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We calculate the radiative heat transfer between two identical metallic one-dimensional lamellar gratings. To
this aim we present and exploit a modification to the widely used Fourier modal method, known as adaptive
spatial resolution, based on a stretch of the coordinate associated with the periodicity of the grating. We first show
that this technique dramatically improves the rate of convergence when calculating the heat flux, allowing us to
explore smaller separations. We then present a study of heat flux as a function of the grating height, highlighting
a remarkable amplification of the exchanged energy, ascribed to the appearance of spoof-plasmon modes, whose
behavior is also spectrally investigated. Differently from previous works, our method allows us to explore a range
of grating heights extending over several orders of magnitude. By comparing our results to recent studies we find
a consistent quantitative disagreement with some previously obtained results going up to 50%. In some cases,
this disagreement is explained in terms of an incorrect connection between the reflection operators of the two
gratings.

DOI: 10.1103/PhysRevB.95.125404

I. INTRODUCTION

Two bodies kept at different temperatures and separated by
a vacuum gap experience a radiative heat transfer mediated
by photons. This energy exchange is limited by the well
known Stefan-Boltzmann law in the far field, i.e., when
the distance separating the bodies is large compared to the
thermal wavelength h̄c/kBT , of the order of 8 μm at ambient
temperature. The pioneering works of Rytov [1] and Polder
and Van Hove [2] first showed that this limit can be surpassed
in the near-field regime, as a result of the tunneling of
evanescent waves. In particular, the heat transfer can exceed
the one between two blackbodies (i.e., the ideal far-field
scenario predicted by the Stefan-Boltzmann law) even of
several orders of magnitude when the materials support surface
resonances, such as plasmons in metals (typically lying in
the ultraviolet range of frequencies) and phonon-polaritons in
dielectrics (typically in the infrared) [3]. Since the contribution
of each field mode to radiative heat transfer is weighted by
the Planck thermal distribution, negligible in the ultraviolet
range at ordinary temperatures, dielectrics supporting surface
resonances are typically the best candidates to maximize the
heat flux.

Stimulated by the theoretical developments, several appli-
cations have been proposed for radiative heat transfer, ranging
from thermophotovoltaic [4–9] or solar thermal [10,11] energy
conversion, to heat-assisted data storage [12], nanoscale
cooling [13], and the recent emerging field of thermotronics
[14]. On the experimental side, the theoretical predictions have
been verified during the last decade both in the plane-plane
and sphere-plane configuration, for a wide range of distances,
going from some nanometers to several microns [15–29].

Recently, the idea of manipulating the heat flux through
the manipulation of some external parameters has attracted
remarkable attention. In fact, both the control of the overall
value of the flux and its spectral properties can be extremely
relevant for several applications, and in particular for energy
conversion. In the spirit of a manipulation through geometrical

properties, structured surfaces have been the topic of many
theoretical investigations. More specifically, by considering
both 1D and 2D periodic gratings, both the radiative heat
transfer [30–40] and the Casimir force at and out of thermal
equilibrium [41–51] have been studied by employing a variety
of theoretical approaches. It has been shown that gratings
represent indeed a tool to modify, both by reducing and
amplifying, radiative heat transfer, as well as to influence its
spectral properties. Concerning the Casimir force, it must be
mentioned that the force between a sphere and a dielectric
[52,53] or a metallic [54,55] grating has been recently
measured and theoretically investigated [50].

In the domain of radiative heat transfer, metallic gratings de-
serve indeed special attention. In fact, although, as mentioned
above, surface resonances for a metal typically have ultraviolet
frequencies, the presence of a periodically structured pattern
can result in the presence of new surface resonances, referred
to a spoof plasmons [56,57], whose frequency can be adjusted
as a function of the grating parameters and can be brought,
for realistic values of the grating length scales, in the infrared
region, thus contributing to the flux. Based on this behavior,
the authors of Ref. [32] have recently theoretically predicted
a high enhancement of the flux between two identical gold
gratings. A similar study has been performed for 1D and 2D
metallic gratings in Refs. [34,38,39], and more recently in
Ref. [40]. In these papers the reflection upon each grating
has been described by means of the Fourier modal method
(FMM) [58], equipped with the factorization rule introduced
in Ref. [59]. It is worth stressing that, since the radiative
heat transfer is calculated as an integral with respect to both
frequency and wave vector, the choice of the method used to
derive the grating reflection operators can drastically affect the
computational time as well as the results.

This paper is precisely devoted to the study of radiative
heat transfer between two gold gratings. We present and
discuss a modification to the FMM technique, known as
adaptive spatial resolution [60] (we will in the following refer
to this modified method as ASR), a technique specifically
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introduced to accelerate the convergence. This method has also
been shown to overcome the known instabilities appearing
for metallic gratings [61]. With respect to previous works,
we extend here this technique to deal with arbitrary conical
incidence. Based on this approach, we provide a detailed study
of the influence of the grating depth on the overall value of the
flux as well as on its spectral properties. We also compare our
results to part of the works mentioned above on heat transfer
between metallic gratings. We show that (1) the ASR technique
produces a dramatic increase of the convergence rate (thus
implying a drastic reduction of computational time) and (2)
the numerical results for heat transfer considerably differ from
results previously obtained using the standard FMM.

The paper is structured as follows. In Sec. II we present
our physical system, describing also our notation and main
definitions. In Sec. III we discuss in detail the adaptive spatial
resolution. Then, in Sec. IV we present our numerical results,
by studying the radiative heat transfer between two gold
gratings as a function of the grating height. We finally give
in Sec. V some conclusive remarks.

II. PHYSICAL SYSTEM

The system we are going to address consists of two 1D
lamellar gratings separated by vacuum, as shown in Fig. 1. The
two gratings are structured along the x axis, translationally
invariant along the y axis, and separated by a vacuum gap
of thickness d along the z axis. The two gratings share the
same period D, while they can have in general different filling
fractions f = l/D (see Fig. 1). Finally, they have different
grating heights h, while the substrate below each structured
region is assumed to be infinitely thick for both gratings.

The two gratings, labeled with indexes 1 and 2, are kept
by some external heat source at constant temperatures T1 and
T2. Among the numerous theoretical techniques developed
to calculate the radiative heat transfer between them, we
employ an approach based on the knowledge of the individual

FIG. 1. Geometry of the system: two gratings, labeled with 1 and
2, at a distance d . The gratings, in general made of different materials,
are infinite in the xy plane, and periodic in the x direction with the
same period D. They have corrugation depths hi (i = 1,2), infinite
thicknesses below the grating region, and lengths of the elevated part
of the grating li . This defines the filling factors fi = li/D.

scattering operators of the bodies involved, recently introduced
for systems involving two [62,63] and three [64,65] bodies.
This method is based on a plane-wave mode decomposition of
the fields, each mode (ω,k,p,φ) being identified by the direc-
tion of propagation φ = +,− along the z axis, the polarization
index p [assuming the values p = 1,2 which respectively
correspond to transverse electric (TE) and transverse magnetic
(TM) modes], the frequency ω, and the transverse wave vector
k = (kx,ky). In this description, the z component of the wave
vector kz is a dependent variable defined as

kz =
√

ω2

c2
− k2. (1)

In virtue of this mode decomposition, we define the trace of
an operator O as

TrO =
∑

p

∫
d2k

(2π )2

∫ +∞

0

dω

2π
〈p,k|O|p,k〉. (2)

Assuming that the external environment is thermalized with
body 1, the energy this body receives per unit surface and time
is given by [63]

ϕ = h̄ Tr[ωn21U
(2,1)f−1(R(2)−)U (2,1)†f1(R(1)+)], (3)

where R(1)+ (R(2)−) is the reflection operator of body 1 (2) for
an incoming wave propagating in direction φ = − (φ = +)
and we have defined

fα(R)

=
{
P (pw)

−1 − RP (pw)
−1 R† + RP (ew)

−1 − P (ew)
−1 R†, α = −1,

P (pw)
1 − R†P (pw)

1 R + R†P (ew)
1 − P (ew)

1 R, α = 1.

(4)

Moreover, in Eq. (3) we have defined the population differ-
ences nij = n(ω,Ti) − n(ω,Tj ), with

n(ω,T ) = 1

e
h̄ω
kBT − 1

, (5)

the intracavity operator

U (21) =
+∞∑
n=0

(R(2)−R(1)+)n = (1 − R(2)−R(1)+)−1, (6)

and the projection operators

〈p,k|P (pw/ew)
n |p′,k′〉 = kn

z 〈p,k|�(pw/ew)|p′,k′〉, (7)

where δφφ′ is the Kronecker delta and �(pw) [�(ew)] is the
projector on the propagative (k < ω/c) [evanescent (k >

ω/c)] sector. We remark that, as discussed in Ref. [49], the
periodicity on the x axis makes it natural to replace the mode
variable kx with

kx,n = kx + 2π

D
n, (8)

with kx taking values in the first Brillouin zone [−π/D,π/D]
and n assuming all integer values. Based on Eq. (3), the
calculation of the flux ϕ is now reduced to the problem of
describing the field reflection upon each grating. The details
about the ASR technique employed in this paper are discussed
in detail in the next section.
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FIG. 2. Geometry of the grating. Three regions are identified:
z � 0 and z � h having uniform permittivity (εi and εo, respectively)
and 0 < z < h, having a periodic ε(x).

III. METHODS: FOURIER MODAL METHOD
WITH ADAPTIVE SPATIAL RESOLUTION

The physical system we consider is shown in Fig. 2: it is
a lamellar grating of period D, invariant along the y axis,
with relative dielectric permittivity ε(x). The grating is inlaid
between two homogeneous media whose permittivities are εi

(input medium) and εo (output medium). A monochromatic
plane wave with frequency ω and parallel wave vector k =
(kx,ky) illuminates the structure. Throughout the calculation,
the vacuum wave number is denoted by k0 = ω/c and we
assume a time dependence of the form e−iωt . The particularity
of the ASR [60] is the use of a new coordinates system
x = F (u) in which the coordinate in the x direction is stretched
around the permittivity discontinuities. This allows us to better
describe the permittivity jump, which is crucial in the case of
metallic structures. Below, we derive the metric tensor and
write the Maxwell equations associated with the coordinates
change. Then we solve them in the three regions of space:
z � 0, 0 < z < h, and z � h. After, we derive the boundary
conditions and obtain the field amplitudes. Based on the
geometry depicted in Fig. 2, the reflection operator we are
going to calculate isR− for a vacuum-grating interface located
at z = 0. This operator will allow us to easily deduce R(1)+
and R(2)− as described in detail below.

A. Solution of Maxwell’s equations in the three regions

We start by observing that, in general, the presence of a
lamellar grating naturally divides the period region [0,D] by a
set of discontinuity points {xl} with l = 0, . . . ,N , with x0 = 0
and xN = D. In view of the change of coordinates from x to
u, we analogously define a set of points {ul} given by ul =
Dl/N , i.e., uniformly distributed between u0 = 0 and uN =
D. For the explicit definition of the coordinate transformation
{x = F (u),y,z} we follow Ref. [66] and write

F (u) = a1l + a2lu + a3l

2π
sin

{
2π

u − ul−1

ul − ul−1

}
, (9)

in each interval u ∈ [ul−1,ul], with l = 1, . . . ,N , where

a1l = (ulxl−1 − ul−1xl)/(ul − ul−1),

a2l = (xl − xl−1)/(ul − ul−1),

a3l = G(ul − ul−1) − (xl − xl−1).

(10)

In these expressions G is a control parameter, for which we
take the value 10−3 through all the numerical calculations
presented in this paper.

The corresponding metric tensor is diagonal and
reads gij = diag (f 2,1,1), with f (u) = dx/du = dF (u)/du.
Thus Maxwell’s equations ζ ijk∂jEk = iωμ0

√
ggijHj and

ζ ijk∂jHk = −iωε0ε
√

ggijEj become

∂yEz − ∂zEy = ik0
1

f (u)
H̃u,

∂zEu − ∂uEz = ik0f (u)H̃y, (11)

∂uEy − ∂yEu = ik0f (u)H̃z,

∂yH̃z − ∂zH̃y = −ik0ε(u)
1

f (u)
Eu,

∂zH̃u − ∂uH̃z = −ik0ε(u)f (u)Ey, (12)

∂uH̃y − ∂yH̃u = −ik0ε(u)f (u)Ez,

with H̃i = Z0Hi , Z0 being the impedance of vacuum. We now
derive from Eqs. (11) and (12) Ez and H̃z and plug them into
the other equations, obtaining the following system for the
tangential components of the fields:

∂z

(
Eu

Ey

)

= i

k0

( −∂u
1

a(u)∂y k2
0f (u) + ∂u

1
a(u)∂u

− k2
0

f (u) − ∂y
1

a(u)∂y ∂y
1

a(u)∂u

)(
H̃u

H̃y

)
,

(13)

∂z

(
H̃u

H̃y

)

= i

k0

(
∂u

1
f (u)∂y −k2

0a(u) − ∂u
1

f (u)∂u

k2
0

b(u) + ∂y
1

f (u)∂y −∂y
1

f (u)∂u

)(
Eu

Ey

)
,

(14)

with a(u) = f (u)ε(u) and b(u) = f (u)/ε(u). Next, following
the procedure discussed more in detail, e.g., in Ref. [49],
we rewrite this systems of equations in the Fourier space
and truncate the series up to the truncation order N ,
obtaining

∂z

(
Eu

Ey

)
= F

(
H̃u

H̃y

)
, ∂z

(
H̃u

H̃y

)
= G

(
Eu

Ey

)
, (15)

F = i

k0

(
kyα[[a]]−1 k2

0[[f ]] − α[[a]]−1α

−k2
0[[f ]]−1 + k2

y[[a]]−1 −ky[[a]]−1α

)
,

G = i

k0

(
−kyα[[f ]]−1 −k2

0[[a]] + α[[f ]]−1α

k2
0[[b]]−1 − k2

y[[f ]]−1 ky[[f ]]−1α

)
,

(16)

where α = diag(kx + 2πn/D),n ∈ [−N,N ], kx being defined
in the first Brillouin zone [−π/D,π/D]. In Eq. (15) we have
gathered in the column vectors Eu/y and H̃u/y the 2N + 1
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Fourier components of the fields Eu/y and H̃u/y . Moreover, we
have introduced the Toeplitz matrices [[f ]] (resp. [[a]] and [[b]])
defined in terms of the Fourier coefficients of the function f (u)
[resp. a(u) and b(u)]. We can further simplify the notation by
introducing the definitions

E =
(
Eu

Ey

)
, H̃ =

(
H̃u

H̃y

)
, (17)

which allow us to write

∂2E(z)

∂z2
= FGE(z) = PD2P−1E(z). (18)

In this equation, D2 is a diagonal matrix containing the eigen-
values of FG, and P is the matrix of associated eigenvectors.
Then the solution of Eq. (18) can be expressed under the form

E(z) = P(eDzP−1a + e−DzP−1b), (19)

and consequently [from Eq. (15)]

H̃(z) = GPD−1(eDzP−1a − e−DzP−1b)

= P′(eDzP−1a − e−DzP−1b), (20)

where a and b are the amplitudes of the different waves
traveling in the φ = + and φ = − directions, respectively.

The calculation presented here for the grating region,
characterized by a periodic ε(x), can be directly applied to the
homogeneous regions z � 0 and z � h as well. In this case, the
framework can be simplified by observing that [[a]] = ε[[f ]]
and [[b]] = [[f ]]/ε, where for the input (output) region ε = εi

(ε = εo). This directly leads to the introduction of the four
additional matrices Pi , P′

i , Po, and P′
o. In order to simplify

the boundary conditions, the solution in the output medium is
modified as follows:

Eo(z) = Po

(
eDo(z−h)P−1

o ao + e−Do(z−h)P−1
o bo

)
,

(21)
H̃o(z) = P′

o

(
eDo(z−h)P−1

o ao − e−Do(z−h)P−1
o bo

)
,

by means of the introduction of a phase factor.

B. Boundary conditions

Having solved Maxwell’s equations in each region, we can
now write down the boundary conditions at the interfaces z = 0
and z = h:

z = 0 ⇒
{

ai + bi = a + b,

P′
iP

−1
i (ai − bi) = P′P−1(a − b),

(22)

and, denoting � = ehD,

z = h ⇒
{
P
(
�P−1a + �−1P−1b

) = ao + bo,

P′(�P−1a − �−1P−1b
) = P′

oP
−1
o (ao − bo).

(23)
In terms of the S-matrix algorithm, this gives(

bi

P−1a

)
=

( −1 P
P′

iP
−1
i P′

)−1(
1 −P

P′
iP

−1
i P′

)(
ai

P−1b

)
= S1

(
ai

P−1b

)
, (24)

and(
P−1b

ao

)
=

(
� 0
0 1

)(−P 1
P′ P′

oP
−1
o

)−1(
P −1
P′ P′

oP
−1
o

)
×

(
� 0
0 1

)(
P−1a

bo

)
= S2

(
P−1a

bo

)
. (25)

In the last two equations the unknowns are the amplitudes ai

and bo of the incoming waves, bi and ao of the reflected and
transmitted waves, and the amplitudes a and b of the field in
the grating region, in which we have absorbed the factor P−1.
This is irrelevant for our purposes, since we are only interested
in the field amplitudes in the homogeneous media. The final
part of the calculation is straightforward (see, e.g., Ref. [49]).
We define a chained S matrix as [59]

S = S1 � S2, (26)

having introduced the associative operation A = B � C,
which for three square matrices A, B, and C of dimension
4(2N + 1) is defined as

A11 = B11 + B12(1 − C11B22)−1C11B21,

A12 = B12(1 − C11B22)−1C12,

A21 = C21(1 − B22C11)−1B21,

A22 = C22 + C21(1 − B22C11)−1B22C12,

(27)

where each matrix has been decomposed in four square blocks
of dimension 2(2N + 1). This S matrix satisfies the relation(

bi

ao

)
= S

(
ai

bo

)
, (28)

thus its upper-left 2(2N + 1) block, relating the reflected field
bi to the incident one ai in the upper region, can be identified
as the R−

u operator we are looking for in the (u,y) reference
system.

C. Transformation matrices

The steps described in the last section lead to the derivation
of a reflection matrix R−

u , expressed in the transformed
reference system (u,y). Actually, the operator R− needed for
the calculation of the flux given by Eq. (3) has to be expressed
not only in the standard (x,y) Cartesian reference, but also
with respect to the basis of two polarization unity vectors

ε̂
φ

TE(kn,ω) = 1

kn

(−ky x̂ + kx,nŷ),

ε̂
φ

TM(kn,ω) = c

ω
(−knẑ + φkz,nk̂n),

(29)

where â = a/|a| and we have defined kn = (kx,n,ky) and
kz,n = √

ω2/c2 − k2
n. Thus, the final reflection matrix R takes

the form

R− = (B−)−1TR−
u T

−1B+, (30)

where T is the matrix associated with the transformation
from (u,y) to (x,y), whereas Bφ accounts for the transition
from the (TE,TM) basis to the canonical (x,y) basis for fields
propagating in the φ direction (note that we have φ = + for
the incident field and φ = − for the reflected one, as manifest
from Fig. 2).
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In order to derive T, we start observing that we have, label-
ing throughout this section with a prime the fields in the (u,y)
coordinate system, E′

u = f (u)Ex and E′
y = Ey . This means

that the T matrix will be block-diagonal and take the form

T =
(
Tx 0
0 Ty

)
. (31)

Moreover, since the coordinate stretch leaves the period
unchanged, one just needs to express the 2N + 1 vectors Ex

and Ey as a function of E ′
u and E ′

y for a given value of ω and
kx in the first Brillouin zone, as Ex = TxE ′

u and Ey = TyE ′
y .

Starting from the Fourier decompositions

Ex =
∑

n

eikx,nxEx,n, E′
u =

∑
m

eikx,muE′
u,m, (32)

we easily get

[Tx]n,m = 1

D

∫ D

0
du ei[kx,mu−kx,nx(u)], (33)

and in an analogous way

[Ty]n,m = 1

D

∫ D

0
du f (u)ei[kx,mu−kx,nx(u)]. (34)

Concerning the second transformation matrix Bφ , it repre-
sents a basic change of basis and its action is written as(

Ex

Ey

)
= Bφ

(
Eφ

TE

Eφ

TM

)
, (35)

where the (TE,TM) basis (and thus the matrix Bφ) depends on
the propagation direction φ. Using Eq. (29), the transformation
matrix reads

Bφ =
⎛⎝− diag

( ky

kn

)
diag

( cφkx,nkz,n

ωkn

)
diag

( kx,n

kn

)
diag

( cφkykz,n

ωkn

)
⎞⎠. (36)

D. Reflection operators of the two gratings

As stated at the beginning of our calculation, the R−
operator we calculated is relative to a grating having its
interface with vacuum at z = 0. As a consequence, in order to
deduce the R(2)− relative to grating 2, we have to include a
phase shift taking into account the fact that its vacuum-grating
interface coincides with the plane z = d. As described, e.g.,
in Ref. [49], the matrix elements of this modified operator are
given by

〈p,k,n,ω|R(2)−|p′,k′,n′,ω′〉
= exp[i(kz,n + k′

z,n′ )d]〈p,k,n,ω|R−|p′,k′,n′,ω′〉.
We now focus on the issue of derivingR(1)+ from the known

operator R−. For simplicity, in the following we will always
consider two identical gratings, i.e., having the same height
h and filling factor f . In this case, when evaluating the flux
given by Eq. (3), it is convenient to exploit the symmetry of
the configuration and calculate (for each frequency and wave
vector) only once the grating reflection matrix. Nevertheless,
one must keep in mind that in our formalism the unit polariza-
tion vector associated to TE polarization defined in Eq. (29)
is independent of the propagation direction φ along the z axis,

while the x and y components of the TM polarization vector are
proportional to φ. Since the x and y components are the ones
which are conserved in the scattering process, this implies that
the reflection matrix R(1)+ coincides with R− in the diagonal
blocks (TE,TE) and (TM,TM), while the nondiagonal blocks
(TE,TM) and (TM,TE) undergo an overall sign change. This
sign-change issue is irrelevant, of course, in the case of a planar
slab, since this system does not mix the two polarizations, but
it must indeed be taken into account when dealing with bodies
producing a coupling between TE and TM modes.

IV. NUMERICAL RESULTS

We are now ready to discuss our first numerical results.
These concern a couple of gratings having the same features
used in Ref. [32]. The two gratings have filling factor f = 0.5,
period D = 1 μm, temperatures T1 = 290 K and T2 = 310 K,
and are placed at a distance d = 1 μm. Both gratings are made
of gold, for which we have used a Drude model

ε(ω) = 1 − ω2
P

ω(ω + iγ )
, (37)

where the plasma frequency and the dissipation rate are
respectively equal to ωP = 9 eV and γ = 35 meV.

In order to highlight the features of the ASR technique,
we start by calculating the flux for a given grating height h =
2 μm. As discussed in detail in Ref. [49], a crucial point when
using the FMM technique is the choice of the truncation order
N , i.e., the number of diffraction orders taken into account in
the Fourier decomposition of the field, going from −N to N .
The same issue applies of course to the ASR method as well.
We show in Fig. 3 the value of the flux ϕ as a function of the
truncation order, both using the FMM (red dashed line) and

FIG. 3. Heat flux between two identical gratings of height h =
2 μm, period D = 1 μm, filling fraction f = 0.5, infinite thickness
below the grating region, and temperatures T1 = 310 K and T2 =
290 K, placed at a distance d = 1 μm. The flux is calculated using
both the FMM (red dashed line) and the ASR (black solid line), for
different truncation orders N . The black dashed line corresponds to
the asymptotic value obtained using the ASR for N = 10, while the
gray dot-dashed line is associated with a 10% error with respect to
this asymptotic value.
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FIG. 4. Ratio between the flux for a grating of height h and the one
for h = 0, i.e., the one between two planar slabs. The two identical
gratings have period D = 1 μm, filling fraction f = 0.5, infinite
thickness below the grating region, and temperatures T1 = 290 K and
T2 = 310 K, placed at a distance d = 1 μm. Our results (black solid
line) are compared to the results of Ref. [32] (red points). The blue
dot corresponds to a calculation using the ASR but without inverting
the sign of nondiagonal blocks of the reflection matrix (see text for
more details). The inset shows a zoom of the same curve in linear h

scale.

the ASR (black solid line). It is manifest that in both cases the
first truncation orders give very different results, suggesting
that N has to be further increased. Nevertheless, starting from
N of the order of 5, the two curves are dramatically different.
The curve corresponding to the ASR technique very quickly
converges to a stable result, and the points corresponding to
N = 8,9,10 are basically undistinguishable. The dashed black
line in the plot corresponds to the value obtained with the
ASR for N = 10, while the dot-dashed line is associated with
a 10% error with respect to this result. The results obtained
with the FMM show a very different behavior. First of all,
up to N 	 15, the obtained flux is nonmonotonic, and has
a quasioscillatory behavior. Moreover, even when becoming
monotonic as a function of N , the flux converges very slowly
to its asymptotic value. More specifically, for N = 20 the error
is of the order of 10%, while for N = 51 (the value used in
Ref. [32]) it is of the order of 3%.

Based on this discussion of the convergence, we use, in
the following, a truncation order N = 8 for the ASR, with an
associated relative error of the order of 1% on the integrated
flux. Using these parameters, as in Ref. [32], we study the
heat transfer ϕ(h) as a function of the grating height h, and
discuss the amplification factor ϕ(h)/ϕ(h = 0) with respect to
the case h = 0, i.e., to the case of a planar slab. The results
are shown in the main part of Fig. 4 for a very wide range of
values of h, going from h = 0 to 1 mm, and compared with the
ones (red points) calculated in Ref. [32] from h = 0 to 6 μm.
While for h = 100 nm the amplification factor is close to 1,
increasing h produces a huge amplification of the heat flux. In
particular, the ratio ϕ(h)/ϕ(h = 0) grows monotonically with
h, and reaches a horizonal asymptote around h = 500 μm,
with a value slightly above 34. In the inset of Fig. 4, we

show the same curve in linear h scale from 0 to 6 μm. As
manifest from the plot, in spite of a qualitative agreement, the
two curves are quantitatively different, with a disagreement
going up to around 50% for h = 5 μm. For this value of the
grating height we have calculated the flux using FMM with
N = 51 and obtained a result in agreement within around 1%
with the one coming from the ASR with N = 8. We conclude
that the truncation order N = 51 is large enough to assure a
good convergence for the integrated flux using FMM. Thus, the
difference between our results and the ones of Ref. [32] does
not seem to originate from an insufficient truncation order.

It is now instructive to investigate the evolution of the
spectral properties of the heat flux as a function of the grating
depth h. This behavior is illustrated in Fig. 5. Panel (a)
shows the spectral flux ϕ(ω) for h = 0, i.e., in a slab-slab
configuration. It is well known that in presence of surface
modes, while approaching the near-field regime the heat flux
becomes more and more monochromatic at the resonance
frequency of the mode [3]. Even if the distance d = 1 μm does
not fully lie in this distance regime, a signature of the existence
of such surface modes is already present. Nevertheless, this is
not the case for two gold slabs, simply because the plasma
frequency for gold is located well outside the window of
frequencies contributing to the flux, defined by the Planck
function n(ω,T ). As a result, the only nonmonotonic behavior
for the flux is observed in the low-frequency region ω ∈
[1010,1013] rad/s, shown in the inset of Fig. 5(a). The spectral
flux tends to increase at small frequencies as a result of the
divergence of ε(ω) for ω → 0, this growth being at some point
compensated by the fact that each mode of the field carries an
energy h̄ω, tending to 0 for ω → 0.

Let us now focus on Fig. 5(b), where the grating heights
h = 1 μm and 1.5 μm are taken into account. We first remark
that the nonmonotonic behavior at low frequencies is still
present, but with a decreased maximum value. This feature
remains basically unchanged for all the higher values of h

shown in Fig. 5. The main feature of Fig. 5(b) is anyway
the appearance of two peaks in the spectral flux, sign of the
existence of two surface modes, whose frequency depends
on the grating height, coherently with the fact that these are
indeed spoof plasmons. The participation of these new modes
produces an overall flux amplification equal to 2 and 2.7,
respectively, for h = 1 μm and 1.5 μm. An analysis of panel
(c) of the same figure shows that increasing h produces both
a decrease of the frequency of spoof-plasmon modes and an
amplification of the peak height. As shown in Figs. 5(c) and
5(d) the scenario becomes even more interesting for higher
values of h. In this case more and more resonances enter the
window of frequencies relevant for radiative heat transfer. This
feature has been already discussed in Ref. [32] by analyzing
the heat-flux transmission coefficient for a given value of
the wave vector k. We basically observe two resonances for
h = 4 μm and 7 μm, while for h = 10 μm and 20 μm not
only do we start observing a comb of resonance frequencies,
but we clearly see that the fact that they approach each other
produces a constructive interference between them, increasing
the overall value of ϕ(ω) in the frequency range considered.
This is even more evident in Fig. 5(f), where for h = 100 μm
the frequency-comb behavior is manifest, as well as how this
eventually produces a smooth asymptotic ϕ(ω) (reached for
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FIG. 5. Spectral heat flux between two identical gratings of period D = 1 μm, filling fraction f = 0.5, infinite thickness below the grating
region, and temperatures T1 = 290 K and T2 = 310 K, placed at a distance d = 1 μm. In the different panels from (a) to (e), several grating
heights h are represented (see labels in each panel), showing the appearance and behavior of spoof plasmons contributing to the heat flux. In
panel (a), the inset show a zoom in logarithmic ω scale for small frequencies. In panel (e), the vertical red dot-dashed line correspond to the
first five resonances ωn = (2n + 1)πc/2h (n = 0, . . . ,4) predicted by the analytical model given in Ref. [57] developed in the case of a perfect
conductor.

h = 1 mm) which does not show any abrupt change with
respect to ω. This is the profile giving the asymptotic flux
amplification close to 34 discussed above and shown in Fig. 4.

It is now instructive to position these results within the
analytical description of spoof plasmons given in Ref. [57]. We
stress that this comparison has to be taken with caution, since
our results concern a real gold grating, while the analytical
results are obtained in the assumption of perfect conductor.
Within this model, the asymptotes of the surface-resonance
dispersion relation can be easily obtained as a set of resonance
frequencies ωn = (2n + 1)πc/2h. We immediately observe
that the distance between two successive resonances decreases
with h, in accordance with what we observe numerically.
Moreover, it can be checked that the simple analytical
expression of ωn not only correctly predicts the number of
modes participating to the energy exchange (i.e., those in the
region [0,5 × 1014] rad/s), but also gives a good estimate of
the location of the peaks in the spectral flux. An example is
shown in the case of h = 10 μm in Fig. 5(e). We observe that
the analytical prediction gives a much better estimate for low
frequencies. This is coherent with the fact that the dielectric
permittivity of gold diverges for ω → 0, thus approaching the
behavior of a perfect conductor.

In order to compare further our results with previous works,
we focus on a configuration studied in Ref. [67], namely the
heat transfer between two identical gratings having height
h = 4.7 μm, period D = 500 nm, and filling factor f = 0.6,
placed at distance d = 1 μm. The two chosen temperatures are
T1 = 300 K and T2 = 301 K. In Ref. [67], the authors show
the spectrum associated with this heat transfer (calculated

using the standard FMM) from which we have extracted some
points, shown in red in Fig. 6. We have applied our numerical
scheme to this scenario and obtained the black curve shown
in the same figure. It is manifest that, while sharing the

FIG. 6. Spectral heat flux between two identical gratings of height
h = 4.7 μm, period D = 0.5 μm, filling fraction f = 0.6, infinite
thickness below the grating region, and temperatures T1 = 300 K
and T2 = 301 K, placed at a distance d = 1 μm. The black solid line
corresponds to our calculation using the ASR, while the blue dashed
line gives the result obtained without inverting the sign of nondiagonal
blocks of the reflection matrix (see text for more details). The red
points are extracted from Ref. [67].
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same qualitative behavior, the two curves considerably differ
quantitatively, in particular in the region between the two main
peaks. In order to try to explain this disagreement we have
noticed that in one of their recent papers on this topic (namely,
Ref. [39]), the authors clearly state that the fact that the two
structures coincide implies that the two reflection operators
R(1)+ and R(2)− are equal. As discussed above, this is actually
not correct because of the fact that the unit polarization vector
in TM polarization depends on the propagation direction φ.
Nevertheless, we have performed a new calculation for the
same structure, using the ASR with N = 8, but omitting the
sign change we need to deduce R(1)+ from R−

u . The result
so obtained is given by the blue dashed curve in Fig. 6 and
clearly shows an impressively increased agreement with the
red points. Thus, we interpret the difference between the two
results as due to this sign change, missing in Ref. [67] and
related works. Moreover, it must be stressed that the results
presented in Ref. [67] also show an oscillatory behavior in
frequency, in particular in the region between the two main
peaks, which is completely absent in the results obtained by
exploiting the ASR, both with and without the sign change.
In our opinion, these oscillations could result from low
resolution in the integration with respect to the wave vector.

With the aim of further trying to explain the discrepancy
with Ref. [32] shown in Fig. 4, we have recalculated using the
ASR one of the points of Fig. 4, the one having h = 4.5 μm,
without the mentioned sign change. The result is the blue dot
in Fig. 4 which, even if approaching the result of Ref. [32],
still does not show a good agreement.

V. CONCLUSIONS

We have addressed the calculation of the radiative heat flux
between two gold gratings. To this aim we have made use
of the ASR, a modified version of the FMM introduced to
deal with the high dielectric contrast typical of metals. We
have shown that this technique produces a striking increase
of the convergence rate, allowing us to obtain the heat flux at

a distance of 1 μm with a truncation order as low as N = 8.
This implies a remarkable gain in computational time: to give
an idea, for the grating parameters relative to Fig. 3, the
calculation of the spectral flux at frequency ω = 1014 rad/s
takes approximately 1 minute using the ASR with N = 8
on a parallel 3.4 GHz 16-core machine, while 1.5 hours
are needed using the FMM with N = 51. Since the required
truncation order increases when decreasing the distance, the
ASR would allow us to explore smaller separations, which
would be prohibitive using the FMM.

By using this improved numerical method, we have made
a detailed study of the heat-flux amplification as a function
of the grating depth. By studying both the flux ratio and
the spectral properties, we have proved for our structure an
amplification factor going up to 34, explained in terms of
the appearance of a comb of spoof-plasmon resonances. We
have then compared our results to some previous works, and
highlighted a quantitative disagreement both in the integrated
flux and in its spectral distribution. In some cases, we have
argued that this disagreement is due to the incorrect assumption
that the reflection matrices of the two gratings coincide.

Our results show that the physics behind metallic gratings
makes them ideal candidates for the manipulation of both
the overall heat flux and its frequency components, both
possibilities being very relevant for several applications such
as thermophotovoltaic energy conversion. On a more technical
side, our discussion proves that the FMM can provide slowly
converging and unstable results in the presence of metals, while
the ASR represents a much more reliable approach even for
high dielectric contrasts. With this respect, we finally stress that
the use of ASR could also significantly improve the stability
and convergence of the results in the case of dielectric gratings,
in the regions of frequencies where they show a metallic-like
behavior, i.e., close to surface phonon-polariton resonances.
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