∥∥∥

σ,2
.

Proof. (i) The convexity of ΦY and the duality of the norms ‖.‖σ,∞ and ‖.‖σ,1 (Boyd

and Vandenberghe, 2004, Section 2.6) yield

ΦY (X̂)− ΦY (X̄) ≥ 〈∇ΦY (X̄), X̂ − X̄〉

≥ −
∥∥∇ΦY (X̄)

∥∥
σ,∞

∥∥∥X̂ − X̄∥∥∥
σ,1
≥ −λ

2

∥∥∥X̂ − X̄∥∥∥
σ,1
.

Since by definition of X̂, λ
(∥∥∥T (X̂)

∥∥∥
σ,1
−
∥∥T (X̄)

∥∥
σ,1

)
≤ −ΦY (X̂) + ΦY (X̄), we get

λ

(∥∥∥T (X̂)
∥∥∥
σ,1
−
∥∥T (X̄)

∥∥
σ,1

)
≤ λ

2

∥∥∥X̂ − X̄∥∥∥
σ,1

≤ λ

2

(∥∥∥T (X̂ − X̄)
∥∥∥
σ,1

+
∥∥∥(I − T )(X̂ − X̄)

∥∥∥
σ,1

)
.
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Reusing A.1 this gives

λ

(∥∥∥P⊥T (X̄)T (X̂ − X̄)
∥∥∥
σ,1
−
∥∥∥PT (X̄)T (X̂ − X̄)

∥∥∥
σ,1

)
≤ λ

2

(∥∥∥P⊥T (X̄)T (X̂ − X̄)
∥∥∥
σ,1

+
∥∥∥PT (X̄)T (X̂ − X̄)

∥∥∥
σ,1

+
∥∥∥(I − T )(X̂ − X̄)

∥∥∥
σ,1

)
,

and finally∥∥∥P⊥T (X̄)T (X̂ − X̄)
∥∥∥
σ,1

≤ 3
∥∥∥PT (X̄)T (X̂ − X̄)

∥∥∥
σ,1

+
∥∥∥(I − T )(X̂ − X̄)

∥∥∥
σ,1
,

(ii) Now, Lemma A.1 (iii) and the triangular inequality give∥∥∥T (X̂ − X̄)
∥∥∥
σ,1

≤ 4
∥∥∥PT (X̄)T (X̂ − X̄)

∥∥∥
σ,1

+
∥∥∥(I − T )(X̂ − X̄)

∥∥∥
σ,1

≤
(√

32rk(T (X̄)) +
√

2

)∥∥∥X̄ − X̂∥∥∥
σ,2
.

(A.2)

We now use Cauchy’s interlacing theorem (Bhatia (1997) Corollary III.1.5) which states

that, denoting σk(X), 1 ≤ k ≤ K the kth singular value of X in the decreasing order, P1,

P2 two orthogonal projections and Z = P2XP1, then σ1(X) ≥ σ1(Z) ≥ σ2(X) ≥ · · · ≥

σK−1(Z) ≥ σK(X). Since T (X) = Π2XΠ1, with Π1 and Π2 orthogonal projectors, this

implies that∥∥∥X̂ − X̄∥∥∥
σ,1
≤
∥∥∥T (X̂ − X̄)

∥∥∥
σ,1

+
∥∥∥X̂ − X̄∥∥∥

σ,∞
≤
∥∥∥T (X̂ − X̄)

∥∥∥
σ,1

+
∥∥∥X̂ − X̄∥∥∥

σ,2
.

Combining this with (A.2) we obtain∥∥∥X̂ − X̄∥∥∥
σ,1
≤
(

1 +
√

32rk(T (X̄)) +
√

2

)∥∥∥X̄ − X̂∥∥∥
σ,2
,

which proves (ii).

26



We now proceed to the proof of Theorem 3.1. The proof derives from two main argu-

ments using the strong convexity of ΦY and the empirical Bregman divergence

DΦY
(X̂, X̄) = ΦY (X̂)− ΦY (X̄)− 〈∇ΦY (X̄), X̂ − X̄〉. (A.3)

On the one hand, the strong convexity of ΦY implies,
¯
µ
∥∥∥X̄ − X̂∥∥∥2

/(2m1m2) ≤ DΦY
(X̂, X̄).

On the other hand, by definition of the estimator X̂ we have

ΦY (X̂)− ΦY (X̄) ≤ λ

(∥∥T (X̄)
∥∥
σ,1
−
∥∥∥T (X̂)

∥∥∥
σ,1

)
.

Substracting 〈∇ΦY (X̄), X̂ − X̄〉 on both sides we get

¯
µ

∥∥∥X̄ − X̂∥∥∥2

σ,2

2m1m2

≤ −〈∇ΦY (X̄), X̂ − X̄〉+ λ

(∥∥T (X̄)
∥∥
σ,1
−
∥∥∥T (X̂)

∥∥∥
σ,1

)
.

We now upper bound the two terms in the right hand side of the previous relation. The

duality of ‖.‖σ,1 and ‖.‖σ,∞ yields −〈∇ΦY (X̄), X̄ − X̂〉 ≤
∥∥∇ΦY (X̄)

∥∥
σ,∞

∥∥∥X̂ − X̄∥∥∥
σ,1

.

− 〈∇ΦY (X̄), X̂ − X̄〉 ≤
∥∥∇ΦY (X̄)

∥∥
σ,∞×(∥∥∥PT (X̄)(T (X̂ − X̄))

∥∥∥
σ,1

+
∥∥∥P⊥T (X̄)(T (X̂ − X̄))

∥∥∥
σ,1

+
∥∥∥(I − T )(X̄ − X̂)

∥∥∥
σ,1

)
, (A.4)

which gives an upper bound for the first term. To bound the second term, we apply

Lemma A.1(ii) to X̂, which gives∥∥T (X̄)
∥∥
σ,1
−
∥∥∥T (X̂)

∥∥∥
σ,1
≤
∥∥∥PT (X̄)(T (X̂ − X̄))

∥∥∥
σ,1
−
∥∥∥P⊥T (X̄)(T (X̂ − X̄))

∥∥∥
σ,1
. (A.5)

Combining Equation (A.4) and Equation (A.5) we obtain

¯
µ

∥∥∥X̄ − X̂∥∥∥2

σ,2

2m1m2

≤
(∥∥∇ΦY (X̄)

∥∥
σ,∞ + λ

)∥∥∥PT (X̄)(T (X̂ − X̄))
∥∥∥
σ,1

+
(∥∥∇ΦY (X̄)

∥∥
σ,∞ − λ

)∥∥∥P⊥T (X̄)(T (X̂ − X̄))
∥∥∥
σ,1

+
∥∥∇ΦY (X̄)

∥∥
σ,∞

∥∥∥(I − T )(X̄ − X̂)
∥∥∥
σ,1
,

(A.6)
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and λ ≥ 2
∥∥∇ΦY (X̄)

∥∥
σ,∞ ensures

¯
µ

∥∥∥X̄ − X̂∥∥∥2

m1m2

≤ 3λ
∥∥∥PT (X̄)(T (X̂ − X̄))

∥∥∥
σ,1

+ λ
∥∥∥(I − T )(X̄ − X̂)

∥∥∥
σ,1
.

(A.7)

Since rk((I − T )(X̄ − X̂)) ≤ K1 + K2 and
∥∥∥(I − T )(X̄ − X̂)

∥∥∥
σ,2
≤
∥∥∥X̄ − X̂∥∥∥

σ,2
we have∥∥∥(I − T )(X̄ − X̂)

∥∥∥
σ,1
≤
√
K1 +K2

∥∥∥X̄ − X̂∥∥∥
σ,2

, which together with Item (iii) and using

2(a2 + b2) ≥ (a+ b)2 yields Theorem 3.1.

B Proof of Theorem 3.2

Consider the random matrices defined by Zij = (yij − exp(x̄ij))Eij, i, j ∈ [m1]× [m2], with

Eij is the (i, j)th canonical matrix. With this notation ∇ΦY = (m1m2)−1
∑m1

i=1

∑m2

j=1 Zij,

E[Zij] = 0,
¯
σ ≤ E[

∥∥ZijZT
ij

∥∥
σ,∞] ≤ σ̄ and

¯
σ ≤ E[

∥∥ZT
ijZij

∥∥
σ,∞] ≤ σ̄ for all i, j ∈ [m1] × [m2].

We define the quantity

σ2
Z = max

 1

m1m2

∥∥∥∥∥
m1∑
i=1

m2∑
j=1

E[ZijZ
T
ij ]

∥∥∥∥∥
σ,∞

,
1

m1m2

∥∥∥∥∥
m1∑
i=1

m2∑
j=1

E[ZT
ijZij]

∥∥∥∥∥
σ,∞

 . (B.1)

Using H2 there exists K > 0 such that for all i, j, E[exp(‖Zij‖σ,∞ /K)] < +∞. We apply

(Klopp, 2014, Proposition 11). There exists a constant cK < ∞ that depends only on K

such that for all t > 0, with probability at least 1− e−t we have

1

m1m2

∥∥∥∥∥
m1∑
i=1

m2∑
j=1

Zij

∥∥∥∥∥
σ,∞

≤ cK max

σZ
√
t+ log(d)

m1m2

, K

(
log

K

σZ

)
t+ log(d)

m1m2

 , (B.2)

where σZ is defined as in (B.1). Since M/(m1m2)
¯
σ2 ≤ σ2

Z ≤M/(m1m2)σ̄2 (where
¯
σ and σ̄

are defined in H1) and setting t = log(d), we obtain that with probability at least 1− d−1

∥∥∇ΦY (X̄)
∥∥
σ,∞ ≤ cK max

{
σ̄

√
2M log(d)

m1m2

, K

(
log
√
m
K

¯
σ

)
2 log(d)

m1m2

}
, (B.3)
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with M ≥ d/2 and m ≤ d/2. Asymptotically in d the left term dominates, and assuming

d ≥ d∗ = max {K2(2σ̄
¯
σ2)−1, (4K2/σ̄2)4} ensures that

√
d log(d)σ̄ ≥ K

(
log
√
d/2K/

¯
σ
)

2 log(d).

Taking λ = 2cσ̄
√

2M log(d)/(m1m2) then guarantees λ ≥ ‖∇ΦY ‖σ,∞ with probability at

least 1− d−1 which completes the proof.

C Proof of Proposition 1

We write X = X0 + Θ with Θ = T (X). The zero thresholding statistics is given by the

minimum value of λ, λ0(Y ), that sets Θ̂λ to 0 under the null hypothesis:

λ0(Y ) = min
λ

0 ∈ ∂{Φλ
Y (X0,Θ) + 1K(X0 + Θ)}|Θ=0,

where 1K(X0 + Θ) is the indicator of K equal to 0 on K and +∞ elsewhere. On the one

hand, under the constraint Θ = 0 we get X̂0 = argmin
X∈K,T (X)=0

ΦY (X). On the other hand, the

subdifferential of the objective function Φλ
Y with respect to Θ at Θ = 0 is given by

∂ΘΦλ
Y |Θ=0 = − 1

m1m2

(Y − exp(X0)) + λ∂Θ ‖Θ‖σ,1 |Θ=0 + ∂Θ1K(X0 + Θ)|Θ=0.

First Lemma C.1 guarantees that 0 ∈ ∂Θ1K(X0 + Θ)|Θ=0. Then Lemma C.2 ensures that

0 ∈ ∂Φλ
Y (Θ)|Θ=0 (and therefore Θ = 0 is solution of the optimization problem) if and only

if

0 ∈ − 1

m1m2

(Y − exp(X̂0)) + λW,

‖T (W )‖σ,∞ < 1. Which is itself equivalent to (I−T )(W ) = (I−T )
(
−(m1m2)−1(Y − exp(X̂0))

)
and λ ≥ (m1m2)−1

∥∥∥T (Y − exp(X̂0))
∥∥∥
σ,∞

.

Lemma C.1. Let C be a compact set, CT be the image of C by projector T , and 1C be

the indicator of C equal to 0 on C and +∞ elsewhere. Consider a matrix X ∈ C. Define

f : CT → R+ be the function such that f(A) = 1C(X + A). Then 0 ∈ ∂f(A)|A=0.
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Proof. The subdifferential of f is defined by

∂f(A) = {W ∈ Rm1×m2 , f(B) ≥ f(A) + 〈W, (B − A)〉;B ∈ CT }.

We now fix A = 0. X ∈ C therefore f(0) = 0. Let B be a matrix of CT . If X + B ∈ C

then f(B) = 0 and f(B) ≥ f(0) + 〈0, (B − A)〉. If X + B /∈ C then f(B) = +∞ and

f(B) ≥ f(0) + 〈0, (B − A)〉. Therefore 0 ∈ ∂f(A)|A=0.

Lemma C.2. Let g : V⊥ → R+ be the function defined by g(A) = ‖A‖σ,1 for A ∈ V⊥.

Then ∂g(0) =
{
W ∈ Rm1×m2 , ‖T (W )‖σ,∞ < 1

}
.

Proof. Recall the definition of the subdifferential

∂g(A) = {W ∈ Rm1×m2 , g(B) ≥ g(A) + 〈W, (B − A)〉;B ∈ V⊥}.

We now fix A = 0. Let us decompose W = W1 + W2, W1 ∈ V and W2 = T (W ) ∈ V⊥.

Since 〈W,B〉 = 〈W2, B〉, ‖W2‖σ,∞ ≤ 1 is a sufficient condition for W ∈ ∂g(0). Now assume

‖W2‖σ,∞ > 1. LetW2 = UΣV T , where Σ11 > 1 is the largest singular value ofW2, U and V

are orthogonal matrices of left and right singular vectors. Let us define B = UΣ̃V T , Σ̃11 = 1

and Σ̃ij = 0 elsewhere. Since T (B) = (I−Π1)B(I−Π2), Lemma C.3 ensures B ∈ V⊥. We

have g(B) = 1 and 〈W2, B〉 = Σ11 > g(B). Therefore ‖W2‖σ,∞ > 1 ⇒ W /∈ ∂g(0), from

which we conclude

∂g(0) =
{
W ∈ Rm1×m2 , ‖T (W )‖σ,∞ < 1

}
.

Lemma C.3. Let P1 and P2 be two orthogonal projectors on subspaces of Rm1 and Rm2,

respectively. Let A ∈ Rm1×m2 be a matrix such that A = P1AP2 and let B ∈ Rm1×m2 be a

matrix such that Im(B) ⊆ Im(A) and Im(BT ) ⊆ Im(AT ). Then B = P1BP2.

Proof. A = P1AP2 implies that Im(A) ⊆ Im(P1)⊥ and Im(AT ) ⊆ Im(P2)⊥. Therefore

Im(B) ⊆ Im(P1)⊥ and Im(BT ) ⊆ Im(P2)⊥ and B = P1BP2.
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