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 for the unstationary compressible barotropic Navier-Stokes equations. Provided the initial data are well-prepared, the solution of the numerical scheme converges, as the Mach number tends to zero, towards the solution of the classical pressure correction inf-sup stable MAC scheme for the incompressible Navier-Stokes equations.

Introduction

Let Ω be parallelepiped of R d , with d ∈ {2, 3} and T > 0. The unsteady barotropic compressible Navier-Stokes equations, parametrized by the Mach number ε, read for (x, t) ∈ Ω × (0, T ):

∂ t ρ ε + div(ρ ε u ε ) = 0, (1a) ∂ t (ρ ε u ε ) + div(ρ ε u ε ⊗ u ε ) -div(τ (u ε )) + 1 ε 2 ∇℘(ρ ε ) = 0, (1b) 
u ε | ∂Ω = 0, ρ ε | t=0 = ρ ε 0 , u ε | t=0 = u ε 0 , (1c) 
where ρ ε > 0 and u ε = (u ε 1 , .., u ε d ) T are the density and velocity of the fluid. The pressure satisfies the ideal gas law ℘(ρ ε ) = (ρ ε ) γ , with γ ≥ 1, and div(τ (u)) = µ∆u + (µ + λ)∇(div u), where the real numbers µ and λ satisfy µ > 0 and µ + λ > 0. The smooth solutions of (1) are known to satisfy a kinetic energy balance and a renormalization identity. In addition, under assumption on the initial data, it may be inferred from these estimates that the density ρ ε tends to a constant ρ, and the velocity tends, in a sense to be defined, to a solution ū of the incompressible Navier-Stokes equations [START_REF] Lions | Incompressible limit for a viscous compressible fluid[END_REF]: div ū = 0, (2a) ρ∂ t ū + ρdiv(ū ⊗ ū) -µ∆ū + ∇π = 0, (2b) where π is the formal limit of (℘(ρ ε ) -℘(ρ))/ε 2 .

In this paper, we reproduce this theory for a pressure correction scheme, based on the Marker-And-Cell (MAC) space discretization: we first derive discrete analogues of the kinetic energy and renormalization identities, then establish from these relations that approximate solutions of (1) converge, as ε → 0, towards the solution of the classical projection scheme for the incompressible Navier-Stokes equations [START_REF] Grapsas | An unconditionally stable staggered pressure correction scheme for the compressible Navier-Stokes equations[END_REF].

For this asymptotic analysis, we assume that the initial data is "well prepared":

ρ ε 0 > 0, ρ ε 0 ∈ L ∞ (Ω), u ε 0 ∈ H 1 0 (Ω) d
and, taking without loss of generality ρ = 1, there exists C independent of ε such that:

(3)

||u ε 0 || H 1 (Ω) d + 1 ε ||div u ε 0 || L 2 (Ω) + 1 ε 2 ||ρ ε 0 -1|| L ∞ (Ω) ≤ C.
Consequently, ρ ε 0 tends to 1 when ε → 0; moreover, we suppose that u ε 0 converges in L 2 (Ω) d towards a function ū0 ∈ L 2 (Ω) d (the uniform boundedness of the sequence in the H 1 (Ω) d norm already implies this convergence up to a subsequence). 
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The numerical scheme

Let M be a MAC mesh (see e.g. [START_REF] Gallouët | Convergence of the Marker-And-Cell scheme for the incompressible Navier-Stokes equations on non-uniform grids[END_REF] and Figure 1 for the notations). The discrete density unknowns are associated with the cells of the mesh M, and are denoted by ρ K , K ∈ M . We denote by E the set of the faces of the mesh, and by E (i) the subset of the faces orthogonal to the i-th vector of the canonical basis of R d . The discrete i th component of the velocity is located at the centre of the faces σ ∈ E (i) , so the whole set of discrete velocity unknowns reads u σ,i , σ ∈ i) . The boundary conditions (1c) are taken into account by setting u σ,i = 0 for all σ ∈ E

E (i) , 1 ≤ i ≤ d . We define E ext = {σ ∈ E, σ ⊂ ∂Ω}, E int = E \ E ext , E (i) int = E int ∩ E (i) and E (i) ext = E ext ∩ E (
(i) ext , 1 ≤ i ≤ d. Let δt > 0 be a constant time step. The approximate solution (ρ n , u n ) at time t n = nδt for 1 ≤ n ≤ N = ⌊T /δt⌋ is computed as follows: knowing {ρ n-1 K , ρ n K , K ∈ M} ⊂ R and (u n σ,i ) σ∈E (i) int ,1≤i≤d ⊂ R, find (ρ n+1 K ) K∈M ⊂ R and (u n+1 σ,i ) σ∈E (i)
int ,1≤i≤d ⊂ R by the following algorithm:

Pressure gradient scaling step:

For 1 ≤ i ≤ d, ∀σ ∈ E (i) int , (∇p) n σ,i = ρ n Dσ ρ n-1 Dσ 1/2 (∇p n ) σ,i . (4a)
Prediction step -Solve for ũn+1 :

For 1 ≤ i ≤ d, ∀σ ∈ E (i) int , 1 δt ρ n Dσ ũn+1 σ,i -ρ n-1 Dσ u n σ,i +div(ρ n ũn+1 i u n ) σ -divτ (ũ n+1 ) σ,i + 1 ε 2 (∇p) n σ,i = 0. (4b)
Correction step -Solve for ρ n+1 and u n+1 :

For 1 ≤ i ≤ d, ∀σ ∈ E (i) int , 1 δt ρ n Dσ (u n+1 σ,i -ũn+1 σ,i ) + 1 ε 2 (∇p n+1 ) σ,i - 1 ε 2 (∇p) n σ,i = 0, (4c) ∀K ∈ M, 1 δt (ρ n+1 K -ρ n K ) + div(ρ n+1 u n+1 ) K = 0, (4d) ∀K ∈ M, p n+1 K = ℘(ρ n+1 ), ( 4e 
)
where the discrete densities and space operators are defined below (see also [START_REF] Herbin | On some implicit and semi-implicit staggered schemes for the shallow water and Euler equations[END_REF][START_REF] Grapsas | An unconditionally stable staggered pressure correction scheme for the compressible Navier-Stokes equations[END_REF]).

Mass convection flux -Given a discrete density field ρ = {ρ K , K ∈ M}, and a velocity field u = {u σ,i , σ ∈ E (i) , 1 ≤ i ≤ d}, the convection term in (4d) reads:

(5) div(ρu

) K = 1 |K| σ∈E(K) F K,σ (ρ, u), K ∈ M,
where F K,σ (ρ, u) stands for the mass flux across σ outward K. This flux is set to 0 on external faces to account for the homogeneous Dirichlet boundary conditions; it is given on internal faces by:

(6) F K,σ (ρ, u) = |σ| ρ σ u K,σ , σ ∈ E int , σ = K|L, where u K,σ = u σ,i n K,σ • e (i)
, with e (i) the i-th vector of the orthonormal basis of R d . The density at the face σ = K|L is approximated by the upwind technique, i.e.

ρ σ = ρ K if u K,σ ≥ 0 and ρ σ = ρ L otherwise.
Pressure gradient term -In (4a) and (4c), the term (∇p) σ,i stands for the i th component of the discrete pressure gradient at the face σ. Given a discrete density field ρ = {ρ K , K ∈ M}, this term is defined as:

(7) (∇p) σ,i = |σ| |D σ | (℘(ρ L ) -℘(ρ K )) n K,σ • e (i) , 1 ≤ i ≤ d, σ ∈ E (i) int , σ = K|L.
Defining for all K ∈ M, (divu) K = div(1 × u) K (see ( 5)), the following discrete duality relation holds for all discrete density and velocity fields (ρ, u):

(8) K∈M |K|℘(ρ K ) (divu) K + d i=1 σ∈E (i) int |D σ | u σ,i (∇p) σ,i = 0.
The MAC scheme is inf-sup stable: there exists β > 0, depending only on Ω and the regularity of the mesh, such that, for all p = {p K , K ∈ M}, there exists u = {u σ,i , σ ∈ E (i) , 1 ≤ i ≤ d} satisfying homogeneous Dirichlet boundary conditions with:

||u|| 1,M = 1 and K∈M |K| p K (divu) K ≥ β ||p - 1 |Ω| Ω p dx|| L 2 (Ω) ,
where ||u|| 1,M is the usual discrete H 1 -norm of u (see [START_REF] Gallouët | Convergence of the Marker-And-Cell scheme for the incompressible Navier-Stokes equations on non-uniform grids[END_REF]).

Velocity convection operator -Given a density field ρ = {ρ K , K ∈ M}, and two velocity fields

u = {u σ,i , σ ∈ E (i) , 1 ≤ i ≤ d} and v = {v σ,i , σ ∈ E (i) , 1 ≤ i ≤ d},
we build for each σ ∈ E int the following quantities:

• an approximation of the density on the dual cell ρ Dσ defined as:

(9) |D σ | ρ Dσ = |D K,σ | ρ K + |D L,σ | ρ L , σ ∈ E int , σ = K|L,
• a discrete divergence for the convection on the dual cell D σ :

div(ρv i u) σ = ε∈ Ē(Dσ ) F σ,ε (ρ, u) v i,ε , σ ∈ E (i) int , 1 ≤ i ≤ d.
For i ∈ {1, .., d}, and σ ∈ E

(i)
int , σ = K|L, -If the vector e (i) is normal to ε, ε is included in a primal cell K, and we denote by σ ′ the second face of K which, in addition to σ, is normal to e (i) . We thus have ε = D σ |D σ ′ . Then the mass flux through ε is given by:

(10) F σ,ε (ρ, u) = 1 2 F K,σ (ρ, u) n Dσ ,ε • n K,σ + F K,σ ′ (ρ, u) n Dσ ,ε • n K,σ ′ .
-If the vector e (i) is tangent to ε, ε is the union of the halves of two primal faces τ and τ ′ such that τ ∈ E(K) and τ ′ ∈ E(L). The mass flux through ε is then given by:

(11) F σ,ε (ρ, u) = 1 2 F K,τ (ρ, u) + F L,τ ′ (ρ, u) .
With this definition, the dual fluxes are locally conservative through dual faces

ε = D σ |D σ ′ (i.e. F σ,ε (ρ, u) = -F σ ′ ,ε (ρ, u))
, and vanish through a dual face included in the boundary of Ω. For this reason, the values v ε,i are only needed at the internal dual faces, and are chosen centered, i.e., for

ε = D σ |D σ ′ , v ε,i = (v σ,i +v σ ′ ,i )/2.
As a result, a finite volume discretization of the mass balance (1a) holds over the internal dual cells. Indeed, if ρ n+1 = {ρ n+1 K , K ∈ M}, ρ n = {ρ n K , K ∈ M} and u n+1 = {u n+1 σ,i , σ ∈ E (i) , 1 ≤ i ≤ d} are density and velocity fields satisfying (4d), then, the dual quantities {ρ n+1

Dσ , ρ n Dσ , σ ∈ E int } and the dual fluxes

{F σ,ε (ρ n+1 , u n+1 ), σ ∈ E int , ε ∈ Ē(D σ
)} satisfy a finite volume discretization of the mass balance (1a) over the internal dual cells:

(12) |D σ | δt (ρ n+1 Dσ -ρ n Dσ ) + ε∈ Ē(Dσ) F σ,ε (ρ n+1 , u n+1 ) = 0, σ ∈ E int .
Diffusion term -The discrete diffusion term in (4b) is defined in [START_REF] Grapsas | An unconditionally stable staggered pressure correction scheme for the compressible Navier-Stokes equations[END_REF] and is coercive in the following sense: for every discrete velocity field u satisfying the homogeneous Dirichlet boundary conditions, one has:

(13) -

d i=1 E∈E (i) int |D σ | u σ,i divτ (u) σ,i ≥ µ ||u|| 2 1,M .
The initialization of the scheme ( 4) is performed by setting

∀K ∈ M, ρ 0 K = 1 |K| K ρ ε 0 (x) dx and ∀σ ∈ E (i) int , 1 ≤ i ≤ d, u 0 σ,i = 1 |σ| σ u ε 0 (x) • e (i) dx,
and computing ρ -1 by solving the backward mass balance equation (4d) for n = -1 where the unknown is ρ -1 and not ρ 0 . This allows to perform the first prediction step with {ρ 0 Dσ , ρ -1 Dσ , σ ∈ E int } and the dual mass fluxes {F σ,ε (ρ 0 , u 0 ), σ ∈ E int , ε ∈ Ē(D σ )} satisfying the mass balance (12). Moreover, since ρ ε 0 > 0, one clearly has ρ 0 K > 0 for all K ∈ M and therefore ρ 0 Dσ > 0 for all σ ∈ E int . The positivity of ρ -1 is a consequence of the following Lemma.

Lemma 2.1. If (ρ ε 0 , u ε 0 ) satisfies (3), then there exists C, depending on the mesh but independent of ε such that:

(14) 1 ε 2 max K∈M |ρ 0 K -1| + 1 ε 2 max 1≤i≤d max σ∈E (i) int |(∇p) 0 σ,i | + 1 ε max K∈M |ρ -1 K -1| ≤ C.
Proof. We sketch the proof. The boundedness of the first two terms is a straightforward consequence of (3).

For the third term we remark that, again by (3):

∀K ∈ M, ρ -1 K -1 = ρ 0 K -1 =O(ε 2 ) + δt ρ 0 K (divu 0 ) K =O(ε) + δt σ∈E(K) |σ| |K| (ρ 0 σ -ρ 0 K )u 0 K,σ =O(ε 2 )
.

Asymptotic analysis of the zero Mach limit

By the results of [START_REF] Herbin | On some implicit and semi-implicit staggered schemes for the shallow water and Euler equations[END_REF], there exists a solution (ρ n , u n ) 0≤n≤N to the scheme (4) and any solution satisfies the following relations:

• a discrete kinetic energy balance: for all σ ∈ E

(i) int , 1 ≤ i ≤ d, 0 ≤ n ≤ N -1: (15) 1 2δt ρ n Dσ |u n+1 σ,i | 2 -ρ n-1 Dσ |u n σ,i | 2 + 1 2|D σ | ε∈ Ē(Dσ ) ε=Dσ |D σ ′ F σ,ε (ρ n , u n ) ũn+1 σ,i ũn+1 σ ′ ,i -divτ (ũ n+1 ) σ,i ũn+1 σ,i + 1 ε 2 (∇p) n+1 σ,i u n+1 σ,i + δt ε 4 |(∇p) n+1 σ,i | 2 2 ρ n Dσ - |(∇p) n σ,i | 2 2 ρ n-1 Dσ + R n+1 σ,i = 0, with R n+1 σ,i = 1 2δt ρ n-1 Dσ (ũ n+1 σ,i -u n σ,i ) 2 .
• a discrete renormalization identity: for all K ∈ M, 0 ≤ n ≤ N -1:

(16) 1 δt Π γ (ρ n+1 K ) -Π γ (ρ n K ) + div b γ (ρ n+1 )u n+1 -b ′ γ (1)ρ n+1 u n+1 K + p n+1 K div(u n+1 ) K + R n+1 K = 0, with R n+1 K ≥ 0, where the function b γ is defined by b γ (ρ) = ρ log ρ if γ = 1, b γ (ρ) = ρ γ /(γ -1) if γ > 1 and satisfies ρb ′ γ (ρ) -b γ (ρ) = ρ γ = ℘(ρ) for all ρ > 0, and Π γ (ρ) = b γ (ρ) -b γ (1) -b ′ γ (1)(ρ -1).
Summing (15) and ( 16) over the primal cells from one side, and over the dual cells and the components on the other side, and invoking the grad-div duality relation (8), we obtain a local-in-time discrete entropy inequality, for 0 ≤ n ≤ N -1:

(17) 1 2 d i=1 σ∈E (i) int |D σ | ρ n Dσ |u n+1 σ,i | 2 -ρ n-1 Dσ |u n σ,i | 2 + 1 ε 2 K∈M |K| Π γ (ρ n+1 K ) -Π γ (ρ n K ) +µδt||ũ n+1 || 2 1,M + 1 ε 4 d i=1 σ∈E (i) int |D σ |δt 2 |(∇p) n+1 σ,i | 2 2 ρ n Dσ - |(∇p) n σ,i | 2 2 ρ n-1 Dσ +R n+1 ≤ 0 where R n+1 = d i=1 σ∈E (i) int R n+1 σ,i + 1 ε 2 K∈M R n+1 K ≥ 0.
The function Π γ has some important properties:

• For all γ ≥ 1 there exists C γ such that:

Π γ (ρ) ≤ C γ |ρ -1| 2 , ∀ρ ∈ (0, 2). (18a) • If γ ≥ 2 then Π γ (ρ) ≥ |ρ -1| 2 , ∀ρ > 0. (18b) • If γ ∈ [1, 2) then for all R ∈ (2, +∞), there exists C γ,R such that: Π γ (ρ) ≥ C γ,R |ρ -1| 2 , ∀ρ ∈ (0, R), Π γ (ρ) ≥ C γ,R |ρ -1| γ , ∀ρ ∈ [R, ∞). (18c) 
Lemma 3.1 (Global discrete entropy inequality). Under assumption (3), there exists C 0 > 0 independent of ε such that the solution (ρ n , u n ) 0≤n≤N to the scheme (4) satisfies, for ε small enough, and for 1 ≤ n ≤ N :

(19) 1 2 d i=1 σ∈E (i) int |D σ |ρ n-1 Dσ |u n σ,i | 2 + µ n k=1 δt ||ũ k || 2 1,M + 1 ε 2 K∈M |K| Π γ (ρ n K ) + 1 ε 4 d i=1 σ∈E (i) int |D σ | δt 2 2 ρ n-1 Dσ |(∇p) n σ,i | 2 ≤ C 0 .
Proof. Summing (17) over n yields the inequality (19) with (20)

C 0 = 1 2 d i=1 σ∈E (i) int |D σ |ρ -1 Dσ |u 0 σ,i | 2 + 1 ε 2 K∈M |K| Π γ (ρ 0 K ) + 1 ε 4 d i=1 σ∈E (i) int |D σ | δt 2 2 ρ -1 Dσ |(∇p) 0 σ,i | 2 .
By (14), for ε small enough, one has ρ -1 K ≤ 2 for all K ∈ M and therefore ρ -1 Dσ ≤ 2 for all σ ∈ E (i) int and 1 ≤ i ≤ d. Hence, since u ε 0 is uniformly bounded in H 1 (Ω) d by (3), a classical trace inequality yields the boundedness of the first term. Again by ( 14), one has |ρ 0 K -1| ≤ Cε 2 for all K ∈ M. Hence, by (18a), the second term vanishes as ε → 0. The third term is also uniformly bounded with respect to ε thanks to (14). Lemma 3.2 (Control of the pressure). Assume that (ρ ε 0 , u ε 0 ) satisfies (3) and let (ρ n , u n ) 0≤n≤N satisfy (4).

Let p n = ℘(ρ n ) and define δp n = {δp n K , K ∈ M} where δp n K = (p n K -|Ω| -1 Ω p n dx)/ε 2 . Then, one has, for all 1 ≤ n ≤ N : ||δp n || ≤ C M,δt ,
where C M,δt ≥ 0 depends on the mesh and δt but not on ε, and || • || stands for any norm on the space of discrete functions.

Proof. By (19), the discrete pressure gradient is controlled in L ∞ by C M,δt ε 2 , so that ∇(δp n ) is bounded in any norm independently of ε. Using the discrete (H -1 ) d -norm (see e.g. [START_REF] Gallouët | Convergence of the Marker-And-Cell scheme for the incompressible Navier-Stokes equations on non-uniform grids[END_REF]), invoking the gradient divergence duality (8) and the inf-sup stability of the scheme, ||∇(δp

n )|| -1,M ≤ C M,δt implies that ||δp n || L 2 ≤ β -1 C M,δt .
Theorem 3.3 (Incompressible limit of the MAC pressure correction scheme). Let (ε (m) ) m∈N be a sequence of positive real numbers tending to zero, and let (ρ (m) , u (m) ) be a corresponding sequence of solutions of the scheme (4). Then the sequence (ρ (m) ) m∈N converges to the constant function ρ = 1 when m tends to +∞ in L ∞ ((0, T ), L q (Ω)), for all q ∈ [1, min(γ, 2)].

In addition, the sequence (u (m) , δp (m) ) m∈N tends, in any discrete norm, to the solution (u, δp) of the usual MAC pressure correction scheme for the incompressible Navier-Stokes equations, which reads:

Prediction step -Solve for ũn+1 : For 1 ≤ i ≤ d, ∀σ ∈ E (i) int , 1 δt ũn+1 σ,i -u n σ,i + div(ũ n+1 i u n ) σ -divτ (ũ n+1 ) σ,i + (∇(δp) n ) σ,i = 0.
Correction step -Solve for (δp) n+1 and u n+1 :

For 1 ≤ i ≤ d, ∀σ ∈ E (i) int , 1 δt (u n+1 σ,i -ũn+1 σ,i ) + (∇(δp) n+1 ) σ,i -(∇(δp) n ) σ,i = 0, ∀K ∈ M, div(u n+1 ) K = 0.
Proof. By (18b) and the global entropy estimate (19), one has for γ ≥ 2,

||ρ (m) (t) -1|| 2 L 2 (Ω) ≤ Ω Π γ (ρ (m) (t)) ≤ C 0 ε 2 , ∀t ∈ (0, T ).
For 1 ≤ γ ≤ 2, invoking (18c) and estimate (19), we obtain for all t ∈ (0, T ) and for all R ∈ (2, +∞):

(i) ||(ρ (m) (t) -1)1 {ρ (m) (t)≤R} || 2 L 2 (Ω) ≤ 1 C γ,R Ω Π γ (ρ (m) (t)) ≤ C ε 2 , ∀t ∈ (0, T ), (ii) ||(ρ (m) (t) -1)1 {ρ (m) (t)≥R} || γ L γ (Ω) ≤ 1 C γ,R Ω Π γ (ρ (m) (t)) ≤ C ε 2 , ∀t ∈ (0, T ),
which proves the convergence of (ρ (m) ) m∈N to the constant function ρ = 1 as m → +∞ in L ∞ ((0, T ), L q (Ω)) for all q ∈ [1, min(γ, 2)]. Using again (19), the sequence (u (m) ) m∈N is bounded in any discrete norm and the same holds for the sequence (δp (m) ) m∈N by Lemma 3.2. By the Bolzano-Weiertrass theorem and a norm equivalence argument, there exists a subsequence of (u (m) , δp (m) ) m∈N which tends, in any discrete norm, to a limit (u, δp). Passing to the limit cell-by-cell in (4), one obtains that (u, δp) is a solution to (21). Since this solution is unique, the whole sequence converges, which concludes the proof.
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