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LOW MACH NUMBER LIMIT OF A PRESSURE CORRECTION MAC SCHEME FOR

COMPRESSIBLE BAROTROPIC FLOWS

R. HERBIN, J.-C. LATCHÉ, AND K. SALEH

Abstract. We study the incompressible limit of a pressure correction MAC scheme [3] for the unstationary
compressible barotropic Navier-Stokes equations. Provided the initial data are well-prepared, the solution
of the numerical scheme converges, as the Mach number tends to zero, towards the solution of the classical
pressure correction inf-sup stable MAC scheme for the incompressible Navier-Stokes equations.

1. Introduction

Let Ω be parallelepiped of Rd, with d ∈ {2, 3} and T > 0. The unsteady barotropic compressible Navier-
Stokes equations, parametrized by the Mach number ε, read for (x, t) ∈ Ω× (0, T ):

∂tρ
ε + div(ρε uε) = 0,(1a)

∂t(ρ
ε
u
ε) + div(ρε uε ⊗ u

ε)− div(τ (uε)) +
1

ε2
∇℘(ρε) = 0,(1b)

u
ε|∂Ω = 0, ρε|t=0 = ρε0, u

ε|t=0 = u
ε
0,(1c)

where ρε > 0 and u
ε = (uε

1, .., u
ε
d)

T are the density and velocity of the fluid. The pressure satisfies the ideal
gas law ℘(ρε) = (ρε)γ , with γ ≥ 1, and

div(τ (u)) = µ∆u + (µ+ λ)∇(divu),

where the real numbers µ and λ satisfy µ > 0 and µ + λ > 0. The smooth solutions of (1) are known to
satisfy a kinetic energy balance and a renormalization identity. In addition, under assumption on the initial
data, it may be inferred from these estimates that the density ρε tends to a constant ρ̄, and the velocity
tends, in a sense to be defined, to a solution ū of the incompressible Navier-Stokes equations [4]:

divū = 0,(2a)

ρ̄∂tū+ ρ̄div(ū⊗ ū)− µ∆ū+∇π = 0,(2b)

where π is the formal limit of (℘(ρε)− ℘(ρ̄))/ε2.

In this paper, we reproduce this theory for a pressure correction scheme, based on the Marker-And-Cell
(MAC) space discretization: we first derive discrete analogues of the kinetic energy and renormalization
identities, then establish from these relations that approximate solutions of (1) converge, as ε → 0, towards
the solution of the classical projection scheme for the incompressible Navier-Stokes equations (2).

For this asymptotic analysis, we assume that the initial data is “well prepared”: ρε0 > 0, ρε0 ∈ L∞(Ω),
u
ε
0 ∈ H1

0(Ω)
d and, taking without loss of generality ρ̄ = 1, there exists C independent of ε such that:

(3) ||uε
0||H1(Ω)d +

1

ε
||divuε

0||L2(Ω) +
1

ε2
||ρε0 − 1||L∞(Ω) ≤ C.

Consequently, ρε0 tends to 1 when ε → 0; moreover, we suppose that u
ε
0 converges in L2(Ω)d towards a

function ū0 ∈ L2(Ω)d (the uniform boundedness of the sequence in the H1(Ω)d norm already implies this
convergence up to a subsequence).
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DL,σ

DK,σ σ = K|L

σ′K

L

ε = σ|σ′

primal cells: K, L.

dual cell for the y-component of the veloc-
ity: Dσ = DK,σ ∪DL,σ.

primal and dual cells d-dimensional mea-
sures: |K|, |Dσ|, |DK,σ|.

faces (d− 1)-dimensional measures: |σ|, |ε|.

vector normal to σ outward K: nK,σ.

Figure 1. Notations for control volumes and faces.

2. The numerical scheme

Let M be a MAC mesh (see e.g. [1] and Figure 1 for the notations). The discrete density unknowns are
associated with the cells of the mesh M, and are denoted by

{
ρK , K ∈ M

}
. We denote by E the set of the

faces of the mesh, and by E(i) the subset of the faces orthogonal to the i-th vector of the canonical basis of
R

d. The discrete ith component of the velocity is located at the centre of the faces σ ∈ E(i), so the whole
set of discrete velocity unknowns reads

{
uσ,i, σ ∈ E(i), 1 ≤ i ≤ d

}
. We define Eext = {σ ∈ E, σ ⊂ ∂Ω},

Eint = E\Eext, E
(i)
int = Eint ∩E(i) and E

(i)
ext = Eext∩E(i). The boundary conditions (1c) are taken into account

by setting uσ,i = 0 for all σ ∈ E
(i)
ext, 1 ≤ i ≤ d. Let δt > 0 be a constant time step. The approximate solution

(ρn,un) at time tn = nδt for 1 ≤ n ≤ N = ⌊T/δt⌋ is computed as follows: knowing {ρn−1
K , ρnK ,K ∈ M} ⊂ R

and (un
σ,i)σ∈E

(i)
int,1≤i≤d

⊂ R, find (ρn+1
K )K∈M ⊂ R and (un+1

σ,i )
σ∈E

(i)
int,1≤i≤d

⊂ R by the following algorithm:

Pressure gradient scaling step:

For 1 ≤ i ≤ d, ∀σ ∈ E
(i)
int, (∇p)nσ,i =

( ρnDσ

ρn−1
Dσ

)1/2

(∇pn)σ,i.(4a)

Prediction step – Solve for ũn+1:

For 1 ≤ i ≤ d, ∀σ ∈ E
(i)
int,

1

δt

(
ρnDσ

ũn+1
σ,i − ρn−1

Dσ
un
σ,i

)
+div(ρnũn+1

i u
n)σ−divτ (ũn+1)σ,i+

1

ε2
(∇p)nσ,i= 0.(4b)

Correction step – Solve for ρn+1 and u
n+1:

For 1 ≤ i ≤ d, ∀σ ∈ E
(i)
int,

1

δt
ρnDσ

(un+1
σ,i − ũn+1

σ,i ) +
1

ε2
(∇pn+1)σ,i −

1

ε2
(∇p)nσ,i = 0,(4c)

∀K ∈ M,
1

δt
(ρn+1

K − ρnK) + div(ρn+1
u
n+1)K = 0,(4d)

∀K ∈ M, pn+1
K = ℘(ρn+1),(4e)

where the discrete densities and space operators are defined below (see also [3, 2]).

Mass convection flux – Given a discrete density field ρ = {ρK , K ∈ M}, and a velocity field u = {uσ,i, σ ∈

E(i), 1 ≤ i ≤ d}, the convection term in (4d) reads:

(5) div(ρu)K =
1

|K|

∑

σ∈E(K)

FK,σ(ρ,u), K ∈ M,

2000 Mathematics Subject Classification. 35Q30,65N12,76M12.
Key words and phrases. Compressible Navier-Stokes equations, low Mach number flows, finite volumes, MAC scheme,

staggered discretizations.

2



where FK,σ(ρ,u) stands for the mass flux across σ outward K. This flux is set to 0 on external faces to
account for the homogeneous Dirichlet boundary conditions; it is given on internal faces by:

(6) FK,σ(ρ,u) = |σ| ρσ uK,σ, σ ∈ Eint, σ = K|L,

where uK,σ = uσ,i nK,σ · e(i), with e
(i) the i-th vector of the orthonormal basis of Rd. The density at the

face σ = K|L is approximated by the upwind technique, i.e. ρσ = ρK if uK,σ ≥ 0 and ρσ = ρL otherwise.

Pressure gradient term – In (4a) and (4c), the term (∇p)σ,i stands for the i
th component of the discrete

pressure gradient at the face σ. Given a discrete density field ρ = {ρK , K ∈ M}, this term is defined as:

(7) (∇p)σ,i =
|σ|

|Dσ|
(℘(ρL)− ℘(ρK)) nK,σ · e(i), 1 ≤ i ≤ d, σ ∈ E

(i)
int, σ = K|L.

Defining for all K ∈ M, (divu)K = div(1×u)K (see (5)), the following discrete duality relation holds for all
discrete density and velocity fields (ρ,u):

(8)
∑

K∈M

|K|℘(ρK) (divu)K +

d∑

i=1

∑

σ∈E
(i)
int

|Dσ| uσ,i (∇p)σ,i = 0.

The MAC scheme is inf-sup stable: there exists β > 0, depending only on Ω and the regularity of the mesh,
such that, for all p = {pK , K ∈ M}, there exists u = {uσ,i, σ ∈ E(i), 1 ≤ i ≤ d} satisfying homogeneous
Dirichlet boundary conditions with:

||u||1,M = 1 and
∑

K∈M

|K| pK (divu)K ≥ β ||p−
1

|Ω|

∫

Ω

p dx||L2(Ω),

where ||u||1,M is the usual discrete H1-norm of u (see [1]).

Velocity convection operator – Given a density field ρ = {ρK , K ∈ M}, and two velocity fields u =
{uσ,i, σ ∈ E(i), 1 ≤ i ≤ d} and v = {vσ,i, σ ∈ E(i), 1 ≤ i ≤ d}, we build for each σ ∈ Eint the following
quantities:

• an approximation of the density on the dual cell ρDσ
defined as:

(9) |Dσ| ρDσ
= |DK,σ| ρK + |DL,σ| ρL, σ ∈ Eint, σ = K|L,

• a discrete divergence for the convection on the dual cell Dσ:

div(ρviu)σ =
∑

ε∈Ē(Dσ)

Fσ,ε(ρ,u) vi,ε, σ ∈ E
(i)
int, 1 ≤ i ≤ d.

For i ∈ {1, .., d}, and σ ∈ E
(i)
int, σ = K|L,

- If the vector e
(i) is normal to ε, ε is included in a primal cell K, and we denote by σ′ the

second face of K which, in addition to σ, is normal to e
(i). We thus have ε = Dσ|Dσ′ . Then

the mass flux through ε is given by:

(10) Fσ,ε(ρ,u) =
1

2

(
FK,σ(ρ,u) nDσ ,ε · nK,σ + FK,σ′ (ρ,u) nDσ ,ε · nK,σ′

)
.

- If the vector e(i) is tangent to ε, ε is the union of the halves of two primal faces τ and τ ′ such
that τ ∈ E(K) and τ ′ ∈ E(L). The mass flux through ε is then given by:

(11) Fσ,ε(ρ,u) =
1

2

(
FK,τ (ρ,u) + FL,τ ′(ρ,u)

)
.

With this definition, the dual fluxes are locally conservative through dual faces ε = Dσ|Dσ′ (i.e. Fσ,ε(ρ,u) =
−Fσ′,ε(ρ,u)), and vanish through a dual face included in the boundary of Ω. For this reason, the values vε,i
are only needed at the internal dual faces, and are chosen centered, i.e., for ε = Dσ|Dσ′ , vε,i = (vσ,i+vσ′,i)/2.

As a result, a finite volume discretization of the mass balance (1a) holds over the internal dual cells.
Indeed, if ρn+1 = {ρn+1

K , K ∈ M}, ρn = {ρnK , K ∈ M} and u
n+1 = {un+1

σ,i , σ ∈ E(i), 1 ≤ i ≤ d} are

density and velocity fields satisfying (4d), then, the dual quantities {ρn+1
Dσ

, ρnDσ
, σ ∈ Eint} and the dual fluxes
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{Fσ,ε(ρ
n+1,un+1), σ ∈ Eint, ε ∈ Ē(Dσ)} satisfy a finite volume discretization of the mass balance (1a) over

the internal dual cells:

(12)
|Dσ|

δt
(ρn+1

Dσ
− ρnDσ

) +
∑

ε∈Ē(Dσ)

Fσ,ε(ρ
n+1,un+1) = 0, σ ∈ Eint.

Diffusion term – The discrete diffusion term in (4b) is defined in [2] and is coercive in the following sense:
for every discrete velocity field u satisfying the homogeneous Dirichlet boundary conditions, one has:

(13) −

d∑

i=1

∑

E∈E
(i)
int

|Dσ| uσ,i divτ (u)σ,i ≥ µ ||u||21,M.

The initialization of the scheme (4) is performed by setting

∀K ∈ M, ρ0K =
1

|K|

∫

K

ρε0(x) dx and ∀σ ∈ E
(i)
int, 1 ≤ i ≤ d, u0

σ,i =
1

|σ|

∫

σ

u
ε
0(x) · e

(i) dx,

and computing ρ−1 by solving the backward mass balance equation (4d) for n = −1 where the unknown
is ρ−1 and not ρ0. This allows to perform the first prediction step with {ρ0Dσ

, ρ−1
Dσ

, σ ∈ Eint} and the dual

mass fluxes {Fσ,ε(ρ
0,u0), σ ∈ Eint, ε ∈ Ē(Dσ)} satisfying the mass balance (12). Moreover, since ρε0 > 0,

one clearly has ρ0K > 0 for all K ∈ M and therefore ρ0Dσ
> 0 for all σ ∈ Eint. The positivity of ρ−1 is a

consequence of the following Lemma.

Lemma 2.1. If (ρε0,u
ε
0) satisfies (3), then there exists C, depending on the mesh but independent of ε such

that:

(14)
1

ε2
max
K∈M

|ρ0K − 1|+
1

ε2
max
1≤i≤d

max
σ∈E

(i)
int

|(∇p)0σ,i|+
1

ε
max
K∈M

|ρ−1
K − 1| ≤ C.

Proof. We sketch the proof. The boundedness of the first two terms is a straightforward consequence of (3).
For the third term we remark that, again by (3):

∀K ∈ M, ρ−1
K − 1 = ρ0K − 1

︸ ︷︷ ︸

=O(ε2)

+ δt ρ0K(divu0)K
︸ ︷︷ ︸

=O(ε)

+ δt
∑

σ∈E(K)

|σ|(ρ0σ − ρ0K)u0
K,σ

︸ ︷︷ ︸

=O(ε2)

.

�

3. Asymptotic analysis of the zero Mach limit

By the results of [3], there exists a solution (ρn,un)0≤n≤N to the scheme (4) and any solution satisfies
the following relations:

• a discrete kinetic energy balance: for all σ ∈ E
(i)
int, 1 ≤ i ≤ d, 0 ≤ n ≤ N − 1:

(15)
1

2δt

(

ρnDσ
|un+1

σ,i |2 − ρn−1
Dσ

|un
σ,i|

2
)

+
1

2|Dσ|

∑

ε∈Ē(Dσ)
ε=Dσ |Dσ′

Fσ,ε(ρ
n,un) ũn+1

σ,i ũn+1
σ′,i

− divτ (ũn+1)σ,i ũ
n+1
σ,i +

1

ε2
(∇p)n+1

σ,i un+1
σ,i +

δt2

ε4

( |(∇p)n+1
σ,i |2

ρnDσ

−
|(∇p)nσ,i|

2

ρn−1
Dσ

)

+Rn+1
σ,i = 0, with Rn+1

σ,i =
1

2δt
ρn−1
Dσ

(ũn+1
σ,i − un

σ,i)
2.

• a discrete renormalization identity: for all K ∈ M, 0 ≤ n ≤ N − 1:

(16)
1

δt

(

Πγ(ρ
n+1
K )−Πγ(ρ

n
K)

)

+ div
(
bγ(ρ

n+1)un+1 − b′γ(1)ρ
n+1

u
n+1

)

K
+ pn+1

K div(un+1)K +Rn+1
K = 0,

with Rn+1
K ≥ 0, where the function bγ is defined by bγ(ρ) = ρ log ρ if γ = 1, bγ(ρ) = ργ/(γ − 1) if γ > 1 and

satisfies ρb′γ(ρ)− bγ(ρ) = ργ = ℘(ρ) for all ρ > 0, and Πγ(ρ) = bγ(ρ)− 1− b′γ(1)(ρ− 1).
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Summing (15) and (16) over the primal cells from one side, and over the dual cells and the components
on the other side, and invoking the grad-div duality relation (8), we obtain a local-in-time discrete entropy
inequality, for 0 ≤ n ≤ N − 1:

(17)
1

2

d∑

i=1

∑

σ∈E
(i)
int

|Dσ|
(

ρnDσ
|un+1

σ,i |2− ρn−1
Dσ

|un
σ,i|

2
)

+
1

ε2

∑

K∈M

|K|
(

Πγ(ρ
n+1
K )−Πγ(ρ

n
K)

)

+µδt||ũn+1||21,M+
1

ε4

d∑

i=1

∑

σ∈E
(i)
int

|Dσ|δt
2
(|(∇p)n+1

σ,i |2

ρnDσ

−
|(∇p)nσ,i|

2

ρn−1
Dσ

)

+R
n+1≤ 0

where R
n+1 =

d∑

i=1

∑

σ∈E
(i)
int

Rn+1
σ,i +

1

ε2

∑

K∈M

Rn+1
K ≥ 0.

The function Πγ has some important properties:

• For all γ ≥ 1 there exists Cγ such that: Πγ(ρ) ≤ Cγ |ρ− 1|2, ∀ρ ∈ (0, 2).(18a)

• If γ ≥ 2 then Πγ(ρ) ≥ |ρ− 1|2, ∀ρ > 0.(18b)

• If γ ∈ [1, 2) then for all R ∈ (2,+∞), there exists Cγ,R such that:
Πγ(ρ) ≥ Cγ,R|ρ− 1|2, ∀ρ ∈ (0, R),
Πγ(ρ) ≥ Cγ,R|ρ− 1|γ , ∀ρ ∈ [R,∞).

(18c)

Lemma 3.1 (Global discrete entropy inequality). Under assumption (3), there exists C0 > 0 independent of

ε such that the solution (ρn,un)0≤n≤N to the scheme (4) satisfies, for ε small enough, and for 1 ≤ n ≤ N :

(19)
1

2

d∑

i=1

∑

σ∈E
(i)
int

|Dσ|ρ
n−1
Dσ

|un
σ,i|

2 + µ

n∑

k=1

δt ||ũk||21,M

+
1

ε2

∑

K∈M

|K|Πγ(ρ
n
K) +

1

ε4

d∑

i=1

∑

σ∈E
(i)
int

|Dσ| δt
2

ρn−1
Dσ

|(∇p)nσ,i|
2 ≤ C0.

Proof. Summing (17) over n yields the inequality (19) with

(20) C0 =
1

2

d∑

i=1

∑

σ∈E
(i)
int

|Dσ|ρ
−1
Dσ

|u0
σ,i|

2 +
1

ε2

∑

K∈M

|K|Πγ(ρ
0
K) +

1

ε4

d∑

i=1

∑

σ∈E
(i)
int

|Dσ| δt
2

ρ−1
Dσ

|(∇p)0σ,i|
2.

By (14), for ε small enough, one has ρ−1
K ≤ 2 for all K ∈ M and therefore ρ−1

Dσ
≤ 2 for all σ ∈ E

(i)
int and

1 ≤ i ≤ d. Hence, since u
ε
0 is uniformly bounded in H1(Ω)d by (3), a classical trace inequality yields the

boundedness of the first term. Again by (14), one has |ρ0K − 1| ≤ Cε2 for all K ∈ M. Hence, by (18a),
the second term vanishes as ε → 0. The third term is also uniformly bounded with respect to ε thanks to
(14). �

Lemma 3.2 (Control of the pressure). Assume that (ρε0,u
ε
0) satisfies (3) and let (ρn,un)0≤n≤N satisfy (4).

Let pn = ℘(ρn) and define δpn = {δpnK , K ∈ M} where δpnK = (pnK − |Ω|−1
∫

Ω
pn dx)/ε2. Then, one has, for

all 1 ≤ n ≤ N :

||δpn|| ≤ CM,

where CM ≥ 0 depends on the mesh but not on ε, and || · || stands for any norm on the space of discrete

functions.

Proof. By (19), the discrete pressure gradient is controlled in L∞ by CM ε2, so that ∇(δpn) is bounded in
any norm independently of ε. Using the discrete (H−1)d-norm (see e.g. [1]), invoking the gradient divergence
duality (8) and the inf-sup stability of the scheme, ||∇(δpn)||−1,M ≤ CM implies that ||δpn||L2 ≤ β−1CM. �
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Theorem 3.3 (Incompressible limit of the MAC pressure correction scheme).
Let (ε(m))m∈N be a sequence of positive real numbers tending to zero, and let (ρ(m),u(m)) be a corresponding

sequence of solutions of the scheme (4). Then the sequence (ρ(m))m∈N converges to the constant function

ρ = 1 when m tends to +∞ in L∞((0, T ),Lq(Ω)), for all q ∈ [1,min(γ, 2)].

In addition, the sequence (u(m), δp(m))m∈N tends, in any discrete norm, to the solution (u, δp) of the usual

MAC pressure correction scheme for the incompressible Navier-Stokes equations, which reads:

Prediction step – Solve for ũ
n+1:

For 1 ≤ i ≤ d, ∀σ ∈ E
(i)
int,

1

δt

(
ũn+1
σ,i − un

σ,i

)
+ div(ũn+1

i u
n)σ − divτ (ũn+1)σ,i + (∇(δp)n)σ,i = 0.

Correction step – Solve for (δp)n+1 and u
n+1:

For 1 ≤ i ≤ d, ∀σ ∈ E
(i)
int,

1

δt
(un+1

σ,i − ũn+1
σ,i ) + (∇(δp)n+1)σ,i − (∇(δp)n)σ,i = 0,

∀K ∈ M, div(un+1)K = 0.

Proof. By (18b) and the global entropy estimate (19), one has for γ ≥ 2,

||ρ(m)(t)− 1||2L2(Ω) ≤

∫

Ω

Πγ(ρ
(m)(t)) ≤ C0 ε

2, ∀t ∈ (0, T ).

For 1 ≤ γ ≤ 2, invoking (18c) and estimate (19), we obtain for all t ∈ (0, T ) and for all R ∈ (2,+∞):

(i) ||(ρ(m)(t)− 1)1
{ρ

(m)
(t)≤R}

||2L2(Ω) ≤
1

Cγ,R

∫

Ω

Πγ(ρ
(m)

(t)) ≤ C ε2, ∀t ∈ (0, T ),

(ii) ||(ρ
(m)

(t)− 1)1
{ρ

(m)
(t)≥R}

||γLγ(Ω) ≤
1

Cγ,R

∫

Ω

Πγ(ρ
(m)

(t)) ≤ C ε2, ∀t ∈ (0, T ),

which proves the convergence of (ρ(m))m∈N to the constant function ρ = 1 as m → +∞ in L∞((0, T ),Lq(Ω))
for all q ∈ [1,min(γ, 2)]. Using again (19), the sequence (u(m))m∈N is bounded in any discrete norm and

the same holds for the sequence (δp(m))m∈N by Lemma 3.2. By the Bolzano-Weiertrass theorem and a norm

equivalence argument, there exists a subsequence of (u(m), δp(m))m∈N which tends, in any discrete norm, to
a limit (u, δp). Passing to the limit cell-by-cell in (4), one obtains that (u, δp) is a solution to (21). Since
this solution is unique, the whole sequence converges, which concludes the proof. �
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[2] D. Grapsas, R. Herbin, W. Kheriji, and J.-C. Latché. An unconditionally stable staggered pressure correction scheme for
the compressible Navier-Stokes equations. SMAI-JCM, 2:51–97, 2016.

[3] R. Herbin, W. Kheriji, and J.-C. Latché. On some implicit and semi-implicit staggered schemes for the shallow water and
Euler equations. M2AN, 48:1807–1857, 2014.

[4] P.-L. Lions and N. Masmoudi. Incompressible limit for a viscous compressible fluid. Journal de Mathématiques Pures et
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