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CONVERGING EXPANSIONS FOR LIPSCHITZ SELF-SIMILAR PERFORATIONS

OF A PLANE SECTOR

MARTIN COSTABEL, MATTEO DALLA RIVA, MONIQUE DAUGE, AND PAOLO MUSOLINO

ABSTRACT. In contrast with the well-known methods of matching asymptotics and multiscale (or

compound) asymptotics, the “functional analytic approach” of Lanza de Cristoforis (Analysis 28,

2008) allows to prove convergence of expansions around interior small holes of size ε for solutions

of elliptic boundary value problems. Using the method of layer potentials, the asymptotic behavior

of the solution as ε tends to zero is described not only by asymptotic series in powers of ε, but

by convergent power series. Here we use this method to investigate the Dirichlet problem for the

Laplace operator where holes are collapsing at a polygonal corner of opening ω. Then in addition

to the scale ε there appears the scale η = επ/ω. We prove that when π/ω is irrational, the solution

of the Dirichlet problem is given by convergent series in powers of these two small parameters.

Due to interference of the two scales, this convergence is obtained, in full generality, by grouping

together integer powers of the two scales that are very close to each other. Nevertheless, there exists

a dense subset of openings ω (characterized by Diophantine approximation properties), for which

real analyticity in the two variables ε and η holds and the power series converge unconditionally.

When π/ω is rational, the series are unconditionally convergent, but contain terms in log ε.
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INTRODUCTION

Domains with small holes are fundamental examples of singularly perturbed domains. The analy-

sis of the asymptotic behavior of elliptic boundary value problems in such perforated domains as

the size of the holes tends to zero lays the basis for numerous applications in more involved situa-

tions that can be found in the classical monographs [18], [25], [20] and the more recent [1]. The

two methods that are most widely spread are the matching of asymptotic expansions as exposed

by Il’in [18], and the method of multiscale (or compound) expansions as in Maz’ya, Nazarov, and

Plamenevskij [25] or Kozlov, Maz’ya, and Movchan [20]. Ammari and Kang [1] use the method

of layer potentials to construct asymptotic expansions. When the holes are shrinking to the corner

of a polygonal domain, one encounters the class of self-similar singular perturbations, a case that

has been treated by Maz’ya, Nazarov, and Plamenevskij [25, Ch.2] with the method of compound

expansions, and by Dauge, Tordeux, and Vial [13] with both methods of matched and compound

expansions. The common feature of these methods is their algorithmic and constructive nature:

The terms of the asymptotic expansions are constructed according to a sequential order. At each

step of the construction, remainder estimates are proved, but there is no uniform control of the

remainders, and this does therefore not lead to a convergence proof.

Another method appeared recently, based on the “functional analytic approach” introduced by

Lanza de Cristoforis [21]. This method has so far mainly been applied to the Laplace equation on

domains with holes collapsing to interior points. The core feature is a description of the solution

as a real analytic function of one or several variables depending on the small parameter ε that

characterizes the size of the holes. This is proved by a reduction to the boundary via integral

equations, and after a careful analysis of the boundary integral operators the analytic implicit

function theorem can be invoked, providing the expansion of the solutions into convergent series.

Analytic functions of several variables appear for example in [22, 9], where the two-dimensional

Dirichlet problem leads to the introduction of the scale 1/ log ε besides ε, or in [10], where a

boundary value problem in a domain with moderately close holes is studied and the size of the

holes and their distance are defined by small parameters that may be of different size.

Our aim in this paper is to understand how this method would apply to the Dirichlet problem

in a polygonal domain when holes are shrinking to the corner in a self-similar manner. In the

limit ε → 0, the singular behavior of solutions at corners without holes will combine with the

singular perturbation of the geometry. In contrast to what happens in the case of holes collapsing

at interior points or at smooth boundary points [3], we find that the series expansions in powers of



CONVERGING EXPANSIONS 3

ε that correspond to the asymptotic expansions of [13] are only “stepwise convergent”. For corner

opening angles ω that are rational multiples of π, the series will be unconditionally convergent,

but in general for irrational multiples of π, certain pairs of terms in the series may have to be

grouped together in order to achieve convergence. This is a peculiar feature similar to, and in the

end caused by, the stepwise convergence of the asymptotic expansion of the solution of boundary

value problems near corners when the data are analytic [4, 11].

0.1. Geometric setting. We consider perforated domains where the holes are shrinking towards

a point of the boundary that is the vertex of a plane sector. For the sake of simplicity, we try

to concentrate on the essential features and avoid unnecessary generality. Therefore we consider

only one corner, but we admit several holes.

We denote by t = (t1, t2) the Cartesian coordinates in the plane R2, and by (ρ = |t|, ϑ = arg(t))
the polar coordinates. The open ball with center 0 and radius ρ0 is denoted by B(0, ρ0). Let the

opening angle ω be chosen in (0, 2π) and denote by Sω the infinite sector

Sω = {t ∈ R2, ϑ ∈ (0, ω)}. (0.1)

The case ω = π is degenerate and corresponds to a half-plane.

The perforated domains Aε are determined by an unperforated domain A, a hole pattern P and

scale factors ε, about which we make some hypotheses.

The unperforated domain A satisfies the following assumptions, see Fig.1 left,

(1) A is a subset of the sector Sω and coincides with it near its vertex:

∃ρ0 > 0 such that B(0, ρ0) ∩ A = B(0, ρ0) ∩ Sω, (0.2)

(2) A is bounded, simply connected, and has a Lipschitz boundary,

(3) Sω \ A has a Lipschitz boundary,

(4) ∂A ∩ ∂Sω is connected.

The hole pattern P satisfies, see Fig.1 right,

(1) P is a subset of the sector Sω and its complement Sω \ P coincides with Sω at infinity:

∃ρ′0 > 0 such that P ⊂ Sω ∩ B(0, ρ′0). (0.3)

(2) P is a finite union of bounded simply connected Lipschitz domains Pj , j = 1, . . . , J ,

(3) Sω \ P has a Lipschitz boundary,

(4) For any j ∈ {1, . . . , J}, ∂Pj ∩ ∂Sω is connected.

Let ε0 = ρ0/ρ
′
0. The family of perforated domains

(
Aε
)
0<ε<ε0

is defined by, see Fig.2,

Aε = A \ εP, for 0 < ε < ε0. (0.4)

The family εP can be seen as a self-similar collection of holes concentrating at the vertex of the

sector. Here, in contrast with [9] we do not assume that 0 belongs to P. We do not even assume

that 0 does not belong to ∂P.
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FIGURE 1. Limit domain A and hole pattern P.

Our assumptions (0.2), (0.3) exclude some classes of self-similar perturbations of corner domains

that are also interesting to study and have been analyzed using different methods, see [13]. For ex-

ample, condition (2) in (0.3) excludes the case of the approximation of a sharp corner by rounded

corners constructed with circles of radius ε. Condition (3) in (0.3) excludes holes touching the

boundary in a point. The Lipschitz regularity conditions (2) and (3) in (0.2), (0.3) are essential for

our boundary integral equation approach. On the other hand, the condition that A is simply con-

nected and the related connectivity conditions (4) in (0.2), (0.3) are not essential, they are merely

made for simplicity of notation.

Sω

Aε

Sω

Aε

FIGURE 2. Perforated domain Aε for two values of ε.

0.2. Dirichlet problems and mutiscale expansions. We are interested in the collective behavior

of solutions of the family of Poisson problems
{

∆uε = f in Aε,

uε = 0 on ∂Aε.
(0.5)

We assume that the common right hand side f is an element of L2(A), which, by restriction to Aε,

defines an element of L2(Aε) and provides a unique solution uε ∈ H1
0 (Aε) to problem (0.5).

If moreover f is infinitely smooth on A, then a description of the ε-behavior of uε can be performed

in terms of multiscale asymptotic expansions. We refer to [25, 13] which apply to the present

situation. As a result of this approach, cf [13, Th. 4.1 & Sect. 7.1], uε can be described by an

asymptotic expansion containing two sorts of terms:
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• Slow terms uβ(t), defined in the standard variables t
• Rapid terms, or profiles, Uβ( t

ε
), defined in the rapid variable t

ε
.

Here the exponent β runs in the set N+ π
ω
N = {ℓ+ k π

ω
, k, ℓ ∈ N}.

If π
ω

is not a rational number, uε can be expanded in powers of ε

uε(t) ≃
∑

β∈N+ π
ω
N

εβ uβ(t) +
∑

β∈N+ π
ω
N

εβ Uβ( t
ε
) . (0.6)

The sums are asymptotic series, which means the following here: Let (βn)n∈N be the strictly

increasing enumeration of N+ π
ω
N and define the N th partial sum by

u[N ]
ε (t) =

N∑

n=0

εβn uβn(t) +
N∑

n=0

εβn Uβn( t
ε
) . (0.7)

Then for all N ∈ N there exists CN such that for all ε ∈ (0, ε1]
∥∥uε − u[N ]

ε

∥∥
H1(Aε)

≤ CN ε
βN+1 (0.8)

where we have chosen ε1 < ε0.

If π
ω

is a rational number, the terms corresponding to β in the intersection β ∈ N ∩ π
ω
N∗ contain a

log ε and the estimate (0.8) has to be modified accordingly.

0.3. Convergence analysis. Let us assume from now on that f has an extension as a real analytic

function in a neighborhood of the origin, so f has a converging Taylor expansion at the origin:

More specifically, we assume that there exist two positive constants Mf and C so that

f(t) =
∑

α∈N2

fα t
α1
1 t

α2
2 , ∀t ∈ B(0,M−1

f ) ∩ A, with |fα| ≤ CM
|α|
f . (0.9)

Even with this assumption, the recursive construction of the terms uβ and Uβ of (0.6) performed

in the above references does not allow any control of the constants CN in function of N .

In the present work we address the question of the convergence of the series (0.6). It follows from

general properties of power series that convergence of (0.6) in the sense that

lim
N→∞

∥∥uε − u[N ]
ε

∥∥ = 0

in some norm and for some ε = ε1 > 0 implies that the series converges absolutely and uncon-

ditionally for any ε ∈ (−ε1, ε1). It will follow from our analysis that there exists a set Λs of real

irrational numbers (super-exponential Liouville numbers, see Definition B.1) with the property

that whenever the opening angle ω does not belong to πΛs, then such an ε1 > 0 does indeed exist.

For ω ∈ πΛs on the other hand, in general the series (0.6) does not converge for any ε 6= 0. It is

known from classical number theory that both Λs and its complement are uncountable and dense

in R and Λs is of Lebesgue measure zero and even of Hausdorff dimension zero. The series can

be made convergent, however, for any ω ∈ (0, 2π) by grouping together certain pairs of terms in
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the sums for which βn+1 − βn is small. This situation can also be expressed by the fact that there

exists a subsequence (Nk)k∈N of N such that for any ε ∈ (−ε1, ε1)

lim
k→∞

∥∥uε − u[Nk]
ε

∥∥ = 0 .

We call this kind of convergence “stepwise convergence”, and the main result of this paper is the

construction of a convergent series in this sense.

Our analysis relies on four main steps, developed in the four sections of this paper.

STEP 1. We set ũε = uε − u0
∣∣
Aε

, where u0 ∈ H1
0 (A) is the solution of the limit problem

{
∆u0 = f in A,

u0 = 0 on ∂A .
(0.10)

Doing this, we reduce our investigation to the harmonic function ũε, solution of the problem

{
∆ũε = 0 in Aε,

ũε = −u0 on ∂Aε,
(0.11)

Since u0 is zero on ∂A, the trace of u0 on ∂Aε can be nonzero only on the boundary of the holes

ε∂P. In order to analyze this trace, we expand u0 near the origin in quasi-homogeneous terms

with respect to the distance ρ to the vertex according to the classical Kondrat’ev theory [19]. The

investigation of the possible convergence of this series is far less classical, see [4], and it may

involve stepwise convergent series. This issue is also related to the stability of the terms in the

expansion with respect to the opening, cf [6, 7]. We provide rather explicit formulas for such

expansions in complex variable form.

STEP 2. We transform problem (0.11) into a similar problem on a perforated domain for which

the holes shrink to an interior point of the limit domain, a situation studied in [22, 9, 10]. To get

there, we compose two transformations that are compatible with the Dirichlet Laplacian,

• A conformal map of power type,

• An odd reflection.

In this way the unperturbed sector domain A is transformed into a bounded simply connected

Lipschitz domain B that contains the origin, and the hole pattern P is transformed into another

hole pattern Q that is a finite union of simply connected bounded Lipschitz domains Qj . The

small parameter is transformed into another small parameter η by the power law

η = επ/ω,

and the new perforated domains Bη have the form

Bη = B \ ηQ, η ∈ (0, η0).

The boundary of Bη is the disjoint union of the external part ∂B and the boundary η∂Q of the holes

ηQ. The holes shrink to the origin 0, which now lies in the interior of the unperforated domain B.
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In this way problems (0.11) are transformed into Dirichlet problems on Bη
{

∆vη = 0 in Bη,

vη = µη on ∂Bη .
(0.12)

The family of Dirichlet traces µη are determined by the trace of u0 on the family of boundaries

ε∂P of the holes. They have a special structure due to the mirror symmetry.

STEP 3. We study analytic families of model problems of this type where µη depends on η as

follows {
µη(x) = ψ(x) if x ∈ ∂B,

µη(x) = Ψ(x
η
) if x ∈ η∂Q.

(0.13)

Here we have a clear separation between the external boundary ∂B where µη does not depend

on η, and the internal boundary η∂Q of ∂Bη that is the boundary of the scaled holes ηQ. Via

representation formulas involving the double layer potential, we transform the problem (0.12)

with right hand side (0.13) into an equivalent system of boundary integral equations (3.29) with

a matrix of boundary integral operators M(η) depending analytically on η in a neighborhood of

zero and such that M(0) is invertible, see Theorem 3.12.

The crucial property making this possible is the homogeneity of the double layer kernel, which

allows to write M(η) in such a form that its diagonal terms are independent of η and the off-

diagonal terms vanish at η = 0. The problem corresponding to the boundary integral operator

M(0) can be interpreted as a decoupled system of Dirichlet problems, one (in slow variables x)

on the unperturbed domain B and a second one (in rapid variables X = x
η
) on the complement

R2 \Q of the holes at η = 1.

STEP 4. From the formulation via an analytic family of boundary integral equations in Step 3

follows that there exists η1 > 0 such that the solutions vη of problems (0.12)-(0.13) depend on

the data ψ ∈ H1/2(∂B) and Ψ ∈ H1/2(∂Q) via a solution operator L(η) that is analytic in η for

η ∈ (−η1, η1) and, therefore, is given by a convergent series around 0

L(η) =
∞∑

n=0

ηnLn, |η| ≤ η1 . (0.14)

Combining this with the results of Steps 1 and 2, we obtain expansions of the solutions uε of

problem (0.5) in slow and rapid variables similar to (0.6) that are not only asymptotic series as

ε → 0 like in (0.8), but convergent for ε in a neighborhood of zero. The convergence is shown in

weighted Sobolev norms and it is, in general, “stepwise” in the same sense as had been known for

the convergence of the expansion in corner singular functions of the solution u0 of the unperturbed

problem (0.10). The main results on this kind of convergent expansions are given in Theorems 4.5,

4.6 and 4.7.

While the series in powers of ε are, under our general conditions, not unconditionally convergent

due to the interaction of integer powers coming from the Taylor expansion of the right hand side

f in our problem (0.5) and the powers of the form kπ/ω, k ∈ N, coming from the corner singu-

larities, there are two situations where the convergence is, in fact, unconditional.

The first such situation is met when the opening angle ω is such that π/ω is either a rational number
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or, conversely, is not approximated too fast by rational numbers, namely not a super-exponential

Liouville number as defined in Definition B.1. In this case, the right hand side f can be arbitrary,

as long as it is analytic in a neighborhood of the corner, see Corollaries 4.9 and 4.10.

The second situation where we find unconditional convergence is met for arbitrary opening angles

ω when the right hand side f in (0.5) vanishes in a neighborhood of the corner: Then we have the

converging expansion in L∞(Ω)

uε(t) = u0(t) +
∑

β∈ π
ω
N∗

εβ uβ(t) +
∑

β∈ π
ω
N∗

εβ Uβ( t
ε
). (0.15)

Thus both parts of this two-scale decomposition of uε are given by functions that are real analytic

near zero in the variable η = επ/ω, see Corollary 4.8.

1. UNPERTURBED PROBLEM ON A PLANE SECTOR

We are going to analyze the solution u0 of problem (0.10) when the right hand side satisfies the

assumption (0.9). We represent u0 as the sum of three series converging in a neighborhood of the

vertex:

u0 = uf + u∂ + urm

where

(1) uf is a particular solution of ∆u = f ,

(2) u∂ is a particular solution of ∆u = 0, with u∂ + uf = 0 on the sides ϑ = 0 or ω,

(3) urm is the remaining part of u0.

We use the complex variable form of Cartesian coordinates

ζ = t1 + it2, ζ̄ = t1 − it2 i.e. ζ = ρeiϑ. (1.1)

In particular, instead of (0.9), we write the Taylor expansion at origin of f in the form

f(t) =
∑

α∈N2

f̃α ζ
α1 ζ̄α2 in B(0,M−1

f ), with |f̃α| ≤ CMM
|α|, (M > Mf ). (1.2)

1.1. Interior particular solution. The existence of a real analytic particular solution to the equa-

tion ∆u = f is a consequence of classical regularity results (cf. Morrey and Nirenberg [27]).

Nevertheless, we can also provide an easy direct proof by an explicit formula using the complex

variable representation (1.2): It suffices to set

uf(t) =
∑

α∈N2

f̃α
4(α1 + 1)(α2 + 1)

ζα1+1ζ̄α2+1 in B(0,M−1
f ). (1.3)

to obtain a particular real analytic solution to the equation ∆u = f in B(0,M−1
f ).
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1.2. Lateral particular solution. Set ρ1 = min{ρ0,M−1} for a chosen M > Mf . In the finite

sector A ∩ B(0, ρ1), the difference ũ ≡ u0 − uf is a harmonic function and its traces on the sides

ϑ = 0 and ϑ = ω coincide with −uf . Denote by g0 and gω the restriction of −uf on the rays

ϑ = 0 and ϑ = ω. These two functions are analytic in the variable ρ:

g0 =
∑

ℓ∈N∗

g0ℓρ
ℓ, gω =

∑

ℓ∈N∗

gωℓ ρ
ℓ, |g0ℓ |+ |gωℓ | ≤ Cρ−ℓ1 . (1.4)

The constant ρ1 > 0, which is a lower bound for the convergence radius of the power series

(1.4), is by construction less than M−1
f , where Mf is the constant in the assumption (0.9) on the

analyticity of the right hand side f . Note that, by construction, g0 and gω vanish at the origin.

As a next step in the analysis of u0, we now construct a particular solution u∂ of the problem

satisfied by ũ {
∆u∂(t) = 0 ∀t ∈ A ∩ B(0, ρ1) ,

u∂(t) = −uf(t) ∀t ∈ (T0 ∪ Tω) ∩ B(0, ρ1) .
(1.5)

This solution uses the convergent series expansion (1.4) and will be given as a convergent series,

too.

Following [4], for any positive integer ℓ ∈ N∗ we can write explicit particular solutions wℓ to the

Dirichlet problem in the infinite sector Sω





∆wℓ(t) = 0 ∀t ∈ Sω ,

wℓ(t) = g0ℓρ
ℓ ∀t ∈ T0 ,

wℓ(t) = gωℓ ρ
ℓ ∀t ∈ Tω ,

(1.6)

where T0 and Tω are the two sides of the sector Sω.

The idea is then to give estimates of the wℓ that show convergence of the series u∂ =
∑

ℓ∈N∗
wℓ .

There exists always a (quasi-)homogeneous solution of degree ℓ. The harmonic functions that are

homogeneous of degree ℓ are

Im ζℓ and Re ζℓ

They are given in polar coordinates by ρℓ sin ℓϑ and ρℓ cos ℓϑ. The determinant of their boundary

values is sin ℓω. If this is zero, we cannot solve (1.6) in homogeneous functions (except in the

smooth case, i.e. when ω = π, where we find that wℓ = bℓ Re ζ
ℓ with bℓ = g0ℓ is a solution), but

we need the quasihomogeneous function

Im(ζℓ log ζ) .

We find the solution

(i) If sin ℓω 6= 0, i.e. if ℓω 6∈ πN




wℓ(t) = aℓ Im ζℓ + bℓ Re ζ
ℓ

with aℓ =
gωℓ − g0ℓ cos ℓω

sin ℓω
and bℓ = g0ℓ .

(1.7)

In this case the solution to (1.6) is unique in the space of homogeneous functions of degree ℓ.
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(ii) If sin ℓω = 0, i.e. if ℓω = kπ with k ∈ N, so cos ℓω = (−1)k,





wℓ(t) = aℓ Im(ζℓ log ζ) + bℓ Re ζ
ℓ

with aℓ =
gωℓ − g0ℓ cos ℓω

ω cos ℓω
and bℓ = g0ℓ .

(1.8)

We draw the following consequences according to whether π
ω

is rational or not:

(a) If π
ω
∈ Q, then the coefficients aℓ and bℓ in (1.7)-(1.8) are controlled since sin ℓω spans a finite

set of values: There exists C ′ such that

|aℓ|+ |bℓ| ≤ C ′ρ−ℓ1 , ℓ ∈ N∗ . (1.9)

(b) If π
ω
6∈ Q, estimating aℓ is hindered by the possible appearance of small denominators sin ℓω.

In Appendix B we show that there exists a dense set of angles ω such that sin ℓω takes such small

values that the series with wℓ defined by (1.7) will not converge, in general. The criterion is that

π/ω belongs to the set Λs of super-exponential Liouville numbers, defined in Definition B.1 by

their very fast approximability by rational numbers. We can restore the control ofwℓ by modifying

it as proposed in [4, 11]. For this, we “borrow” a term from the expansion (1.15) of urm in

Section 1.3 below, namely a solution of the problem with zero lateral boundary conditions, a

Laplace-Dirichlet singularity

Im ζkπ/ω (harmonic in Sω, zero on T0 and Tω).

Using this with k = ⌊ℓω/π⌉ ∈ N∗ such that |ℓω − kπ| is minimal, we introduce a variant of wℓ
from (1.7) by defining

w̃ℓ(t) = aℓ
(
Im ζℓ − Im ζkπ/ω

)
+ bℓ Re ζ

ℓ

with aℓ and bℓ as in (1.7). We note that

aℓ
(
Im ζℓ − Im ζkπ/ω

)
= (gωℓ − g0ℓ cos ℓω) Im

ζℓ − ζkπ/ω

sin ℓω
.

The quotient on the right is stable because it can be expressed by divided differences:

ζℓ − ζkπ/ω

sin ℓω
=

ζℓ − ζkπ/ω

ℓ− kπ/ω

ℓ− kπ/ω

sin ℓω − sin kπ
.

For fixed ℓ, this is continuous in ω, even if ℓω → kπ, and we recover the logarithmic term from

(1.8):

lim
ℓω→kπ

Im
ζℓ − ζkπ/ω

sin ℓω
= Im(ζℓ log ζ)

1

ω cos ℓω
.

For fixed ω, we find a bound for the coefficient uniformly in ℓ if |ℓω − kπ| ≤ π/2:
∣∣∣∣
ℓ− kπ/ω

sin ℓω

∣∣∣∣ =
1

ω

∣∣∣∣
ℓω − kπ

sin(ℓω − kπ)

∣∣∣∣ ≤
π

2ω
.

The stable variant of (1.7), which contains the logarithmic expressions (1.8), is therefore




w̃ℓ(t) = ãℓ Im
ζℓ − ζkπ/ω

ℓ− kπ/ω
+ bℓ Re ζ

ℓ

with ãℓ = (gωℓ − g0ℓ cos ℓω)
ℓ− kπ/ω

sin ℓω
and bℓ = g0ℓ .

(1.10)
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We need this variant only when |ℓω − kπ| is small. We fix a threshold

0 < δω <
1
2
min{ω, π} (1.11)

and replace wℓ by w̃ℓ if there exists k ∈ N∗ such that |ℓω − kπ| ≤ δω.

The bounds on δω imply on one hand that in this definition k is defined uniquely by ℓ, but ℓ is

also uniquely determined by k. On the other hand, we can check that the coefficients aℓ and ãℓ are

uniformly controlled: There exists C ′ independent of ℓ such that

|a♭ℓ| ≤ C ′ρ−ℓ1 , where a♭ℓ =
{ aℓ

ãℓ
if dist(ℓω, πN)

{ > δω ,

≤ δω .
(1.12)

Thus, choosing for each value of ℓ solutions wℓ or w̃ℓ, cf (1.7)-(1.12), we obtain a convergent

series expansion for a particular solution u∂ of the (partial) Dirichlet problem (1.5).

1.3. Remaining boundary condition and convergence. Let us write in A ∩ B(0, ρ1):

u0 = uf + u∂ + urm . (1.13)

Now the function urm resolves the remaining boundary condition (here we choose ρ′1 ∈ (0, ρ1))




∆urm(t) = 0 ∀t ∈ A ∩ B(0, ρ′1) ,

urm(t) = 0 ∀t ∈ (T0 ∪ Tω) ∩ B(0, ρ′1) ,

urm(t) = g(t) ∀t ∈ Sω, |t| = ρ′1 ,

(1.14)

where

g(t) ≡ u0(t)− uf(t)− u∂(t) for |t| = ρ′1 .

Denoting by Π the arc ϑ ∈ (0, ω), ρ = 1, we can see that the trace g belongs to H
1/2
00 (ρ′1Π). By

partial Fourier expansion with respect to the eigenfunction basis
(
sin kπ

ω
ϑ
)
k∈N∗

we find

g(t) =
∑

k≥1

gk sin
kπ

ω
ϑ, t ∈ ρ′1Π,

with a bounded1 sequence
(
gk
)
k∈N∗

, and we deduce the representation

urm(t) =
∑

k≥1

gk

( ρ
ρ′1

)kπ/ω
sin

kπ

ω
ϑ, t ∈ A ∩ B(0, ρ′1).

Setting ckπ/ω = gk(ρ
′
1)

−kπ/ω, we find that the expansion for the remaining term can be written as

the converging series

urm(t) =
∑

γ∈ π
ω
N∗

cγ Im ζγ, t ∈ A ∩ B(0, ρ′1), (1.15)

with the estimates

|cγ| ≤ C(ρ′1)
−γ . (1.16)

The collection of formulas and estimates (1.3), (1.7)-(1.12), and (1.15)-(1.16) motivates the fol-

lowing unified notation.

1In fact the sequence
(√

k gk
)
k∈N∗

belongs to ℓ2(N∗).
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Notation 1.1. Let A be the set of indices (here N2
∗ denotes N2 \ {(0, 0)})

A = N2
∗ ∪ π

ω
N∗,

and let A0 be the subset of A of elements of the form (ℓ, 0) with ℓ ∈ N∗ such that there exists

k ∈ N∗ with |ℓω − kπ| ≤ δω (see (1.11)). (1.17)

For any γ ∈ A, we define the function t 7→ Zγ(t) as follows

(1) If γ ∈ π
ω
N∗, set Zγ(t) = ζγ,

(2) If γ = (α1, α2) ∈ N2
∗ and γ 6∈ A0, set Zγ(t) = ζα1 ζ̄α2 ,

(3) If γ = (ℓ, 0) ∈ A0, let k be the unique integer such that (1.17) holds. Set





Zγ(t) = ζℓ log ζ if ℓ = kπ
ω
,

Zγ(t) =
ζℓ − ζkπ/ω

ℓ− kπ/ω
if ℓ 6= kπ

ω
.

(1.18)

We are ready to prove the main result of this section:

Theorem 1.2. Let u0 be the solution of the unperturbed problem (0.10) with right hand side f ∈
L2(A) satisfying (0.9). We can represent u0 as the sum of a convergent series in a neighborhood

of the vertex 0

u0(t) = Im
∑

γ∈A

aγZγ(t), t ∈ A ∩ B(0, ρ1) (1.19)

where the set A and the special functions Zγ are introduced in Notation 1.1, and the coefficients

aγ satisfy the analytic type estimates: for all M > ρ−1
1 there exists C such that

|aγ| ≤ CM |γ|, γ ∈ A, (1.20)

where |γ| = α1+α2 if γ = (α1, α2) ∈ (N∗)
2, and |γ| = γ if γ ∈ π

ω
N∗. The coefficients aγ are real

if γ ∈ π
ω
N∗ or if γ = (ℓ, 0) ∈ N2

∗.

Proof. We start from the representation (1.13) of u0 in the three parts uf , u∂ and urm.

1) uf has the explicit expression (1.3) that can be written as
∑

α1∈N∗

∑
α2∈N∗

bαζ
α1 ζ̄α2 with suit-

able estimates for the coefficients bα:

|bα| ≤ CM |α|.

We notice that the set of indices (N∗)
2 has an empty intersection with A0. So

uf(t) =
∑

γ∈(N∗)2

bγZγ(t).

Since uf is real, we can set aγ = ibγ and get

uf(t) = Im
∑

γ∈(N∗)2

aγZγ(t).

2) u∂ is equal to
∑

ℓ∈N∗
w♭ℓ with

i) w♭ℓ = wℓ with wℓ given by (1.7) if (ℓ, 0) 6∈ A0,
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ii) w♭ℓ = wℓ with wℓ given by (1.8) if ℓ = kπ
ω

for some k ∈ N∗,

iii) w♭ℓ = w̃ℓ with w̃ℓ given by (1.10) if (ℓ, 0) ∈ A0 and ℓ 6= kπ
ω

, where k is the integer such

that (1.17) holds.

We parse each of these three cases

i) (ℓ, 0) 6∈ A0: Then Z(ℓ,0) = ζℓ and Z(0,ℓ) = ζ̄ℓ. We use formula (1.7) to obtain

wℓ = Im(aℓZ(ℓ,0) + ibℓZ(0,ℓ)) (1.21)

The coefficients a(ℓ,0) = aℓ and a(0,ℓ) = ibℓ satisfy the desired estimates, because (ℓ, 0) 6∈ A0

implies | sin ℓω| ≥ sin ω
2

.

ii) There exists k ∈ N∗ such that ℓ = kπ
ω

: Then Z(ℓ,0) = ζℓ log ζ and Z(0,ℓ) = ζ̄ℓ. We use formula

(1.8) to obtain the representation (1.21) again.

iii) (ℓ, 0) ∈ A0 and ℓ 6= kπ
ω

, with the integer k for which (1.17) holds. Now we start from formula

(1.10) and find once more the representation (1.21) with aℓ replaced by ãℓ.

3) Finally urm given by (1.15) is already written in the desired form. �

Remark 1.3. 1) Examining the structure of the terms in (1.19) we can see that a real valued basis

for the expansion of u0 is the union of

• ImZγ if γ ∈ π
ω
N∗ or if γ = (α1, α2) ∈ N2

∗ with α1 > α2,

• ReZγ if γ = (α1, α2) ∈ N2
∗ with α1 ≤ α2.

2) The traces of the function ImZkπ/ω are zero on ∂Sω for all k ∈ N∗. If we write the expansion

(1.19) in the form

u0 =
∑

k∈N∗

akπ/ω ImZkπ/ω +
∑

ℓ∈N∗

(
Im
∑

γ∈N2

|γ|=ℓ

aγZγ

)
(1.22)

we obtain terms ImZkπ/ω, or packets of terms Im
∑

|γ|=ℓ aγZγ that have zero traces on ∂Sω.

Remark 1.4. If ω = π, then u0 has a converging Taylor expansion at the origin.

Remark 1.5. If f = 0 in a neigborhood of the origin, then in the above construction we find that

uf and u∂ vanish identically, hence u0 = urm. For the latter we have the convergent expansion

(1.15), and therefore u0 has an expansion in terms of Im ζk
π
ω , k ∈ N∗ , that is convergent in a

neighborhood of the origin.

Remark 1.6. The definition of A0 depends on the choice of the threshold δω, see (1.11). This

influences which pairs of terms ζℓ and ζkπ/ω are grouped together into Zγ in the sum (1.19), but

changing A0 does not change the sum. One can also omit a finite number of indices from A0

without changing the sum. From Appendix B follows that we can even set δω = 0 and therefore

reduce A0 to the empty set if π/ω is irrational, but not a super-exponential Liouville number.

The resulting series in which no pairs of terms are regrouped will then converge, with a possibly

smaller convergence radius than ρ1 if π/ω is an exponential, but not super-exponential Liouville

number. The full convergence radius ρ1 is retained if π/ω is not an exponential Liouville number,

in particular if it is not a Liouville number. If π/ω is a super-exponential Liouville number, then

there exist right hand sides f such that the unmodified series does not converge for t 6= 0.
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1.4. Residual problem on the perforated domain. Setting ũε = uε − u0 with uε and u0 the

solutions of problems (0.5) and (0.10), respectively, we obtain that ũε solves the residual problem
{

∆ũε = 0 in Aε,

ũε = −u0 on ∂Aε,
(1.23)

By construction, u0 is zero on ∂A, therefore on ∂Aε ∩ ∂A. Thus the trace of u0 on ∂Aε can

be nonzero only on the part ε∂P ∩ Sω of the boundary of the perforations, compare Fig.2. The

converging expansion (1.19) allows us to interpret traces of u0 on ε∂P ∩ Sω as a series of traces

on ∂P∩ Sω with coefficients depending on ε. To describe this dependence, we recall Notation 1.1

and introduce corresponding combinations of powers of ε.

Notation 1.7. Let A and A0 be the sets of indices introduced in Notation 1.1. For any γ ∈ A we

define the function ε 7→ Eγ(ε) as follows

(1) If γ ∈ π
ω
N∗, set Eγ(ε) = εγ ,

(2) If γ = (α1, α2) ∈ N2
∗ and γ 6∈ A0, set Eγ(ε) = ε|γ|,

(3) If γ = (ℓ, 0) ∈ A0, let k be the unique integer such that (1.17) holds. Set





Eγ(ε) = εℓ log ε if ℓ = kπ
ω
,

Eγ(ε) =
εℓ − εkπ/ω

ℓ− kπ/ω
if ℓ 6= kπ

ω
.

(1.24)

The functions Zγ (1.18) are pseudo-homogeneous in the following sense.

Lemma 1.8. Let γ ∈ A and T ∈ Sω.

• If γ 6∈ A0, then

Zγ(εT ) = ε|γ|Zγ(T ) = Eγ(ε)Zγ(T ) .

• If γ = (ℓ, 0) ∈ A0, let k be the unique integer such that (1.17) holds. We set γ′ = kπ
ω

and

we have

Zγ(εT ) = ε|γ|Zγ(T ) + Eγ(ε)Zγ′(T ) .

Corollary 1.9. Under the conditions of Theorem 1.2, using the packet expansion (1.22), we find

u0(εT ) =
∑

γ∈ π
ω
N∗

aγε
γ ImZγ(T ) +

∑

ℓ∈N∗

εℓ
(
Im
∑

γ∈N2

|γ|=ℓ

aγZγ(T )
)
+
∑

γ∈A0

aγEγ(ε) ImZγ′(T ). (1.25)

Each of the terms or packets has zero trace on ∂Sω.

2. FROM A PERFORATED SECTOR TO A DOMAIN WITH INTERIOR HOLES

In this section, we transform the residual Dirichlet problem (1.23) into a problem on a perforated

domain with holes shrinking towards an interior point, so that to be able to use integral representa-

tions for its solution. A suitable transformation is obtained as the composition of two operations,

see Fig.3:

• A conformal map Gκ: ζ 7→ z = ζκ with κ = π
ω

that transforms the sector Sω into the upper

half-plane Sπ = R× R+,
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• The odd reflection operator E that extends domains and functions from Sπ to R2.

Sω

P

P

P

Hole pattern in plane sector Sω

Sπ

Conformal map to half-space Sπ

Sπ

Q∁

Q
×
1 Q

×
2

Q+
1

Q−
1

Extension by symmetry from Sπ to R2

FIGURE 3. Conformal map and symmetry acting on hole pattern P.

We introduce these two operations and list some of their properties before composing them in

view of the transformation of problem (1.23).

2.1. Conformal mapping of power type. Let ω ∈ (0, 2π) and κ > 0 be chosen so that κω < 2π.

The conformal map Gκ: ζ 7→ z = ζκ transforms Cartesian coordinates t into Cartesian coordinates

x with

ζ = t1 + it2 and z = x1 + ix2

and polar coordinates (ρ, ϑ) into (r, θ) with

r = ρκ and θ = κϑ.

Lemma 2.1. Assume that Ω ⊂ Sω and that Ω and Sω \ Ω have a Lipschitz boundary. Then

GκΩ ⊂ Sκω and, moreover, GκΩ and Sκω \ GκΩ have a Lipschitz boundary.

A function u defined on such a domain Ω ⊂ Sω is transformed into a function G∗
κu defined on GκΩ

through the composition

G∗
κu = u ◦ G−1

κ = u ◦ G1/κ .
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If ∂Ω is disjoint from the origin, then for any real s, the transformation G∗
κ defines an isomorphism

from the standard Sobolev space Hs(Ω) onto Hs(GκΩ).
If, on the contrary, 0 ∈ ∂Ω, there is no such simple transformation law for standard Sobolev

spaces. Nevertheless, weighted Sobolev spaces of Kondrat’ev type can be equivalently expressed

using polar coordinates and support such transformation: For real β and natural integer m, the

space Km
β (Ω) is defined as

Km
β (Ω) = {u ∈ L2

loc(Ω), ρβ+|α|∂αt u ∈ L2(Ω), ∀α ∈ N2, |α| ≤ m}. (2.1)

We have the equivalent definition in polar coordinates

Km
β (Ω) = {u ∈ L2

loc(Ω), ρβ(ρ∂ρ)
α1∂α2

ϑ u ∈ L2(Ω), ∀α ∈ N2, |α| ≤ m}.
Lemma 2.2. The conformal map Gκ defines an isomorphism

G∗
κ : K

m
β (Ω) onto Km

1+β
κ

−1
(GκΩ).

The proof is based on the formulas

ρ∂ρ = κ r∂r and ρdρdϑ = r
2
κ
−2rdrdθ.

Details are left to the reader.

A relation between standard Sobolev spaces Hs for real positive s and the weighted scale Km
β is

the following [12, Appendix A]

Km
β (Ω) ⊂ Hs(Ω) if m ≥ s and β < −s. (2.2)

Coming back to the solution u0 of problem (0.10), we check that as a consequence of (1.19) and

of Lemma 2.2, there holds:

Lemma 2.3. Let m ≥ 1 be an integer. Then the solution u0 of problem (0.10) satisfies

u0 ∈ Km
β (A) ∀β such that 1 + β > −min{ π

ω
, 2}. (2.3)

Let κ > 0. Then

Gκu0 ∈ Km
β′ (GκA) ∀β ′ such that 1 + β ′ > − 1

κ
min{ π

ω
, 2}. (2.4)

2.2. Reflection and odd extension. We first denote by R the mapping from R2 to itself defined

as the reflection across the x1 axis

R(x1, x2) ≡ (x1,−x2) ∀x = (x1, x2) ∈ R2 .

Then if Ω is a subset of R2 and g a function defined on Ω, we denote by R∗[g] the function on

R(Ω) defined by

R∗[g](x) = g(R(x)) ∀x ∈ R(Ω) .

Let Ω be a subdomain of the half-plane Sπ. Let us set

Γ = interior (∂Ω ∩ ∂Sπ).
We denote by E(Ω) the symmetric extension of Ω across the x1 axis

E(Ω) = Ω ∪R(Ω) ∪ Γ. (2.5)
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Since we want to stay within the category of Lipschitz domains, we need here the assumption that

both Ω and its complement in Sπ are Lipschitz. Note that whereas for a Lipschitz domain its com-

plement in R2 is automatically Lipschitz, too, this is not the case, in general, for the complement

in Sπ. This is the reason why we had to make corresponding assumptions in Subsection 0.1, see

assumptions (2) and (3) on the domain A and the perforations P. Under these assumptions E(Ω)
is a Lipschitz domain. Since the proof of this fact is rather technical, we present it in Appendix A,

Lemma A.1.

If g is a function defined on Ω, the odd extension of g to E(Ω) is defined as

E∗[g](x) ≡





g(x) ∀x ∈ Ω

−g(R(x)) ∀x ∈ R(Ω)

0 ∀x ∈ Γ .

Let us denote by H1
0,Γ(Ω) the following subspace of H1(Ω)

H1
0,Γ(Ω) = {u ∈ H1(Ω), u

∣∣
Γ
= 0}.

Lemma 2.4. Assume that Ω ⊂ Sπ and that Ω and Sπ \Ω have a Lipschitz boundary. Then the odd

extension E∗ defines a bounded embedding

E∗ : K2
β(Ω) ∩H1

0,Γ(Ω) −→ K2
β(E(Ω)) ∀β ∈ R.

Proof. If u belongs to K2
β(Ω) ∩ H1

0,Γ(Ω), the jumps of E∗[u] and of ∂2E∗[u] across Γ are zero.

Hence for all multiindices α, |α| ≤ 2, the partial derivative ∂αE∗[u] has no density across Γ and

‖r|α|+β∂αE∗[u]‖2
L2(E(Ω))

= 2‖r|α|+β∂αu‖2
L2(Ω)

.

�

2.3. Transformation of the residual problem. We come back to our main setting, with unperfo-

rated domain A, hole pattern P, and family of perforated domains Aε. We denote by T and T ∗ the

composition of the conformal map Gπ/ω and the odd extension acting on domains and functions

respectively

T = E ◦ Gπ/ω and T ∗ = E∗ ◦ G∗
π/ω . (2.6)

Then we denote

B = T (A), Q = T (P).

As a consequence of assumptions on A and P, and of Lemmas 2.1 and A.1, B is a bounded simply

connected Lipschitz domain containing the origin, and Q is a finite union of bounded simply

connected Lipschitz domains.

The perforated sector Aε is transformed by T into the perforated domain Bη with

η = επ/ω and Bη = B \ ηQ. (2.7)

We note that the boundary of Bη is the disjoint union of ∂B and η∂Q, see Fig.4:

∂Bη = ∂B ∪ η∂Q. (2.8)
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Bη Bη

FIGURE 4. Transformed perforated domain Bη for two values of η.

The residual problem (1.23) on Aε is transformed into the Dirichlet problem on Bη
{

∆vη = 0 in Bη,

vη = −T ∗[u0] on ∂Bη,

where we have set vη = T ∗[ũε]. We note that vη belongs to H1(Bη) and that its trace is zero

on ∂B. We analyze now the structure of the trace of T ∗[u0] on η∂Q. We take advantage of the

converging expansion (1.19) and of the pseudo-homogeneity of its terms.

We recall from Notation 1.1 that the set of indicesA is the union of π
ω
N∗ and N2

∗, and from Notation

1.7 that the pseudo-homogeneous functions Eγ(ε) are defined as ε|γ| if γ does not belong to the set

of exceptional indices A0, and by a divided difference or a logarithmic term in the opposite case.

Theorem 2.5. Let u0 be the solution of the unperturbed problem (0.10) with right hand side f ∈
L2(A) satisfying (0.9). The residual problem (1.23) on Aε is transformed by the transformation T
(2.6) into the Dirichlet problem on Bη, with η = επ/ω:





∆vη = 0 in Bη,

vη = 0 on ∂B,

vη = −T ∗[u0] on η∂Q .

(2.9)

The trace of T ∗[u0] can be written as a convergent sum for ε ∈ (0, ε1] for some positive ε1

T ∗[u0](ηX) =
∑

γ∈A

Eγ(ε)Ψγ(X), X ∈ ∂Q , (2.10)

where the set A and the functions Eγ are introduced in Notations 1.1 and 1.7. There exists a

positive number τ ∈ (0, 1/2) such that the convergence takes place in the trace Sobolev space

Hτ+1/2(∂Q): There exist positive constants C and M such that

‖Ψγ‖Hτ+1/2(∂Q) ≤ CM |γ|, γ ∈ A . (2.11)



CONVERGING EXPANSIONS 19

Proof. We use the expansion of u0(εT ) as written by packets in (1.25). Applying the transforma-

tion T ∗ we find

T ∗[u0](ηX) =
∑

γ∈ π
ω
N∗

aγε
γT ∗[ImZγ](X)

+
∑

ℓ∈N∗

εℓT ∗
[
Im
∑

γ∈N2

|γ|=ℓ

aγZγ

]
(X) +

∑

γ∈A0

aγEγ(ε)T ∗[ImZγ′ ](X).
(2.12)

We define for γ ∈ A

Φγ =






aγ ImZγ if γ ∈ π
ω
N∗,

Im
∑

γ̃∈N2, |γ̃|=ℓ aγ̃Zγ̃ if γ = (0, ℓ), ℓ ∈ N∗,

aγ ImZγ′ if γ = (ℓ, 0) ∈ A0,

0 for remaining γ’s ,

(2.13)

and set

Ψγ = T ∗[Φγ ], ∀γ ∈ A. (2.14)

Thus (2.12)-(2.14) imply (2.10).

Let us prove estimates (2.11). Let us choose β < −1 such that 1 + β > −min{ π
ω
, 2}, cf (2.3).

Relying on the explicit form of the functions Φγ and on the boundedness of the domain P, we find

that there exist constants C and M such that

‖Φγ‖K2
β(P)

≤ CM |γ|, γ ∈ A . (2.15)

Let β ′ = ω
π
(1+β)−1. Then β ′ < −1 and by Lemma 2.2 the conformal map G∗

π/ω is bounded from

K2
β(P) to K2

β′(Gπ/ωP). Then by Lemma 2.4, the odd extension E∗ is bounded from K2
β′(Gπ/ωP) to

K2
β′(Q). If we choose τ such that

τ ≤ −(1 + β ′) and τ ∈ (0, 1
2
),

we find that by (2.2), the space K2
β′(Gπ/ωP) is continuously embedded in Hτ+1(Q). The trace the-

orem for Lipschitz domains then yields the continuity of the trace from Hτ+1(Q) to Hτ+1/2(∂Q).
Hence there exists C ′ such that

‖Ψγ‖Hτ+1/2(∂Q) ≤ C ′‖Φγ‖K2
β(P)

, ∀γ ∈ A .

Combining this with the previous estimate of ‖Φγ‖K2
β(P)

gives estimates (2.11).

We finally notice that estimates (2.11) imply the convergence of the series (2.10) for ε ∈ [0, ε1] if

ε1 is chosen such that ε1M < 1. �

Remark 2.6. From the proof one finds a bound for the regularity index τ

τ < min{1
2
, 2ω
π
} . (2.16)

This inequality, which is restrictive for small angles ω < π
4
, is mainly due to the use of the

embedding (2.2) of the weighted Sobolev spaces into unweighted Sobolev spaces. It is needed

only in the special situation where the boundary of the holes touches the origin. If, conversely,

0 6∈ ∂P, then we can use the trace theorem directly without passing by the embedding (2.2), and

the statement of the theorem is true for all τ ∈ (0, 1/2).
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3. SYMMETRIC PERFORATED LIPSCHITZ DOMAINS

In this section we investigate the asymptotic behavior of the solution of a Dirichlet problem in a

symmetric Lipschitz domain with small holes. The analysis here performed will allow to study

the behavior of the solution of problem (2.9).

More precisely, we will consider the case where the domain and its holes are symmetric with

respect to the horizontal axis and the boundary data are antisymmetric. We use the technique

with which the behavior of harmonic functions in perforated planar domains was studied in Lanza

de Cristoforis [22] and in Dalla Riva and Musolino [9]. As in [9], we employ boundary integral

equations, but there are some differences in the assumptions: In [9], perforations were of class

C1,α and connected, whereas we consider here perforations with Lipschitz boundaries and a finite

number of connected components. This generalization is naturally implied by the construction

of the perforation Q from P by the conformal transformations and reflections described in the

previous sections, because even for a smooth and connected hole P in the sector Sω, the resulting

perforation Q in R2 may have corners or several connected components. On the other hand, our

symmetry assumptions will allow to simplify notably the treatment of the problem. In particular,

we find that we do not have to deal with the logarithmic behavior which arises in the general

setting for two-dimensional perforated domains.

3.1. Some notions of potential theory on Lipschitz domains. We collect here some known

results about harmonic double layer potentials on Lipschitz domains in the plane. Main references

for these facts are the paper by Costabel [5] and the books by Folland [14] and McLean [26].

We assume that Ω ⊂ R2 is a bounded Lipschitz domain (a role that will mainly be played by the

perforated domain B \ ηQ). Furthermore, Ω will be connected, but its complement Ω∁ = R2 \ Ω
may be not connected. Let Ω∁

(1), . . . ,Ω
∁
(m) be the bounded connected components of Ω∁ and Ω∁

(0)

the unbounded connected component of Ω∁. Thus the boundary ∂Ω has the m + 1 connected

components ∂Ω∁
(0), . . . , ∂Ω

∁
(m).

Let E be the function from R2 \ {0} to R defined by

E(x) ≡ − 1

2π
log |x| ∀x ∈ R2 \ {0}.

As is well known, E is a fundamental solution of −∆ on R2.

If φ is an integrable function on ∂Ω, we define the double layer potential D∂Ω[φ] by setting

D∂Ω[φ](x) ≡ −
∫

∂Ω

φ(y)n(y) · ∇E(x− y) dsy ∀x ∈ R2 \ ∂Ω ,

where ds denotes the length element on ∂Ω and n denotes the outward unit normal to Ω, which

exists almost everywhere on ∂Ω. In R2 \ ∂Ω, the double layer potential D∂Ω[φ] is a harmonic

function, vanishing at infinity. By Costabel [5, Thm. 1], if τ ∈ [−1/2, 1/2] and φ ∈ H1/2+τ (∂Ω)
then

D∂Ω[φ]
∣∣
Ω
∈ H1+τ (Ω) , D∂Ω[φ]

∣∣
Ω∁

∈ H1+τ
loc (Ω∁) . (3.1)
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We denote by γ0 and γ∁0 the interior and exterior traces on ∂Ω, respectively, and by γ1 and γ∁1
the interior and exterior normal derivatives on ∂Ω, respectively, (both taken with respect to the

exterior normal n). Then we have the jump relations [5, Lem. 4.1]

γ∁0D∂Ω[φ]− γ0D∂Ω[φ] = φ , γ1D∂Ω[φ] = γ∁1D∂Ω[φ] ,

for all φ ∈ H1/2+τ (∂Ω). We introduce the boundary operators K∂Ω and W∂Ω by setting

K∂Ω[φ] ≡
1

2

(
γ0D∂Ω[φ] + γ∁0D∂Ω[φ]

)
, W∂Ω[φ] ≡ −γ1D∂Ω[φ] = −γ∁1D∂Ω[φ]

for all φ ∈ H1/2+τ (∂Ω). As a consequence,

γ0D∂Ω[φ] = −1
2
φ+K∂Ω[φ] , γ∁0D∂Ω[φ] =

1
2
φ+K∂Ω[φ] , ∀φ ∈ H1/2+τ (∂Ω) . (3.2)

Thus the boundary integral operator associated with the Dirichlet problem in Ω is −1
2
I + K∂Ω,

whose mapping properties we therefore want to summarize in the sequel.

From Costabel and Wendland [8, Remark 3.15] (see also Steinbach and Wendland [28] and May-

boroda and Mitrea [24]), we deduce the validity of the following.

Lemma 3.1. For any τ ∈ [−1/2, 1/2], the operators ±1
2
I + K∂Ω : H

1/2+τ (∂Ω) → H1/2+τ (∂Ω)
are Fredholm operators of index 0.

The kernels and cokernels of ±1
2
I + K∂Ω are also known; they are independent of τ . They are

described in terms of the characteristic functions of the connected components of ∂Ω. Here, if O
is a subset of ∂Ω we denote by χO the function from ∂Ω to R defined by

χO(x) ≡
{

1 if x ∈ O ,

0 if x ∈ ∂Ω \ O .

The value of the double layer potential of a constant density is well known.

D∂Ω[χ∂Ω](x) =

{
0 if x ∈ Ω∁

−1 if x ∈ Ω
hence K∂Ω[χ∂Ω] = −1

2
χ∂Ω .

Applying this to the components Ω∁
(j), j = 1, . . . , m, we see that the characteristic functions χ∂Ω∁

(j)

generate double layer potentials that vanish in Ω and that they are therefore in the kernel of the

operator −1
2
I +K∂Ω. In fact, by arguing as in Folland [14, Ch. 3] one can prove the following.

Lemma 3.2. Let

V± ≡
{
φ ∈ H1/2(∂Ω): ± 1

2
φ+K∂Ω[φ] = 0

}
.

Then V+ has dimension 1 and consists of constant functions on ∂Ω. The space V− has dimension

m and is generated by {χ∂Ω∁
(j)
}mj=1.

In order to characterize the range of the double layer potential operator, we use the description

of the mapping properties of the operator of the normal derivative of the double layer potential

W∂Ω = −γ1D∂Ω as given in McLean [26, Thm. 8.20].
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Lemma 3.3. The operatorW∂Ω is a bounded selfadjoint operator fromH1/2(∂Ω) to its dual space

H−1/2(∂Ω). The kernel of W∂Ω consists of locally constant functions in H1/2(∂Ω). Its dimension

is therefore m+ 1, and it is generated by {χ∂Ω∁
(j)
}mj=0.

For a bounded selfadjoint operator, the kernel determines the range, the latter being the orthogonal

complement of the former. We thus obtain the following description of the range of the double

layer potential operator.

Corollary 3.4. Let τ ∈ [−1/2, 1/2]. Let u ∈ H1+τ (Ω) be such that ∆u = 0 in Ω. Then there

exists µ ∈ H1/2+τ (∂Ω) such that u = D∂Ω[µ]
∣∣
Ω

if and only if

〈
γ1u , χ∂Ω∁

(j)

〉
= 0 ∀j ∈ {1, . . . , m} . (3.3)

Here we use the brackets
〈
·, ·
〉

to denote the natural duality between a Sobolev space Hs(∂Ω) and

H−s(∂Ω). Thus the condition in (3.3) means that the integral of the normal derivative

∂nu = n · ∇u
of u over each component of ∂Ω vanishes. The condition for j = 0 is implied by the others,

because by Green’s formula any harmonic function u in Ω satisfies

m∑

j=0

〈
γ1u , χ∂Ω∁

(j)

〉
=

∫

∂Ω

∂nu ds = 0 .

Remark 3.5. The function µ represents u as a double layer potential if and only if µ is a solution

of the boundary integral equation

− 1
2
µ+K∂Ω[µ] = γ0u on ∂Ω . (3.4)

This follows from the jump relation (3.2) and from the uniqueness of the solution of the Dirichlet

problem. Thus Corollary 3.4 can be seen as a statement on the solvability of the boundary integral

equation (3.4), and conditions (3.3) characterize the cokernel of the operator −1
2
I +K∂Ω.

3.2. The double layer potential for symmetric planar domains. We now come back to the

geometric situation found at the end of Section 2. This means that in this subsection Ω = Bη =

B \ ηQ, where B is a simply connected bounded Lipschitz domain in R2 containing the origin,

η ∈ (0, η0) is a small positive real number, and Q is a finite union of bounded simply connected

Lipschitz domains such that η0Q is contained in B. In addition, B and Q are symmetric with

respect to reflection at the horizontal axis. From Subsection 2.2 we recall the notation for the

reflection and the corresponding pullback

R(x1, x2) ≡ (x1,−x2) ∀x = (x1, x2) ∈ R2 and R∗[g] = g ◦ R .

Thus we assume

B = R(B) and Q = R(Q) .

The symmetry of Q implies that there exist two natural numbers m× and m#, such that Q has

m = m× + 2m# > 0 connected components

Q×
1 , . . . ,Q

×
m× ,Q

+
1 , . . . ,Q

+
m# ,Q

−
1 , . . . ,Q

−
m# ,
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satisfying

Q×
i = R(Q×

i ) ∀i ∈ {1, . . . , m×} ,
Q+
j = R(Q−

j ) and Q+
j ⊂ Sπ ≡ R× R+ ∀j ∈ {1, . . . , m#} .

(3.5)

See Figure 3 for an example with m× = 2 and m# = 1.

We introduce the following definition.

Definition 3.6. Let τ ∈ [−1/2, 1/2]. If ∂Ω = R(∂Ω), then we denote by H
1/2+τ
odd (∂Ω) the closed

subspace of H1/2+τ (∂Ω) defined by

H
1/2+τ
odd (∂Ω) ≡

{
g ∈ H1/2+τ (∂Ω) : g = −R∗[g] on ∂Ω

}
.

The mapping properties of the boundary integral operator −1
2
I + K∂Bη on odd functions can be

summarized as follows.

Lemma 3.7. Let τ ∈ [−1/2, 1/2] and η ∈ (0, η0).

(i) The operator −1
2
I + K∂Bη defines a Fredholm operator of index zero from H

1/2+τ
odd (∂Bη)

to itself.

(ii) If m# = 0, this operator is an isomorphism. More generally, its kernel has dimension m#

and is generated by the functions {χη∂Q+
j
− χη∂Q−

j
}m#

j=1, where

(χη∂Q+
j
− χη∂Q−

j
)(x) =





+1, x ∈ η∂Q+
j ,

−1, x ∈ η∂Q−
j ,

0, x ∈ ∂Bη \ (η∂Q+
j ∪ η∂Q−

j ) .

(iii) If u ∈ H1+τ (Bη) is such that ∆u = 0 in Bη and R∗[u] = −u , then there exists µ ∈
H

1/2+τ
odd (∂Bη) such that u = D∂Bη [µ]

∣∣
Bη

if and only if

〈
γ1u , χη∂Q+

j

〉
= 0 ∀j ∈ {1, . . . , m#} . (3.6)

(iv) If u ∈ H1+τ
loc (Q∁) is such that ∆u = 0 in Q∁, u is harmonic at infinity, and R∗[u] = −u ,

then there exists µ ∈ H
1/2+τ
odd (∂Q) such that u = D∂Q[µ]

∣∣
Q∁

if and only if

〈
γ1u , χ∂Q+

j

〉
= 0 ∀j ∈ {1, . . . , m#} .

Proof. By the rule of change of variables in integrals, we have D∂Bη

[
R∗[ψ]

]
= R∗

[
D∂Bη [ψ]

]
,

hence

K∂Bη

[
R∗[ψ]

]
= R∗

[
K∂Bη [ψ]

]
∀ψ ∈ H1/2+τ (∂Bη) . (3.7)

Thus K∂Bη maps odd functions to odd functions. By Lemma 3.2 the kernel consists of odd func-

tions in V−, that is, odd linear combinations of the characteristic functions χη∂Q×

i
and χη∂Q±

j
.

This space is generated by χη∂Q+
j
− χη∂Q−

j
, j = 1, . . . , m#. If m# = 0, the operator is therefore

injective.

Let us now show (iii). For an odd function u, the m# conditions (3.6) are equivalent to the whole

set of m× + 2m# conditions (3.3), because the integrals over η∂Q×
i vanish by symmetry, and the
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integrals over η∂Q−
j equal the negatives of the integrals over η∂Q+

j . Thus (3.6) is equivalent to

the existence of µ ∈ H1/2+τ (∂Bη) such that u = D∂Bη [µ]
∣∣
Bη

. If µ is not yet odd, we can replace it

by its odd part

µ̃ ≡ 1
2

(
µ−R∗[µ]

)
,

which will also represent u, that is u = D∂Bη [µ̃]
∣∣
Bη

. Statement (iii) is proved.

To prove that −1
2
I+K∂Bη is a Fredholm operator of index zero, it remains to show that its range has

codimensionm# (we recall that K∂Bη is not compact, in general, when ∂Bη is a only required to be

Lipschitz). We use the observation noted in Remark 3.5. For g ∈ H
1/2+τ
odd (∂Bη), let u ∈ H1+τ(Bη)

be its harmonic extension, that is, the unique harmonic function in Bη satisfying γ0u = g. It is

clear that u is an odd function. Them# conditions (3.6) that guarantee the representability of u as a

double layer potential with a density µ ∈ H
1/2+τ
odd (∂Bη) can be considered asm# continuous linear

functionals acting on g and defining solvability conditions for the boundary integral equation

(−1
2
I +K∂Bη)[µ] = g .

We have shown that the cokernel of −1
2
I +K∂Bη in H

1/2+τ
odd (∂Bη) has dimension m#, and thus the

remaining statements of (i) and (ii) follow.

Statement (iv) is proved in the same way as (iii) by relying on the characterization of the cokernel

of the operator W∂Q as given by McLean [26, Thm. 8.20]. �

In addition to the boundary integral operators, we will also need mapping properties of the double

layer potential restricted to some subsets of the domain.

The first result is global and concerns the entire interior of ∂B or exterior of ∂Q. For this we use

the weighted Sobolev spaces of Kondrat’ev type Ks
β introduced in Section 2.1 and defined for

integer regularity exponent s = m ∈ N in (2.1). For non-integer s there exist several equivalent

ways to define this space (see [12]), the shortest (and for us, easiest to use) is by Hilbert space

interpolation: If s = m+ τ , m ∈ N and τ ∈ [0, 1], then

Ks
β(Ω) =

[
Km
β (Ω), Km+1

β (Ω)
]
τ
.

It is clear that if Ω is a bounded domain with a positive distance to the origin, then the norm in

Ks
β(Ω) is equivalent to the norm in the standard Sobolev space Hs(Ω), and the weight exponent

β influences only the behavior near the origin and at infinity. Thus let χ ∈ C∞
0 (R2) be a cutoff

function that is equal to 1 on the ball B(0, 1/2) and 0 outside of B(0, 1) and for R > 0 define

χR(x) = χ( x
R
) ;

let further R0, R1 be such that 0 < 2R0 ≤ R1 and let β0, β1 ∈ R be two weight indices. Then if

we define

‖u‖Ks
β0β1

(Ω) ≡ ‖χR0u‖Ks
β0

(Ω) + ‖(1− χR0)χR1u‖Hs(Ω) + ‖(1− χR1)u‖Ks
β1

(Ω) , (3.8)

we see that for any Lipschitz domain Ω the norm ‖u‖Ks
β(Ω) is equivalent to ‖u‖Ks

ββ(Ω); for any

bounded Ω the norm ‖u‖Ks
β0β1

(Ω) is equivalent to ‖u‖Ks
β0

(Ω), and for any Ω that has a positive

distance to the origin it is equivalent to ‖u‖Ks
β1

(Ω). With this preparation, we can now prove the

boundedness of the double layer representation.
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Lemma 3.8. For any τ ∈ [−1/2, 1/2], β0 > −2 and β1 < 0, the following operators are bounded:

D∂B : H
1/2+τ
odd (∂B) → K1+τ

β0
(B) , (3.9)

D∂Q : H
1/2+τ
odd (∂Q) → K1+τ

β0β1
(Q∁) if 0 6∈ ∂Q , (3.10)

D∂Q : H
1/2+τ
odd (∂Q) → K1+τ

β0β1
(Q∁) if 0 ∈ ∂Q and β0 ≥ −1 − τ . (3.11)

Proof. In (3.1) we already quoted from [5, Thm. 1] that for a bounded domain Ω, D∂Ω maps

H1/2+τ (∂Ω) boundedly into H1+τ (Ω). This implies that

D∂B : H
1/2+τ
odd (∂B) → H1+τ (B)

is bounded. LetR0 be such that B(0, R0) ⊂ B and let g be the trace of u ≡ D∂B[ψ] on ∂B(0, R0).
Since u is harmonic in B and odd, it can be expanded in a Fourier series of the form

u(x) =
∞∑

k=1

gk

( r

R0

)k
sin kθ .

Here gk are the Fourier coefficients of g, and the Sobolev norms of g can equivalently be expressed

by weighted norms of the sequence gk.

‖g‖2
Hs(∂B(0,R0))

=

∞∑

k=1

k2s|gk|2 .

It can be verified by explicit computation that for β > −2 and any m ∈ N

‖u‖2
Km

β (B(0,R0))
=
∑

k≥1

ck,m|gk|2 with c k2m−1 ≤ ck,m ≤ C k2m−1 .

The constants here depend on R0 and β, but not on u. Thus ‖u‖Km
β (B(0,R0)) is equivalent to

‖g‖Hm−1/2(∂B(0,R0)). By interpolation it follows that this is also true form replaced by 1+ τ . Thus

‖u‖K1+τ
β0

(B(0,R0))
≤ C ‖g‖H1/2+τ (∂B(0,R0))

≤ C ‖u‖H1+τ (B) .

Adding ‖u‖H1+τ (B), we find

‖u‖K1+τ
β0

(B) ≤ C ‖g‖H1/2+τ (∂B) ,

hence (3.9).

For the proof of (3.10), we use a similar argument: Let U = D∂Q[Ψ] in Q∁ and let G be the trace

of U on some ∂B(0, R1) with R1 chosen such that Q ⊂ B(0, R1). Then

‖G‖H1/2+τ (∂B(0,R1))
≤ ‖U ‖H1+τ (Q∁∩B(0,R1))

≤ C ‖Ψ‖H1/2+τ (∂Q) .

Now we write U in B(0, R1)
∁ as a Fourier series, using that it is harmonic in Q∁ and vanishes at

infinity (for this we do not even need that U is odd), and prove by explicit calculation of weighted

Sobolev norms and interpolation that for any β < 0 there is an estimate

‖U ‖K1+τ
β (B(0,R1)∁)

≤ C ‖G‖H1/2+τ (∂B(0,R1))
.

If 0 ∈ Q, we do not need to estimate U in a neighborhood of 0. If 0 ∈ Q∁, we can get an estimate

of U in a neighborhood of 0 as above for u. Together, this implies (3.10).
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For (3.11), we use the previous estimate outside of a neighborhood of the origin, but now we

additionally have to estimate ‖U‖K1+τ
β0

(Q∁∩B(0,R0))
for some R0 > 0. We cannot apply the same

argument as for u above, because 0 is on the boundary of Q, and U is not harmonic in a whole

neighborhood of 0. Instead we will use the fact that if β0 ≥ −1 − τ then there is a continuous

inclusion

H1+τ
odd (Q

∁ ∩ B(0, R0)) ⊂ K1+τ
β0

(Q∁ ∩ B(0, R0)) .

For τ 6= 0 this follows from Dauge [12, Theorem (AA.7)]. It is also true for τ = 0 as follows

easily from the well known Hardy inequality

‖U(·)
x2

‖L2(Q∁) ≤ 2 ‖∂x2U ‖L2(Q∁)

for all U ∈ H1(Q∁) satisfying U = 0 for x2 = 0. This inclusion together with the previous

estimates that led to (3.10) proves (3.11) and ends the proof of the lemma. �

Remark 3.9. If τ ∈ (0, 1/2], then one also has bounded mappings

D∂B : H1/2+τ (∂B) → L∞(B) and D∂Q : H1/2+τ (∂Q) → L∞(Q∁) . (3.12)

This follows for D∂B from the Sobolev inclusion H1+τ (B) ⊂ L∞(B) and for D∂Q from the

Sobolev inclusion on Q∁ ∩ B(0, R1) combined with Fourier series (or simply the maximum prin-

ciple) on B(0, R1)
∁.

The second class of results is local in nature and describes the analyticity of the double layer

potential near the origin and near infinity in a form that is suitable for our situation of a symmetric

domain with small perforations. The result can be considered simply to be a consequence of the

analyticity of the fundamental solution E on R2 \ {0}, and it is similar to the subject studied in

Lanza de Cristoforis and Musolino [23], but there are some particularities related to the symmetry

and weak smoothness of the domains studied here.

Lemma 3.10. Let τ ∈ [−1/2, 1/2].

(i) Let Ω ⊂ R2 be a bounded Lipschitz domain. For positive η sufficiently small so that

ηΩ ⊂ B, we define the restriction D∂B,Ω(η) of the double layer potential D∂B to ηΩ
written in “fast” variables

D∂B,Ω(η)[ψ](X) ≡ D∂B[ψ]
∣∣
ηΩ
(ηX) (X ∈ Ω) ∀ψ ∈ H

1/2+τ
odd (∂B) .

Then there exists η1 > 0 such that the function η 7→ D∂B,Ω(η) has for any s ∈ R a contin-

uation to η ∈ (−η1, η1) as an analytic function with values in L
(
H

1/2+τ
odd (∂B), Hs(Ω)

)
.

(ii) Let Ω ⊂ R2 be a bounded Lipschitz domain such that 0 6∈ Ω. For positive η sufficiently

small so that (1/η)Ω ⊂ Q∁, we define the restrictionD∁
∂Q,Ω(η) of the double layer potential

D∂Q to (1/η)Ω written in “slow” variables

D∁
∂Q,Ω(η)[Ψ](x) ≡ D∂Q[Ψ]

∣∣
(1/η)Ω

(x
η
) (x ∈ Ω) ∀Ψ ∈ H

1/2+τ
odd (∂Q) .

Then there exists η1 > 0 such that the function η 7→ D∁
∂Q,Ω(η) has for any s ∈ R a contin-

uation to η ∈ (−η1, η1) as an analytic function with values in L
(
H

1/2+τ
odd (∂Q), Hs(Ω)

)
.

(iii) In addition, D∂B,Ω(0) = 0 and D∁
∂Q,Ω(0) = 0.
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Proof. The proofs for (i) and (ii) are similar. Both use the fact that the double layer potential is

analytic outside of the boundary and vanishes at infinity, and for an odd density it vanishes at the

origin. We give the proof of (ii) and leave the proof of (i) and (iii) to the reader.

Let Ψ ∈ H
1/2+τ
odd (∂Q) and define W = D∂Q[Ψ] in Q∁. We can choose R0 such that Q ⊂ B(0, R0)

and R1, R2 such that Ω ⊂ B(0, R2)∩B(0, R1)
∁. For |X| ≥ R0, we can expand the harmonic and

odd function W in a Fourier series

W (X) =

∞∑

k=1

wk

( R
R0

)−k
sin kθ . (3.13)

Here (R, θ) are polar coordinates forX , and from the fact thatD∂Q mapsH
1/2+τ
odd (∂Q) toH1+τ

odd (Q
∁∩

B(0, R0)) we deduce the (crude) estimate that the wk are bounded and satisfy an estimate

sup
k

|wk| ≤ C ‖Ψ‖H1/2+τ (∂Q) .

If η ∈ (0, R1/R0), then X ∈ (1/η)Ω ⊂ B(0, R2/η) ∩ B(0, R1/η)
∁ implies |X| > R0, so that

we can use the expansion (3.13) for the restriction of W to (1/η)Ω. Writing this in slow variables

x = ηX , or in polar coordinates with |x| = r = ηR, we get

D∁
∂Q,Ω(η)[Ψ](x) = W (

x

η
) =

∞∑

k=1

ηk wk pk(x) with pk(x) =
( r

R0

)−k
sin kθ

By explicit computation for any chosen m ∈ N, we can estimate the Hm norm of pk

‖pk‖Hm(Ω) ≤ ‖pk‖Hm(B(0,R2)∩B(0,R1)∁)
≤ C

(R0

R1

)k
k2m−1 ,

with C independent of k. We conclude that D∁
∂Q,Ω(η) has a convergent expansion

D∁
∂Q,Ω(η) =

∞∑

k=1

ηkDk , (3.14)

where the Dk are bounded linear operators from H
1/2+τ
odd (∂Q) to Hm(Ω) satisfying

‖Dk‖
L

(
H

1/2+τ
odd (∂Q),Hm(Ω)

) ≤ C
(R0

R1

)k
k2m−1 .

It follows that the expansion (3.14) converges for |η| < R1/R0 and this proves the analyticity as

claimed in (ii). �

3.3. The Dirichlet problem in a symmetric perforated domain. In this subsection we apply the

double layer representation to the solution of the Dirichlet problem in our perforated symmetric

domain Bη.

Thus we assume that we are given odd functions ψ ∈ H
1/2+τ
odd (∂B) and Ψ ∈ H

1/2+τ
odd (∂Q), and we

denote by u[η, ψ,Ψ] the unique solution in H1+τ (Bη) of the boundary value problem




∆u = 0 in Bη ,

γ0u = ψ on ∂B ,

γ0u = Ψ(·/η) on η∂Q .

(3.15)
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We would like to represent u[η, ψ,Ψ] as a double layer potential. It is clear that u is an odd func-

tion. The conditions (3.6) will, however, not be satisfied, in general, if the number m# of “paired

holes” is non-zero. As a remedy for this problem, we introduce harmonic functions Ξ1, . . . ,Ξm#

that span a complement of the range of the double layer potential operator. We define Ξj as the

unique function in H1+τ
loc

(
R2 \ (Q+

j ∪ Q
−
j )
)

such that




∆Ξj = 0 in R2 \
(
Q+
j ∪ Q−

j

)
,

γ0Ξj = ±1 on ∂Q±
j ,

‖Ξj‖∞ < +∞ .

(3.16)

A simple argument for the existence of such functions Ξj is to use the Kelvin transformation with

origin in Q+
j that reduces the exterior Dirichlet problem problem (3.16) to a Dirichlet problem on

a bounded domain (see Folland [14, Ch. 2.I]), and then invoke the existence and uniqueness of

solution of the Dirichlet problem on a bounded domain.

The uniqueness of Ξj implies in particular that Ξj is odd,

Ξj(X) = −R∗[Ξj](X) for X ∈ R2 \
(
Q+
j ∪ Q−

j

)
. (3.17)

Then by (3.17) and by the harmonicity in R2 \
(
Q+
j ∪ Q−

j

)
and at infinity of Ξj it follows that

lim
X→∞

Ξj(X) = 0 . (3.18)

Concerning the integrals of the normal derivative of Ξj over the boundaries of the connected

components of Q, it follows from the harmonicity that they vanish except for the components Q±
j ,

in particular 〈
γ1Ξj , χ∂Q±

k

〉
= 0 ∀k ∈ {1, . . . , m#} \ {j} . (3.19)

From the harmonicity at infinity and (3.18) follows that ∇Ξj ∈ L2
(
R2 \

(
Q+
j ∪Q−

j

))
and that we

can use the Divergence Theorem, which gives

0 <

∫

R2\
(
Q

+
j ∪Q−

j

) |∇Ξj(X)|2 dX = −
∫

∂Q+
j

∂nΞj ds+

∫

∂Q−

j

∂nΞj ds = −2
〈
γ1Ξj , χ∂Q+

j

〉
.

(3.20)

We can now show the following augmented double layer representation for the solution u[η, ψ,Ψ]
of problem (3.15).

Lemma 3.11. Let τ ∈ [−1/2, 1/2]. Let η ∈ (0, η0). Then the following statements hold.

(i) If m# = 0, then there exists a unique function µ ∈ H
1/2+τ
odd (∂Bη) such that

u[η, ψ,Ψ] = D∂Bη [µ] in Bη. (3.21)

(ii) If m# > 0, then there exists a unique m#-tuple c = (c1, . . . , cm#) ∈ Rm#
and a unique

function µ ∈ H
1/2+τ
odd (∂Bη) satisfying

{
u[η, ψ,Ψ] = D∂Bη [µ] +

∑m#

j=1 cjΞj(·/η) in Bη∫
η∂Q+

j
µ ds = 0 ∀j ∈ {1, . . . , m#} . (3.22)
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Proof. Statement (i) follows from Lemma 3.7 (ii). We now consider statement (ii). We first note

that by (3.20) for each j ∈ {1, . . . , m#} there exists a unique cj ∈ R such that

〈
γ1u[η, ψ,Ψ] , χη∂Q+

j

〉
− cj

〈
γ1Ξj(·/η) , χη∂Q+

j

〉
= 0 .

Using (3.19), it follows that the function u[η, ψ,Ψ] −∑m#

j=1 cjΞj(·/η) satisfies the conditions of

Lemma 3.7 for the existence of a representation as a double layer potential. As a consequence,

there exists µ̃ ∈ H
1/2+τ
odd (∂Bη) such that

D∂Ωη [µ̃] = u[η, ψ,Ψ]−
m#∑

j=1

cjΞj(·/η) in Bη .

Recalling from Lemma 3.7(ii) that the kernel V−,odd ≡ V−∩H1/2+τ
odd (∂Bη) of the operator −1

2
I+

K∂Bη acting on odd functions is spanned by the functions {χη∂Q+
j
−χη∂Q−

j
}m#

j=1, we find that among

the functions µ ∈ µ̃+V−,odd that satisfy the first line of (3.22) there is exactly one satisfying the

side conditions of the second line of (3.22). �

With the help of the augmented double layer potential representation (3.22) we can now rewrite

our Dirichlet problem (3.15) as an equivalent boundary integral equation on ∂Bη. This is still

a problem on an η-dependent domain, but it is possible to interpret it as a system of boundary

integral equations in the function space H
1/2+τ
odd (∂B) × H

1/2+τ
odd (∂Q) defined on the fixed domain

∂B × ∂Q. Owing to the special form of the double layer kernel, this system has a simple form

that makes it natural to study the dependence on η in the limit η → 0 and even to extend it in an

analytic way to a neighborhood of η = 0.

The formulation (3.15) of our Dirichlet problem already makes use of the identification of a func-

tion defined on ∂Bη with a pair
(
ψ,Ψ(·/η)

)
of functions, the first one defined on ∂B and depending

on standard or “slow” variables x, the second one defined on ∂Q and depending on “fast” variables

X = x/η. Let Jη denote this mapping from H
1/2+τ
odd (∂B) ×H

1/2+τ
odd (∂Q) to H

1/2+τ
odd (∂Bη), which

obviously is an isomorphism.

Jη[φ,Φ](x) ≡
{
φ(x) on ∂B ,

Φ(x/η) on η∂Q .
(3.23)

The boundary integral equation for (3.15) is obtained from the representation formula (3.22) by

taking traces on ∂Bη. In order to treat simultaneously the case m# = 0 and the case m# > 0,

from now on we will assume that the symbols c1, . . . , cm# and
∑m#

j=1 cjφj are omitted if m# = 0.

In addition we find it convenient to set

H
1/2+τ
odd (∂Q)# ≡

{
µ ∈ H

1/2+τ
odd (∂Q) :

∫

∂Q+
j

µ ds = 0 ∀j ∈ {1, . . . , m#}
}
.
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Clearly, if m# = 0 then H
1/2+τ
odd (∂Q)# = H

1/2+τ
odd (∂Q). We can then write the trace of (3.22) as

the problem of finding µ ∈ Jη
[
H

1/2+τ
odd (∂B)×H

1/2+τ
odd (∂Q)#

]
and c ∈ Rm#

such that

(−1
2
I +K∂Bη)[µ] +

m#∑

j=1

cj γ0 Ξj(·/η) = g on ∂Bη (3.24)

where g = Jη[ψ,Ψ]. With µ = Jη[φ,Φ] we find a first form of the equivalent system of boundary

integral equations on ∂B × ∂Q.

J −1
η ◦

[
(−1

2
I +K∂Bη) ◦ Jη[φ,Φ] +

m#∑

j=1

cj γ0 Ξj(·/η)
]
=
(
ψ,Ψ

)
. (3.25)

We will now describe this system in more detail.

Changing variables y 7→ ηY in the double layer integral and using the fact that

∇E(x) = − x

2π|x|2

is a function homogeneous of degree −1, we can write

D∂Bη

[
Jη[φ,Φ]

]
= D∂B[φ]−

∫

η∂Q

Φ(y/η)∂n(y)E(· − y) dsy

= D∂B[φ] + η

∫

∂Q

Φ(Y )n(Y ) · ∇E(· − ηY ) dsY in Bη ,

and then express the representation formula (3.22) both in “slow” variables:

u[η, ψ,Ψ] = D∂B[φ] + η

∫

∂Q

Φ(Y )n(Y ) · ∇E(· − ηY ) dsY +

m#∑

j=1

cjΞj(·/η) in Bη (3.26)

and in “fast” variables:

u[η, ψ,Ψ](ηX) = D∂B[φ](ηX) + η

∫

∂Q

Φ(Y )n(Y ) · ∇E(η(X − Y )) dsY +

m#∑

j=1

cjΞj(X)

= D∂B[φ](ηX) +

∫

∂Q

Φ(Y )n(Y ) · ∇E(X − Y ) dsY +

m#∑

j=1

cjΞj(X)

= −D∂Q[Φ](X) +D∂B[φ](ηX) +
m#∑

j=1

cjΞj(X) . (3.27)

We obtain the concrete form of the system (3.25) by taking traces of the equalities (3.26) and

(3.27) on ∂B and on ∂Q, respectively. We deduce with (3.15) that the unique element (φ,Φ, c) of

H
1/2+τ
odd (∂B)×H1/2+τ

odd (∂Q)#×Rm#
such that (3.26) holds is the (unique) solution inH

1/2+τ
odd (∂B)×
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H
1/2+τ
odd (∂Q)# × Rm#

of

(−1
2
I +K∂B)[φ](x) + η

∫

∂Q

Φ(Y )n(Y ) · ∇E(x− ηY ) dsY +
m#∑

j=1

cjΞj(x/η) = ψ(x) , x ∈ ∂B,

−(1
2
I +K∂Q)[Φ](X) +D∂B[φ](ηX) +

m#∑

j=1

cjΞj(X) = Ψ(X) , X ∈ ∂Q .

(3.28)

Problem (3.15) is now converted into the equivalent system of boundary integral equations (3.28),

which we can write as an η-dependent family of problems

M(η)



φ

Φ

c


 =

(
ψ

Ψ

)
(3.29)

with a block (2× 3) operator

M(η) ≡
(
M11(η) M12(η) M13(η)

M21(η) M22(η) M23(η)

)

acting from H
1/2+τ
odd (∂B) × H

1/2+τ
odd (∂Q)# × Rm#

to H
1/2+τ
odd (∂B) × H

1/2+τ
odd (∂Q). In this form

(3.28), it is now possible to extend the problem to η = 0 and to analyze the analyticity of its

dependence on η. The main result in this section is the following.

Theorem 3.12. Let τ ∈ [−1/2, 1/2] and let M(η) be defined by (3.28), (3.29).

(i) There exists η1 ∈ (0, η0) such that the operator valued function

η 7→ M(η) ∈ L

(
H

1/2+τ
odd (∂B)×H

1/2+τ
odd (∂Q)# × Rm#

, H
1/2+τ
odd (∂B)×H

1/2+τ
odd (∂Q)

)

admits a real analytic continuation to (−η1, η1).
(ii) For each η ∈ (−η1, η1), the operator M(η) is an isomorphism.

Proof. We will show first that the matrix elements Mmn(η) are operator functions of η that can

be extended as real analytic functions in a neighborhood of η = 0, and then that for η = 0 the

operator M(0) is an isomorphism. From this it will follow that M(η) is an isomorphism for η
in a neighborhood of 0. Note that our previous arguments leading to (3.28) already showed that

M(η) is an isomorphism for η ∈ (0, η0).

We will begin by analyzing the dependence of the matrix elements Mmn(η) on η, in particular at

η = 0. Of these, M11, M22 and M23 are independent of η.

The matrix elements

M12(η) :

{
H

1/2+τ
odd (∂Q)# → H

1/2+τ
odd (∂B)

Φ 7→ η
∫
∂Q

Φ(Y )n(Y ) · ∇E(· − ηY ) dsY
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and

M21(η) :

{
H

1/2+τ
odd (∂B) → H

1/2+τ
odd (∂Q)

φ 7→ D∂B[φ](η · )

depend analytically on η as long as ∂B and η∂Q do not intersect, and both vanish for η = 0. This

follows from Lemma 3.10 by taking traces.

For the remaining matrix element

M13(η) :

{
Rm# → H

1/2+τ
odd (∂B)

c 7→∑m#

j=1 cjΞj(·/η)

the analyticity and the vanishing at η = 0 follow from the analyticity of Ξj at infinity. In fact, we

could simply make the same argument as for M12, based on Lemma 3.10(ii), if we could represent

Ξj as a double layer potential D∂Q[µ] with odd density µ. But the Ξj were precisely constructed to

be in the complement of the range of D∂Q, so that this is impossible. One can, however, choose a

connected smooth domain Ω# that satisfies Q ⊂ Ω# and η0Ω# ⊂ B and is symmetric with respect

to the reflection R. Then Ξj will be representable as a double layer potential D∂Ω#
[µj] on Ω∁

#,

because
∫
∂Ω#

∂nΞj ds = 0 by symmetry and we can apply Lemma 3.7(iv).

We now turn to the proof that M(0) is an isomorphism. From the description of the solvability

of the exterior Dirichlet problem with data on ∂Q implied by Lemma 3.7(iv) one can deduce,

by taking traces on ∂Q, the unique solvability of the corresponding augmented boundary integral

equation. This follows from the same arguments that led to the unique solvability of the augmented

boundary integral equation (3.24) on ∂Bη associated with the interior Dirichlet problem in Bη.

Taking into account that the normal vector on ∂Q is by our convention exterior to Q and therefore

interior to Q∁, we find a change in the sign of the operator K∂Q and can state the following lemma

that provides the remaining argument for the completion of the proof of Theorem 3.12.

Lemma 3.13. Let τ ∈ [−1/2, 1/2]. For any Ψ ∈ H
1/2+τ
odd (∂Q) there exist uniqueΦ ∈ H

1/2+τ
odd (∂Q)#,

c ∈ Rm#
such that

(−1
2
I −K∂Q)[Φ] +

m#∑

j=1

cj γ0 Ξj = Ψ on ∂Q . (3.30)

Now if we use the values at η = 0 of the matrix elements of M(η), we find

M(0) =

(
M11 0 0

0 M22 M23

)
.

Here M11 = −1
2
I+K∂B is an isomorphism fromH

1/2+τ
odd (∂B) to itself according to Lemma 3.7(ii).

And the fact that the operator (M22, M23) is an isomorphism from H
1/2+τ
odd (∂Q)# × Rm#

to

H
1/2+τ
odd (∂Q) is precisely the statement of Lemma 3.13. Together this shows that M(0) is an

isomorphism as claimed, and the proof of the theorem is complete. �
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4. THE CONVERGENT EXPANSION

As a consequence of Theorem 3.12, we obtain that the unique solution of the boundary integral

system (3.29) depends analytically on η ∈ (−η1, η1). Namely,


φ

Φ

c


 = M(η)−1

(
ψ

Ψ

)
, (4.1)

and the operator function η 7→ M(η)−1 is real analytic for η ∈ (−η1, η1). Inserting this form

of the solution of (3.29) into the representation formula (3.22), we find that the solution u of

the Dirichlet problem (3.15) depends analytically on η ∈ (−η1, η1), too, and therefore has a

convergent expansion in powers of η in a neighborhood of η = 0. From this, by comparing (3.15)

with the form (2.9) of the Dirichlet data in the residual problem found in Section 2.3, we will

obtain a convergent double series for the solution vη of the residual problem. In this way we will

then be able to complete the construction of a convergent expansion of the solution of the original

problem (0.5).

4.1. Analytic parameter dependence for the auxiliary Dirichlet problem (3.15). In this sub-

section, we consider the Dirichlet problem (3.15) on the perforated domain Bη, where the Dirichlet

data are given by (ψ,Ψ) independent of η.

Let us first note that the auxiliary functions Ξj introduced in (3.16) can be considered in the same

weighted Sobolev spaces that appear in Lemma 3.8.

Ξj ∈ K1+τ
β0β1

(Q∁) for all τ ∈ [−1/2, 1/2] , β0 > −2, β1 < 0 . (4.2)

We can now prove the first result about the solution of the boundary value problem (3.15). It is a

global decomposition of the solution into two terms that are analytic with respect to η if the first

one is written in slow coordinates and the second one in fast variables.

Theorem 4.1. Let τ ∈ [−1/2, 1/2], β0 > −2 with β0 ≥ −1 − τ if 0 ∈ ∂Q, β1 < 0. Then there

exists a sequence of bounded linear operators

Ln : H
1/2+τ
odd (∂B)×H

1/2+τ
odd (∂Q) → K1+τ

β0
(B)×K1+τ

β0β1
(Q∁) , j ∈ N

such that the solution u[η, ψ,Ψ] of the Dirichlet problem (3.15) in Bη has the following form

u[η, ψ,Ψ](x) = w(x) +W (x/η)

with w ∈ K1+τ
β0

(B) and W ∈ K1+τ
β0β1

(Q∁) given by the convergent series

(
w

W

)
=

∞∑

n=0

ηn Ln
(
ψ

Ψ

)
. (4.3)

There exists η1 > 0 such that for any η ∈ (−η1, η1) the series

L(η) ≡
∞∑

n=0

ηn Ln

converges in the operator norm of L
(
H

1/2+τ
odd (∂B)×H

1/2+τ
odd (∂Q) , K1+τ

β0
(B)×K1+τ

β0β1
(Q∁)

)
.
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Proof. According to the representation formula (3.22) in the form (3.26), we have

u[η, ψ,Ψ](x) = w(x) +W (x/η) with w = D∂B[φ] and W = −D∂Q[Φ] +
m#∑

j=1

cjΞj ,

where (φ,Φ, c) is the solution of our system of boundary integral equations (3.29). Now we use

the solution formula (4.1) of this system, which involves the analytic resolvent

M(η)−1 =

∞∑

n=0

ηnMn ,

where Mn is a sequence of operators such that, after possibly shrinking η1 > 0, this series con-

verges for η ∈ (−η1, η1) in the operator norm of L
(
H

1/2+τ
odd (∂B)×H

1/2+τ
odd (∂Q) , H

1/2+τ
odd (∂B)×

H
1/2+τ
odd (∂Q)# × Rm#)

. We combine this with the mapping

D : (φ,Φ, c) 7→ (w,W ) =
(
D∂B[φ],−D∂Q[Φ] +

∑
cjΞj

)
,

which thanks to Lemma 3.8 and (4.2) is known to be continuous fromH
1/2+τ
odd (∂B)×H1/2+τ

odd (∂Q)×
Rm#

to K1+τ
β0

(B)×K1+τ
β0β1

(Q∁). This gives the desired representation (4.3) as a convergent series

where we set Ln = DMn. �

Remark 4.2. Replacing Lemma 3.8 by Remark 3.9 in this proof, we conclude that the series

expansions (4.3) for the functions w and W converge also uniformly, the series for w in L∞(B)
and the series for W in L∞(Q∁).

The second result gives a convergent series expansion for the solution u[η, ψ,Ψ] when written in

slow variables and thus shows that it is an analytic function of η in a neighborhood of 0. It is valid

outside of a neighborhood of the origin (“outer expansion”).

Theorem 4.3. Let τ ∈ [−1/2, 1/2] and s ∈ R. Let Ω be a Lipschitz subdomain of B such that

0 6∈ Ω. If Ω ⊂ B, then s can be any real number. If, however, ∂Ω ∩ ∂B 6= ∅, then we assume

s ≤ 1 + τ . Let ηΩ > 0 be such that Ω ∩ ηQ = ∅ for all η ∈ (0, ηΩ). Then there exist η1 ∈ (0, ηΩ)

and a real analytic map US from (−η1, η1) to L
(
H

1/2+τ
odd (∂B)×H

1/2+τ
odd (∂Q), Hs(Ω)

)
such that

u[η, ψ,Ψ]
∣∣
Ω
= US(η)

(
ψ

Ψ

)
∀(η, ψ,Ψ) ∈ (0, η1)×H

1/2+τ
odd (∂B)×H

1/2+τ
odd (∂Q) . (4.4)

Moreover,

US(0)

(
ψ

Ψ

)
= w0,ψ

∣∣
|Ω

∀(ψ,Ψ) ∈ H
1/2+τ
odd (∂B)×H

1/2+τ
odd (∂Q) , (4.5)

where w0,ψ is the unique solution in H1+τ (B) of the Dirichlet problem
{

∆w0,ψ = 0 in B ,

γ0w0,ψ = ψ on ∂B .
(4.6)

Proof. We write u[η, ψ,Ψ](x) = w(x) + W (x/η) as in Theorem 4.1 and use the analytic de-

pendency on η of M(η)−1 : (ψ,Ψ) 7→ (φ,Φ, c) as in the proof of that theorem. The map

(φ,Φ, c) 7→ w
∣∣
Ω

being independent of η, only its range is of interest. This is contained inH1+τ (Ω)
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for any Ω ⊂ B, and since w = D∂B[φ] is harmonic in B, it is contained in C∞(Ω) ⊂ Hs(Ω) for

any s if Ω ⊂ B.

For the map (Φ, c) 7→ W (·/η)∣∣
Ω

= −D∁
∂Q,Ω(η)[Φ] +

∑m#

j=1 cjΞj(·/η) we invoke Lemma 3.10

(ii) to get the desired analyticity (see also the argument for the analyticity of M13 in the proof of

Theorem 3.12 ). �

The third result shows the analytic dependence on η for the solution u[η, ψ,Ψ] when written in

fast variables. It concerns the solution on a subdomain of size η (“inner expansion”). The proof is

similar to the proof of Theorem 4.3, but simpler, because it is based on the formula

u[η, ψ,Ψ](ηX) = w(ηX) +W (X)

and it therefore simply invokes the harmonicity, hence analyticity of w = D∂B[φ] near the origin,

see Lemma 3.10(i).

Theorem 4.4. Let τ ∈ [−1/2, 1/2] and s ∈ R. Let Ω ⊂ Q∁ = R2 \ Q be a bounded Lipschitz

domain. If Ω ⊂ Q∁, then s can be any real number. If ∂Ω ∩ ∂Q 6= ∅, then we assume s ≤ 1 + τ .

Let η̃Ω > 0 be such that ηΩ ⊂ B for all η ∈ (0, η̃Ω). Then there exist η1 ∈ (0, η̃Ω) and a real

analytic map UF from (−η1, η1) to L
(
H

1/2+τ
odd (∂B)×H

1/2+τ
odd (∂Q), Hs(Ω)

)
such that

u[η, ψ,Ψ](η · )∣∣
Ω
= UF(η)

(
ψ

Ψ

)
∀(η, ψ,Ψ) ∈ (0, η1)×H

1/2+τ
odd (∂B)×H

1/2+τ
odd (∂Q) . (4.7)

Moreover,

UF(0)

(
ψ

Ψ

)
= W0,Ψ

∣∣
Ω

∀(ψ,Ψ) ∈ H
1/2+τ
odd (∂B)×H

1/2+τ
odd (∂Q) , (4.8)

where W0,Ψ is the unique solution in K1+τ
β0β1

(Q∁) for β0 ∈ (−2, 0), β1 ∈ (−1, 0) of the exterior

Dirichlet problem {
∆W0,Ψ = 0 in Q∁ ,

γ0W0,Ψ = Ψ on ∂Q .
(4.9)

4.2. Convergent expansion of the solution of the original problem. In this subsection, we first

insert into the expansion of the solution u[η, ψ,Ψ] of the Dirichlet problem on the perforated

domain Bη obtained in the preceding subsection the knowledge about the Dirichlet data from

Theorem 2.5, namely ψ = 0 and Ψ = −T ∗[u0]. The latter is given by a convergent series in

(2.10). We then have to write the resulting double series as a series in ε by using η = επ/ω and

we have to interpret the result as a series that converges in function spaces defined on the original

domain Aε, by undoing the conformal map G∗
π/ω. This will give a convergent expansion for the

solution ũε of the residual problem (1.23). The final step is to add the function u0 as described in

Theorem 1.2, in order to find a convergent expansion for the solution uε of the original problem

(0.5).

Corresponding to the three results about the Dirichlet problem in the perforated domain Bη, The-

orems 4.1, 4.3 and 4.4, we prove three different results about the solution of the original problem

(0.5). For the notation describing the convergent series in powers of ε, we refer to Sections 1 and

2, in particular to Notation 1.1 for the definition of the index set A and to Notation 1.7 for the

powers and divided differences of powers of ε abbreviated by the symbol Eγ(ε).
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In view of Theorem 2.5 and Remark 2.6, we introduce a maximal regularity index

τ0 =
1
2

if 0 6∈ ∂P , τ0 = min{1
2
, 2ω
π
} if 0 ∈ ∂P . (4.10)

The first result is a globally valid two-scale splitting of the solution uε, where the slow-variable

part and the fast-variable part have separate convergent expansions, when written in their respec-

tive variables.

Theorem 4.5. There exist ε1 > 0 such that the solution uε of Problem (0.5) has the following

structure.

uε(t) = u0(t) + u(ε)(t) + U(ε)( t
ε
) ∀ t ∈ Aε, ε ∈ (0, ε1) . (4.11)

Here u0 is the solution of the limit problem (0.10) on the unperforated corner domain A. Its

singular behavior near the corner is described by the convergent series (1.19) in Theorem 1.2.

The functions u(ε)(t) and U(ε)(T ) are defined for t ∈ A and T ∈ P∁, respectively, and have a

convergent series expansion of the following form.
(
u

U

)
=

∑

(n,γ)∈N×A

εnπ/ωEγ(ε)

(
vnγ
Vnγ

)
. (4.12)

Let τ ∈ (0, τ0) and β0 > −1−π/ω with β0 > −1−τπ/ω if 0 ∈ ∂P, and let β1 < −1+π/ω. The

series converges in the weighted Sobolev spaces K1+τ
β0

(A)×K1+τ
β0β1

(P∁) , and there exist constants

C and M such that

‖vnγ‖K1+τ
β0

(A) + ‖Vnγ‖K1+τ
β0β1

(P∁) ≤ CMn+|γ|, (n, γ) ∈ N× A .

The series converge also uniformly, in L∞(A)× L∞(P∁).

Proof. We have uε = u0 + ũε, where ũε solves the residual problem (1.23). After applying the

conformal mapping Gπ/ω and the odd reflection, this was rewritten in Theorem 2.5 as the problem

(2.9), a special case of the boundary value problem (3.15). Thus we have the identification ũε =
u[η, ψ,Ψ] ◦ Gπ/ω, where ψ = 0 and Ψ = −T ∗[u0](η·). Combining the convergent expansion

(2.10) for T ∗[u0] with the power series (4.3) for the solution operator of problem (3.15), we thus

find a convergent expansion that has the form (4.12)

(
u

U

)
=

∞∑

n=0

∑

γ∈A

εnπ/ωEγ(ε)Ln
(

0

Ψγ

)
◦ Gπ/ω .

The right choice of weighted Sobolev spaces for the convergence follows from Theorem 4.1 with

the transformation rule of Lemma 2.2. Note that this transformation rule motivates the use of

weighted Sobolev spaces instead of non-weighted spaces. For the uniform convergence finally,

we notice that L∞ remains invariant under the conformal mappings G∗
κ. �

The second result is a convergent expansion of the whole solution uε written in slow (macroscopic)

variables. It is valid in any fixed subdomain of Aε that has a positive distance to the corner and

thus is free of holes for sufficiently small ε. This corresponds to the outer expansion in the method

of matched asymptotic expansions, compare [13, Section 5].
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Theorem 4.6. Let Ω be a Lipschitz subdomain of A such that 0 6∈ Ω. Let εΩ > 0 be such that

Ω∩ εP = ∅ for all ε ∈ (0, εΩ). Then there exists ε1 ∈ (0, εΩ) such that for ε ∈ (0, ε1) the solution

uε of Problem (0.5) has the following expansion in Ω:

uε(t) = u0(t) +
∑

(n,γ)∈N∗×A

εnπ/ωEγ(ε)u
S
nγ(t) , t ∈ Ω . (4.13)

Let τ < τ0. Then the series converges for |ε| < ε1 in H1+τ (Ω), and there exist constants C and

M such that

‖uSnγ‖H1+τ (Ω) ≤ CMn+|γ|, (n, γ) ∈ N∗ × A .

The series converges also uniformly in Ω.

Proof. In the multiscale decomposition (4.11) uε = u0 + u(ε) + U(ε)
(
·
ε

)
, the term u(ε) has the

required expansion according to Theorem 4.5. For U(ε) we write it as

U(ε) =W ◦ Gπ/ω ,
where W is the function defined in Theorem 4.1 in the special case where ψ = 0 and Ψ =
−T ∗[u0](η·). The analyticity of W (·/η) with respect to η at η = 0 in the case of η-independent Ψ
has been deduced in the proof of Theorem 4.3 from Lemma 3.10. We have to combine this, as in

the proof of Theorem 4.5, with the expansion (2.10) for T ∗[u0] and set η = επ/ω, ending up with

the expansion required for (4.13). The coefficient functions uSnγ are the sum of the corresponding

terms of the expansion of u(ε) and of U(ε)(·/ε). For n = 0 both of these terms vanish, because

they correspond to u[η, ψ,Ψ] in (4.4) at η = 0 and ψ = 0, and according to (4.5)–(4.6), this is

zero. Therefore the sum over n in (4.13) starts with n ≥ 1. �

The third result is a convergent expansion of the whole solution uε written in fast (microscopic)

variables. It is valid outside of the holes in a scaled family εΩ of subdomains of Aε. This cor-

responds to the inner expansion in the method of matched asymptotic expansions, compare [13,

Section 5].

Theorem 4.7. Let Ω ⊂ Sω \ P be a bounded Lipschitz domain. Let ε̃Ω > 0 be such that εΩ ⊂ A

for all ε ∈ (0, ε̃Ω). Then there exists ε1 ∈ (0, ε̃Ω) such that for ε ∈ (0, ε̃1) the solution uε of

Problem (0.5) has the following expansion in εΩ:

uε(εT ) =
∑

(n,γ)∈N×A

εnπ/ωEγ(ε)U
F
nγ(T ) , T ∈ Ω . (4.14)

Let τ < τ0. Then the series converges for |ε| < ε̃1 in H1+τ (Ω), and there exist constants C and

M such that

‖UF
nγ‖H1+τ (Ω) ≤ CMn+|γ|, (n, γ) ∈ N∗ × A .

The series converges also uniformly in Ω.

Proof. As in the proof of Theorem 4.5 we use the identity uε = u0 + ũε ≡ u0 + u[η, ψ,Ψ] ◦ Gπ/ω,

where ψ = 0 and Ψ = −T ∗[u0](η·). Together with Theorem 4.4 for u[η, ψ,Ψ](η · ), this gives the

desired form (4.14) of the expansion for the second term ũε(ε·). Here, as in the outer expansion

(4.13), the sum over n lacks the term n = 0. It remains to analyze the first term u0(ε·). Here we

need the asymptotic behavior (expansion into corner singular functions) of u0 that was described
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in (1.22) and used for expanding u0(εT ) into a convergent series in (1.25). With the notation

introduced in (2.13) in the proof of Theorem 2.5, this series can be written as

u0(εT ) =
∑

γ∈A

Eγ(ε)Φγ(T ) .

This is a series of the form (4.14) with n = 0. Explicitly estimating norms of the functions Φγ or

relying on the estimate (2.15), we see that the series converges in H1+τ(Ω). �

The fact that the series expansions in the last three theorems are only stepwise convergent, that

is convergent when pairs of powers of ε are grouped together into the terms Eγ(ε) from Nota-

tion 1.7(3), is caused entirely by the corresponding fact for the expansion of u0 studied in Sec-

tion 1, see in particular Remarks 1.4–1.6. Thus if we assume that one of the conditions mentioned

in these Remarks is satisfied, we find convergent power series, and it is then possible to reformu-

late the statements of Theorems 4.5–4.7 in terms of analytic functions of ε and επ/ω.

Corollary 4.8. Suppose that the right hand side f vanishes in a neighborhood of the corner 0.

Denote by uε the solution of Problem (0.5).

(i) Let the parameters τ , β0 and β1 be chosen as in Theorem 4.5. Then there exists η1 > 0 and a

real analytic function

(−η1, η1) ∋ η 7→ V[η] =
(
v[η]

V [η]

)
∈ K1+τ

β0
(A)×K1+τ

β0β1
(P∁)

such that in the two-scale decomposition (4.11) uε = u0 + u(ε) + U(ε)( ·
ε
) we have

u(ε) = v[επ/ω] , U(ε) = V [επ/ω] ∀ ε ∈ (0, η
ω/π
1 ) .

(ii) Let Ω be a Lipschitz subdomain of A such that 0 6∈ Ω and let τ be chosen as in Theorem 4.6.

Then there exists η1 > 0 and a real analytic function

(−η1, η1) ∋ η 7→ uS[η] ∈ H1+τ(Ω)

such that we have uS[0] = u0 and

uε = uS[ε
π/ω] in Ω , ∀ ε ∈ (0, η

ω/π
1 ) .

(iii) Let Ω ⊂ Sω \ P be a bounded Lipschitz domain and let τ be chosen as in Theorem 4.7. Then

there exists η1 > 0 and a real analytic function

(−η1, η1) ∋ η 7→ UF[η] ∈ H1+τ (Ω)

such that we have

uε(εT ) = UF[ε
π/ω](T ) ∀T ∈ Ω , ε ∈ (0, η

ω/π
1 ) .

Proof. As we have seen in Remark 1.5, if f vanishes in a neighborhood of the corner, then in the

series expansion of u0 there appear only exponents that are of the form kπ/ω with integer k, and

the series is unconditionally convergent. In the resolution of the residual problem in Section 3.3,

integer powers of η = επ/ω were incorporated, so that the final convergent series expansions

(4.12), (4.13) and (4.14) also contain only exponents that are integer multiples of π/ω. It follows

that these series are convergent power series, hence analytic functions, in the variable η = επ/ω.

�
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Let now ω be a rational multiple of π, i.e. π/ω = p/q, where p and q are relatively prime positive

integers. In this case, all the exponents of ε appearing in the convergent series expansions (4.12),

(4.13) and (4.14) can be seen to be integer multiples of 1/q. The expressions Eγ(ε) as defined

in Notation 1.7 are now either integer powers of δ = ε1/q or of the form εℓ log ε with integer ℓ.
They can therefore be expressed via two real analytic functions of one variable. We formulate

this observation for the two-scale decomposition (4.11) of Theorem 4.5 and its convergent se-

ries expansion (4.12) and leave the corresponding reformulations of Theorems 4.6 and 4.7 to the

reader.

Corollary 4.9. Let π/ω = p/q. With the notations of Theorem 4.5, there exist δ1 > 0 and two real

analytic functions (we set ε1 ≡ (δ1)
q)

(−δ1, δ1) ∋ δ 7→ V0[δ] ∈ K1+τ
β0

(A)×K1+τ
β0β1

(P∁)

(−ε1, ε1) ∋ ε 7→ V1[ε] ∈ K1+τ
β0

(A)×K1+τ
β0β1

(P∁)

such that (
u(ε)

U(ε)

)
= V0[ε

1/q] + V1[ε
p] log ε ∀ ε ∈ (0, ε1) .

The third case where we find absolutely convergent expansions in powers of ε is when ω is not

a rational multiple of π but is such that we can choose A0 = ∅. According to the discussion in

Section 1.2 and in Appenix B, this is the case if and only if π
ω

is not a super-exponential Liouville

number. In this case we do not need the divided differences of Notation 1.7(3), and the terms in the

convergent expansions (4.12), (4.13) and (4.14) are simply monomials in the two variables ε and

επ/ω, and the series therefore define real analytic functions of two variables. We formulate again

the corresponding result for the two-scale expansion of Theorem 4.5 and leave the reformulations

of Theorems 4.6 and 4.7 to the reader.

Corollary 4.10. Suppose that π/ω is irrational and not a super-exponential Liouville number in

the sense of Definition B.1. Then there exist ε1 > 0 and a real analytic function of two variables

(we set η1 = ε
π/ω
1 )

(−ε1, ε1)× (−η1, η1) ∋ (ε, η) 7→ V[ε, η] ∈ K1+τ
β0

(A)×K1+τ
β0β1

(P∁)

such that (
u(ε)

U(ε)

)
= V[ε, επ/ω] ∀ ε ∈ (0, ε1) .

APPENDIX A. SYMMETRIC EXTENSION OF LIPSCHITZ DOMAINS

In this section we use the objects defined in Section 2.2, in particular the upper half-plane Sπ
and the operation E of symmetric extension of a subset of Sπ by reflection at the horizontal axis.

In general, the symmetric extension of a Lipschitz domain is not Lipschitz, and therefore the

following result is not entirely obvious and merits a complete proof.

Lemma A.1. Assume that Ω is a bounded subdomain of Sπ and that Ω and Sπ \Ω have Lipschitz

boundaries. Then E(Ω) has a Lipschitz boundary.
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Proof. As a characterization of a Lipschitz boundary we use the property that it is locally con-

gruent to the graph of a Lipschitz continuous function. A simple consequence of this property is

that in 2 dimensions, each point of the boundary has a 2-dimensional neighborhood in which the

boundary is a simple curve, in particular it is homeomorphic to an interval.

Let us now first show that ∂Ω ∩ ∂Sπ has no isolated points. Suppose there were such a point

x0 = (x0, 0). We show that then Sπ \ Ω cannot be a Lipschitz domain, contrary to the hypothesis.

Since Ω is Lipschitz, there is a neighborhood U of x0 in which ∂Ω coincides with a simple curve

Γ0 and such that U ∩ ∂Ω ∩ ∂Sπ = {x0}. This neighborhood can be chosen such that U ∩ ∂Sπ is

an interval Γ1. Since (∂Ω ∪ ∂Sπ) \ (∂Ω ∩ ∂Sπ) is contained in the boundary of Sπ \ Ω, the latter

coincides in U with the union of the two curves Γ0 and Γ1 that intersect in the interior point x0.

Such a union is clearly not homeomorphic to an interval.

We will now use the following equivalent reformulation of the above definition of a Lipschitz

boundary ∂Ω in two dimensions: To each of its points there is a neighborhood U and a convex

cone Cαβ with the following property: If the curve Γ0 = ∂Ω ∩ U is parametrized by an interval,

γ : (t0, t1) → Γ0 ⊂ U ,
then for x = γ(s), y = γ(t) with s < t (we say “x precedes y” or x ≺ y) we have y ∈ x+ Cαβ .

Here the cone Cαβ is defined by two angles α, β with α < β < α+ π,

Cαβ = {(ρ cos θ, ρ sin θ) : 0 < ρ <∞, α < θ < β} .
One can observe that the rotation angles ω (modulo 2π) of coordinate axes that allow the repre-

sentation of Γ0 as a graph are given by the complement of Cαβ , the condition being

ω − π
2
∈ (β − π, α) ∪ (β, α+ π) .

Let now U be such a neighborhood of a point of ∂Ω. If ∂Ω ∩ U is entirely contained either in

the upper half-plane Sπ or in the axis of symmetry ∂Sπ , then there is nothing to prove, because

in this case (after possibly choosing a smaller neighborhood), the set U ∪ R(U) will be a suitable

neighborhood for the boundary of E(Ω).
The nontrivial case is when U is a neighborhood of a point x0 ∈ ∂Ω∩∂Sπ and both U ∩∂Ω∩∂Sπ
and U ∩ ∂Ω ∩ Sπ are non-empty. Since, as we have seen, x0 is not an isolated point of ∂Ω ∩ ∂Sπ ,

the structure of ∂Ω ∩ U is (after possibly choosing a smaller neighborhood) the following:

∂Ω ∩ U = Γ1 ∪ Γ0 ,

where Γ1 is an interval I1 × {0} ⊂ ∂Sπ , and Γ0 is a Lipschitz curve contained in Sπ. Locally, the

boundary of the complement has the form

∂(Sπ \ Ω) ∩ U = Γ′
1 ∪ Γ0 ,

where Γ′
1 is another interval I ′1 × {0} ⊂ ∂Sπ . The intervals have one point in common, which we

can assume to be x0

Γ1 ∩ Γ′
1 = {x0} = Γ0 ∩ ∂Sπ .

Since now Ω and Sπ\Ω play symmetric roles, it is no restriction to assume that I1 = [x0−δ, x0] and

I ′1 = [x0, x0 + δ] with some δ > 0. We can also assume that the two parametrizations of ∂Ω ∩ U
and of ∂(Sπ \ Ω) ∩ U are oriented such that in both cases the segment Γ1 or Γ′

1, respectively,

precedes the curve Γ0.
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Now from our definition of a Lipschitz boundary, we get a cone Cαβ that satisfies

x,y ∈ ∂Ω ∩ U and x ≺ y =⇒ y − x ∈ Cαβ .
In particular, this holds for x,y ∈ Γ1, and this implies that we have −π < α < 0 and 0 < β <
α + π.

Likewise, there is a cone Cα′β′ that satisfies

x,y ∈ ∂(Sπ \ Ω) ∩ U and x ≺ y =⇒ y − x ∈ Cα′β′ .

Since this holds for x,y ∈ Γ′
1, we must have 0 < α′ < π and π < β ′ < α′ + π.

For the curve Γ0 we have both conditions,

x,y ∈ Γ0 and x ≺ y =⇒ y − x ∈ Cαβ ∩ Cα′β′ = Cα′β .

The latter cone Cα′β is contained in the upper half-plane Sπ, and this implies that the curve Γ0 can

be represented as a graph in a coordinate system rotated by a right angle ω = π/2. This means

that there is a Lipschitz continuous function φ : (0, y0) → R such that

Γ0 = ∂Ω ∩ U ∩ Sπ = {(x, y) ∈ R2 : x = φ(y), 0 < y < y0} .
Now we can execute our symmetric extension and obtain that the point x0 ∈ ∂(E(Ω)) has E(U)
as a neighborhood in which the boundary

∂(E(Ω)) ∩ E(U) = Γ0 ∪ {x0} ∪ R(Γ0)

is represented as the graph {x = φ̃(y)} of a Lipschitz continuous function φ̃, namely the even

extension of φ, φ̃(y) = φ(|y|)}, −y0 < y < y0, completed by the choice φ(0) = x0. �

APPENDIX B. CONVERGENCE OF THE CORNER EXPANSION FOR THE DIRICHLET PROBLEM

AND DIOPHANTINE APPROXIMATION

In this section, we use the notation of Section 1.2. We find conditions on the opening angle ω for

the convergence of the series of particular solutions constructed according to (1.7)

u∂(t) =
∑

ℓ∈N∗

wℓ(t) =
∑

ℓ∈N∗

(gωℓ − g0ℓ cos ℓω

sin ℓω
Im ζℓ + g0ℓ Re ζℓ

)
, (B.1)

provided the two power series with coefficients g0ℓ and gωℓ have a nonzero convergence radius as

in (1.4). We will assume here that the number κ = π
ω

is irrational, so that the coefficients in the

sum (B.1) are well defined. As was observed already in [4, 11], for certain angles ω for which κ is

irrational the small denominators sin ℓω pose a problem for the convergence of the series (B.1), and

a procedure for reestablishing the convergence was found. The convergence of the sum depends

on the rate of approximability of κ by rational numbers, a question that has been a classical

subject of number theory for a long time, see for example [16, Chapter XI]. A classical theorem

by Liouville states that irrationals that can be fast approximated by rationals in a certain way are

transcendental, and it was shown by Greenfield and Wallach in 1972 [15] that these Liouville

numbers play a role in the study of global hypoellipticity of differential operators on manifolds.

More recently, Himonas [17] and Bergamasco [2] introduced a subset of Liouville numbers, the

exponential Liouville numbers, in the context of questions of global analytic hypoellipticity. For

the situation in our present paper, it turns out that we need to consider an even smaller subset of



42 MARTIN COSTABEL, MATTEO DALLA RIVA, MONIQUE DAUGE, AND PAOLO MUSOLINO

irrationals that have a fast approximation by rationals. We call them super-exponential Liouville

numbers.

Definition B.1. Let a ∈ R \Q. Then a is said to be

(i) a Liouville number if for every n ∈ N∗, there exist p ∈ Z and q ∈ N∗ such that

0 <
∣∣∣a− p

q

∣∣∣ < 1
qn
,

(ii) an exponential Liouville number if there exists c ∈ R, c > 0, and infinitely many p ∈ Z and

q ∈ N∗ such that

0 <
∣∣∣a− p

q

∣∣∣ < e−cq ,

(iii) a super-exponential Liouville number if for any c ∈ R, c > 0, there exist p ∈ Z and q ∈ N∗

such that

0 <
∣∣∣a− p

q

∣∣∣ < e−cq .

We denote the sets of Liouville, exponential Liouville and super-exponential Liouville numbers

by Λ, Λe and Λs, respectively.

It is clear that Λs ⊂ Λe ⊂ Λ. It is known that Λ is dense in R, uncountable and of measure zero

[16, Theorem 198]. Using the same arguments, one can see that these properties are valid for Λe

and Λs, too. Finally, it is worth noting that each of these sets is invariant with respect to taking

inverses, addition of rational numbers and multiplication by nonzero rational numbers.

Proposition B.2. Let κ = π/ω be irrational. Let the lateral boundary data g0 and gω be given by

series

g0(ρ) =
∑

ℓ∈N∗

g0ℓρ
ℓ, gω(ρ) =

∑

ℓ∈N∗

gωℓ ρ
ℓ

that converge for |ρ| < ρ0. Then the following two statements are equivalent:

(i) For any such g0 and gω, the series (B.1) for the particular solution u∂ of the Dirichlet problem

in the sector converges for |ζ | < ρ0.

(ii) κ is not an exponential Liouville number.

Likewise, the following two statements are equivalent:

(iii) There exists ρ1 > 0 such that for any such g0 and gω, the series (B.1) for the particular

solution u∂ of the Dirichlet problem in the sector converges for |ζ | < ρ1.

(iv) κ is not a super-exponential Liouville number.

For the proof, we use the following elementary observation about power series: Let the se-

ries
∑

ℓ≥1 aℓ x
ℓ and

∑
ℓ≥1 bℓ x

ℓ have convergence radii ρa and ρb, respectively. Then the series∑
ℓ≥1 aℓ bℓ x

ℓ has convergence radius ρaρb or greater, with equality if, for example, bℓ = ρ−ℓb for

all ℓ. Applying this with aℓ = 1/ sin ℓω, we see that the proof of the proposition is achieved if we

prove the following lemma.

Lemma B.3. Let π/ω be irrational and let ρs be the convergence radius of the power series

∑

ℓ∈N∗

xℓ

sin ℓω
.

Then ρs = 1 if and only if π/ω is not an exponential Liouville number, and ρs > 0 if and only if

π/ω is not a super-exponential Liouville number.
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Proof. We use Hadamard’s characterization

ρ−1
s = lim sup

ℓ→∞
| sin ℓω|−1/ℓ,

and we freely use that

lim sup
ℓ→∞

(c ℓd)1/ℓ = 1 for any c > 0, d ∈ R.

Rational approximations of κ = π/ω appear because for all k ∈ N: | sin ℓω| = | sin(ℓω − kπ)|,
and we can choose k such that the difference is minimal:

k = k(ℓ) ≡ ⌊ ℓω
π
⌉ ∈ ( ℓω

π
− 1

2
, ℓω
π
+ 1

2
] =⇒ ℓω − kπ ∈ [−π

2
, π
2
) .

Then, using 2
π
≤ sinx

x
≤ 1 for |x| ≤ π

2
, we get with the k chosen as above,

2
π
|ℓω − kπ| ≤ | sin ℓω| ≤ |ℓω − kπ| .

Thus | sin ℓω| ≃ |ℓω − kπ| = kω| ℓ
k
− π

ω
| ≃ k | ℓ

k
− π

ω
|, implying

lim sup
ℓ→∞

| sin ℓω|−1/ℓ = lim sup
ℓ→∞

| ℓ
k(ℓ)

− κ|−1/ℓ .

Therefore the condition ρs = 1 is equivalent to (note that ρs ≤ 1 in any case)

∀M > 1 ∃ℓM : ℓ ≥ ℓM ⇒ | ℓ
k(ℓ)

− κ|−1/ℓ ≤ M

⇐⇒ ∀M > 1 ∃ℓM : ℓ ≥ ℓM ⇒ | ℓ
k(ℓ)

− κ| ≥M−ℓ

⇐⇒ ∀c > 0 the inequality | ℓ
k(ℓ)

− κ| < e−cℓ has only finitely many solutions ℓ ∈ N∗

⇐⇒ ∀c > 0 the inequality | ℓ
k
− π

ω
| < e−ck has only finitely many solutions k, ℓ ∈ N∗

The last condition means, according to Definition B.1, that κ is not an exponential Liouville

number.

Likewise, ρs > 0 is equivalent to

lim sup
ℓ→∞

| ℓ
k(ℓ)

− κ|−1/ℓ <∞ ⇐⇒ sup
ℓ

| ℓ
k(ℓ)

− κ|−1/ℓ <∞

⇐⇒ ∃c > 0 : ∀ℓ : | ℓ
k(ℓ)

− κ| ≥ e−cℓ

⇐⇒ ∃c > 0 : ∀k, ℓ ∈ N∗ : | ℓ
k
− κ| ≥ e−ck .

Again comparing the negation of the last condition with Definition B.1, we see that this is equiv-

alent to the fact that that κ is not a super-exponential Liouville number. �

Let us finally note that if κ is a super-exponential Liouville number, one can give explicit examples

for the right hand side f such that the series (B.1) for u∂ does not converge for any t 6= 0. One

such example is f(t) = 1/(ρ0 − t1).
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