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Fractional calculus and generalized Mittag-Leffler type functions

Introduction and motivations

During the last two decades, the interest in Mittag-Leffler type functions has considerably developed. This is due to their vast potential of applications in applied sciences and engineering, and their steadily increasing importance in physics researches. More precisely, deviations of physical phenomena having an exponential behavior may be governed by physical laws (exponential and power laws) with the help of generalized Mittag-Leffler type functions. For example, they appear especially important in research domains such as stochastic systems theory, dynamical systems theory, statistical distribution theory, disordered and chaotic systems, etc., with special emphasis placed on applications to fractional differential equations-although this topic is not addressed herein. Furthermore, geometric properties including starlikeness, convexity and close-to-convexity for the Mittag-Leffler type functions were also recently investigated, e.g. by Bansal and Prajapat in [START_REF] Bansal Deepak | Certain geometric properties of the Mittag-Leffler functions[END_REF], Kilbas et al. [START_REF] Anatoly | Theory and Applications of Fractional Differential Equations[END_REF] and Kiryakova [START_REF] Virginia | On two Saigo's fractional integral operators in the class of univalent functions[END_REF][START_REF] Virginia | The special functions of fractional calculus as generalized fractional calculus operators of some basic functions[END_REF][START_REF] Virginia | The role of special functions and generalized fractional calculus in studying classes of univalent functions[END_REF]. This makes these functions directly and naturally amenable to fractional calculus techniques as studied by Gorenflo et al. [START_REF] Rudolph | Mittag-Leffler Functions, Related Topics and Applications[END_REF], Kilbas et al. [START_REF] Anatoly | Fractional calculus of the generalized Wright function[END_REF][START_REF] Anatoly | Generalized Mittag-Leffler functions and generalized fractional calculus operator[END_REF][START_REF] Anatoly | Theory and Applications of Fractional Differential Equations[END_REF], Kiryakova [START_REF] Virginia | Generalized Fractional Calculus and Applications[END_REF], Kumar-Saxena [START_REF] Kumar Dinesh | Generalized Fractional Calculus of the M -Series Involving F 3 Hypergeometric function[END_REF], Saigo [START_REF] Megumi | A remark on integral operators involving the Gauß hypergeometric functions[END_REF][START_REF] Megumi | A generalization of fractional calculus[END_REF][START_REF] Megumi | On generalized fractional calculus operators[END_REF], Samko et al. [START_REF] Stephan | Fractional Integrals and Derivatives. Theory and Applications[END_REF], Saxena-Saigo [START_REF] Saxena | Certain properties of the fractional calculus operators associated with generalized Mittag-Leffler function[END_REF], Sharma [START_REF] Manoj | Fractional integration and fractional differentiation of the M -series[END_REF][START_REF] Sharma Kishan | An Introduction to the Generalized Fractional Integration[END_REF], Srivastava et al. [START_REF] Hari | Some Families of Mittag-Leffler Type Functions and Associated Operators of Fractional Calculus (Survey)[END_REF][START_REF] Hari | Certain Fractional Integral Operators and the Generalized Incomplete Hypergeometric Functions[END_REF], etc.

The Mittag-Leffler and generalized Mittag-Leffler type functions

The one-parametric Mittag-Leffler function (M-L for short) E α (z) was first introduced by the swedish mathematician G. M. Mittag-Leffler in five notes [START_REF] Gösta | Sur la nouvelle fonction E α (z)[END_REF]1903] [START_REF] Gösta | Sur la représentation analytique d'une branche uniforme de fonction monogène[END_REF]1905] and also studied by Wiman [START_REF] Anders | Über den Fundamentalsatz in der Theorie der Funktionen E a (z)[END_REF]1905]. It is a special function of z ∈ C which depends on the complex parameter α and is defined by the power series

(1.1) E α (z) := n≥0 z n Γ(αn + 1) (α ∈ C).
One can see that the series (1.1) converges in the whole complex plane for all ℜ(α) > 0. For all ℜ(α) < 0, it diverges everywhere on C \ {0} and, for ℜ(α) = 0, its radius of convergence is R = e π/2|ℑ(z)| . A first generalization of E α (z) introduced by Wiman [START_REF] Anders | Über den Fundamentalsatz in der Theorie der Funktionen E a (z)[END_REF]1905], and later studied by Agarwal et al. [START_REF] Rana | À propos d'une note de M. Pierre Humbert[END_REF][START_REF] Pierre | Sur la fonction de Mittag-Leffler et quelques-unes de ses généralisations[END_REF]1953], is the two-parametric M-L function of z ∈ C, defined by the series

(1.2) E α,β (z) := n≥0 z n Γ(αn + β) (α, β ∈ C; ℜ(α) > 0 ℜ(β) > 0). 1 
In the case when α and β are real positive, the series converges for all values of z ∈ C, while when α, β ∈ C, the conditions of convergence closely follow the ones for E α,1 (z) := E α (z). E α (z) and E α,β (z) are entire functions of z ∈ C of order ρ = 1/ℜ(α) and type σ = 1; in a sense, they are the simplest two entire functions of this order (see, e.g., [13, §3.1]). 1 The one-and two-parametric M-L function are fractional extensions of the basic functions E 1 (±z) := E 1,1 (±z) = e ±z , E 1,2 (z) := (e z -1)/z, E 2 (z) := E 2,1 (z) = cosh( √ z), E 2,2 (z) = sinh( √ z)/ √ z, etc. (see, e.g., [2, §7.1], [START_REF] Arthur | Higher Transcendental Functions[END_REF], [START_REF] Rudolph | Mittag-Leffler Functions, Related Topics and Applications[END_REF], [START_REF] Rudolph | On the generalized Mittag-Leffler type functions[END_REF], [START_REF] Anatoly | Fractional calculus of the generalized Wright function[END_REF][START_REF] Anatoly | Generalized Mittag-Leffler functions and generalized fractional calculus operator[END_REF][START_REF] Virginia | Generalized Fractional Calculus and Applications[END_REF][START_REF] Virginia | On two Saigo's fractional integral operators in the class of univalent functions[END_REF][START_REF] Anders | Über den Fundamentalsatz in der Theorie der Funktionen E a (z)[END_REF], and references therein). They also appear as solutions of fractional integro-differential equations, e.g. in [START_REF] Mkhitar | Integral transforms and representations of functions in the complex domain[END_REF][START_REF] Anatoly | Theory and Applications of Fractional Differential Equations[END_REF][START_REF] Virginia | Generalized Fractional Calculus and Applications[END_REF][START_REF] Virginia | The special functions of fractional calculus as generalized fractional calculus operators of some basic functions[END_REF][START_REF] Virginia | The role of special functions and generalized fractional calculus in studying classes of univalent functions[END_REF].

Among the numerous generalizations of the M-L function let us point out the standard Wright function, defined by Wright in a bunch of papers (from 1933 to 1940) [START_REF] Maitland | The asymptotic expansion of the generalized Bessel function[END_REF]1934] by the series (1.3) φ(α, β; z) :=

n≥0 1 Γ(αn + β) z n n! = 0 ψ 1 -- (β,α) ; z (z, α, β ∈ C),
where 0 ψ 1 (-; (β, α); z) is a special case of the generalized Fox-Wright psi function, which is given in Definition 1.2, Eq. (1.24) of §1.3. The standard Wright function, which is very close to the two-parametric M-L function, may be rewritten also in terms of the Fox H-function introduced by Fox [START_REF] Charles | The asymptotic expansion of generalized hypergeometric functions[END_REF] (see Definition 1.4 in §1.3 and, e.g., [START_REF] Richard | NIST Handbook of Mathematical Functions[END_REF][START_REF] Anatoly | Fractional calculus of the generalized Wright function[END_REF]). If α > -1, this series is absolutely convergent for all z ∈ C, while for α = -1, it is absolutely convergent for |z| < 1, and for |z| = 1 and ℜ(β) > -1 [START_REF] Anatoly | Theory and Applications of Fractional Differential Equations[END_REF]Sec. 1.11].

For α > -1, φ(α, β; z) is an entire function of z, wherefrom one can deduce that for α > -1, the function has order ρ = 1/(α + 1) and type σ = (α + 1)α

1 α+1 = α ρ /ρ.
Wright investigated the function φ(δ, ν + 1; -z) := J δ ν (z), known as the Bessel-Wright function (or the Wright generalized Bessel function) and derived also the asymptotic behaviour of φ(α, β; z) at infinity by means of its integral representation in terms of a Mellin-Barnes contour integral (see, e.g., [22, App. E.ii], [21, 1.11]). Additionally, for z ∈ C \ (-∞, 0] and ν ∈ C, the functions φ(1, ν + 1; ±z 2 /4) can be expressed also in terms of the Bessel function of the first kind,

J ν (z) := (z/2) ν ∞ k=0 (-1) k (z 2 /4) k k!Γ(ν + k + 1) = z/2 Γ(ν + 1) 0 F 1 ν + 1; z 2 /4
1 Following Levin [29, Lect. 1], every entire function f (z) is represented by a power series f (z) = n≥0 cnz n which converges everywhere in the complex plane; the radius of convergence is infinite, which implies that lim Moreover, the asymptotic behaviour (|z| → ∞) of an entire function is usually studied via its restriction to rays in an angle θ 1 ≤ | arg z| ≤ θ 2 (cf. Phargmén-Lindelöf). The so-called indicator function of an entire function of order ρ is introduced as

h(θ) = lim sup r→∞ log f (re iθ ) r ρ (θ 1 ≤ θ ≤ θ 2 ).
Thus, the entire function f (z) = σe ρ n n/ρ z n has order ρ and type σ. For instance, the M-L function

∞ n=0 (A α z) n Γ(αn+1)
, where A > 0 and α > 0, is an entire function of order ρ = 1/α and type σ = A (by Stirling formula).

and of the modified Bessel function

I ν (z) := (z/2) ν ∞ k=0 (z 2 /4) k k!Γ(ν + k + 1) = z/2 Γ(ν + 1) 0 F 1 ν + 1; -z 2 /4 ,
as follows, φ(1, ν + 1; -z 2 /4) = 2z -ν J ν (z) and φ(1, ν + 1; z 2 /4) = 2z -ν I ν (z).

Both Bessel functions are analytic functions of z ∈ C, except for a branch point at z = 0 when ν is not an integer. The principal branches of J ν (z) and I ν (z) correspond to the principal value of (z/2) ν and is analytic in the z-plane cut along the interval (-∞, 0]. When ν ∈ Z, they are entire in z. For fixed z = 0 each branch of the functions J ν (z) and I ν (z) is entire in ν. 2 Prabhakar [START_REF] Tilak | A singular integral equation with a generalized Mittag-Leffler function in the Kernel[END_REF]1971] introduced a three-parametric generalization of E α,β (z) defined in (1.2) as a kernel of certain fractional differential equations in terms of the series

(1.4) E γ α,β (z) := n≥0 (γ) n Γ(αn + β) z n n! (α, β, ; ℜ(α) > 0, ℜ(β) > 0),
where (λ) n denotes the usual Pochhammmer symbol defined by the identity (λ) n := λ(λ + 1) • • • (λ + n -1) if n = 1, 2, 3, . . . , (λ) 0 = 1 (λ = 0).

In (1.4), no condition is imposed on λ, provided it is not zero; for example, λ can be a negative integer, in which case the series is terminating into a polynomial. By contrast, whenever (λ) n is to be written in terms of a gamma function as

(λ) n = Γ(λ + n) Γ(λ) (ℜ(λ) > 0),
then the condition ℜ(λ) > 0 must be fulfilled, or at least the constraint λ = 0, -1, -2,. . . is required. Note that if E γ α,β (z) is represented as a Fox H-function, α is real and positive: in that case, such a condition becomes a requirement.

Prabhakar's three-parametric M-L function is an entire function of z ∈ C of order ρ = 1/ℜ(α) and type σ Due to its integral representation (see, e.g., [START_REF] Rudolph | Mittag-Leffler Functions, Related Topics and Applications[END_REF]Chap. 5,§5.1.2]), E γ α,β (z) is considered as a special case of Fox's H-function as well as of Wright's generalized hypergeometric p ψ q , socalled Fox-Wright psi function of z ∈ C. (see, e.g., [START_REF] Richard | NIST Handbook of Mathematical Functions[END_REF][START_REF] Anatoly | Fractional calculus of the generalized Wright function[END_REF] and the definitions of these higher transcendental functions, including the Meijer G-function, in §1.3, Definitions 1.2, 1.4 and 1.5).

= 1. If γ = 1, then E 1 α,β (z) = E α,β (z) and, if γ = β = 1, then E 1 α,1 (z) := E α (z).
It is straightforward to verify that

E α,β (z) = 1 ψ 1 (1,1) (β,α) ; z = H 1,1 1,2 -z (0,1) (0,1),(1-β,α)
and (1.5)

E γ α,β (z) = 1 Γ(γ) 1 ψ 1 (γ,1) (β,α) ; z = 1 Γ(γ) H 1,1 1,2 -z (1-γ,1) (0,1),(1-β,α) (1.6) = 1 Γ(γ) 1 F m γ; β m , β + 1 m , . . . , β + m -1 m ; z m m for α = m ∈ N. (1.7)
In particular, when α = 1 the H-function coincides with the Meijer G-function (see §1.3, Eq. (1.32))

E γ 1,β (z) = 1 Γ(γ) 1 ψ 1 (γ,1) (β,1) ; z = 1 Γ(γ) H 1,1 1,2 -z (1-γ,1) (0,1),(1-β,1) = 1 Γ(γ) G 1,1 1,2 1-γ 0,1-β z = 1 Γ(β) 1 F 1 (γ; β; z) = 1 Γ(β) M (γ; β; z), (1.8)
where M (γ; β; z) denotes Kummer's confluent hypergeometric function (sometimes denoted by Φ(γ; β; z)). Similarly, if we set β = 1 in Eq. (1.5), we find that

(1.9) E α,1 (z) = 1 Γ(γ) 1 ψ 1 (1,1) (1,α) ; z = H 1,1 1,2 -z (0,1) (0,1),(0,α) (α ∈ C, ℜ(α) > 0)
Further extensions of the M-L function to four and six parameters were defined by Salim [START_REF] Tariq | Some properties relating to the generalized Mitta-Leffler function[END_REF] and, associated with Weyl fractional integral and differential operators, by Salim and Faraj [START_REF] Tariq | A generalization of Mittag-Leffler function and Integral operator associated with fractional calculus[END_REF], respectively, by the power series

(1.10) E γ,δ α,β (z) := n≥0 (γ) n z n Γ(αn + β) (δ) n and E γ,δ,s α,β,r (z) := n≥0 (γ) sn z n Γ(αn + β) (δ) rn .
In the first case (with four parameters), α, β, γ, δ ∈ C, min ℜ(α), ℜ(β), ℜ(γ), ℜ(δ) > 0 . While in the second case (with six parameters), α, β, γ, δ ∈ C, min ℜ(α), ℜ(β), ℜ(γ), ℜ(δ) > 0 , with r, s ∈ R + and s ≤ ℜ(α) + r. In the latter case, (γ) ns denotes an extended variant of the Pochhammer symbol, defined by (γ) sn := Γ(γ + sn)/Γ(γ), which reduces to s sn s j=1 γ+j-1 s n when s is a non-negative integer. 3 Both functions are entire in the complex z-plane of order

ρ = 1/ℜ(α -δ + 1) and type σ = 1 ρ ℜ(δ) ℜ(δ) /ℜ(α) ℜ(α) ρ .
3 The Pochhammer symbol (x) nk must not be confused with the generalized Pochhammer k-symbol (x) n,k itself, which was introduced by Diaz and Pariguan in [START_REF] Rafael | On hypergeometric functions and k-Pochhammer symbol[END_REF] and is defined in terms of Γ k (x) := lim

n→∞ n!(nk) x/k-1 (x) n,k (k > 0) for x ∈ C \ kZ <0 and k ∈ R by the relation (x) n,k := x(x + k)(x + 2k) • • • (x + (n -1)k) = Γ k (x + nk)/Γ k (x).
When k = 1, this reduces to the standard Pochhammer symbol and gamma function.

Remarks 1. Among the M-L functions with three parameters are the generalized (Kilbas-Saigo) M-L type special functions. These functions were introduced in 1995 by Kilbas and Saigo [START_REF] Anatoly | Solution of Abel integral equations of the second kind and of differential equations of fractional order[END_REF] in the form (1.11)

E (α,m,ℓ) (z) = 1 + ∞ k=1 n-1 j=0 Γ(α⌊jm + ℓ⌋ + 1) Γ(α⌊jm + ℓ + 1⌋ + 1) z k (z ∈ C),
where an empty product is assumed to be equal to 1 ('empty product convention'). The generalized M-L type function (1.11) is defined for real α, m ∈ R and ℓ ∈ C meeting the conditions α > 0, m > 0 and α(jm

+ ℓ) + 1 = -1, -2 . . . (j = 1, 2, . . .).
When α, m and ℓ are real numbers which fulfill the above conditions, then E (α,m,ℓ) (z) is an entire function of z of order ρ = 1/α and type σ = 1/m. In particular, if m = 1, the function reduces to E (α,1,ℓ) (z) := Γ(αℓ + 1)E (α,αℓ+1) (z) (see, e.g., [13, §5.2] for a detailed study of these generalized (Kilbas-Saigo) M-L type special functions).

A wider extended class of special functions of M-L type was further introduced and studied, e.g., by Kiryakova [START_REF] Virginia | Generalized Fractional Calculus and Applications[END_REF][START_REF] Virginia | On two Saigo's fractional integral operators in the class of univalent functions[END_REF][START_REF] Virginia | The multi-index Mittag-Leffler functions as important class of special function of fractional calculus[END_REF]. This class, based on Luchko-Kilbas-Kiryakova's approach, consists of multi-parameters analogues of E α,β (z) called multi-indices M-L functions, such that the parameters α := 1/ρ and β := µ are replaced by two sets of multi-parameters.

The M-L functions with 2n parameters are defined for

α j ∈ R (α 2 1 + • • • + α 2 n = 0) and β j ∈ C (j = 1, . . . , n ∈ N) by the series (1.12) E (α,β)n (z) := k≥0 z k n j=1 Γ(α j k + β j ) (z ∈ C).
Under the additional condition that

Σ n = α 1 + • • • + α n > 0, the generalized 2n-parametric func- tion E (α,β)n (z) is an entire function of z ∈ C of order ρ = 1/Σ n and type σ = n i=1 (Σ i /|α i |) αi/Σi .
When n = 1, the definition in (1.12) coincides with the definition of the two-parametric M-L function

E (α,β)1 (z) := E α,β (z) = k≥0 z k Γ(αk + β) (z ∈ C), (1.13a)
and similarly for n = 2, where E (α,β)n (z) coincides with the four-parametric M-L function

E (α,β)2 (z) = E (α1,β1;α2,β2) (z) = k≥0 z k Γ(α 1 k + β 1 )Γ(α 2 k + β 2 ) (z ∈ C). (1.13b)
The generalized 2n-parametric M-L function E (α,β)n (z) can be represented in terms of the generalized Fox-Wright hypergeometric function p ψ q (z) by

E (α,β)n (z) = 1 ψ n (1,1) (β1,α1),...,(βn,αn) ; z (z ∈ C) (1.14a)
and, via a Mellin-Barnes integral (see §1.2 below), by

E (α,β)n (z) = 1 2πi L Γ(s)Γ(1 -s) n j=1 Γ(β j -α j s) (-z) -s ds (z = 0). (1.14b)
For ℜ(Σ n ) > 0, one can choose the left loop L -∞ as a contour of integration in (1.14b). Carrying out this integral by use of the theory of residues immediately yields the series representation given in (1.12). The extension of E (α,β)n (z) with the right loop L +∞ chosen as the contour of integration is entailed through the Mellin-Barnes integral representation in (1.14b). This yields the convergence of the contour integral for all values of parameters α 1 , . . . ,

α n ∈ C, β 1 , . . . , β n ∈ C such that ℜ(Σ n ) < 0.

Integral representations of Mittag-Leffler type functions

The integral representations of M-L type functions play a prominent role in the analysis of entire functions. As for any function of the M-L type, the M-L functions with one to three parameters can be represented via Mellin-Barnes integrals obtained, for example, by a calculus of residues. Lemma 1.1. Let α ∈ R + , β, γ ∈ C and ℜ(γ) > 0. Then the Mellin-Barnes integral representation of Prabhakar's three-parametric function is

(1.15) E γ α,β (z) = 1 Γ(γ) 1 2πi C Γ(s)Γ(γ -s) Γ(β -αs) (-z) -s ds (z ∈ C, | arg z| < π)
The contour of integration C = (c -i∞, c + i∞), 0 < c < ℜ(γ), separates all the poles of Γ(s) at the points s = -ν (ν ∈ N) to the left from those of Γ(γ -s) at the points s = ν + γ (ν ∈ N) to the right. 4Proof. The contour integral in (1.15) is obtained by the sum of residues technique evaluated at the poles s = 0, -1, -2, . . .. Hence,

1 2πi C Γ(s)Γ(γ -s) Γ(β -αs) (-z) -s ds = ∞ k=0 lim s→-k (s + k)Γ(s)Γ(γ -s)(-z) -s Γ(β -αs) = ∞ k=0 (-1) k k! Γ(γ + k) Γ(β + αk) (-z) k = Γ(γ) ∞ k=0 (γ) k Γ(β + αk) z k k! = Γ(γ)E γ α,β (z). (1.16)
Eq. (1.16) is the expression of E γ α,β (z) as a Mellin-Barnes integral, and the lemma follows. Mellin-Barnes integral representations of the one-and two parametric M-L functions are immediately deduced from the one given in Lemma 1.1 by setting respectively γ = β = 1 and γ = 1. The following related representations of E 1 α,1 (z) := E α (z) and E 1 α,β (z) := E α,β (z) write in terms of Mellin-Barnes integrals

E α (z) = 1 2πi C1 Γ(s)Γ(1 -s) Γ(1 -αs) (-z) -s ds (z ∈ C, | arg z| < π) and E α,β (z) = 1 2πi C2 Γ(s)Γ(1 -s) Γ(β -αs) (-z) -s ds (z ∈ C, | arg z| < π),
where each contour of integration C 1 and C 2 is again a straight line which starts at c -i∞ and ends at c + i∞ (0 < c < 1), leaving all poles of each integrand respectively separated to the left and to the right of each line contour.

Remark 1. M-L type functions play a basic role in the solution of fractional differential equations and integral equations of Abel type. Therefore, studying and developing their theory and stable methods is a first important step for their numerical computation. In this respect, integral representations of M-L type functions in terms of Mellin-Barnes integrals are sometimes not the easiest nor the more useful ones to handle. This is indeed the case of the two-parametric M-L function, for example, which enjoys various integral representations considered by Džrbašjan [START_REF] Mkhitar | On the integral transformations generated by generalized functions of the Mittag-Leffler type[END_REF][START_REF] Mkhitar | Integral transforms and representations of functions in the complex domain[END_REF], Erdélyi et al. [START_REF] Arthur | Higher Transcendental Functions[END_REF]Vol 3,§8.1] and Wright [START_REF] Maitland | The asymptotic expansion of the generalized Bessel function[END_REF] that are far more fruitful to the design of performing numerical algorithms (see Appendix A for more detail on such integral representations).

Also, on evaluating the residues at the poles of Γ(1 -s), there results the following analytic continuations of the one-and two-parametric M-L functions,

(1.18) E α (z) = - ∞ n=1 z -n Γ(1 -αn) and E α,β (z) = - ∞ n=1 z -n Γ(αn + β)
.

Many important propertie of E α (z) and E α,β (z) follow from the integral representation of the two-parametric M-L function given by Džrbašjan [START_REF] Mkhitar | On the integral representation and uniqueness of some classes of entire functions[END_REF][START_REF] Mkhitar | On the integral transformations generated by generalized functions of the Mittag-Leffler type[END_REF][START_REF] Mkhitar | Integral transforms and representations of functions in the complex domain[END_REF]1952,1960,1966] 

= E α,1 (z) when β = 1) (1.19) E α,β (z) = 1 2πi H t α-β e t t α -z dt (z, α, β ∈ C, ℜ(α) > 0, ℜ(β) > 0),
where the contour of integration (or Hankel path) H is the loop starting and ending at -∞, and encircling the disk |t| ≤ |z| The integral representation (1.19) of the two-parametric M-L function is used for instance to obtain the asymptotic expansion of E α,β (z) (|z| → ∞) which is different in the case 0 < α < 2 from the case when α ≥ 2. According to the values of | arg z|, there result the corresponding asymptotic expansions of E α,β (z) and E α := E α,1 when |z| is large (see Appendix A).

The two-parametric M-L function defined in the form of Eq. (1.2) exists only for the values on parameters ℜ(α) > 0 and β ∈ C. However, an analytic continuation of E α,β (z) depending on real parameters α, β may be performed by extending its domain to negative values of α. The integral representation (1.20) is similar to (1.19) along the Hankel path H (see, e.g., [START_REF] Mkhitar | On the integral transformations generated by generalized functions of the Mittag-Leffler type[END_REF][START_REF] Rudolph | Mittag-Leffler Functions, Related Topics and Applications[END_REF][START_REF] Anatoly | Theory and Applications of Fractional Differential Equations[END_REF]),

(1.20) E α,β (z) = 1 2π H t α-β e t t α -z dt (z ∈ C, α, β ∈ R, α < 0).
The integral representation (1.20) makes it possible to define the function E -α,β (z) for real negative values of the first parameter (see Appendix B for a proof).

1 Γ(β) = 1 2πi H e t t -β dt (β ∈ C).
Hankel's integral representation of 1/Γ(z) (z ∈ C) is shown in Appendix C (see also, e.g., Temme [52, Chap. 3, §3.2]).

As another example, consider the Mellin-Barnes contour integral represention of Wright's function φ(α, β; z) defined in (1.3). It may be given by the use of the sum of residues technique, as in Lemma 1.1,

(1.21) φ(α, β; z) = 1 2πi C Γ(s) Γ(β -αs) (-z) -s ds,
where the path of integration C separates all the poles at s = -ν (ν ∈ N) to the left. If C = (c -i∞, c + i∞) (c ∈ R), then the representation (1.21) is valid provided either of the following two conditions holds: 

(i) 0 < α < 1, | arg(-z)| < (1 -α)π/2 and z = 0 or (ii) α = 1, ℜ(β) > 1 + 2c,
L φ(α, β; t) (s) = ∞ 0 e -st φ(α, β; t)dt = 1 s E α,β 1 s and L E α,β (t) (s) = 1 s φ α, β; 1 s = 1 s 2 ψ 1 (1,1),(1,1) (β,α) ; 1 s 
(α > -1, α, β ∈ C, ℜ(s) > 0).
Further, under the constraints ℜ(α) > 0, ℜ(β) > 0, ℜ(γ) > 0, s > r 1/ℜ(α) , the Laplace transform of Prabhakar's three-parametric M-L function is equal to

L E γ α,β (t) (s) := E γ α,β (t α ) = 1 s β 1 - 1 s α -γ = 1 s 2 ψ 1 (γ,1),(1,1) (β,α) ; 1 s (1.23a)
and, by applying the Mellin inversion formula to the Mellin-Barnes representation of E α,β (z) (with α ∈ R + , β, γ ∈ C, β = 0, | arg z| < π. See Appendix A), its Mellin transform is equal to

M E γ α,β (-wt) (s) := ∞ 0 t -s E γ α,β (t α ) dt = Γ(s)Γ(γ -s) Γ(γ)Γ(β -αs) w -s (0 < ℜ(s) < ℜ(γ)). (1.23b)

Higher transcendental functions

For any positive integers p, q, the generalized complex function p ψ q (z) has been defined in the seminal papers of Fox [START_REF] Charles | The asymptotic expansion of generalized hypergeometric functions[END_REF] and Wright's papers of 1934-1940 [START_REF] Maitland | The asymptotic expansion of the generalized Bessel function[END_REF] (see also, e.g., [START_REF] Richard | NIST Handbook of Mathematical Functions[END_REF]). Later on, the so-called Fox-Wright (or Fox-Wright psi) function has been extensively studied by Gorenflo et al. [START_REF] Rudolph | Mittag-Leffler Functions, Related Topics and Applications[END_REF], Kilbas et al. [START_REF] Anatoly | Fractional calculus of the generalized Wright function[END_REF][START_REF] Anatoly | Generalized Mittag-Leffler functions and generalized fractional calculus operator[END_REF][START_REF] Anatoly | Theory and Applications of Fractional Differential Equations[END_REF], Kiryakova [START_REF] Virginia | Generalized Fractional Calculus and Applications[END_REF][START_REF] Virginia | On two Saigo's fractional integral operators in the class of univalent functions[END_REF][START_REF] Virginia | The special functions of fractional calculus as generalized fractional calculus operators of some basic functions[END_REF][START_REF] Virginia | The multi-index Mittag-Leffler functions as important class of special function of fractional calculus[END_REF][START_REF] Virginia | The role of special functions and generalized fractional calculus in studying classes of univalent functions[END_REF],

Here and in the sequel, the following synthetic vector notations are used for convenience whenever no ambigity may arise: 

a p := (
p ψ q (z) = p ψ q (ai,αi) p 1 (bj ,βj) q 1 ; z := n≥0 p i=1 Γ(a i + α i n) q j=1 Γ(b j + β j n) z n n! , where a i , b j ∈ C, α i , β j ∈ R (i = 1, . . . , p and j = 1, . . . , q).
Wright proved several results on the asymptotic expansion of p ψ q (z) for all values of the argument z which fullfill the property

q j=1 β j - p i=1 α i > -1.
Under this constraint, it was proved in [START_REF] Anatoly | On the generalized Wright function[END_REF] that the series is an entire function of z ∈ C. Conditions of convergence are provided by the following lemma. 

(1.25) ∆ := q j=1 β j - p i=1 α i , δ := p i=1 |α i | -αi q j=1 |β j | βj and µ := q j=1 b j - p i=1 a i + p -q 2 .
Then, the conditions of convergence are as follows

(i) If ∆ > -1, then the series in (1.24) is absolutely convergent for all z ∈ C. (ii) If ∆ = -1, then the series in (1.24
) is absolutely convergent for z ≤ δ, and for z = δ and

ℜ(µ) > 1/2.
When a i , b j ∈ R (i = 1, . . . , p and j = 1, . . . , q), the Fox-Wright function p ψ q (z) has the following integral representation as a Mellin-Barnes contour integral (1.26) p ψ q

(ai,αi) p 1 (bj ,βj ) q 1 ; z = 1 2πi H p i=1 Γ(a i + α i s) q j=1 Γ(b j + β j s) Γ(s) (-z) -s ds,
where the contour integration H separates all the poles of Γ(s) at s = -ν (ν ∈ N) to the left from all the poles of Γ(

a i + α i s) at s = (a i + ν i )/α i (i = 1, . . . , p and ν i ∈ N to the right. If H = (c -i∞, c + i∞) (c ∈ R), then representation (1.26
) is valid provided either of the following two conditions hold:

(i) ∆ < 1, | arg(-z)| < (1 -∆)π/2, z = 0 or (ii) ∆ = 1, ℜ(µ) > (∆ + 1)c + 1/2 and arg(-z) = 0, z = 0.
Conditions for the representation (1.26) are also given for the cases when

H = L -∞ (L +∞ , resp.
) is a loop located in a horizontal strip starting at the point -∞ + iτ 1 (+∞ + iτ 1 , resp.) and terminating at the point

-∞ + iτ 2 (+∞ + iτ 2 , resp.) with -∞ < τ 1 < τ 2 < +∞.
In turns, the normalized Fox-Wright psi function is defined by

(1.27) p ψ * q (ai,αi) p 1 (bj ,βj) q 1 ; z := Γ(b q ) Γ(a p ) p ψ q (ai,αi) p 1 (bj ,βj) q 1 ; z ,
and trivially occurs as a generalization of the generalized hypergeometric function p F q (z) (see also, e.g., Eq. (1.38)). Whenever p = q = 1, the normalization reduces to

1 ψ * 1 (a,α) (b,β) ; z := Γ(b) Γ(a) ∞ n=0 Γ(a + αn) Γ(b + βn) z n n! .
The importance of 1 ψ * 1 appears in Fermat's last theorem and in applied problems, such as the solution of trinomial equations. Now, if we put α i = β j = 1 for all 1 ≤ i ≤ p and 1 ≤ j ≤ q in Definition 1.2, then we obtain the following relation between the generalized Fox-Wright function p ψ q and the generalized hypergeometric function p F q , 6 (1.28)

p ψ q (ai,1) p 1 (bj ,1) q 1 ; z = Γ(a p ) Γ(b q ) p F q ap bq ; z .
The p ψ q and p F q functions are special cases of the more general special functions Fox H-and Meijer G-functions.

General conditions of existence of M-L type series defined in (1.1) to (1.4) and their relations with generalized Fox-Wright-, Fox H-and Meijer G-functions (in Definitions 1.2, 1.4 and 1.5, resp.) are fully studied, for example, in [START_REF] Rudolph | Mittag-Leffler Functions, Related Topics and Applications[END_REF][START_REF] Hans | Mittag-Leffler Functions and Their Applications[END_REF][START_REF] Anatoly | Theory and Applications of Fractional Differential Equations[END_REF][START_REF] Arakaparampil | On the Hfunction with Applications[END_REF], along with their representations with suitable Mellin-Barnes contour integrals.

Remark 3. The generalized Lommel-Wright function denoted by J µ,ν ρ,λ (z) is defined by

J µ,ν ρ,λ (z) := ∞ n=0 (-1) n Γ(λ + n + 1) ν Γ(ρ + λ + µn + 1) z 2 ρ+2λ+2n = z 2 ρ+2λ 1 ψ ν+1 (1,1) (λ+1,1) ν ,(ρ+λ+1,µ) ; -z 2 /4 , (1.29)
where µ > 0, ρ, λ ∈ C and ν ∈ N. Turning to Wright's generalization of the classical Bessel function J ρ (z), that is the Bessel-Wright function J µ ρ (z), it is defined by

J µ ρ (z) := ∞ n=0 (-z) n n!Γ(ρ + µn + 1) = 0 ψ 1 (-; (ρ + 1, µ); -z).
Eq. (1.29) readily yields the following relationships with the classical Bessel function, its generalization and a specialized Lommel-Wright function:

J ρ (z)(z) = J 1,1 ρ,0 (z), J µ ρ,λ (z) = J µ,1 ρ,λ (z), as well as J µ ρ (z) = z -ρ/2 J µ,1 ρ,λ (2 √ 2).
Definition 1.4. The H-function was introduced by Fox in [START_REF] Charles | The asymptotic expansion of generalized hypergeometric functions[END_REF] as a generalized hypergeometric function defined by an integral representation in terms of the Mellin-Barnes contour integral

(1.30) H m,n p,q z (ai,αi) p 1 (bj ,βj ) q 1 := 1 2πi L m j=1 Γ(b j -β j s) n i=1 Γ(1 -a i + α i s) q j=m+1 Γ(1 -b j + β j s) p i=n+1 Γ(a i -α i s) z s ds.
6 From Eq. (1.28), the conditions of convergence of p F q (z) are easily recovered. When p ≤ q and ∆ ≥ 0, p F q (z) is an entire function of z ∈ C. But if p = q + 1, it is absolutely convergent in the unit disk U = {z | |z| < 1} (δ = 1) and diverges for all z = 0 if p > q + 1. In the case when the variable z in q+1 F q (z) is not equal to unity, it is assumed tacitly that |z| < 1, while if z = 1, the condition

ℜ q j=1 β j - q+1 i=1 α i > 0 is required (see [10, §4.1]).
Here L is a suitable contour in C and z s = exp s ln |z| + i arg z . Due to the occurrence of the factor z s in the integrand, the H-function is, in general, multi-valued, but it can be made one-valued on the Riemann surface of log z by choosing a proper branch. In Eq. (1.30), an empty product, when it occurs, is taken to be equal to 1. The order (m, n, p, q) consists in integers with 0 ≤ m ≤ q and 0 ≤ n ≤ p. The parameters fulfills the conditions a i , b j ∈ C and α i , β j ∈ R + (i = 1, . . . , p), (j = 1, . . . , q). As for the conditions on the types of contours ensuring the existence and analyticity of the Fox H-function in disks D ⊂ C, one can see [START_REF] Richard | NIST Handbook of Mathematical Functions[END_REF][START_REF] Charles | The asymptotic expansion of generalized hypergeometric functions[END_REF], [START_REF] Anatoly | Theory and Applications of Fractional Differential Equations[END_REF], [START_REF] Virginia | Generalized Fractional Calculus and Applications[END_REF]App.],[51, Chap. 1], [START_REF] Maitland | The asymptotic expansion of the generalized Bessel function[END_REF], etc. Definition 1.4 is still valid when the α i 's and the β j 's are positive rational numbers. Therefore, the H-function contains, as special cases, all of the functions which are expressible in terms of the G-function. More importantly, it contains the generalized hypergeometric Fox-Wright function defined in Definition 1.2, the generalized Bessel function J µ ν , the generalizations of the M-L function E α,β , etc. For example, p ψ q (z) is one of these (additional) special cases of the Hfunction, which is obviously not contained in the class of G-function. By Definition 1.2, it is also easily extended to the complex plane as follows, (1.31) p ψ q

(ai,αi) p 1 (bj ,βj ) q 1 ; z = ∞ n=0 p i=1 Γ(a i + α i n) q j=1 Γ(b j + β j n) z n n! = H 1,p p,q+1 -z (1-ai,αi) p 1 (0,1),(1-bj ,αj ) q 1 .
Proper conditions of convergence are shown from Definition 1.2 in [3, §2.1].

The special case for which the Fox H-function reduces to the Meijer G-function is when

α 1 = • • • = α p = β 1 = • • • = β q = κ, κ > 0 (see same references as above). In that case, (1.32) H m,n p,q z (ai,κ) p 1 (bj ,κ) q 1 := 1 κ G m,n p,q ap bq z 1/κ ,
Additionally, when setting α i = β j = 1 in Eq.(1.31) (i.e. κ = 1 in Eq. (1.32)), the Fox H-and the Fox-Wright Psi functions turn readily into the Meijer G-function. A general definition of the complex G-function is given by the following line integral of Mellin-Barnes type and may be viewed as an inverse Mellin transform.

Meijer's G-function G m,n p,q ap bq z was actually first introduced as a generalization of the Gauß hypergeometric function presented in the form of the series

(1.33) G m,n p,q 1-ap 0,1-bq -z = Γ(a p ) Γ(b q ) p F q (a p ; b q ; z) .
Later this definition was replaced by the Mellin-Barnes representation of the G-function.

Definition 1.5. The Meijer G-function of the order (m, n, p, q) is defined by an integral representation of Mellin-Barnes contour integral given by

(1.34) G m,n p,q ap bq z := 1 2πi L m j=1 Γ(b j -s) n i=1 Γ(1 -a i + s) q j=m+1 Γ(1 -b j + s) p i=n+1 Γ(a i -s) z s ds,
where L is a suitably chosen contour such that z = 0, z s = exp (s ln |z| + i arg z) with a single valued branch of arg z. Eq. (1.34) is valid under the following assumptions:

(a) The empty product is assumed to be equal to 1. (b) Parameters (m, n, p, q) satisfy the relation 0 ≤ m ≤ q and 0 ≤ n ≤ p, where m, n, p and q are non-negative integers. (c) The complex numbers a i -b j = 1, 2, 3, . . . for i = 1, 2, . . . , n and j = 1, 2, . . . , m, which implies that no pole of any Γ(b j -s), j = 1, 2, . . . , m, coincides with any pole of Γ(1-a i +s), i = 1, 2, . . . , n.

Elementary identities of higher transcendental functions

Among the most useful elementary properties of the Meijer G-function are two straightforward consequences of Definition 1.5, from which the first identity is readily derived,

z µ G m,n p,q ap bq z = G m,n p,q ap+µ bq+µ z , (1.35)
while the second one exhibits the fact that we can, w.l.o.g., suppose that p ≤ q in the discussion of the G-function,

G m,n p,q ap bq 1/z = G n,m q,p 1-bq 1-ap z . (1.36)
According to the general translation formulas of the Fox H-and Meijer G-functions (see [START_REF] Richard | NIST Handbook of Mathematical Functions[END_REF][START_REF] Anatoly | Theory and Applications of Fractional Differential Equations[END_REF]), we also have

H m,n p,q z (ai,αi) p 1 (bj ,βj) q 1 = H n,m q,p 1/z (1-bj ,βj ) q 1 (1-ai,αi) p 1 and (1.37a) p F q ap bq ; z = Γ(b q ) Γ(a p ) G 1,p p,q+1 1-ap 0,1-bq -z = Γ(b q ) Γ(a p ) G p,1 q+1,p 1,bq ap -1/z . (1.37b)
Unless there occurs a non-positive integer value for at least one of its upper parameters a p , the latter formula (1.37b) holds, in which case the hypergeometric function terminates in a finite polynomial. Then, the gamma prefactor of either G-function vanishes and the parameter sets of the G-functions violate the requirement a i -b j = 1, 2, 3,. . . for i = 1, 2 . . . , n and j = 1, 2, . . . m from Definition 1.5 of G m,n p,q (The conditions of convergence are exposed in details in [START_REF] Richard | NIST Handbook of Mathematical Functions[END_REF].) Therefore, calculations on L-S and R-S fractional integration operators are amenable to Laplace and Mellin integral transforms for example, as shown in [START_REF] Mkhitar | Integral transforms and representations of functions in the complex domain[END_REF], [START_REF] Virginia | On two Saigo's fractional integral operators in the class of univalent functions[END_REF]App.],[43, Chap. 2, §7].

The G-and H-functions encompass almost all the elementary and special functions. Among them, the M-L function and the Fox-Wright psi function. From Eq. (1.35), p ψ q (z) can easily simplify to the generalized hypergeometric function p F q (z) with parameters a i 's and b j 's and a gamma prefactor which consists of these parameters. According to the relationship between the H-and G-functions in Eq. (1.32) and to the expression of p ψ q (z) in terms of the H-function in Eq. (1.31), the following useful identities hold

p ψ q (ai,1) p 1 (bj ,1) q 1 ; z = H 1,p p,q+1 -z (1-ai,1) p 1 (0,1),(1-bj,1) q 1 = G 1,p p,q+1 1-ap 0,1-bq -z = Γ(a p ) Γ(b q ) p F q ap bq ; z , (1.38)
where z, a i , b j ∈ C (i = 1, . . . , p; j = 1, . . . , q) and ℜ Finally, notice that the H-and G-functions are analytic functions of z with a branch point at the origin. Especially, the kernel functions H m,0 m,m and G m,0 m,m (n = 0, m = p = q) of the operators of generalized fractional calculus that we consider, are analytic functions in the unit disc and vanish identically outside it, i.e. for |z| > 1.

Fractional calculus of generalized M-L type functions

Here and throughout the paper, the class of functions we deal with is a space of analytic functions in some domain D ⊆ C. More precisely such functions are currently taken in

H µ (D) := f (z) = z µ f (z) | f ∈ H(D) ,
where µ ≥ 0 is a real number and H(D) is the space of analytic (single-valued) functions in a complex domain D, starlike with respect to the origin z = 0. For α ∈ C and ℜ(α) > 0, composition relations between a very large number of generalized M-L type functions and the operators of fractional integration I α and differentiation D α are well established.

A fairly natural functional space where the generalized fractional differintegration operators may be considered is the space of weakly differentiable functions (i.e. Fréchet a.e.) in L 1 loc (Ω), where L 1 loc (Ω) denotes the set of locally integrable functions on a compact subset Ω of R (see, e.g., Bergounioux et al. [START_REF] Maïtine | Fractional Sobolev Spaces and Bounded Variation Functions[END_REF], Kiryakova [22, Chap. 1], [START_REF] Virginia | The special functions of fractional calculus as generalized fractional calculus operators of some basic functions[END_REF][START_REF] Virginia | The multi-index Mittag-Leffler functions as important class of special function of fractional calculus[END_REF], Samko et al. [43, §1.1]) and Srivastava [START_REF] Hari | Some Families of Mittag-Leffler Type Functions and Associated Operators of Fractional Calculus (Survey)[END_REF].

Riemann-Liouville fractional calculus

For a suitable class of weakly differentiable functions ϕ ∈ L 1 loc (a, b] (a < b ∈ R), it is convenient to set a = 0, without loss of generality (see definition below). Then, the related fractional integration operators are referred to by the notation I α 0+ and I α x-, respectively and the left-sided and right-sided Riemann-Liouville fractional integrals of order α ∈ C are defined by

I α 0+ f (x) := 1 Γ(α) x 0 1 (x -t) 1-α f (t) dt (α ∈ C, ℜ(α) > 0, x > 0), (2.1a) I α x-f (x) := 1 Γ(α) ∞ x 1 (t -x) 1-α f (t) dt (α ∈ C, ℜ(α) > 0, x < 0). (2.1b)
This notion is a natural consequence of the well known formula (Cauchy-Dirichlet?), that reduces the calculation of the n-fold primitive (n ∈ N) of a real function f (x) to a single integral of convolution type

I a+ f (x) = 1 (n -1)! x a (x -t) n-1 f (t) dt,
which equals 0 at t = a with its derivatives of order 1, 2, . . . , n -1. The definition also requires f (x) and I a+ f (x) to be causal functions, that is, vanishing for x < 0.

As for the corresponding Riemann-Liouville fractional differentiation operators, D α x , they are defined by

D α 0+ f (x) := d dx n I n-α 0+ f (x) = 1 Γ(n -α) d dx n x 0 f (t) (x -t) 1-n+α dt (x > 0), (2.2a) D α x-f (x) := d dx n I n-α x-f (x) = 1 Γ(n -α) d dx n ∞ x f (t) (t -x) 1-n+α dt (x < 0), (2.2b)
where ⌊ℜ(α)⌋ denotes the integral part of ℜ(α), {α} := α-⌊ℜ(α)⌋ denotes its fractional part and n := ⌈ℜ(α)⌉ = ⌊ℜ(α)⌋ + 1 (see, e.g., [START_REF] Anatoly | Generalized Mittag-Leffler functions and generalized fractional calculus operator[END_REF] and [43, § §2.1-2.4]). All such well-defined Riemann-Liouville (R-L for short) fractional operators are called respectively the left-and right-sided fractional integrals and fractional derivatives of order α. In a synthetic form, the R-L operators are denoted by R α z (α ∈ C) and written as

R α z f (z) :=      1 Γ(α) z 0 (z -t) α-1 f (t)dt and 1 Γ(α) ∞ z (t -z) α-1 f (t)dt (ℜ(α) > 0), d n dz n R α+n z f (z) (-n < ℜ(α) ≤ 0, n = ⌊ℜ(α)⌋ + 1 ∈ N),
provided that the defining integrals exists. For example, it is easily seen that, for Re(µ) > -1, z > 0, 7

D α 0+ (z µ ) = Γ(µ + 1) Γ(µ + 1 -α) z µ-α , and D α 0+ (z -µ ) = Γ(µ + α) Γ(µ) z -µ-α (2.3)
and, more importantly, that

E γ α,β (z) = 1 Γ(γ) D α 0+ z γ-1 E α,β (z) (ℜ(γ) > 0). (2.4)

Saigo's fractional differintegration operators

Samko et al. [START_REF] Stephan | Fractional Integrals and Derivatives. Theory and Applications[END_REF]Sec. 2, §2] and Erdélyi-Kober extended the R-L fractional operators (see, e.g., Kilbas et al. in [21, §2.6]) and references therein). A useful generalization of fractional integral operators was later introduced by Saigo [START_REF] Megumi | A remark on integral operators involving the Gauß hypergeometric functions[END_REF][START_REF] Megumi | On generalized fractional calculus operators[END_REF] by adding Gauß's hypergeometric function in the kernel. Saigo's operators include Weyl's type and Erdélyi-Kober's ones. Definition 2.1 (Saigo [40, p. 393]). Let α, β, γ ∈ C and ℜ(α) > 0. For a suitable class C of complex functions specified below, Saigo's left-and right-sided operators of fractional integration 7 From Eq. (2.3) we can check the intuitive idea that D -1 is the integration operator. Examine indeed the operator D -1 applied to a monomial.

D -1 0+ (z µ ) = Γ(µ + 1) Γ(µ + 2) z µ+1 = z µ+1 µ + 1 ,
from which we see that effectively this is the integral operator. Now, by linearity of the operator we obtain the standard definition of the integral and in general we write

D -1 0+ f (z) = z 0 f (t)dt.
are defined for x ∈ R + by

I α,β,γ 0+ f (x) := x -α-β Γ(α) x 0 (x -t) α-1 2 F 1 α+β,-γ α ; 1 -t/x f (t) dt and (2.5a) I α,β,γ x-f (x) := x -α-β Γ(α) ∞ x (t -x) α-1 t -α-β 2 F 1 α+β,-γ α ; 1 -x/t f (t) dt. (2.5b)
Similarly, Saigo's left-and right-sided fractional differentiation operators D α,β,γ 0+ and D α,β,γ x-corresponding respectively to (2.5a) and (2.5b), write as follows with ℜ(α) > 0 and n := ⌊ℜ(α)⌋ + 1,

D α,β,γ 0+ f (x) := I -α,-β,-γ 0+ f (x) = d dx n I -α,-β,-γ+n 0+ f (x) and (2.6a) D α,β,γ x-f (x) := I -α,-β,-γ x- f (x) = d dx n I -α,-β,-γ+n x- f (x). (2.6b)
When β = -α, the above fractional operators (2.5a) to (2.6b) include the classical Riemann-Liouville's in (2.1a)-(2.2b):

I α,-α,γ 0+ = I α 0+ , I α,-α,γ x- = I α x- and D α,-α,γ 0+ = D α 0+ , D α,-α,γ x- = D α x-.
Here, C is the class of analytic functions f (z) in a simply-connected region of the z-plane containing the origin (for example the unit disk), of the order f (z) = O (|z| ε ) (|z| → 0), where ε > max 0, β -η and the multiplicity of (x -t) α-1 ((t -x) α-1 , resp.) is removed by requiring ln(x -t) (ln(t -x), resp.) to be real when x > t (x < t, resp.). (Exhaustive conditions of existence and convergence of the r.h.s. of Eqs. (2.5a) and (2.5b) may be found, e.g., in [START_REF] Richard | NIST Handbook of Mathematical Functions[END_REF][START_REF] Virginia | Generalized Fractional Calculus and Applications[END_REF][START_REF] Virginia | On two Saigo's fractional integral operators in the class of univalent functions[END_REF].) Saigo's left-and right-sided fractional integrals are consistently employed to prove the results in Sections 4.1 and 4.2. 8 Remark 4. For suitable functions f of a real variable and α ∈ R + , there holds the fundamental property of operators of fractional integration, namely the additive index law (or semigroup property), according to which

J α a+ J β a+ = J α+β a+ and J β b-J α b-= J α+β b- (α, β ≥ 0),
where, for complementation we define J 0 a+ = J 0 b-:= I (Identity operator), i.e.,

J α a+ f (z) = J α b-f (z) = f (z).
It can be shown however that the fractional differentiation operator D α is neither commutative nor additive in general. Indeed, denoting by D n the operator of ordinary differentiation of order n ∈ N, then D n J n = I, whereas J n D n = I; i.e., D n is left-inverse (but not right-inverse) to the corresponding integral operator J n . Furthermore, by I α t f (0+) we mean lim t→0+ I α t f (t) (if the limit exists) and this limit may be infinite. 8 As shown e.g. by Samko et al. in [START_REF] Stephan | Fractional Integrals and Derivatives. Theory and Applications[END_REF]Chap. 4, §22], the fractional integration process can also be carried out by use of the formula for differentiating the Cauchy type integral to the (real or complex) order α:

D α z (z) = Γ(1 + α) 2πi L f (t) (t -z) 1+α dt.

Saigo-Maeda's fractional differintegration operators

A natural extension of Saigo's generalized fractional differintegral operators stated in Definition 2.1 (Eqs. (2.5a)-(2.2b)) was introduced further. This extension involves Appell's two variable hypergeometric series F 3 in the kernel (a generalization of Gauß's hypergeometric function of one variable). Appell's two variable F 3 is defined by the double series (2.7)

F 3 (α, α ′ , β, β ′ , γ; x, y) := m,n≥0 (α) m (α ′ ) n (β) m (β) n (γ) m+n x m m! y n n! (max |x|, |y| < 1).
Several generalized fractional differintegral operators involving Appell's two variable hypergeometric function F 3 in the kernel have been addressed in [START_REF] Rudolph | Mittag-Leffler Functions, Related Topics and Applications[END_REF][START_REF] Stephan | Fractional Integrals and Derivatives. Theory and Applications[END_REF] 

I α,α ′ ,β,β ′ ,γ 0+ f (x) := x -α Γ(γ) x 0 (x -t) γ-1 t -α ′ F 3 (α, α ′ , β, β ′ , γ; 1 -t/x, 1 -x/t) f (t)dt (2.8a) and I α,α ′ ,β,β ′ ,γ x- f (x) := x -α ′ Γ(γ) ∞ x (t -x) γ-1 t -α F 3 (α, α ′ , β, β ′ , γ ; 1 -x/t, 1 -t/x) f (t)dt. (2.8b) Similarly, set n = ⌊ℜ(γ)⌋ + 1, then D α,α ′ ,β,β ′ ,γ 0+ f (x) := I -α ′ ,-α,-β ′ ,-β,-γ 0+ f (x) = d dx n I -α ′ ,-α,-β ′ +n,-β,-γ+n 0+ f (x) and (2.9a) D α,α ′ ,β,β ′ ,γ x- f (x) := I -α ′ ,-α,-β ′ ,-β,-γ x- f (x) = (-1) n d dx n I -α ′ ,-α,-β ′ ,-β+n,-γ+n x- f (x). (2.9b)
As a direct consequence of the above definitions, the following lemma holds. 

]). Let α, α ′ , β, β ′ , γ, ρ ∈ C. For f (x) := x ρ-1 , we get the formulas (i) If ℜ(γ) > 0 and ℜ(ρ) > max 0, ℜ(α + α ′ + β -γ), ℜ(α ′ -β ′ ) , then I α,α ′ ,β,β ′ ,γ 0+ x ρ-1 (x) = Γ(ρ)Γ(ρ + γ -α -α ′ -β)Γ(ρ -α ′ + β ′ ) Γ(ρ + β ′ )Γ(ρ + γ -α -α ′ )Γ(ρ + γ -α ′ -β) x ρ-α-α ′ +γ-1 .
(2.10a)

(ii) If ℜ(γ) > 0 and ℜ(ρ) < 1 + min 0, ℜ(-β), ℜ(α + α ′ -γ), ℜ(α + β ′ -γ) , then I α,α ′ ,β,β ′ ,γ x- x ρ-1 (x) = Γ(1 + α + α ′ -γ -ρ)Γ(1 + α + β ′ -γ -ρ)Γ(1 -β -ρ) Γ(1 -ρ)Γ(1 + α + α ′ + β ′ -γ -ρ)Γ(1 + α -β -ρ) x ρ-α-α ′ +γ-1 .
( 

I α,0,β,β ′ ,γ 0+ = I γ,α-γ,-β 0+ and I α,0,β,β ′ ,γ x- = I γ,α-γ,-β x- (γ ∈ C). (2.11a)
and, similarly, The Appell function F 3 in two variables which appears in the definitions (2.8a) and (2.8b) satisfies a system of two linear partial differential equations of the second order and reduces to the Gauss hypergeometric function 2 F 1 in the form

D 0,α ′ ,β,β ′ ,γ 0+ = D γ,α ′ -γ,β ′ -γ 0+ and D 0,α ′ ,β,β ′ ,γ x- = D γ,α ′ -γ,β ′ -γ x- (ℜ(γ) > 0). (2.11b) Lemma 2.
F 3 (α, γ -α, β, γ -β; γ; x, y) = 2 F 1 α,β γ ; x + y -xy .
Moreover, it is easily observed that

F 3 (α, 0, β, β ′ ; γ; x, y) = F 3 (α, α ′ , β, 0; γ; x, y) = 2 F 1 α,β γ ;
x and

F 3 (0, α ′ , β, β ′ ; γ; x, y) = F 3 (α, α ′ , 0, β ′ ; γ; x, y) = 2 F 1 α ′ ,β ′ γ ; x .
In view of the above reduction formula, the general operators reduce to the aforementioned Saigo's operators I α,β,γ 0+ and I α,β,γ x-defined in Definition 2.1, Eqs. (2.5a) and (2.5b).

The generalized M-series and K-function

The generalized M -series and the K-function introduced in [START_REF] Manoj | Fractional integration and fractional differentiation of the M -series[END_REF][START_REF] Sharma Kishan | An Introduction to the Generalized Fractional Integration[END_REF] both extend the Fox-Wright generalized hypergeometric function p ψ q (z) stated in Definition 1.2 and of Prabakhar's three-parametric generalized M-L function defined in Eq. (1.4). Namely, Definition 3.1. Let z, α, β ∈ C and ℜ(α) > 0, then

(3.1) p M α,β q (z) = p M α,β q ap bq ; z := n≥0 (a 1 ) n • • • (a p ) n (b 1 ) n • • • (b q ) n z n Γ(αn + β) . Definition 3.2. Let z, α, β, γ ∈ C and ℜ(α) > 0, then (3.2) p K α,β;γ q (z) = p K α,β;γ q ap bq ; z := n≥0 (a 1 ) n • • • (a p ) n (b 1 ) n • • • (b q ) n (γ) n Γ(αn + β) z n n! .
As a matter of fact, the K-function stands for a three-parametric variant of the (twoparametric) M -series. Of course, if γ = 1, p K α,β;1 q (z) coincides with p M α,β q (z). Both series are defined provided that none of the bottom parameters b j 's (j = 1, 2, . . . , q) is a non-positive integer. If any of the top parameters a j is in Z ≤0 , then the series terminate. From the ratio test, the series are convergent for all z if p ≤ q, and they are divergent if p > q + 1. On the circle |z| = 1 and when p = q + 1, the conditions of convergence of the series depend on the parameters. More precisely, they are absolutely convergent when ℜ 

Relations to the Fox-Wright and M-L type functions

According to some well-chosen specific values of the parameters, the M -series and the Kfunction can be easily be reduced to classical generalized special functions. As a straighforward consequence of Definitions 1.2, 3.1 and 3.2, the next two expressions involve the generalized Fox-Wright psi function, its normalized variant and the H-function.

Proposition 3.3. Let z, α, β ∈ C and ℜ(α) > 0, then p M α,β q (z) = Γ(b q ) Γ(a p ) ∞ n=0 p i=1 Γ(a i + n) q j=1 Γ(b j + n) z n Γ(αn + β) = Γ(b q ) Γ(a p ) p+1 ψ q+1 (ai,1) p 1 ,(1,1) (bj ,1) q 1 ,(β,α) ; z = p+1 ψ * q+1 (ai,1) p 1 ,(1,1) (bj ,1) q 1 ,(β,α) ; z = Γ(b q ) Γ(a p ) H 1,p+1 p+1,q+2 -z (1-αi,1) p 1 ,(0,1) (0,1),(1-bj,1) q 1 ,(1-β,α) (3.3a)
and, similarly,

p K α,β;γ q (z) = 1 Γ(γ) Γ(b q ) Γ(a p ) p+2 ψ q+2 (ai,1) p 1 ,(γ,1),(1,1) (bj ,1) q 1 ,(1,1),(β,α) ; z = 1 Γ(γ) p+2 ψ * q+2 (ai,1) p 1 ,(γ,1),(1,1) (bj ,1) q 1 ,(1,1),(β,α) ; z = 1 Γ(γ) Γ(b q ) Γ(a p ) H 1,p+2 p+2,q+3 -z (1-αi,1) p 1 ,(γ,1),(1,1)) (0,1),(1-βj,1) q 1 ,(1,1),(1-β,α) , (3.3b)
provided that each member of the equations exists.

The above Eqs. (3.3a) and (3.3b) exhibit the fact that the generalized M -series and K-function are in fact two obvious (rather trivial) variants of the generalized Fox-Wright psi function p ψ q and its normalized form p ψ * q defined in Eq. (1.27). A natural unification and generalization of the Fox-Wright function p ψ * q defined by Eq. (1.27) anf of Lerch's transcendent zeta function Φ(z, s, a) defined in Note 2 is indeed accomplished by introducing essentially arbitrary numbers of numerator and denominator parameters in the definition of Φ(z, s, τ ).

When there exists neither top nor bottom parameters in the definitions of the M -series and the K-function in Eqs. (3.1) and (3.2), one obtains, respectively,

0 M α,β 0 (-; -; z) = ∞ n=0 z n Γ(αn + β) =: E α,β (z) and (3.4) 0 K α,β;γ 0 (-; -; z) = ∞ n=0 (γ) n Γ(αn + β) z n n! = E γ α,β (z) = 1 M α,β 1 (z). (3.5)
The formulas coincide with the two-parametric M-L function in (3.4) and with Prabhakar's generalized form in (3.5), respectively. Now, if we let γ = 1 in formula (3.5), the two-parametric M-L function may be rewritten in the form

(3.6) 0 K α,β;1 0 (-; -; z) = E 1 α,β (z) := E α,β (z) = 0 M α,
β 0 (γ; 1; z), and setting β = 1 in (3.6)entails E α,1 (z) := E α (z). Finally, putting α = 1 in the above relation (3.6) yields E 1,1 (z) := E 1 (z), which is also the exponential function e z [START_REF] Earl | Special Functions[END_REF].

Fractional calculus of the M-series and the K-function

With the help of the left-sided (L-S for short) Riemann-Liouville fractional integral and derivative of order ν ∈ C, it can be shown first in the following Theorem 4.1, that as naturally expected for fractional calculus operators of generalized hypergeometric special functions, the Mseries p M α,β q and the K-function p K α,β;γ q write respectively in terms of p+1 M α,β q+1 and p+1 K α,β;γ q+1 up to prefactors.

Theorem 4.1. Let z, α, β, γ, ν ∈ C and ℜ(α), ℜ(γ), ℜ(ν) > 0 and a i , b j ∈ C (i = 1, . . . , p, j = 1, . . . , q), then

I ν 0+ p M α,β q (z) = z ν Γ(ν + 1) p+1 M α,β q+1 ap,1
bq,ν+1 ; z and

I ν 0+ p K α,β;γ q (z) = z ν Γ(ν + 1) p+1 K α,β;γ q+1 ap,1 bq,ν+1 ; z . (4.1)
Similarly,

D ν 0+ p M α,β q (z) = z -ν Γ(1 -ν) p+1 M α,β q+1 ap,1
bq,1-ν ; z and

D ν 0+ p K α,β;γ q (z) = z -ν Γ(1 -ν) p+1 K α,β;γ q+1 ap,1 bq,1-ν ; z . (4.2)
Proof. Consider the L-S fractional R-L operator I ν 0+ of the generalized M -series, defined in (2.1a).

I ν 0+ p M α,β q (z) = 1 Γ(ν) z 0 (z -t) ν-1 ∞ k=0 (a p ) k (b q ) k t k Γ(αk + β) dt.
The uniform convergence of the M -series follows, for example, from the convergence of the integral involved. Thus, term by term integration yields

I ν 0+ p M α,β q (z) = 1 Γ(ν) ∞ k=0 (a p ) k (b q ) k z ν-1 Γ(αk + β) z 0 (1 -t/z) ν-1 t k dt.
Substituting the variable u for t/z, by definition of (x) k = Γ(x + k)/Γ(x), we have

I ν 0+ p M α,β q (z) = 1 Γ(ν) ∞ k=0 (a p ) k (b q ) k z ν+k Γ(αk + β) 1 0 (1 -u) ν-1 u k du = z ν Γ(ν) ∞ k=0 (a p ) k (b q ) k (1) k (ν + 1) k z k Γ(αk + β)
and

I ν 0+ p M α,β q (z) = z ν Γ(ν + 1) p+1 M α,β q+1 ap,1 bq,ν+1 ; z . (4.3)
The proof for p K α,β,γ q (z) proceeds exactly along the same lines. In other words, a L-S fractional integral of an M -series (a K-function, resp.) can be rewritten as an M -series (a K-function, resp.), up to a prefactor, with the values of the indices p and q each incremented by one. This proves the first (integration) part of the theorem.

As for the derivation part of the theorem, consider likewise the L-S fractional R-L derivative operator D ν 0+ of the generalized M -series, defined in (2.2a).

D ν 0+ p M α,β q (z) = 1 Γ(n -ν) d dz n z 0 (z -t) n-ν-1 ∞ k=0 (a p ) k (b q ) k t k Γ(αk + β) dt,
where n = ⌊ℜ(ν)⌋ + 1. As above, term by term integration leads to

D ν 0+ p M α,β q (z) = 1 Γ(n -ν) d dz r n ∞ k=0 (a p ) k (b q ) k 1 Γ(αk + β) z 0 (z -t) n-ν-1 t k dt = 1 Γ(n -ν) d dz n ∞ k=0 (a p ) k (b q ) k 1 Γ(αk + β) B(n -k, k -1) = 1 Γ(n -ν) d dz n ∞ k=0 (a p ) k (b q ) k z n-ν+k Γ(αk + β) Γ(n -ν)Γ(k + 1) Γ(n -ν + k + 1) ,
where k + 1 > 0 and n -ν > 0. Now, by the modified beta function formula

b a (t -a) α-1 (b -t) β-1 = (b -a) α+β-1 B(α, β) (ℜ(α), ℜ(β) > 0),
differentiating n times the term z n-ν+k yields, provided that k + 1 > 0 and (k -ν + 1) n = 0,

D ν 0+ p M α,β q (z) = z -ν ∞ k=0 (a p ) k (b q ) k z k Γ(αk + β) Γ(k + 1) Γ(k -ν + 1)
and

D ν 0+ p M α,β q (z) = z -ν Γ(1 -ν) ∞ k=0 (a p ) k (b q ) k z k Γ(αk + β) = z -ν Γ(1 -ν) p+1 M α,β q+1 ap,1 bq,1-ν ; z . (4.4)
The L-S fractional integral and derivative of the K-function are achieved exactly along the same lines, since the pochhammer symbol (γ) k in the numerator of the summand

(ap) k (bq) k (γ) k Γ(αk+β) z k k! is transported all along the proof steps.
Therefore, the L-S fractional derivative of an M -series (a K-function, resp.) is still an M -series (a K-function, resp.), up to a prefactor, with the value of the indices p and q each incremented by one. This proves the second (derivation) part of the theorem.

More generally, the classes of Wright, Fox-Wright, Fox H-functions, etc. are all closed under Riemann-Liouville fractional integrals and derivatives, but involve a greater order of functions in each class (see Section 2).

All proofs in the following Subsections 4.1 and 4.2 are also very similar since, being merely parametric variants, the generalized M -series and the K-function share themselves quite similar features. Saigo's generalized fractional integral operators recalled in Section 2 are basic means and tools for the purpose of integrating M-L type functions such as the M -series and the Kfunction in the complex plane. It must be pointed out also that the prefactors t σ-1 and t -α-σ which take place respectively in their left-and right-sided fractional integrands are required for proving the results.

Left-sided generalized fractional integrations

In the present cases, a theorem and a corollary are deduced for the M -series in §4.1.1 and the K-function in §4.1.2. By contrast with Theorem 4.1, both proofs use Saigo's left-sided fractional integration formula (2.5a) applied to the M -series and the K-function as functions in C (see [START_REF] Virginia | On two Saigo's fractional integral operators in the class of univalent functions[END_REF][START_REF] Anatoly | Generalized Mittag-Leffler functions and generalized fractional calculus operator[END_REF][START_REF] Megumi | On generalized fractional calculus operators[END_REF][START_REF] Saxena | Certain properties of the fractional calculus operators associated with generalized Mittag-Leffler function[END_REF]). The results are due in part to Sharma [START_REF] Manoj | Fractional integration and fractional differentiation of the M -series[END_REF] 9 but was recently revisited for the M -series by Kumar and Saxena [START_REF] Kumar Dinesh | Generalized Fractional Calculus of the M -Series Involving F 3 Hypergeometric function[END_REF] by using Samko-Maeda's fractional operators.

Left-sided fractional integration of the M -series

The generalized Fox-Wright psi functions which are obtained in this case naturally expresses as p+3 ψ q+3 functions, up to prefactors. Theorem 4.2. Let z > 0 and suppose also that the parameters α, β, γ, η, ξ, σ ∈ C are constrained by ℜ(α) > 0, ℜ(ξ) > 0, µ > 0, c ∈ R and a i , b j ∈ C (i = 1, . . . , p, j = 1, . . . , q). Let I α,β,γ 0+ be Saigo's L-S generalized fractional integral, then the following formula holds true.

I α,β,γ 0+ t σ-1 p M ξ,η q ct µ (z) = Γ(b q ) Γ(a p ) z σ-β-1 × p+3 ψ q+3
(ai,1) p 1 ,(σ,µ),(-β+γ+σ,µ),(1,1) (bj ,1) q 1 ,(-β+σ,µ),(α+γ+σ,µ),(η,ξ)

; cz µ , (4.5) provided that each member of the equation exists.

Proof. By Definition 2.1 of Saigo's L-S fractional integration operator I α,β,γ 0+ applied to the Mfunction in the class C, Eq. (2.5a) rewrites as follows,

I α,β,γ 0+ t σ-1 p M ξ,η q ct µ (z) = z -α-β Γ(α) z 0 (z -t) α-1 2 F 1 α+β,-γ α ; 1 -t/z t σ-1 p M ξ,η q ct µ dt. (4.6) Now, since 2 F 1 α+β,-γ α ; 1 -t/z := ∞ n=0 (α + β) n (-γ) n (α) n (1 -t/z) n n! = ∞ n=0 Γ(α + β + n)Γ(-γ + n)Γ(α) Γ(α + β)Γ(-γ)Γ(α + n) (1 -t/z) n n! , (4.7)
we may plug Eq. (4.7) into Eq. (4.6). Under the constaints of the theorem, interchanging the order of integration and summation within the integrand can be justified by the absolute convergence of the integral and the uniform convergence of the series involved. After substituting the variable 9 Kishan Sharma actually considers in [START_REF] Manoj | Fractional integration and fractional differentiation of the M -series[END_REF] the L-S and the R-S fractional integrals of a simpler M -series: more

precisely, I α,β,γ 0+ t η-1 p M ξ,η q ct ξ (x) and I α,β,γ - t -α-η p M ξ,η q ct ξ (x)
. This leads to formulas which write in terms of a Fox-Wright function p+2 ψ q+2 in the L-S case and of a Fox-Wright function p+3 ψ q+3 in the R-S case, respectively . Same remarks about the K-function p K ξ,η q ct ξ considered in [START_REF] Sharma Kishan | An Introduction to the Generalized Fractional Integration[END_REF].

u for t/z in the integral, a few simplifications lead to

(4.8) I α,β,γ 0+ t σ-1 p M ξ,η q ct µ (z) = z σ-β-1 × ∞ n=0 Γ(α + β + n)Γ(-γ + n) Γ(α + n)Γ(n + 1) 1 0 (1 -u) α-1+n u σ-1 p M ξ,η q c(zu) µ dt,
where, by Definition 3.1,

p M ξ,η q c(zu) µ := Γ(b q ) Γ(a p ) ∞ n=0 Γ(a p + n) Γ(b q + n) u µn (cz µ ) n Γ(ξn + η) .
Next, using the beta function and Gauß's summation theorem, Eq. (4.8) simplifies and may be reexpanded into the final expression

I α,β,γ 0+ t σ-1 p M ξ,η q ct µ (z) = Γ(b q ) Γ(a p ) z -σ-β-1 × ∞ n=0 Γ(a p + n) Γ(b q + n) Γ(σ + µn)Γ(-β + γ + σ + µn)Γ(n + 1) Γ(α + γ + σ + µn)Γ(-β + σ + µn)Γ(η + ξn) cz µ n n! , (4.9)
Finally, by interpreting the r.h.s. in (4.9) by means of Eq. (1.24) in Definition 1.2, we can write this last summation in terms of the Fox-Wright function p+3 ψ q+3 in Eq. (4.5), and the theorem follows.

Left-sided fractional integration of the K-function

The following result makes also use of Saigo's L-S fractional integration operator. Corollary 4.3. Let z > 0 and suppose also that the parameters α, β, γ, η, ν, ξ, σ ∈ C are constrained by ℜ(α) > 0, ℜ(ν) > 0, ℜ(ξ) > 0, µ > 0, c ∈ R and a i , b j ∈ C (i = 1, . . . , p, j = 1, . . . , q). By Definition 2.1, Saigo's L-S fractional integration operator I α,β,γ

0+ yields I α,β,γ 0+ t σ-1 p K ξ,η;ν q ct µ (z) = Γ(b q ) Γ(a p ) z σ-β-1 Γ(ν) × p+3 ψ q+3
(ai,1) p 1 ,(σ,µ),(-β+γ+σ,µ),(ν,1) (bj ,1) q 1 ,(-β+σ,µ),(α+γ+σ,µ),(η,ξ)

; cz µ , (4.10) provided each member of the equation exists.

Proof. Along the same lines as in Theorem 4.2 and in view of Definition 2.1, Eq. (2.5a) applied to the K-function in the class C writes now

I α,β,γ 0+ t σ-1 p K ξ,η;ν q ct µ (z) = z σ-β-1 Γ(α) z 0 (z -t) α-1 2 F 1 α+β,-γ α ; 1 -t/z t σ-1 p K ξ,η;ν q ct µ dt. (4.11)
Upon interchanging the order of integration and summation (which is guaranteed by the absolute convergence of the integral and the uniform convergence of the series), the integrand can be evaluated after the substitution of variables u = t/z. By means of the beta function and Gauß's summation theorem, formula (4.11) then coincides with an infinite summation similar to Eq. (4.9) (up to the parameter ν):

I α,β,γ 0+ t σ-1 p K ξ,η;ν q ct µ (z) = Γ(a p ) Γ(b q ) z η-β-1 Γ(ν) × ∞ n=0 Γ(a p + n) Γ(b q + n) Γ(σ + µn)Γ(-β + γ + σ + µn)Γ(ν + n) Γ(-β + σ + µn)Γ(α + γ + σ + µn)Γ(η + ξn) cz µ n n! . (4.12)
By Eq. (1.24) in Definition 1.2, Corollary 4.3 runs parallel to Theorem 4.2 and Eq. (4.12) may be expressed in terms of the Fox-Wright function p+3 ψ q+3 in Eq. (4.5). Therefore, the corollary is completed.

Note that if we set ν = η = 1, in Eq. (4.10), then we get the L-S fractional integral of the M -series p M ξ,1 q (ct µ ).

Right-sided generalized fractional integrations

The proofs are along the same lines as in the L-S case in Section 4.1. As basic tool, the Definition 2.1 of Saigo's right-sided (R-S for short) fractional integration formula (2.5b) is applied to the M -series and the K-function as functions in C (see also [START_REF] Virginia | On two Saigo's fractional integral operators in the class of univalent functions[END_REF][START_REF] Anatoly | Generalized Mittag-Leffler functions and generalized fractional calculus operator[END_REF][START_REF] Megumi | On generalized fractional calculus operators[END_REF][START_REF] Saxena | Certain properties of the fractional calculus operators associated with generalized Mittag-Leffler function[END_REF]). This provides the following two results in § §4.2.1-4.2.2.

Right-sided fractional integration of the M series

This theorem is the R-S counterpart of the L-S operator of fractional integration carried out in Theorem 4.2. Theorem 4.4. Let z > 0 and suppose also that the parameters α, β, γ, η, ξ, σ ∈ C are constrained by ℜ(α) > 0, ℜ(ξ) > 0, µ > 0, c ∈ R and a i , b j ∈ C (i = 1, . . . , p, j = 1, . . . , q). Let I α,β,γ z-be the R-S operator of generalized fractional integration. Then, the following formula holds true.

I α,β,γ z- t -α-σ p M ξ,η q ct -µ (z) = Γ(b q ) Γ(a p ) z -2α-2β-σ × p+3 ψ q+3
(ai,1) p 1 ,(α+β+σ,µ),(α+γ+σ,µ),(1,1) (bj ,1) q 1 ,(η,ξ),(2α+β+γ+σ,µ),(α+σ,µ)

; cz -µ , (4.13) provided that each member of the equation exists.

Proof. By Definition 2.1 of Saigo's R-S fractional integration operator I α,β,γ z-, Eq. (2.5a) applied to the M -function in the class C satisfies

(4.14) I α,β,γ z- t -α-σ p M ξ,η q ct -µ (z) = 1 Γ(α) ∞ z (t -z) α-1 t -α-β 2 F 1 α+β,-γ α ; 1 -z/t t -α-σ p M ξ,η q ct -µ dt.
The proof now follows the same lines as the proofs in Theorem 4.2 and Corollary 4.3. Interchanging the order of integration and summation within the integrand in (4.14) is justified by absolute and uniform convergence of the integral and the series, respectively. After substituting the variable u for z/t and simplification, the R-S generalized fractional integral may be rewritten

(4.15) I α,β,γ z- t -α-σ p M ξ,η q ct -µ (z) = z -α-β-σ Γ(α + β)Γ(-γ) × ∞ n=0 Γ(α + β + n)Γ(-γ + n) Γ(α + n)Γ(n + 1) 1 0 u α-β-σ-1 (1 -u) α+n-1 p M ξ,η q cz -µ u µ du.
Next, the inner integral in the above Eq. (4.15) may be evaluated by means the beta function and Gauß's summation theorem. The formula develops into an infinite summation, in the same vein as the sum in Eq. (4.5), which yields

I α,β,γ z- t -α-σ p M ξ,η q ct -µ (z) = Γ(b q ) Γ(a p ) z -2α-2β-σ × ∞ n=0 Γ(a p + n) Γ(b q + n) Γ(α + β + σ + µn)Γ(α + γ + σ + µn)Γ(n + 1) Γ(2α + γ + β + σ + µn)Γ(α + σ + µn)Γ(η + ξn) cz -µ n n! . (4.16)
Last, by interpreting the r.h.s. in Eq. (4.16) by means of Eq. (1.24) in Definition 1.2, the Fox-Wright function p+3 ψ q+3 in (4.13) is readily derived and the theorem follows.

Right-sided fractional integration of the K function

This last result is again the R-S counterpart of Theorem 4.4.

Corollary 4.5. Let z > 0 and suppose also that the parameters

α, β, γ, η, ν, ξ, σ ∈ C are constrained by ℜ(α) > 0, ℜ(ν) > 0, ℜ(ξ) > 0, µ > 0, c ∈ R and a i , b j ∈ C (i = 1, . . . , p, j = 1, . . . , q). Let I α,β,γ z-
be the R-S operator of the generalized fractional integration, then there holds

I α,β,γ z- t -α-σ p K ξ,η;ν q ct -µ (z) = z -2α-2β-σ Γ(ν) Γ(b q ) Γ(a p ) × p+3 ψ q+3
(ai,1) p 1 ,(α+β+σ,µ),(α+γ+σ,µ),(ν,1) (bj ,1) q 1 ,(α+σ,µ),(2α+β+γ+σ,µ),(η,ξ)

; cz -µ , (4.17) provided that each member of the equation exists.

Proof. By Definition 2.1 applied to the K-function in C, Saigo's R-S fractional integration operator is deduced from Eq. (2.5b) by the equation

(4.18) I α,β,γ z- t -α-σ p K ξ,η;ν q ct -µ (z) = 1 Γ(α) ∞ z (t -z) α-1 t -α-β 2 F 1 α+β,-γ α ; 1 -z/t t -α-σ p K µ,η;ν q ct -µ dt.
As in the former proofs, the generalized hypergeometric series in the kernel is defined as an infinite sum in the same form as Eq. (4.7). Upon interchanging the order of integration and summation is again guaranteed under the constarints of the theorem (by absolute convergence and uniform convergence of the integral and the series, respectively). The evaluation of the inner integral is thus carried out by making the substitution u = z/t, with the help of the beta function and by Gauß's summation theorem. Eq. (4.18) rewrites again in the form of an infinite summation similar to the one in Eq. (4.9). As in the previous corollary, we obtain

(4.19) I α,β,γ z- t -α-σ p K ξ,η;ν q ct -µ (z) = z -2α-2β-σ Γ(ν) Γ(b q ) Γ(a p ) × ∞ n=0 Γ(a p + n) Γ(b q + n) Γ(α + β + σ + µn)Γ(α + γ + σ + µn)Γ(ν + n) Γ(α + σ + µn)Γ(2α + β + γ + σ + µn)Γ(η + ξn) cz -µ n n! .
There remains to derive the Fox-Wright function p+3 ψ q+3 in Eq. (4.17) from the infinite summation in Eq. (4.19). This simply proceeds from Eq. (1.24) in Definition 1.2, and the result follows.

Note that if we set ν = η = 1, in Eq. (4.17), then we get the R-S fractional integral of the M -series p M µ,1 q (ct -µ )).

Remarks 3. In conclusion to this section it is interesting to point out that Saigo's (L-S and R-S) fractional integration of the M -series and the K-function bring along Fox-Wright functions of the p+3 ψ q+3 type in every proof. This is partly due to the fact that all integrands contain L-S prefactors t σ-1 and R-S prefactors t α-σ . Following Kiryakova e.g in [START_REF] Virginia | Generalized Fractional Calculus and Applications[END_REF][START_REF] Virginia | On two Saigo's fractional integral operators in the class of univalent functions[END_REF][START_REF] Virginia | The special functions of fractional calculus as generalized fractional calculus operators of some basic functions[END_REF], Saigo's fractional integrals can be considered as examples of operators for generalized fractional integration (of R-L type) in the complex plane, with a suitable analytic kernel-function (in the class C, for example). As such, all proofs involving the fractional calculus of the Fox-Wright function can be shown by taking a Mellin-Barnes type contour integral L in C, for which the conditions ensuring the existence and analyticity of all function involved can be seen in [START_REF] Richard | NIST Handbook of Mathematical Functions[END_REF][START_REF] Anatoly | Theory and Applications of Fractional Differential Equations[END_REF], [START_REF] Virginia | Generalized Fractional Calculus and Applications[END_REF]App.], [START_REF] Virginia | The special functions of fractional calculus as generalized fractional calculus operators of some basic functions[END_REF][START_REF] Stephan | Fractional Integrals and Derivatives. Theory and Applications[END_REF], etc. (see also §1.2).

Fractional calculus involving F 3

The present section, makes full use of the extended L-S and R-S fractional calculus involving the Appell's two variable hypergeometric function F 3 defined in Eq. (2.7), Definition 2.2 (see, e.g., [START_REF] Kumar Dinesh | Generalized Fractional Calculus of the M -Series Involving F 3 Hypergeometric function[END_REF]). It must be pointed out that, for suited results, the prefactor t σ-1 is required in Saigo-Maeda's L-S and R-S fractional integrands and derivatives, as in Subsections 4.1 and 4.1 (see Remarks 3).

Left-and right-sided fractional integration of the M-series and the K-function

In this part, the L-S and R-S generalized fractional integration formulas of the M -series and the K-function are derived.

L-S fractional integral formulas of the M -series and the K-function

The theorem makes use of Saigo-Maeda's L-S fractional integral defined by 2.2.

Theorem 5.1. Let α, α ′ , β, β ′ , γ, η, ν, ξ, σ ∈ C, ℜ(ν) > 0, ℜ(ξ) > 0, ℜ(γ) > 0, µ > 0, c ∈ R and a i , b j ∈ C (i = 1,
. . . , p, j = 1, . . . , q), then, for z > 0, the following relations hold true

I α,α ′ ,β,β ′ ,γ 0+ t σ-1 p M ξ,η q (ct µ ) (z) = Γ(b q ) Γ(a p ) z σ-α-α ′ +γ-1 × p+4 ψ q+4 (ai,1) p 1 ,(σ,µ),(σ+γ-α,µ),(σ+β ′ -α ′ ,µ),(1,1) (bj ,1) q 1 ,(1-σ,µ),(σ+γ-α ′ -β,µ),(σ+β ′ ,µ),(η,ξ)
; cz µ , (5.1a) provided that each member of the equation exists.

I α,α ′ ,β,β ′ ,γ 0+ t σ-1 p K ξ,η;ν q (ct µ ) (z) = Γ(b q ) Γ(a p ) z σ-α-α ′ +γ-1 Γ(ν) × p+4 ψ q+4 (ai,1) p 1 ,(σ,µ),(σ+γ-α,µ),(σ+β ′ -α ′ ,µ),(ν,1) (bj ,1) q 1 ,(1-σ,µ),(σ+γ-α ′ -β,µ)(σ+β ′ ,µ),(η,ξ)
; cz µ , (5.1b) provided that each member of the equation exists.

Right-sided fractional integral formulas of the M -series and the K-function

Following the definition of Saigo-Maeda's R-S fractional integral defined by 2.2, we get the following theorem.

Theorem 5.2. Let α, α ′ , β, β ′ , γ, η, ν, ξ, σ ∈ C, ℜ(ν) > 0, ℜ(ξ) > 0, ℜ(γ) > 0, µ > 0, c ∈ R and a i , b j ∈ C (i = 1,
. . . , p, j = 1, . . . , q), then, for z > 0, the following two relations holds true

I α,α ′ ,β,β ′ ,γ z- t σ-1 p M ξ,η q ct -µ (z) = Γ(b q ) Γ(a p ) z σ-α-α ′ +γ-1 × p+4 ψ q+4 (ai,1) p 1 ,(1+α+α ′ -γ-σ,µ),(1+α+β ′ -γ-σ,µ),(1-β-σ,µ), (1,1 
) (bj ,1) q 1 ,(1-σ,µ),(1+α-α ′ -γ-σ,µ),(1-α-β-σ,µ),(η,ξ)

; cz -µ , (5.2a) provided that each member of the equation exists.

I α,α ′ ,β,β ′ ,γ z- t σ-1 p K ξ,η;ν q ct -µ (z) = Γ(b q ) Γ(a p ) z σ-α-α ′ +γ-1 Γ(ν) × p+4 ψ q+4
(ai,1) p 1 ,(1+α+α ′ -γ-σ,µ),(1+α+β ′ -γ-σ,µ),(1-β-σ,µ),(ν,1) (bj ,1) q 1 ,(1-σ,µ),(1+α-α ′ -γ-σ,µ),(1-α-β-σ,µ),(η,ξ)

; cz -µ , (5.2b) provided that each member of the equation exists.

Short proofs. Both proofs of Theorems 5.1 and 5.2 run along the very same lines. Under the assumptions of the theorems, let the function ϕ(z) denote p M ξ,η q (z) and p K ξ,η;ν q (resp.). By Eqs. (2.8a) and (2.8b) in Definition 2.2, Saigo-Maeda's L-S and R-S fractional integrals of ϕ write respectively,

I α,α ′ ,β,β ′ ,γ 0+ t σ-1 ϕ (ct µ ) (z) := z -α Γ(γ) ∞ 0 (z -t) γ-1 t α ′ +σ-1 F 3 (α, α ′ , β, β ′ ; γ; 1 -t/z; 1 -z/t) ϕ (ct µ ) dt (5.3a)
provided that each member of the equation exists.

D α,α ′ ,β,β ′ ,γ z- t σ-1 p K ξ,η;ν q ct -µ (z) = Γ(b q ) Γ(a p ) z σ-α-α ′ +γ-1 Γ(ν) × p+4 ψ q+4
(ai,1) p 1 ,(1+α+α ′ -γ-σ,µ),(1+α+β ′ -γ-σ,µ),(1-β-σ,µ),(ν,1) (bj ,1) q 1 ,(1-σ,µ),(1+α-α ′ -γ-σ,µ),(1-α-β-σ,µ),(η,ξ)

; cz -µ , (5.5b) provided that each member of the equation exists.

Short proofs. Both proofs of Theorems 5.3 and 5.4 are quite similar to those of Theorems 5.1 and 5.2. Under the above assumptions, let the function ϕ(z) denote p M ξ,η q (z) and p K ξ,η;ν q , according to the case. From Saigo-Maeda's L-S and R-S Eqs. (2.9a) and (2.9b) in Definition 2.2, fractional derivatives are written respectively, with n = ⌊ℜ(γ)⌋ + 1,

D α,α ′ ,β,β ′ ,γ 0+ t σ-1 ϕ (ct µ ) (z) := d dz n I -α ′ ,-α,-β ′ +n,-β,-γ+n 0+ t σ-1 ϕ (ct µ ) (z) and D α,α ′ ,β,β ′ ,γ z- t σ-1 ϕ ct -µ (z) := (-1) n d dz n I -α ′ ,-α,-β ′ ,-β+n,-γ+n z- t σ-1 ϕ ct -µ (z).
By definition of F 3 and in view of Eq. (2.10a) in Lemma 2.3, expanding the series F 3 and interchanging the order of integration and summation is again guaranteed by the conditions of the theorems: absolute of integrals and uniform convergence of series (resp.). Next, from Eqs. (5.4a)-(5.4b) and Eqs. (5.5a)-(5.5b), the identity

d n dz n z m = Γ(m+1) Γ(m-n+1) z m-n
, where m ≥ n, involves a few simplifications, which yield the generalized Fox-Wright functions p+4 ψ q+4 in Theorems 5.1 and 5.2. This completes the sketchproofs of the theorems. Remarks 4. By setting parameters (p, q, α, α ′ , β, β ′ , γ, η, µ, ξ, σ, etc.) to various specific values, a number of special cases of the above theorems may be obtained by virtue of relations (2.11a) and (2.11b) in Remarks 2. For example, if α ′ = 0, σ = η, µ = ξ and in view of Eq. (2.11a), Theorems 5.1 and 5.2 coincide with Saigo's L-S and R-S fractional integrals of the M -series and the K-function, as carried out in § §4.1-4.2 (Section 4). Along the same lines, Riemann-Liouville and Erdélyi-Kober fractional differintegral operators can be also obtained by putting β = -α and β = 0, respectively in Theorems 5.3-5.4 and in Theorems 5.1-5.2.

Notice that Riemann-Liouville's, Saigo's and Saigo-Maeda's operators of fractional calculus operate as well for a very great number of generalized hypergeometric special functions, such as the generalized hypergeometric function p F q , the generalized Mittag-Leffler and Wright type functions, Fox H-and Meijer G-functions, Fox-Wright p ψ q and Lommel-Wright,functions, Appell's one-and multi-variable functions, generalized incomplete gamma type functions p γ q and p Γ q , incomplete Pochhammer symbols (λ; x) ν and [λ; x] ν (λ, ν ∈ C, x ≥ 0), etc. (see a few recent papers such as, e.g., [START_REF] Virginia | The role of special functions and generalized fractional calculus in studying classes of univalent functions[END_REF][START_REF] Dinesh | On certain fractional calculus operators involving generalized Mittag-Leffler functions[END_REF][START_REF] Kumar Dinesh | Generalized Fractional Calculus of the M -Series Involving F 3 Hypergeometric function[END_REF][START_REF] Rakesh | A Class of Extenced Mittag-Leffler Functions and their Properties Related to Integral Transforms and Fractional Calculus[END_REF][START_REF] Hari | Certain Fractional Integral Operators and the Generalized Incomplete Hypergeometric Functions[END_REF]).

Conclusion & perspectives

The results obtained so far are extensions of the works carried out by many authors, actually in increasing number and ability within the past years. On account of the general nature of the differintegral operators of Mittag-Leffler type functions, highly transcendental functions, etc. a number of known results can be easily found as special cases of the present results and conversely. Fractional calculus also offers wide perspectives in various domains of mathematics spreading out from pure and applied analysis, such as q-analogues for instance, to algebra of operators.

In the case of β = 1, E α (z) := E α,1 (z) reduces to related asymptotic expansion stated, e.g., in [13, §. 3.4].

A.2 Asymptotic expansion of Prabhakar's M-L function [START_REF] Rudolph | Mittag-Leffler Functions, Related Topics and Applications[END_REF][START_REF] Jordanka | Inequalities and Asymptotic Formulae for the Three Parametric Mittag-Leffler Functions[END_REF] By Lemma 1.1, the function E γ α,β (z) can be represented via the Mellin-Barnes integral given in Eq. (1.15) (cf. [13, § 5.1.2]), under the constraints z ∈ C and | arg z| < π for α ∈ R + , β, γ ∈ C and ℜ(γ) > 0. Now, when β is a sufficiently large real number, one can use Stirling's formula, valid for any fixed a, Γ(z + a) ≈ √ 2π z z+a-1/2 e -z as |z| → ∞, in order to get the following asymptotic formula as x → ∞ (a > 0, α > 0, β > 0, γ > 0).

Γ(α)E γ α,β a(αx) γ ≈ ∞ n=0 (β) n a n x γn n! √ 2π α α-1/2 e -α √ 2π α α-1/2+γn e -α = ∞ n=0 (β) n n! a(x/α) γ n = 1 1 + a(x/α) γ β . (A.5)
As in the case of the M-L function with two parameters, the asymptotic behaviour of the three parametric function E γ α,β (z) critically depends on the values of the parameters α, β, γ and cannot easily be described. In principle, an asymptotic expansion of Prabhakar's function can be found from its representation via a generalized Wright function or H-function (cf. [13, § 5.1.5] or [START_REF] Anatoly | Theory and Applications of Fractional Differential Equations[END_REF]). To the best of our knowledge, the asymptotic behaviour of E γ α,β (z) in different domains of the complex plane (similar, for example, to that of Prop. 3.6, and of Theorems 4.3 and 4.4 in [START_REF] Rudolph | Mittag-Leffler Functions, Related Topics and Applications[END_REF]) has not yet been described in an explicit form.

Another step towards an asymptotic expansion was obtained however in [START_REF] Jordanka | Inequalities and Asymptotic Formulae for the Three Parametric Mittag-Leffler Functions[END_REF] for non-negative integer values of β = n, when n gets large. Prabhakar's M-L function is then naturally defined by

(A.6) E γ α,n (z) := ∞ k=0 (γ) k Γ(αk + n) z k k! (α, γ ∈ C, ℜ(α) > 0, n ∈ N).
Next, given a number γ, suppose that some coefficients in Def. (A.6) equal zero; that is, there exists an integer p ∈ N, such that (A.6) can be written as follows,

(A.7) E γ α,n (z) = z p ∞ k=p (γ) k Γ(αk + n) z k-p k! .
Now, three main cases may be considered.

(i) If γ ∈ C \ Z ≤0 , then p = 0 for n ∈ N and p = 1 for n = 0. The functions E γ α,n (z) are entire of order ρ = 1/ℜ(α) and type σ = 1.

(ii) Otherwise, the functions E γ α,n (z) actually reduce to polynomials of power -γ and, denoting m = -γ, the representation (A.7) can be rewriten in the form

E γ α,n (z) = z p m k=p (γ) k Γ(αk + n) z k-p k! and, since (-m) k = m k when k ≤ m, E -m α,n (z) = z p m k=p (-1) k m k z k-p Γ(αk + n) . (A.8) (iii) If γ = 0, then E 0 α,n (z) = 1/Γ(n)
for n ∈ N and E 0 α,n (z) = 0 for n = 0. Summarizing, if γ is a non-positive integer, as seen above, the three-parametric M-L functions reduce to polynomials, while when γ / ∈ Z ≤0 , they are entire functions of order ρ = 1/ℜ(α) and type σ = 1. Finally, the fonctions E γ α,n (z) admit asymptotic behaviours written in the following form as n → ∞.

(A.9) E γ α,n (z) = (γ) p Γ(αp + n) z p 1 + θ γ α,n (z) with θ γ α,n (z) = ∞ k=p+1 Γ(αp + n) Γ(αk + n) z k-p k! for γ ∈ C \ Z ≤0 (A.10a) and respectively, for γ = -m, m ∈ N, θ -m α,n (z) = ∞ k=p+1 (-m) k (-m) p Γ(αp + n) Γ(αk + n) z k-p k! = ∞ k=p+1 (-1) k-p m k m p Γ(αp + n) Γ(αk + n) z k-p . (A.10b)
In representations (A.10a)-(A.10b), γ = 0 and the parameter p is determined as follows: p = 0 for all n ∈ Z >0 and p = 1 for n = 0.

A.3 Asymptotics for the multiple M-L function

F (µ) α,β (z) [12]
The two-parametric M-L function E α,β (z) can be generalized by attaching an exponent to its Taylor coefficients. For real values α, β and µ > 0, the series If µ is a natural number, then the function in (A.11) is an instance of the multiple M-L function investigated, e.g., by Kiryakova [START_REF] Virginia | The multi-index Mittag-Leffler functions as important class of special function of fractional calculus[END_REF], in connection with numerous applications to fractional calculus; but it seems that the asymptotic behaviour of the multiple M-L function had not been studied earlier than Gerhold's paper [START_REF] Stephan | Asymptotics for a variant of the Mittag-Leffler function[END_REF]. The asymptotic behaviour of F (µ) α,β (z) as z → ∞ is considered in a sector of the complex plane, containing the positive real line. For the two-parametric M-L function (µ = 1), this is usually analysed by an integral representation (see previous §A.1), which appears to have no immediate extension to µ = 1. Whatsoever, the asymptotic result can be established by approximating the sum by an integral and then use the Laplace method.

Theorem A.1. Let µ, α, β > 0 and ǫ > 0 be arbitrary. Then, as z → ∞ in the sector

| arg z| ≤      αµπ/2 -ǫ, 0 < αµ < 2 (2 -αµ/2)π 2 ≤ αµ < 4 0 αµ ≥ 4,
we have the asymptotics

(A.12) F (µ) α,β (z) ∼ 1 α √ µ (2π) (1-µ)/2 z (µ-2βµ+1)/2αµ e µz 1/αµ .
Applying the Laplace method directly does not work for non-real z; the absolute values of the summands in (A.11) are peaked near n ≈ α -1 |z| 1/αµ , but it seems that one cannot balance the local expansion and the tails. This is caused by oscillations in the summands, which can be dealt with by shifting the problem to the asymptotic evaluation of an integral. The Laplace method then succeeds, after moving the integration contour through a saddle point located approximately at α -1 z 1/αµ . For that purpose, an integral representation of (A.11) is needed as z → ∞ in the sector | arg z| ≤ max 0, (2 -αµ/2)π , which leads to

F (µ) α,β (z) = ∞ 0 z t Γ(αt + β) µ dt + O(z).
The saddle point method may then be applied to the above integral, first by locating the saddle point, next by changing the integration contour to a line L which begins at 0 and passes through t 0 (valid for large |z|) and finally by picking up the dominant contribution of the integral from the range |t -t 0 | ≤ |t 0 | τ (τ ∈]1/2, 2/3[) around the saddle point. Substituting t = t 0 (y + 1) with y ≥ -1 in the line L divides the r.h.s. in three integrals in the form

L z t Γ(αt + β) µ dt = t 0 ∞ -1 z t0(y+1) Γ αt 0 (y + 1) + β µ dy = t 0    -|t0| τ -1 -1 + |t0| τ -1 -|t0| τ -1 + ∞ |t0| τ -1    z t0(y+1) Γ αt 0 (y + 1) + β µ dy. (A.13)
For large |z|, the central integral provides the r.h.s. of Eq. (A.12) in Theorem A.1 and the two side integrals are negligible. A full asymptotic expansion can be obtained easily by pushing the local expansion around the saddle point further.

A possible question for future research remains the finding of an analytic continuation for the multiple M-L function. For µ ∈ C and fixed z, one might ask whether the function defined by (A.11) has an analytic continuation for ℜ(µ) ≤ 0. Remark 5. Whenever µ > 0 and α = β = 1, the asymptotics as n → ∞ along the real line of

F (µ) 1,1 (z) := ∞ n=0 z n n! µ
is a special case of the above asymptotic behaviour of A.11. Namely, in the sector defined in Theorem A.1 (with α = β = 1), we get the asymptotics

F (µ) 1,1 (z) ∼ 1 √ µ (2π) (1-µ)/2 z (1-µ)/2µ e µz 1/µ (z → ∞).
Notice that the (possibly formal) series

F (µ) 1,1 (z) is not D-finite (or non-holonomic) for any µ ∈ R \ Q.
Besides, this function satisfies the integral relation

∞ 0 e -t/z F (µ+1) 1,1 (t) dt = zF (µ) 1,1 (z) (z = 0).
The proof is immediate by simple expansion and substitution s = t/z in the above integral.

∞ 0 e -t/z F (µ+1) 1,1 (t) dt = ∞ 0 e -t/z ∞ n=0 t n n! (µ+1) dt = ∞ n=0 1 n! (µ+1) ∞ 0 t n e -t/z dt = ∞ n=0 z n+1 n! (µ+1) ∞ 0 s n e -s ds = ∞ n=0 z n+1 n! (µ) .

B Determination of E -α,β (z) with negative value of the first parameter

To find a defining equation of the function E -α,β (z) rewrite the integral representation (1.20) of the M-L function with parameters α, β ∈ R, α < 0 as

E α,β (z) = 1 2π H e ζ ζ β -zζ -α+β dζ (z ∈ C).
After expanding part of the above integrand and then substituting it into Eq. (1.20) we obtain the following definition of E -α,β (z) with negative value of the first parameter,

E -α,β (z) = 1 Γ(β) -E α,β ( 1 z ) (α > 0, z ∈ C \ {0}). (B.1a) In particular, for β = 1, E -α (z) := E -α,1 (z) = 1 -E α ( 1 z ) (α > 0 z ∈ C \ {0}).
Now, from the known recurrence formula

E α,β (z) = 1 Γ(β) + zE α,α+β (z),
another variant of the definition in Eq. (B.1a) is derived,

E -α,β (z) = - 1 z E α,α+β ( 1 z ) (α > 0, β ∈ R, z ∈ C \ {0}). (B.2a)
The definitions (B.1a)-(B.2a) actually determine the same function, analytic in C \ {0}.

From the definition of E α,β (z) in (1.2), also results the following series representation of the extended M-L function (i.e. the function corresponding to real negative values of the first parameter),

E -α,β (z) = - ∞ n=1 z -1 Γ(αn + β) (z ∈ C \ {0}).
By using this series representation and the definitions ((B.1a) or (B.2a)), the extended twoparametric M-L function with real negative first parameter provides several classical functional, differential and recurrence relations, which are analogous to corresponding relations for E α,β (z) with positive valued first parameter.

C Complex contour for the reciprocal gamma and the beta functions

Recall the classical definitions of Euler's gamma and beta functions (1729 and 1772, resp.) and Euler's reflection formula for the gamma function (1771); all three are required in this appendix. The latter reflection formula (C.2c) connects the gamma function with the sine function. 10

Γ(z) := ∞ 0 t z-1 e -t dt (ℜ(z) > 0) (C.2a) B(x, y) := 1 0 t x-1 (1 -t) y-1 dt (ℜ(x) > 0, ℜ(y) > 0) (C.2b) Γ(z)Γ(1 -z) = π sin(πz) (z / ∈ Z). (C.2c)
Hankel's contour integral provides one of the most beautiful and useful integral representations of the reciprocal gamma function (see, e.g., Temme [START_REF] Nico | Special Functions. An Intoduction to the classical Functions of Mathematical Physics[END_REF]Chap. 3,§3.2.6]). It has the form

(C.3) 1 Γ(z) = 1 2πi H e s s -z ds (z ∈ C).
The contour of integration H is the Hankel contour that runs from -∞, arg s = -π, encircles the origin in the positive direction (that is counterclockwise) ends at -∞, now with arg s = +π (this is the reason why the notation Eq. (C.3) is obtained as a special case of the inversion formula. A direct proof follows from a special choice of H, that is the negative real axis. This is only possible when ℜ(z) < 1. Under this condition, the contribution from a small circle around the origin, with radius tending to zero, can be neglected. Thus, the r.h.s. of (C.3) yields, The substitution s = -t yields an integrand as in the starting point (C.2a) (that is, the definition of Γ). The main idea which stands behind (C.2a) is that the many-valued function t z-1 arising in definition (C.2a) can be used to open up the original contour along [0, ∞), and obtain a representation that is valid in a larger domain of the parameter z. This approach can be useful with other special functions, e.g. the complex contour for the beta integral, which works as follows [START_REF] Nico | Special Functions. An Intoduction to the classical Functions of Mathematical Physics[END_REF]Chap. 3,§3.2]. The integral is defined for any complex value of y. For y = 1, 2, . . ., the integral vanishes; this absorbs the infinite values of the term in front of the integral.

A complex contour for the beta function

Double contour integral

It is possible to replace the integral for Γ(z) along a half line by a contour integral which converges for all values of z. A similar process can be carried out for the beta integral.

Let P be any point between 0 and 1. The following Pochhammer's extension of the beta integral holds:

(1+,0+,1-,0-) P t x-1 (1 -t) y-1 dt = 4πe πi(x+y) Γ(1 -x)Γ(1 -y)Γ(x + y) .

Here the contour starts at P , encircles the point 1 in the positive (counterclockwise) direction, returns to P , then encircles the origin in the positive direction, and returns to P . The 1-, 0indicates that now the path of integration is in the clockwise direction, first around 1 and then 0. The formula is proved by the same method as Hankel's formula. Notice that it is true for any complex x and y: both sides are entire functions of x and y.

D Integral representation of the Gauß hypergeometric function

The Mellin-Barnes integral is a contour integral representation involving a product of gamma functions. The confluent hypergeometric function 1 F 1 (z), for example, can be represented by such a Mellin-Barnes type contour integral, in which case the integral is valid in the sector | arg(-z)| < π/2. More generally, all confluent hypergeometric functions, such as 1 F 1 (z), Kummer's hypergeometric function M (a; c; z) = lim b→∞ 2 F 1 (a, b; c; z/b), etc., have integral representations in the form of a Mellin-Barnes type contour integral, each one giving rise to an analytic continuation in a complex domain included in (all or part of) the complex plane (see, e.g., [3, §12.5(iii)]),[13, App. D and F],[21, §1.6], etc.). Now, the following theorem deals with the hypergeometric function, in which case the line integral is usually taken along a contour C which is a deformation of the imaginary axis such that the integration contour separates all the poles of Γ(a + s)Γ(b + s) from those of Γ(-s), and (-z) s has its principal value. Proof. This result can be obtained by moving the contour to the right while picking up the residues at s = 0, 1, 2,. . . . In establishing the result, it was necessary to suppose that |z| < 1.

From the principle of analytic continuation, the integral (D.1) converges and defines an analytic function of z, which is holomorphic in the sector | arg(-z)| < π. Hence, 2 F 1 (a, b; c; z) is defined not only inside the unit circle but also in the complex s-plane cut along the real z-axis from 0 to ∞, provided that the parameters are such that the integration path can be drawn to separate the poles of Γ(-s) from the poles of Γ(a + s) and Γ(b + s).

n→∞ n |cn| = 0 .

 0 Any power series satisfying this criterion will represent an entire function. The global behaviour of an entire function of finite order is characterized by its order ρ and its type σ represented by the formulas ρ = lim sup n→∞ n log n log (1/|cn|) and σ = 1 ρe lim sup n→∞ n n |cn| ρ .

2E

  The one-and two-parametric M-L functions are generalized to the multiple M-L function F ) µ for real values α, β and µ > 0 (see Appendix A.3). They are also tightly related to the M-L type function E (a) α,1 (s; z) due to Barnes: Eα(z) = lim s→0 E (a) α,1 (s; z) and E α,β (z) = lim s→0 s, a), where the series Φ(z, s, a) := n≥0 z n (n+a) s defines the Lerch's transcendent zeta function, which is analytic when |z| < 1 for a ∈ C \ Z ≤0 and s ∈ C; the series also converges when |z| = 1, provided that ℜ(s) > 1. As special cases, Φ(z, s, a) contains the Riemann zeta function ζ(s) = Φ(1, s, 1), the Hurwitz (or generalized) zeta function ζ(s, a) = Φ(1, s, a) and the Lerch zeta function ℓ(ξ, s, a) = e 2πiξ Φ e 2πiξ, s, a (ξ ∈ R, ℜ(s) > 1), but also the Polylogarithmic function Lis(z) = zΦ(z, s, 1) (for s ∈ C, it is analytic when |z| < 1 and the series converges when |z| = 1 provided that ℜ(s) > 1) and the Lipschitz-Lerch zeta function L(ξ, s, a) := Φ e 2πiξ , s, a (for a ∈ C \ Z ≤0 , it is analytic when ℜ(s) > 0 for ξ ∈ R \ Z and when ℜ(s) > 1 for ξ ∈ Z). (For other values of z, these functions are defined by analytic continuation.)

Remark 2 .

 2 arg(-z) = 0 and z = 0. (See Kilbas et al. in [19, Cor. 4.1] for more detailed conditions on C.) The Laplace transforms L[φ] and L[E α,β ] can be expressed in terms of each other:

Lemma 1 . 3 (

 13 Kilbas-Srivastava-Trujillo [21, Thm. 1]). Under the assumptions stated in Definition 1.2, let

  > 0. Conversely, setting a i = b j = 1 in Eq. (1.31) yields the generalized hypergeometric function p F q α1,...,αp β1,...,βq ; z .

Lemma 2 . 3 (

 23 Saigo-Maeda [40, p. 394, Eqs. (4.18)-(4.19)

  3 and Eqs. (2.11a)-(2.11b) are useful and often required in fractional calculus.

1 .

 1 The exhaustive proofs of convergence of both series in (3.1)-(3.2) are deduced from the general theory of the Fox-Wright function (see, e.g., [3, §16.2] and [21, Thm. 1.5]).

  + β) µ defines an entire function of z ∈ C of order ρ = 1/(αµ). Special cases are the two-parametric M-L function and the Bessel function I 0 (2 √ z) = ∞ n=0 z n /n!.

0 t x- 1 (C z x- 1 ( 1 ir x e ixθ 1 -iε x e ixθ 1 -

 011111 multi-valued function s -z is assumed to be real for real values of z and s, s > 0.A proof of representation (C.3) follows immediately from the theory of Laplace transforms: from the well-known integral Γ(z)s z = ∞ 0 t z-1 e -stdt,10 To prove the reflection formula (C.2c), first set t = s/(s -1) in Definition (C.2b), which gives rise to the second beta integral with integration along the real half line:(C.1) B(x, y) = ∞ 0 s x-1 (1 + s) x+y ds = Γ(x)Γ(y) Γ(x + y) . Next, set y = 1 -x, 0 < x < 1 in Eq. (C.1) to obtain Γ(x)Γ(1 -x) = ∞ 1+t) dt.This integral is computed by considering the contour integral Ix := -z) dz, where C consists of two circles about the origin of radii r and ε, respectively, which are joined along the negative real axis from -r to -ε. Move along the outer circle in the counterclockwise direction, and along the inner circle in the clockwise direction. By the residue theorem, Ix = -2πi when z x-1 has its principal value. Thus, re iθ dθ + εe iθ dθ +r ε t x-1 e -ixπ 1 + t dt.Let r → ∞ and ε → 0, so that the first and third integrals tend to zero and the second and fourth combine to provide Euler's reflection formula (C.2c) for 0 < x < 1. The full result follows next by analytic continuation. This, in a sense, shows that 1/Γ(z) is 'half of the sine function'. (See, e.g., Temme [52, Chap. 3, §3.2.5].)

1 2πi - 0 ∞

 10 se -iπ -z e -s ds -∞ 0 se iπ -z e -s ds = sin πz π Γ(1 -z).With the help of Euler's reflection formula (C.2c), it is easily shown that the above relation equals indeed the l.h.s. of (C.3). In a final step, we can deduce from the principle of analytic continuation that Eq. (C.3) holds true for all finite complex values of z. Namely, both the l.h.s. and the r.h.s. of Eq. (C.3) are entire functions of z. As pointed out in §1.2, the integral representation of the one-and two-parametric M-L functions is given by Eq. (1.19) by means of the Hankel contour H for the 1/Γ(z) integral in (C.3) (see Note 5). Another form of (C.3) gives rise to the following integral representation of Γ(z) (C.4) Γ(z) = 1 2i sin(πz) H s z-1 e s ds.

(

  1 (1 -ω) y-1 dω, where ℜ(x) > 0 and y ∈ C. The contour starts and ends at the origin, and encircles the point 1 in the positive (counterclockwise) direction. The argument (or phase) of ω -1 is zero at positive points larger than 1. When ℜ(y) > 0 we can deform the contour along (0, 1). Then we get I x,y = B(x, y) sin(πy)/y and it follows that 1 (1 -ω) y-1 dω.

Theorem D. 1 .

 1 Provided that a is a positive integer, the Mellin-Barnes contour integral representation of Gauß's hypergeometric function 2 F 1 (a, b; c; z) is given by(D.1) Γ(a)Γ(b) Γ(c) 2 F 1 (a, b; c; z) + s)Γ(b + s) Γ(c + s) Γ(-s) (-z) s ds.Here, | arg(-z)| < π and the path of integration can pass to infinity parallel to the imaginary axis with any finite value of c = ℜ(s), on condition that the contour C can be indented, if necessary, to separate all the poles of Γ(-s) at the points s = ν (ν ∈ N) to the left from all the poles of Γ(a + s) and Γ(b + s) to the right, at the points s = -a -ν and s = -b -ν (ν ∈ N), respectively. (Such a contour may always be drawn if a and b are non-negative integers or zero. Moreover, Eq. (D.1) remains valid also for negative or zero values of a.)

  1/α in the positive sense (counterclockwise): | arg(t)| < π on H. The integrand in(1.19) has a branch point at t = 0, and the complex t-plane is cut along the negative real axis. The integrand is single-valued in the cut plane, where the principal branch of t α is taken.

	5 (Detailed studies of M-L and M-L type functions may be found, e.g., in Džrbašjan [9],
	Erdélyi et al. [10], Gorenflo et al. [13, Chap. 4, §4.8], Kilbas et al. [21, Chap. 1, §1.8], etc.)

  . For a suitable class of function such as C, Saigo-Maeda's (or Marichev-Saigo-Maeda's) fractional differintegral operators are introduced therefrom.

	Definition 2.2 (Saigo-Maeda [40, p. 393, Eqs. (4.12)-(4.13)]). Let α, α

′ , β, β ′ , γ ∈ C and ℜ(γ) > 0. Then, for x ∈ R + ,

  Reducing Saigo-Maeda's fractional differintegral operators (2.8a)-(2.9b) to Saigo's (2.5a)-(2.5b) is commonly done by means of the following relations,

.10b) Remarks 2.

The present path of integration C is simpler than the ones considered, for example, in Eq. (1.14b) and in the case of a Hankel contour, in Eq. (1.[START_REF] Anatoly | Generalized Mittag-Leffler functions and generalized fractional calculus operator[END_REF]) below (see also Appendix C and Appendix D), but however runs exactly along the same lines.

The representation(1.19) can be proved by expanding the integrand in powers of t and integrating term by term by making use of Hankel's integral path H for the reciprocal of the gamma function, namely

and

(t -z) γ-1 t -α+σ-1 F 3 (α, α ′ , β, β ′ ; γ; 1 -z/t; 1 -t/z) ϕ ct -µ dt. (5.3b) By definition of Appell's two variable series F 3 and in view of Eq. (2.10a) in Lemma 2.3, expanding F 3 and interchanging the summations and the integrals is justified, under the constraints of the theorems, by the absolute convergence of integrals and the uniform convergence of series. Next, the evaluation of the inner integrals by using the beta function and Gauß's summation theorem, yields Eqs. (5.1a)-(5.1b) and Eqs. (5.2a)- (5.2b). This provides the sketchproofs of Theorems 5.1 and 5.2.

Left-and right-sided fractional differentiation of the M-series and the K-function

In the subsection, the L-S and R-S generalized fractional derivative formulas of the M -series and the K-function are deduced from Saigo-Maeda's L-S fractional derivative introduced in Definition 2.2.

L-S fractional derivative formulas of the M -series and the K-function

and and a i , b j ∈ C (i = 1, . . . , p, j = 1, . . . , q), then, for z > 0, the following formula hold true

(ai,1) p 1 ,(σ,µ),(σ+α+α ′ +β ′ -γ,µ),(σ+α-β,µ),(1,1) (bj ,1) q 1 ,(σ+α+α ′ -γ,µ),(σ+α+β ′ -γ,µ),(σ-γ,µ),(η,ξ)

; cz µ , (5.4a) provided that each member of the equation exists.

; cz µ , (5.4b) provided that each member of the equation exists.

R-S generalized fractional derivative formulas of the M -series and the Kfunction

, then, for z > 0, the following two relations holds true

; cz -µ , (5.5a)

Appendices A Asymptotic expansion of M-L type functions (|z| → ∞)

A.1 Asymptotic expansion of E α,β (z) [START_REF] Rudolph | Mittag-Leffler Functions, Related Topics and Applications[END_REF][START_REF] Hans | Mittag-Leffler Functions and Their Applications[END_REF] The asymptotic expansion of the two-parametric M-L function is based on the integral representation of E α,β (z) in the form (1.19) given in §1.2 with the same Hankel path H. Following Džrbašjan [START_REF] Mkhitar | On the integral representation and uniqueness of some classes of entire functions[END_REF][START_REF] Mkhitar | On the integral transformations generated by generalized functions of the Mittag-Leffler type[END_REF][START_REF] Mkhitar | Integral transforms and representations of functions in the complex domain[END_REF]1952,1960,1966], Erdélyi et al. [10, Vol. III, 1953], the case when β = 1 and the general case with arbitrary β ∈ C are treated in the survey of Gorenflo et al. [START_REF] Rudolph | Mittag-Leffler Functions, Related Topics and Applications[END_REF]Sect. 4]. The following two representations are considered. Using the integral representations in (A.1b) and (A.1c) entails asymptotic expansions for the M-L function in the complex plane (see, e.g., [START_REF] Rudolph | Mittag-Leffler Functions, Related Topics and Applications[END_REF]Thm. 4.3]). Let 0 < α < 2, β ∈ C be an arbitrary number, and δ ∈ R be chosen to fullfill the condition (A.2). Thus, for any m ∈ N (and for m = 0 if the 'empty sum convention' is adopted), for all z such that | arg z| ≤ δ,

and analogously, for all z such that δ < | arg z| < π,

Similarly, in the case when α ≥ 2, the following asymptotic formula holds for β ∈ C and m ∈ N (see, e.g., [START_REF] Rudolph | Mittag-Leffler Functions, Related Topics and Applications[END_REF]Thm. 4.4]).

If the path of integration is displaced to the left we can proceed to evaluate the integral in (D.1) in a similar manner. In this case, such poles are encountered which correspond to two sequences of simple poles: the poles of Γ(a + s) with residues 

Now, when |z| > 1, the integral round the translated path vanishes as the path moves to infinity. In that case, the asymptotic expansion of Gauß's hypergeometric function for large |z| results easily from formula (D.3) under the above conditions. Whence the asymptotic behaviour of When a-b is an integer, some of the poles become double poles and then, the residues involve terms in ln(-z) as may be checked in Eq. (D.4). For instance, if b -a is a non-negative integer, Given proper conditions of convergence, one can relate more general Mellin-Barnes type contour integrals to the generalized hypergeometric function p F q (z) in a similar way. Some special function related to p F q (z) include the dilogarithm Li 2 (z) = n≥0 n -2 z n = z 3 F 2 (1, 1, 1; 2, 2; z), Hahn and Wilson polynomials, etc.