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Abstract—A Schema-less NoSQL system refers to solutions
where users do not declare a database schema and, in fact,
its management is moved to the application code. This paper
presents a study that allows us to evaluate, to some extent,
the data structuring impact. The decision of how to structure
data in semi-structured databases has an enormous impact on
data size, query performance and readability of the code, which
influences software debugging and maintainability. This paper
presents an experiment performed using MongoDB along with
several alternatives of data structuring and a set of queries
having increasing complexity. This paper introduces an analysis
regarding the findings of such an experiment.

I. INTRODUCTION

The data management landscape has become extremely rich
and complex. The large variety of requirements in current
information systems, has led to the emergence of many
heterogeneous data management solutions'. Their strengths
are varied. Among the most outstanding are data modeling
flexibility, scalability and high performance in cost effective
ways. It is becoming usual, that an organisation manages
structured, semi-structured and non structured data: Relational
as well as NoSQL systems are used [1]. NoSQL systems
refer to a variety of solutions that use non-relational data-
models and “’schema-free data bases” [2]. NoSQL systems are
commonly classified into column oriented, key-value, graphs
and document oriented. There is no standard data model and
few formalization efforts. Such models combine concepts used
in the past by non-first normal form relational models, complex
values and object oriented systems [3]. Concerning transactional
support and consistency enforcement, NoSQL solutions are
also heterogeneous. They rank from full support to almost
nothing which implies delegating the responsibility to the
application layer. Moreover, the absence of powerful declarative
query languages in several NoSQL systems, increases the
responsibility of the developers.

Data modelling has an impact on querying performance,
consistency, usability, software debugging and maintainability,
and many other aspects [4]. What would be good data
structuring in NoSQL systems? What is the price to pay by
developers and users for flexible data structuring? Is the impact
of data structuring on querying complexity high? There are of
course no definitive and complete answers to these questions.
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This paper presents the analysis of the impact of data
structuring regarding data size and, for representative queries,
performance. It compares structuring alternatives through an
experiment by using different schemes, which vary mainly their
embedded structure, and many queries with different access
patterns and increasing complexity. During the experiment we
also analyse the impact of using indexes in the collections.
Furthermore, we discuss the results, of which some are
intuitively expected and others point out unexpected aspects.
We performed the experiment and analysis using MongoDB, a
document oriented database, which is a popular open source
system to store semi-structured data. It is flexible, as it allows
many data structuring alternatives, and it does not require an
explicit data base schema definition nor are integrity constraints
enforced.

The rest of the paper is organized as follows. Section II
provides a background on MongoDB. In Section III, we define
different representative “document schemes” for the same data.
They are used in the experience presented in Section IV. We
performed a systematic evaluation that considered usual access
patterns with increasing complexity. In Section V, we discuss
the results and how the experiences confirm or not the expected
impact of the document scheme choices. Related works are
briefly described in Section VI. Our conclusions and research
perspectives are presented in Section VII.

II. DOCUMENT DB BACKGROUND

In this paper, we focus on the use of the MongoDB document
db to store semi-structured data. Its ”data model” is based on
JSON?. Therefore, the supported data types are also largely
used by other systems [5]. In Section II-A, we provide an
overview of Mongo’s data model.

Concerning system aspects, MongoDB supports BSON
serialization, indexes, map/reduce operations, master-slaves
replication and data sharding. These features contribute to
provide horizontal scalability and high availability. The analysis
of all these features is out the scope of this paper. We will
mainly focus on query access patterns and the impact of the
data structures on their performances. In Section II-B, we
introduce Mongo’s query capabilities.

Zhttps://www.mongodb.com/json-and-bson
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Fig. 1: Embedded and Referenced documents

A. Data structuring capabilities

MongoDB does not support an explicit data base schema
that has to be created in advance. It provides data modelling
flexibility, as users can create collections including BSON
documents that have the same or different structures. A
document is a structure composed by a set of field:value
pairs. Any document has the _id identifier, which value
is either automatically assigned by the system or explicitly
given by the user, such as in our example. The type system
includes atomic types (string, int, double, boolean), documents
and arrays of atomic values or documents. Integrity constraints
are not supported.

Note that Mongo’s type system supports two ways to
relate documents, embedding or referencing . The first one
allows one or many documents can be embedded by several
other documents. The second one refers documents using
one or several fields. Figure 1 proposes two choices to
represent the one-to-many relationship between employees and
departments. Employees could be “completely” embedded in
the Departments@S2 collection, or each employee belongs
to Employees@S1 can refers the correspondent department
using the field dept.

This type system opens the door to many “modeling”
possibilities that sometimes are compared to the normalized
and de-normalized alternatives of the relational data model [4].
As will be evident in the following sections, even if NoSQL
trends are prone to using schema-less data bases, there is an
“implicit” schema and its choice is important.

B. Query language

MongoDB? provides a document-based query language to
retrieve data. A query is always applied on a concrete document
collection. Filters, projections, selections and other operators
can be used to retrieve particular information for each document.
MongoDB provides many operators in order to compare data,
find out the existence of a particular field or find elements
within arrays.

3Version 3.1.9

The implementation of a query depends on the data structure
and can be performed in many different ways. The complexity
of a query program is related to the number of collections
involved and to the embedding level where the required data
is located.

The performance and the readability of the query programs
relies on the application developer’s skills and knowledge.

III. DATA STRUCTURING ALTERNATIVES

This section explores the data structuring alternatives that
are possible in MongoDB, in order to analyse their advantages
and possible drawbacks according to the application needs. We
used a simple example called the Company, which was already
mentioned. Figure 1 shows the entity-relationship model that
involves Company, Department and Employee. Relationships
are 1..* with the usual semantics. A company is organized in
one or several departments. A department is part of exactly one
company and has several employees. Each employee works for
a single department. This example does not consider entities
with several relationships nor many to many relationships.

We created a set of Mongo databases for the Company case.
As there is no database schema definition in Mongo, a database
is a set of data collections that contains documents according to
different data structuring. As embedding documents and sets of
documents are particular features, we worked with six document
schemes (named S1 up to S6), and mixed those choices thus
leading to different access levels. Figure 2 illustrates the six
schemes. A circle represents a collection whereas circles with
several lines correspond to several sets of documents embedded
into several documents. Next, we introduce the data structuring
alternatives.

Separate collections & no document embedding: Document
schemes S1 and S4 create a separate collection for each entity
type. Each document has a field expected to be an identifier.
Such identifiers are used for the references among documents
to represent the relationships 4. In S1, the references are in the
collections of the entity participating with cardinality 1 to the
relationships. In S4, the references are in a separated collection
CDES. No documents are embedded.

Full embedded single collection: in S3 and S5, all rela-
tionships are materialized with embedded documents. In the
Company case, the traversal of the relationships leads to one
single collection embedding documents up to level 3. In S3,
company documents are at the first level of the collection.
Each document embeds n department documents (level 2)
which in turn embed n employee documents (level 3). The
embedding choice in S3 reflects the I to many direction of
the relationship. In S5, the rational is similar, but it uses the
many to 1 direction. Employee documents are at level 1 of
the collection whereas company documents are embedded at
level 3. This choice introduces redundancy of the embedded
documents in a collection (e.g. company and department).

Embedding & referencing: S2 and S6 combine col-
lections with embedded documents and with references.

4This is similar to normalized relational schemes with primary and foreign keys
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In S2, Department is a collection and its relationship
with employee is treated by embedding the employee
documents (i.e. array of documents) into the correspond-
ing department document. This represents the [ to
many direction of the relationship. The relationship between
Department and Company is treated by referencing the
company in each department through the company id
(i.e. atomic field as the cardinality is 1). Companies is an
independent collection.

Embedding & replicating: S6 has been created with the
approach presented in [6]. It uses the many to I direction
of the relationships to embed the documents (as in S5) but
it also replicates all the documents so as to have a “first
level” collection for each entity type. Figure 2 shows the
three collections of S6, where for instance, Company exists
as 1) a separate collection, 2) as embedded documents in the
Departments collection and 3) embedded at the third level
in the Employees collection. There is also redundancy for
the embedded documents, as was previously mentioned for S5.

IV. EXPERIMENT

This section is devoted to the experiment conducted with the
data structuring alternatives introduced in Section III. Section
I'V-A presents the experiment setup. In Section IV-B, we discuss
memory requirements regarding the data structuring choices.
Section IV-C presents the queries implemented for different
document schemes.
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Fig. 3: Data size

A. Experiment set up

For our study, we created six Mongo databases using the
schemes S1 to S6. Each of them has been populated with the
same data: 10 companies, 50 departments per company and
1000 employees per department. Data is consistent.

We implemented the queries introduced in Section IV-C
for all the databases. In some cases, the implementation of a
query differs a lot from one schema to another. For each db,
each query has been executed 31 times with indexes, and 31
times without indexes. The first execution of each sequence
was separated in order to avoid load in memory effects. The
experiment was run on a workstation (Intel Core 17 Processor
with 1.8 GHz and 8GB of RAM).

B. Data size evaluation

Figures 3a shows the size of each database and figure 3b
shows the size of each collection. Note the large size of S5
and S6 databases with respect to the other options. The size
of S5 and S6 are mainly dominated by collection Employee
which has a fully embedded structure following the many-to-
one relationships. Company and department documents are
replicated in Employees. S6 is a little larger than S5, because
of collections Companies and Departments which are
extra copies in S6.

S4 and S1 do not embed documents. The size of S4 is twice
the size of S1 because of the size of the cdes collection
(representing the relationships) which is meaningful in our
set-up.

The size of embedded collections tends to grow even if
they don’t have any replication. See S2 and S3 wrt S1.

size(Departments@S2) > (size(Employees@S1) +

size(Department@S1)),
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With respect to S1, both S2 and S3 have more complex
structures with arrays of embedded documents at different
levels.

C. Queries

To analyse the impact of the data structuring, we established
a set of queries Q to be executed and evaluated using each of
the schemes. Q includes queries with increasing complexity: a
selection with a simple equality/inequality predicate on a single
entity type (see QI, Q2, Q6), queries requiring partitioning
(see Q4), queries involving several entity types (see Q5, Q7)
and aggregate functions (see Q3).
[Q1] Employees with a salary equal to $1003.
[Q2] Employees with a salary higher than $1003.
[Q3] Employees with the highest salary.
[Q4] Employees with the highest salary per company and the
company id.
[QS] Employees with the highest salary per company and the
company name.
[Q6] The highest salary.
[Q7] Information about the companies including the name of
their departments.

These queries have been used to evaluate the performance
in each scheme.
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V. RESULTS ANALYSIS °

In this section, we analyse the results of the experiment
from the point of view of data structure and query performance
(Section V-A). In Section V-B, we focus on the impact of
indexing. In Section V-C, we propose a discussion around
the facts that were confirmed and found after performing this
experiment.

A. Databases without indexes

As was previously mentioned, the experiment includes the
execution of queries Q1 to Q7 on the 6 databases — S1 to S6
—. In order to ease the analysis, Figure 4 shows the median
execution time for each query in the corresponding schema. In
addition, Figure 4b depicts the relative performance for each
query with respect to all schemes. There is a line per query.
Schemes are ordered from left to right, starting with the one
where performances are the best. For example, for Q7, the
best performance was obtained in S3 and the worst in S5. For
Q2, the performances in S1, S4, S5 and S6 are very close and
clearly better than the performance in S3.

Let’s first focus on schemes with full embedded single
collections. For such schemes, performance is very good
when the query access pattern is in the same direction of
the embedded structure. This can be appreciated in S3 and S5
for queries Q4, Q5 and Q7. When Q4 and Q5 search for data
of employees by company, S5 is not good because the
data is dispersed at levels 1 and 3, respectively. This implies

5Data of full results are provided in:
https://undertracks.imag.fr/php/studies/study.php/data_schemes_in_nosql_systems



traversing down and up several times into the nested structure
and discarding the unnecessary information involved in the
intermediate level.

We will use the term intrajoins to refer to the process of
traversing down and up nested structures in order to find and
relate data.

The case is different in S3. Here, employees are at level
3 and companies at level 1, thus matching with the access
pattern of Q7. This implies dealing with an intermediate level
as in S5; however, in S3, it is not necessary to go up and down
between levels. Therefore, S3 performs the best.

A similar behaviour occurs in Q7, which requires company
data and the names of its departments. S5 has the required
data at levels 3 and 2 respectively —in an inverse order—
and they are not grouped. This implies crossing through each
document at level 1, discarding useless information, and moving
down to levels 2 and 3. All this to group the data located at
level 2 based on the data at level 3. The worst performance of
Q7 appears in S5.

Regarding S3, the access pattern of Q7 matches its em-
bedding structure perfectly. Here the companies’ data are
at level 1 and the departments’ data are grouped at level
2. S3 performs best again. However, this is not true for all
the queries. Q3 on S3 has the worst performance because the
required data are nested at level 3.

In order to favor certain access, several copies of the same
data can be created using collections with different structures, as
is done in S6. S6 extends S5 by including additional collections
such as Departments, where company is embedded. This
collection corresponds exactly to the data required by Q7. Q7
does not use employees. In this case, even if intrajoins are
necessary, and the query access pattern is in the other direction,
Q7 performs much better in S6 than in S5. The main reason is
that the required data are at levels 1 and 2 in S6, thus avoiding
any intermediate or superior levels. In S5, the employees have
to be traversed even if their data is not useful for Q7.

When considering schemes with separate collections without
document embedding such as S1 and S4, it is evident that they
perform the best for queries Q1, Q2 and Q3. This is explained
by the fact that the read-set of these queries perfectly matches
a collection. No useless data are read, nor complex structures
need to be manipulated. This is not the case for Q4 and Q5,
which perform badly in S1 and S4. In both cases, the queries
require data concerning employees and companies —or their
relationship—, which are stored in separate collections —i.e.,
Cdes@S4 and Departments@S1—. Therefore in S1 and
S4, the query evaluation requires join and grouping operations,
whereas in S3, the Company collection already reflects that.

Q7 is also very inefficient in S4. The overhead is due to the
search of the departments-company relationship in the Cdes
collection.

It should be stressed that the hypothesis on data consistency
is important for query implementation. For example, for Q7 in
S5 and S6, this hypothesis allows the extraction of the name of
the first department we found without scanning the whole
extension of department.
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B. Indexes impact

We complete our study by creating indexes in all databases
and analyzing the benefit on the performances of Q1 up to Q7.
We created indexes on the identifiers (e.g.. company id) and
on the salary. Figures 5a and 5b provide a synthesis of the
results. Figure 6 shows the speedup obtained using the index
with respect to the setup without index.

As expected, indexes improve performances. In particular,
the improvement for Q4 and QS5 is high in all schemes, and
reaches 96% in S1 (see Figure 6). Some schemes, such as S1
and S5, which perform the worst without indexes, perform very
well with indexes (see Figure 5b). Interestingly, the benefit of
the indexes in S3, is less important than for the other schemes.
S3 is relegated to the last performance position when compared
to the other schemes.

Furthermore, indexes improve the performances of Q7 in all
schemes. Nevertheless, the improvement obtained in S4 and S5
is not enough to overtake S3. This shows that even if indexes
are efficient, there are cases where they cannot compete against
an unsuitable schema.

C. Discussion

As was previously discussed, the experiment allowed us to
confirm some of the intuitive ideas on data modeling with
MongoDB, but it also pointed out unexpected aspects. These
aspects concern the performances but also the readability of
the code used for implementing the queries.

The embedding level of the data has an impact on perfor-
mances. Accessing data at the first level of a collection is faster
and easier than accessing data in deeper levels.

Querying data stored at different embedding levels in a
collection may require complex manipulations. For example,
when the structure embeds arrays of documents, the algorithms
to manage them are similar to intra-collection joins. They affect
performances, but also require more elaborate programming.

The type of results, impacts performances. This point may
be an issue when working with complex data. The structure of
selected data is pre-formated with the structure of the queried
collection. For example, when extracting a field A appearing
in documents embedded at level k, the result will maintain the
embedded structure if no restructuring operations are performed.
This means that the answer may have useless embedding levels



and not required information issued from any of the k-1 levels
that have been traversed to access field A. Changing such
a structure to provide data in another format requires extra
processing. The cost of this extra processing should not be
neglected.

Concerning storage requirements, our experiment revealed
that using collections with embedded documents tends to
require more storage than using separate “flat” collections
and references for the same data.

VI. RELATED WORK

Many works focus on automatically transforming a relational
schema to a data model supported by a NoSQL system. [6]
[7]. Some works compare performance, scalability and other
properties between relational and NoSQL systems [8] [9] [10].
Others such as [11] [12] introduce schema management on top
of schema-less document systems.

Zhao et al in [6] present a systematic schema conversion that
follows a de-normalization approach where: 1) each table is a
new collection, 2) each foreign key in a table is transformed
into an embedded structure where the keys are replaced by
the actual data values. They pre-calculate some natural joins
with embedded schemes to improve the query performance
with respect to a relational DBMS. Additionally, the paper
shows that, even though query performance for some ’joins”
is better, space performance is worst due to data replication. In
our experiment, schema S6 corresponds to the Zhao’s strategy.
According to our results, if the queries follow the embedded
structure, performance is better than in other schemes. In the
other cases performance is poorer.

Lombardo et al in [13] propose a framework to determine the
key-value tables that are most suited to optimize the execution
of the queries. From an entity-relationship diagram and the
most used queries, they propose to create redundant tables
to improve performance (they do not talk about the cost in
storage). The goal of their framework is similar to ours: To help
NoSQL developers to choose the most suitable data structuring
according to the needs of the application. The approach is
different because we intend to create several schemes and
evaluate them before making a final decision.

Mior in [14] follows a similar approach to ours but focus on
Cassadra. He proposes a static analysis of the storage impact
comparing a set of queries in different schemes. We compare
and analyse based on experimentation.

VII. CONCLUSION AND FUTURE WORK

This paper reports a study on the impact of data structuring
in document-based systems such as MongoDB. This system
is scheme-less, as are several NoSQL systems. We worked
with several data structuring schemes in order to evaluate size
performance, and with several queries in order to analyse the
execution time with respect to the schemes. The experiments
demonstrated that data structure choices do matter. Collections
with embedded documents have a positive impact on queries
that follow the embedding order. However, there is no benefit
—or there is the possibility of bad performance— for queries

accessing the data in another embedding order or requiring to
access data embedded at different levels in the same collection.
The reason for the latter is that the required manipulations are of
similar complexity than that of joins of several collections. Also,
collections with embedded documents —even those without
replication— tend to require more storage than the same data
represented on separate collections.

Future work includes extending our study to cover more
complex data scenarios. For instance, relationships with 0 and
N..M cardinality and several relationships for an entity type.
Considering the semi-structured data model, it would also be
interesting to explore more modeling alternatives. For example,
the use of fragmented documents and partial replication. Our
long-term objective is to provide developers with a design
assistant tool to help them solve trade-offs.
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