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ABSTRACT

The analysis of trabecular bone micro structure from in-vivo
CT images is still limited due to insufficient spatial resolu-
tion. The goal of this work is to address both the problem
of increasing the resolution of the image and of the segmenta-
tion of the bone structure. To this aim, we investigate the joint
super-resolution/segmentation problem by an approach based
on the Mumford-Shah model. The validation of the method
is performed on blurred, noisy and down-sampled images. A
comparison of the reconstruction results with the Total Varia-
tion regularization is showed.

Index Terms— Super-resolution/segmentation, Mumford-
Shah, total variation, alternating minimization, 3D CT image,
bone micro-architecture.

1. INTRODUCTION

The study of the trabecular bone micro-architecture is im-
portant in the diagnosis of osteoporosis because it is one of
the determinant of bone strength [1]. This investigation re-
mains difficult for in-vivo CT images because of the lack of
resolution of the CT scanners compared with the trabeculae
bone size. The bone structure analysis is based on the seg-
mentation of the images to extract the bone architecture from
the background. This segmentation is the first step to cal-
culate the morphological or the topological parameters de-
scribing the bone micro-structure. New High Resolution pe-
ripheral Quantitative CT (HR-pQCT) devices with improved
spatial resolution are now available to investigate the bone
micro-architecture with in-vivo [2] measurements. After bi-
narization, the quantitative parameters of trabecular bone ar-
chitecture can be extracted since this technique provides im-
ages with a voxel size of 82 µm. Yet, the spatial resolu-
tion of the images is still too low because it remains close
to the trabeculae size, and the segmentation step remains an
issue. The aim of this work is to investigate joint super-
resolution/segmentation methods to improve the trabecular
bone analysis from in-vivo HR-pQCT images.

In image processing, the segmentation [3–5] and the
super-resolution [6–9] problems have been much studied.
However, in most cases these tasks are considered separately.

In previous works, we investigated methods to improve
the quality of trabecular bone micro-CT images based on To-
tal Variation regularization [11]. The images we considered
having a quasi-binary structure, good results were obtained
with single-image super-resolution. Results on experimental
micro-CT images artificially deteriorated showed an improve-
ment of the bone parameters. However, it is not clear which is
the best regularization scheme for this inverse problem [10].

Meanwhile some non-convex regularizers have also been
proposed recently [13, 14] since they may lead to better
reconstruction results for some imaging applications than
classical convex regularizers. It has also been suggested that
solving joint segmentation/reconstruction problems based on
the Mumford-Shah regularization functional leads to better
reconstruction results than performing reconstruction and
segmentation successively [15–17]. In detail, the Mumford-
Shah functional has been firstly used for image denoising
and segmentation problems for a forward operator A equal to
the identity operator [18]. Recently, this functional has been
used as a regularization term for linear and non linear prob-
lems [15,19–23]. Its regularization properties have been stud-
ied in detail and it has been shown that the Mumford-Shah
regularization is stable for perturbations in the data [19].

In this work, we study the Mumford-Shah approach for
the joint super-resolution/segmentation problem and detail
the algorithm used to minimize the regularization functional.
We also compare it to TV regularization. This paper is or-
ganized as follows. In the first section, we introduce the
joint segmentation/super-resolution inverse problem and the
Mumford-Shah regularization approach. Then, we present the
results obtained with noisy micro-CT images of bone samples
after simulating the effect of a loss of spatial resolution and
degradation by noise.

2. SUPER-RESOLUTION/SEGMENTATION
PROBLEM

2.1. The inverse problem formulation

The reconstruction of a 2D image with an improved resolu-
tion from a single low-resolution image is based on the direct
problem of the image degradation. In our approach, we as-

2016 24th European Signal Processing Conference (EUSIPCO)

978-0-9928-6265-7/16/$31.00 ©2016 IEEE 1693



sume that the low-resolution image is obtained from the high-
resolution image with a blurring followed by down-sampling,
with some additional source of noise. The forward problem
can be written as:

g = Af + n (1)

where g ∈ RN denotes the N -pixels low-resolution noisy
image, and f ∈ RN ′

denotes an N ′ = N × p2-pixels high-
resolution image with super-resolution factor p in each di-
mension, A : L2(Ω)→ L2(Ω) is the linear operator account-
ing for blurring followed by down-sampling defined on the
bounded domain Ω ∈ RN ′

and n is the noise component.
Our inverse problem is to recover the image f from the given
degraded image g. It is an ill-posed problem, errors in the data
will be magnified and this problem must be regularized. Sta-
ble solutions can be obtained by minimizing a regularization
functional of the form:

min
f
µ‖Af − gδ‖22 +R(f) (2)

where R(f) is a regularization term which introduces some
a priori knowledge on the solution. The first term enforces
the fitting to the data. The regularization parameter µ con-
trols the balance between the two terms of the regularization
functional.

The images considered are quasi-binary and the problem
can be understood as a joint segmentation/reconstruction
problem. Recently, we investigated Total Variation(TV)
schemes as a regularization term to solve this problem to
obtain stable solutions [11]. The TV regularization term is de-
fined as theL1 norm of the gradient, TV (f) =

∫
Ω
|∇f(r)|dr,

where |∇f(r)| is the Euclidean norm of the gradient. The
TV regularization method is well-known as a very effective
way to recover edges of an image. The TV is convex and
thus rather easy to minimize but the reconstruction may also
benefit from non convex regularizers.

2.2. The Mumford-Shah type regularization

Let us introduce the Mumford-Shah regularization. It gen-
eralizes the Potts model presented in the [22], which is used
at the second step of ADMM iteration described at next sec-
tion, with an additional regularization term with the L2 norm
of the gradient. Let SBV (Ω) the set of special functions
of Bounded Variation for which the Cantor part of the To-
tal Variation is zero and A : L2(Ω) → L2(Θ) a continuous
forward operator. The weak Mumford-Shah functional for
f ∈ SBV (Ω) can be written:

MS(f) =
µ1

2
‖A(f)− g‖2L2(Ω) + µ2

∫
Ω

|∇f |2dx+H(Sf )

(3)
where Sf is the jump set of the function f and∇f the density
of the Lebesgue integrable part of Df . The Hausdorff mea-
sure of the jump set is denoted as H(Sf ). By minimizing the

Mumford-Shah functional, it is possible to find the image f
and its edges. Two regularization parameters µ1 and µ2 are
introduced in the functional. The first term is a smoothing
term. The second regularization term is the Hausdorff mea-
sure of the jump set Sf of the function f. This term induces
a short and regular edge set. This regularization functional
is expected to be very efficient to recover our quasi-binary
image with a regular boundary curve. The existence of a so-
lution for this functional and the regularization properties can
be found in [19] for function f in SBV (Ω) and under some
assumptions on the edge set Sf and the operator A.

The minimization of the Mumford-Shah functional is a
difficult problem. Ramlau et al. have proposed level-set based
minimization methods [15–17]. In [21], a good approxima-
tion of the Hausdorff measure for piecewise constant images
is obtained with the discretization:

S∑
s=1

ωs‖∇psf‖0 (4)

where ps are displacement vectors belonging to a neighbor-
hood system, ωs are nonnegative weights and ∇psf = f(. +
p) − f , ‖∇psf‖0 denotes the number of non zero entries of
∇psf . An efficient calculation of this regularization term by
dynamic programming was proposed in [21].

2.3. An ADMM approach for the minimization

To solve the Mumford-Shah in this work, we propose an al-
gorithm based on the alternating direction method of multi-
pliers (ADMM). This method is among the state of the art
method for minimizing regularization functional like TV [24–
28]. To this aim, we have considered the classical following
Lagrangian [25, 26] :

L(f, u, µ1, µ2, β, λ) =
µ1

2
||Af − g||22 + µ2||∇f ||22

+ ||∇u||0 + β||f − u||22+ < λ, f − u >

where µ1 and µ2 are parameters balancing the data term and
the regularization terms, λ ∈ RN ′

is a Lagrange multiplier,
β is a Lagrange parameter and u an auxiliary variable for the
constraint. A saddle point of the Lagrangian is obtained with
successive optimizations with respect to f ,u and λ.

The ADMM iterates are the following:

1. Update of f

Hfk+1 = µ1A
tg + 2βuk − λk

with H = µ1A
tA + 2β − µ24, and where 4 is the

Laplacian operator.

2. Update of u

uk+1 ∈ argmin
u
‖∇u‖0+λk(fk+1−u)+β‖fk+1−u‖22
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which can be rewritten

uk+1 ∈ argmin
u
‖∇u‖0+β‖u−fk+1−λ

k

2β
‖22−β‖

λk

2β
‖22

3. Update of λ

λk+1 = λk − 2β(fk+1 − uk+1)

The step two of the algorithm is performed with a four
neighborhood system and with the dynamic programming
code given in [21].

3. NUMERICAL EXPERIMENTS

3.1. Simulation details

The tests were performed from experimental image of tra-
becular bone obtained from parallel-beam synchrotron micro-
CT [29]. From these data, a 2D image with N2 = 328× 328
pixels of size 20 µm was generated and considered as high-
resolution ground truth image. The corresponding binarized
ground truth is presented in Fig.1(a).

We blurred this high-resolution image with Gaussian
point spread function with a standard deviation σblur = 4.85.
The down-sampling rate was p = 4. A Gaussian noise with a
standard deviation σ = 1 or σ = 6 was added to the blurred,
under-sampled image. The generated image noted by g is
shown in Fig.1(b).

During ADMM, we considered the convergence was
achieved and the iterations were stopped if the relative change
on the image satisfies ‖fk−fk+1‖2

‖fk‖2 < 2 ∗ 10−2. The initial
value of the Lagrangian multiplier λ is 0. The initial values
of u and f are Atg. For fixed regularization parameters, the
β parameter was chosen to have the fastest decrease of the
Lagrangian. In order to compare the regularization schemes,
an extensive sweeping of the regularization parameters was
performed.
Our methods have also been compared with regularization
parameter chosen according to the Morozov discrepancy
principle [10, 30, 31]. With the Morozov discrepancy prin-
ciple, the regularization parameters are chosen such that
the discrepancy term is equal to the known noise level δ
on the observed data, so that the following equation holds,
‖Af(µ1, µ2) − g‖ = δ, where δ = ‖n‖2 is the noise level
and f(µ1, µ2) the reconstructed image for the parameters µ1

and µ2. The noise level is evaluated as δ2 = N2σ2. At
the end of the optimization process the PSNR is calculated

as: PSNR = 10log10
(max(f∗)−min(f∗))2

||f∗ − f ||22
, where f∗

is the high-resolution ground truth image and f is the super-
resolution image. Then the binary images are obtained with
the Otsu [32] threshold to calculate the DICE and bone
surface (mm2).

3.2. Results

Fig. 1 compares the binary reconstructed images obtained
for σ = 1 with the two regularization methods, for an opti-
mal choice of the regularization parameters and for parame-
ters chosen with Morozov principle. The evolution of the data
term for the Mumford-Shah approach as a function of the pa-
rameter µ1 is displayed in Fig. 2 for µ2 = 10−12 when the
noise level σ = 1. This figure shows how the regularization
parameter is determined according to the Morozov principle.
The figures 3 and 4 independently present the evolution of
PSNR and DICE with µ1. Similar evolutions are obtained for
σ = 6.

Table 1 and 2 compare TV and Mumford-Shah methods
in terms of PSNR, DICE as well as bone surface for different
noise levels. For the Mumford-Shah regularization, the opti-
mal regularization parameters and the ones obtained with the
Morozov principle are the same. For the TV regularization,
there is a significant shift between the optimal parameter and
the parameter determined with this discrepancy principle.

From these tables, we see that the Mumford-Shah method
is very efficient for our reconstruction/segmentation problem.
The TV methods gives better reconstruction results and the
best structural parameters if the regularization parameters are
chosen to maximize the PSNR, knowing the ground-truth.
If the regularization parameters are chosen with the Moro-
zov principle, the Mumford-Shah approach outperforms the
TV based methods. In practical situations, where the ground
truth image is not known, the Mumford-Shah regularization
approach could be more efficient to perform the joint super-
resolution/segmentation at the same time.

4. CONCLUSION

In this paper, we have proposed a super-resolution/segmentation
method based on the Mumford-Shah regularization func-
tional. We have compared the results, which are obtained
with the TV regularization for the improvement of the quan-
tification of the trabecular bone micro-structure on noisy,
blurred, low-resolution images obtained from micro-CT vol-
ume, in terms of DICE, PSNR and bone surface. The better
reconstruction results are obtained with the Mumford-Shah
method if the parameters are chosen according to the Mo-
rozov principle even though ground truth is unknown. Pre-
liminary studies with other images and noise levels seem to
validate our conclusion. The method is thus promising to
improve image quality and quantification.
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