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[1] We analyze the mechanical properties needed to
account for the large shallow slip during the 2011
Tohoku-Oki earthquake and the activation of landward
normal faulting within the forearc. We show that the
morphology and internal structure of the forearc follows
closely the prediction of the critical Coulomb wedge in
horizontal compression, implying a high internal pore
pressure ratio (� = 0.7 + 0.14/ – 0.48) and a low effective
basal friction (�eff

b = 0.14 + 0.18/ – 0.04). We then show
that the activation of the normal fault requires a lower
effective basal friction beneath the outer wedge than beneath
the inner wedge (�outer � 0.015), possibly due to transient
dynamic weakening associated to the seismic rupture.
Forearc normal faults could be considered as evidence
for very efficient dynamic weakening along the megathrust
and typify megathrust with high tsunamigenic potential.
Citation: Cubas, N., J. P. Avouac, Y. M. Leroy, and A. Pons
(2013), Low friction along the high slip patch of the 2011
Mw 9.0 Tohoku-Oki earthquake required from the wedge
structure and extensional splay faults, Geophys. Res. Lett., 40,
doi:10.1002/grl.50682.

1. Introduction
[2] The 11 March 2011 Mw 9.0 Tohoku-Oki earthquake

ruptured the plate interface between the Pacific Plate and NE
Japan generating very large slip, probably exceeding 50 m at
depth between 10 and 15 km, and a major tsunami [Ozawa
et al., 2011; Wei et al., 2012; Ide et al., 2011; Simons et al.,
2011, and Figure 1a]. Large shallow slip is attested from the
displacement of ocean bottom gauges [Ito et al., 2011] and
comparison of bathymetric profiles measured in 1999 and
late March 2011 [Fujiwara et al., 2011]. While many magni-
tude 7.5 earthquakes had occurred along the deeper portion
of the Megathrust, the large shallow slip came as a surprise
since (1) the upper portion of the Megathrust is commonly
thought to slip aseismically [e.g., Oleskevich et al., 1999]
and (2) interseismic strain accumulation models were not
showing a locked patch near the trench [Hashimoto et al.,
2009; Loveless and Meade, 2011]. Another intriguing obser-
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vation is that the earthquake activated a landward dipping
normal fault [Ito et al., 2011; Tsuji et al., 2011, 2013], which
lies slightly updip of the maximum slip area (Figure 1a).
The landward normal fault marks the lower limit of an
outer wedge formed by a stack of thrust sheets (Figure 1e).
The fault, which extends parallel to the trench for several
tens of kilometers, could have contributed to the tsunami
[Tsuji et al., 2011, 2013; McKenzie and Jackson, 2012],
and its activation is consistent with the trench-perpendicular
horizontal extension of the hanging wall revealed by after-
shocks [Ide et al., 2011; Asano et al., 2011, and Figure 1c].
In this study, we analyze the mechanical properties of
the wedge and Megathrust which are required to allow
large shallow slip and activation of that normal fault. We
show that the outer wedge morphology is consistent with a
critical Coulomb wedge in horizontal compression [Davis
et al., 1983] and derive constraints on basal friction, inter-
nal friction, and pore pressure. We test next the possibility
that the wedge would have reached the extensional critical
limit as a result of coseismic stress change [Kimura et al.,
2012; Conin et al., 2012]. We then evaluate the possibility
that the localized normal faulting would be related to varia-
tion of frictional properties using the limit analysis approach
[Salençon, 2002; Maillot and Leroy, 2006].

2. Frictional Properties Derived From the
Critical Wedge Theory

[3] We focus on the epicentral area of the Tohoku-Oki
earthquake (box in Figure 1a). We observe that the outer
wedge morphology (Figure 1d) follows the prediction of
the critical Coulomb wedge theory that the topographic
slope is approximately a linear function of the dip angle
of the Megathrust [e.g., Suppe, 2007] (Figure 2a). This
theory allows relating the geometry of a wedge to the fric-
tional properties of the bulk material and of the décollement
[Davis et al., 1983]. Depending on the topographic slope ˛
and the Megathrust dip angle ˇ, three domains are defined
(Figure 2a):

[4] 1. A critical state. The Megathrust and the whole
wedge are at the verge of failure, implying active faulting
within the wedge, in horizontal compression for the lower
branch of the envelope, and in horizontal extension for the
upper branch.

[5] 2. A stable state within the critical envelope. In that
state, the wedge can slide along the décollement without any
permanent internal deformation.

[6] 3. Outside the critical envelope. The state of stress
within the wedge would exceed the Coulomb yield criterion
and is therefore forbidden in steady state in principle.
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Figure 1. (a) Coseismic slip of the March 2011 Tohoku-Oki earthquake [Wei et al., 2012] with location of the landward
normal fault described by Tsuji et al. [2011]. The main shock epicenter is indicated by the star. Box shows area considered
in the analysis of the wedge geometry in Figure 1d. (b) Spatial distribution of CMTs of earthquakes before the main shock
(from January 2003 to 11 March 2011), and (c) noninterplate aftershocks in the hanging wall (from 11 to 24 March 2011) in
the studied area from Asano et al. [2011]. Compression (red), extension (blue), strike-slip (black). (d) 150 km large swath
profile with ˛ the topographic slope, ˇ the megathrust dip, and location of the landward normal fault. (e) Seismic reflection
profile from Tsuji et al. [2011].

[7] We resort to this theory to identify the section of the
forearc at criticality and place constraints on the mechanical
properties of the forearc and Megathrust. We use the solution
of Dahlen [1984] describing the critical taper angle formed
by the topographic slope ˛ and the Megathrust dip ˇ as a
function of the angle ‰B formed by the maximum principal
stress �1 and the base of the wedge and the angle ‰0 formed
by �1 and the top of a cohesionless wedge. For the lower
compressive branch case, this relation reads as follows:

(˛ + ˇ)c = ‰B –‰0 (1)

with
‰B =

1
2

arcsin
�

sin�0b
sin�b

�
–

1
2
�0b , (2)

‰0 =
1
2

arcsin
�

sin˛0

sin�

�
–

1
2
˛0. (3)

[8] The angles � and �b are the internal and basal coeffi-
cients of friction defined as � = tan� and �b = tan�b, and

�0b = arctan
��

1 – �b

1 – �

�
tan�b

�
, (4)

˛0 = arctan
��

1 – �w/�
1 – �

�
tan˛

�
. (5)

[9] The internal and basal Hubbert-Rubbey fluid pressure
ratios � and �b are defined in Davis et al. [1983] as

� =
P – �wgD

|�z| – �wgD
, �b =

Pb – �wgD
|�z| – �wgD

, (6)

where � and �w are the wedge material and water densities
and D is the water depth. The equations describing the whole
envelope are provided by Lehner [1986]. The critical taper

theory is assumed to be applicable to curved megathrust pro-
vided the wedge thickness is small compared to the radius of
curvature as is the case here [Cubas et al., submitted].

[10] The taper geometry and associated uncertainties were
determined using the slab 1.0 model of Hayes et al. [2012]
and the ETOPO1 topography [Amante and Eakins, 2009]
(resolution 10). The frontal part of the taper follows a crit-
ical envelope (Figure 2a) consistent with the evidence for
internal deformation of the wedge reflected in the seismic
profile (Figure 1e) and the seismicity before Tohoku-Oki
(Figure 1b). We select this portion of the profile and deter-
mine the model parameters that predict a theoretical enve-
lope that best reproduces the observed covariation of ˛
and ˇ. Probability densities of the three independent model
parameters, the internal friction, the internal pore pressure
ratio, and the effective basal friction defined as �eff

b =
tan�eff

b = (1 – �b)tan�b are plotted in Figure 2c and a table
with the best fitting values is given in the supporting infor-
mation. The best fitting model shows a high pore pressure
ratio in the wedge (� = 0.8), a standard internal friction
(�int = 38.75ı, �int = 0.8) and a low effective basal friction
(�eff

b = 7.5ı, �eff
b = 0.13). However, because of the trade off

between �int and �, these two parameters are poorly con-
strained. If we impose �int to be in the standard range of
internal friction angles measured in the lab (30ı < �int < 40ı,
0.57 < �int < 0.84, Byerlee [1978]), we get 0.22 < � < 0.84
at the 68% confidence level with the probability distribu-
tion peaking at � = 0.7. For a rock density of 2800 kg/m3, �
cannot be smaller than 0.35; lower values were considered
here for the inversion purpose. The effective basal friction
is constrained to be very low 5.7ı < �eff

b < 17.7ı (0.1 <
�eff

b < 0.32) at the 68% confidence level with the probability
distribution peaking at 8.25ı (�eff

b = 0.14). Its probability dis-
tribution does not vary much if �int is kept constant. Since the
internal friction and pore pressure are now constrained, we
evaluate the effective basal friction so that the extensional
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Figure 2. (a) Theoretical critical envelopes for two different sets of frictional properties compared to the taper of the
swath profile of the studied area (�int=38.75ı). (b) The portion of the taper considered at critical state is overlined in red
and corresponds to the high slip patch of the Tohoku-Oki earthquake. The effective basal friction is decreased in order to
reach the extensional limit for the taper measured at the location of the landward normal fault (NF) marked by a black circle
(�int=38.75ı, �=0.8). (c) Probability densities for the three independent parameters �int, �eff

b and �int without constraints on
�int (dashed line), for �int in the 30ı–40ı range (plain line). The densities are determined from fitting the portion of the
wedge presumed to be at critical state with the theoretical envelope. Best fit values of the three parameters inversion are
marked by a black circle.

critical state is reached for the taper angle measured at the
location of the landward normal fault. A decreased effec-
tive basal friction �eff

b = 0.003 is required (Figure 2b). If
the intrinsic friction is maintained, then the pore pressure
would need to have increased from � = 0.8 to 0.995. If the
pore pressure is maintained, then the friction angle would
need to have dropped from �b = 33.3ı to 2.3ı (�b = 0.66
to 0.04). Such a low friction could have resulted from very
efficient dynamic weakening, as suggested by some aspects

of the rupture [Ide et al., 2011], possibly the results of ther-
mal pressurization [Noda and Lapusta, 2013]. The exten-
sional state would then be the result of a static coseismic
stress change [Kimura et al., 2012; Conin et al., 2012; Wang
et al., 2010]. Dynamic branching could also be invoked
but the aftershocks with normal faulting mechanisms sug-
gest that horizontal extension must have resulted from the
static stress change, justifying a static stress equilibrium
analysis. However, since the taper trajectory is not parallel
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indicated by the red circle. Expected associated splay faults in the case of a spatial (b) decrease or (c) increase of the basal
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to the extensional branch of the envelope, it is not clear
that the critical Coulomb wedge model is applicable to
this analysis. Also, if the same properties apply to the
whole outer wedge, the frontal part of the wedge should
then collapse due to internal normal faulting, and slip
should gradually increase toward the trench which is not
observed. Actually, it is probably incorrect to assume that
the whole wedge has been brought to the verge of failure
in extension. We therefore explore that alternative expla-
nation that the normal fault would rather be interpreted
as a splay fault formed related to changes in frictional
properties along the Megathrust [Pons and Leroy 2012;
Cubas et al., submitted].

3. Splay Faults as Markers for Transition of
Frictional Properties

[11] We use here the limit analysis which is based on
the principle of virtual powers and the theorem of maxi-
mum rock strength [Chandrasekharaiah and Debnath, 1994;
Salençon, 2002; Maillot and Leroy, 2006]. The method
investigates all possible collapse scenarios and selects the
optimal one leading to the least upper bound to the tectonic
force. The wedge strength is assumed to be determined by
the Coulomb criterion. Compared with the critical taper the-
ory, there is no need to assume homogeneous mechanical
properties or a wedge uniformly at critical state. We used
the formulation for saturated porous media from Pons and
Leroy [2012] (supporting information). We assume that the
basal pore pressure and basal friction vary abruptly at the
transition from the inner to the outer wedge. We then deter-
mine the faulting pattern that develops at this transition.
The resultant splay fault can be a forethrust, a backthrust, a
seaward normal fault or a landward normal fault. Each of
them could be associated with a conjugate fault. Conditions
for each mechanism are summarized in Figure 3 where �BI
and �BF are the basal friction angles, and �BI and �BF the
pore pressure ratios of the internal and frontal part of the
Megathrust, respectively. We use the properties found based
on the critical taper theory for the bulk and the inner wedge
Megathrust (�int = 0.8, �eff

BI = 0.13). The inner Megathrust
pressure ratio is set equal to the internal pressure ratio (�BI =
�int = 0.8). To account for dynamic weakening during seis-
mic sliding, we decrease the effective basal friction�eff

BI from
0.13 to 0.1. The down-dip part of the wedge is thus in a sta-
ble state. Two possibilities are studied: in the first case, the
basal friction coefficient angle decreases toward the trench
�BI > �BF (Figure 3b), in the second case, it increases �BI
< �BF (Figure 3c). We also vary the pore pressure along
the frontal part of the Megathrust, hence, the effective basal
frontal friction �eff

BF. If the effective frontal basal friction is
too large (�eff

BF > 0.13), the taper is then in the unstable field
(Figure 3a), no sliding is allowed along the updip part of the
wedge and conjugate thrust faults are formed at the transition
in order to increase the taper (Figure 3b and 3c). If the effec-
tive frontal basal friction decreases and the wedge reaches
the compressional limit (�eff

BF = 0.13), the décollement is then
fully activated, and a thrust fault appears at the transition
to accommodate the difference of slip along the upper and
lower part of the Megathrust generated by the difference in
basal friction. For �BI > �BF, a shallow dipping forethrust is
formed (25ı), while �BI < �BF leads to a backthrust (149.5ı).
If the effective frontal basal friction is decreased, the frontal

wedge enters the stable domain, and forethrust and
backthrust get steeper (for �eff

BF = 0.037, dips are of 72ı and
132ı, respectively). By decreasing more the effective fric-
tion, we reach the extensional critical limit (�eff

BF = 0.003)
and dips increase again resulting in a seaward normal fault
for �BI > �BF, and a quasi-vertical normal fault for �BI < �BF.

[12] Since a larger basal friction angle and basal pore
pressure are required along the updip portion to activate a
landward normal fault, we investigate more systematically
cases with �BI < �BF < �int, and �BI < �BF < 1. In Figure 4a,
different effective frictions along the splay fault are tested.
If we assign to the splay fault the properties of the bulk,
a quasi-vertical normal fault can be obtained for 0.0006 <
�eff

BF < 0.003 (0.995 < �BF < 0.999 if �BF = 28ı). For the
same friction and pore pressure ratio than the down-dip
Megathrust, a 70ı to 60ı landward normal fault can be
obtained for 0.002 < �eff

BF < 0.005 (0.994 < �BF < 0.996 if
�BF = 28ı). If the splay fault is weaker (�eff

Fault = 0.05), land-
ward normal faults with dips ranging from 70ı to 50ı are
obtained for 0.0065 < �eff

BF < 0.015 (0.968 < �BF < 0.987 if
�BF = 28ı), conditions for which the outer wedge would be
far from the extensional state.

[13] Assuming that the ratio between the internal and
frontal virtual velocities derived from the limit analy-
sis is equal to the ratio of actual displacement between
the internal and frontal parts of the wedge, we can esti-
mate the down throw along the splay fault as a func-
tion of the frictional properties. The ratio can reach up
to 2.5 for a weak splay fault and conditions near exten-
sional collapse (Figure 4b). For a 70ı dipping fault, the
ratio ranges between 1.2 and 1.4. In the case of a 50
m displacement of the outer wedge, the inner wedge dis-
placement would then range between 33 to 42 m and the
down throw generated by the normal fault between 5 to
10 m (Figure 4c), consistent with observations from Tsuji
et al. [2011, 2013]. These numbers need to be consid-
ered with caution as they are derived from a quasi-static
force balance.

4. Discussion and Conclusion
[14] The critical taper theory [Davis et al., 1983; Dahlen,

1984] requires a relatively high internal pore pressure ratio
in the epicentral area of the Tohoku-Oki earthquake (� =
0.7 + 0.14/ – 0.48 give 68% range, for �int in the 30ı–
40ı range) with a preferred value of � = 0.8 as well as a
low effective basal friction (0.1 < �eff

b < 0.32 at the 68%
confidence level) with a preferred value of �eff

b = 0.13. A
coseismic decreased effective friction �eff

b < 0.003 induced
by frictional weakening would allow the wedge to reach
the extensional state at the normal fault location. The state
of stress within the outer wedge would then vary from a
compressional state in the interseismic period to extensional
following the coseismic displacement. However, we note
that the taper trajectory is not parallel to the extensional
branch of the critical envelope. If basal friction is uniformly
reduced enough so that the critical branch in extension inter-
sect the taper trajectory, the whole portion of the wedge
updip on this intersection would collapse so as to follow
the extensional critical branch. As would happen in the case
of a uniform critical taper, distributed horizontal extension
throughout the wedge would be expected. One way to rec-
oncile the observations and our interpretations is to assume
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a change of basal frictional properties from the inner to the
outer wedge. Our analysis shows that a slight increase of
the friction coefficient associated to a strong increase of the
basal pore pressure would allow for the activation of a 50ı
to 70ı dipping landward normal fault at the transition. The
lower updip effective basal friction (0.002 < �eff

b < 0.015)
would enable a larger displacement along the outer wedge
(1.2 to 1.5 the inner wedge displacement) and permit 5 to
10 m of vertical displacement along the normal fault in
good agreement with bathymetric observations [Tsuji et al.,
2011, 2013]. This down throw implies a relatively small
volume of displaced water compared to 50 m of displace-
ment along a 60 to 70 km length of the Megathrust. Most
probably, the normal fault did not contribute much to the
tsunami. The low effective basal friction inferred in this
study is also consistent with the dynamic overshoot pro-
posed by Ide et al. [2011] and could have resulted from
thermal pressurization of the updip part of the megathrust
as suggested by Noda and Lapusta [2013]. By contrast, the
long term high pore pressure along the Megathrust could be a
permanent feature maintained by continuous dehydration of
siliceous sediments and clays dragged along the Megathrust
[Kimura et al., 2012] and by a low permeability. The dif-
ferent effective friction coefficient beneath the inner and
outer wedge could reveal a different mineralogy resulting in
a more efficient updip dynamic thermal pressurization and
thus a dynamic increase of the pore pressure beneath the
outer wedge.

[15] After activation of slip along the Megathrust, the
compressional stress must build up again to bring the outer
wedge back to a critical state. The stress build up can result
from interseismic strain or, more probably, from the stress
transfer due to ruptures along the deeper portion of the
Megathrust, similar to the numerous Mw < 7.5 earthquakes
reported historically [Hashimoto et al., 2009], and afterslip
[Hu and Wang, 2008].

[16] These normal faults have often been interpreted as
a consequence of basal erosion [e.g., Von Huene et al.,
2004]. Our interpretation might provide an alternative gen-
eral explanation for the normal faulting aftershocks some-
times observed after such earthquakes [e.g., McKenzie and
Jackson, 2012] and for the presence of normal faults at
the transition between outer and inner wedges [Krabbenhöft
et al., 2004; Klaeschen et al., 1994]. Normal faulting would
then be an indicator of updip propagation of earthquakes.
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Betty Moore Foundation through grant GBMF 423.01 to the Caltech
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