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S U M M A R Y
We developed and applied a method for ambient noise surface wave tomography that can deal
with noise cross-correlation functions governed to first order by a non-uniform distribution
of the ambient seismic noise sources. The method inverts the azimuthal distribution of noise
sources that are assumed to be far from the network, together with the spatial variations of the
phase and group velocities on an optimized irregular grid. Direct modelling of the two-sided
noise correlation functions avoids dispersion curve picking on every station pair and minimizes
analyst intervention. The method involves station pairs spaced by distances down to a fraction
of a wavelength, thereby bringing additional information for tomography. After validating the
method on synthetic data, we applied it to a set of long-term continuous waveforms acquired
around the geothermal sites at Soultz-sous-Forêts and Rittershoffen (Northern Alsace, France).
For networks with limited aperture, we show that taking the azimuthal variations of the noise
energy into account has significant impact on the surface wave dispersion maps. We obtained
regional phase and group velocity models in the 1–7 s period range, which is sensitive to
the structures encompassing the geothermal reservoirs. The ambient noise in our dataset
originates from two main directions, the northern Atlantic Ocean and the Mediterranean Sea,
and is dominated by the first Rayleigh wave overtone in the 2–5 s period range.

Key words: Surface waves and free oscillations; Seismic tomography.

1 I N T RO D U C T I O N

Cross-correlation of ambient seismic noise records is now com-
monly used to estimate the Green’s function of a medium between
pairs of seismic receivers (Shapiro & Campillo 2004; Snieder 2004;
Roux et al. 2005a). It has been used in various contexts and at dif-
ferent scales (e.g. Sabra et al. 2005; Shapiro et al. 2005; Yang et al.
2007; Lin et al. 2009). Although several studies have successfully
isolated and interpreted body waves in this manner (e.g. Roux et al.
2005b; Poli et al. 2012; Lin & Tsai 2013; Nakata et al. 2015),
surface waves remain the primary wave-types extracted from the
cross-correlation of ambient seismic noise (Campillo et al. 2011).

Recovering the true Green’s function between a pair of receivers
requires either a diffuse wave field (e.g. Lobkis & Weaver 2001;
Campillo & Paul 2003) or a uniform distribution of ballistic noise
sources (Snieder 2004; Roux et al. 2005a). A non-uniform distribu-
tion of noise sources in a non-diffusive medium can induce errors
in the station-to-station travel-time measurements. These errors re-
main negligible if the interstation distance is longer than a few
wavelengths and if the spatial distribution of the noise sources is
smooth (Tsai 2009; Weaver et al. 2009; Yao & Van der Hilst 2009;
Froment et al. 2010), however some studies have reported significant

biases on the surface wave velocity measurements caused by direc-
tive seismic noise, especially in the microseismic band (Shapiro
et al. 2006; Pedersen & Krüger 2007). Several methods have been
proposed to correct such biases with no prior knowledge of the
spatial distribution of the noise sources. The ‘directional balanc-
ing’ technique (Curtis & Halliday 2010) constructs a virtual source
with near-uniform directionality by decomposing the noise field in
space at one of the receivers using array processing. The ‘multi-
dimensional deconvolution’ technique (e.g. Wapenaar et al. 2008,
2011) computes a point-spread function from the correlation of
the noise field over large and regular arrays. This function con-
tains the signature of the noise source spatial distribution, which
can be efficiently removed from the observed correlation functions.
The double-beam-forming technique (Boué et al. 2014) uses array-
processing methods to isolate the wave fields from sources located
within the Fresnel zones that contribute constructively to the Green’s
function.

Dispersion measurements, especially group-speeds, are assumed
to be less accurate for station pairs closer than 2–3 wavelengths
(Bensen et al. 2007). Most studies based on the correlation of am-
bient noise for tomography therefore exclude such station pairs
(e.g. Yao et al. 2006; Yang et al. 2007; Lin et al. 2008, 2009;
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Stehly et al. 2009; Young et al. 2011), thereby reducing the lateral
resolution of tomographic images at the periods and wavelengths
required to probe deep structures. Recent case-studies have sug-
gested that the distance threshold for dispersion measurements may
be reduced down to 1 wavelength (e.g. Luo et al. 2015; Zigone
et al. 2015), which extends application of the correlation method
to small-aperture networks. The reliability of travel time measure-
ments obtained from the shortest station pairs would still need to be
verified in each case.

We propose a way to determine the Rayleigh wave velocity model
and the spatial distribution of the noise sources simultaneously, by
interpreting the noise correlation function (NCF) waveforms, in-
cluding pairs with interstation distances below 2 or 3 wavelengths.
We developed the method in order to perform local-scale ambient
noise surface wave tomography while avoiding the traveltime errors
caused by an unknown non-uniform distribution of noise sources.
We applied it to the deep geothermal field near Soultz-sous-forêts
and Rittershoffen (Alsace, France). Ambient seismic noise is par-
ticularly suited to this context because the region lacks natural seis-
micity and its geothermal operators require imaging methods that
are cheaper than active seismic surveys.

To image the first 5 km of the crust using surface waves, we
need to focus on their dispersive behaviour in the 1–7 s period
range. This requires working with ambient noise dominated by the
secondary microseismic peak that originates from oceanic sources
(e.g. Gutenberg 1936; Longuet-Higgins 1950; Kedar et al. 2008;
Sergeant et al. 2013) located in coastal or pelagic zones (e.g. Beucler
et al. 2015). Local seismic stations are installed around geothermal
sites primarily for the purpose of monitoring induced seismicity.
Their limited aperture is sub-optimal for imaging purposes and
requires us to exploit station pairs closer than 2 wavelengths.

The paper focuses on the methodology proposed to handle the
case of directive noise recorded by a limited aperture network. The
specificities of this case are explained using actual data recorded
near the two geothermal sites. We describe our procedure for de-
termining group and phase dispersion maps together with the az-
imuthal variation of the noise energy from the two-sided NCF wave-
forms. We explain the forward problem, compare it to other studies,
test the inversion procedure on synthetic data and apply it to the
observed NCFs.

2 DATA A N D P RO C E S S I N G

The data used in this study result from a combination of several per-
manent and temporary networks deployed near the geothermal sites
of Rittershoffen and Soultz-sous-forêts (Fig. 1, black stars) between
August 2009 and end of 2014. The two short-period permanent
networks (SZ and RT, Fig. 1) were the first to be installed in the
area and are managed by the Ecole et Observatoire des Sciences de
la Terre (EOST) and ES-Gothérmie (ES-G). In addition, a network
of 16 short-period temporary stations provided by the Karlsruhe
Institute of Technology (KIT) and the GeoForshungZentrum (GFZ)
was deployed within a 5 km radius around the Rittershoffen site
between May 2013 and December 2014 (KIT1 in Fig. 1).

The RT, SZ and KIT1 networks were originally designed to mon-
itor micro-seismic activity associated with the installation, stim-
ulation and exploitation of the two geothermal sites. Their long-
duration continuous recordings motivated us to perform an ambient
noise tomography study of the deep geothermal reservoir, which
is located at the interface between the basement and the sedimen-
tary cover at about 2.5 to 3 km depth (Baujard 2015). However,

Figure 1. Map of the area. Soultz and Ritt. indicate the two deep geothermal
sites of Soultz-sous-Forêts and Rittershoffen and squares represent either
permanent or temporary seismic stations from various networks (see insert
and text for details). The thin white lines correspond to roads, the white
dashed line is the French–German border and the black line is the Rhine,
which runs along a portion of the border.

the narrow aperture of these networks hampered attempts to image
the medium at reservoir depth with surface waves extracted from
NCFs. We extended this aperture in 2014 by deploying 7 tempo-
rary broad-band velocimeters on a 30 km diameter circle centred
on Rittershoffen (Fig. 1, yellow squares).

All the possible pairs of sensors for the whole network yielded
about 600 vertical-vertical NCFs computed over time periods ex-
tending from 1 to 5 yr. The pre-processing steps applied to the
hourly sequenced noise records and intended to homogenize the
seismic wavefield include instrument response correction, a 0.1 to
10 s spectral whitening and a 1-bit digitization. The resulting NCFs
form the dataset of this study and are presented in Fig. 2.

3 N O I S E D I R E C T I V I T Y A N D
I N F LU E N C E O N T H E N C F s

Despite the pre-processing steps, some characteristics of the ambi-
ent noise still show up in the NCFs. We observe asymmetry between
causal and acausal amplitudes (Fig. 2a), known to be an effect of
noise directivity (Stehly et al. 2006). The larger amplitudes ob-
served on the causal NCFs indicate that most of the noise energy
originates from the west, according to the convention chosen to
orient the station pairs.

We also observe an azimuthal variation of the NCF phases that
can be highlighted by grouping the NCFs having similar inter-
station distances and sorting each group as a function of station
pair azimuth (Fig. 2b). This two-level sorting of the NCFs reveals
shorter phase arrival times for azimuths around 0◦N and 180◦N.
The azimuthal variation of the NCF phases in the Rittershoffen
and Soultz-sous-forêts data was first described by Lehujeur et al.
(2015), who ascribed it to strong directivity of the ambient noise in
the period band dominated by the secondary microseismic peak.

To further highlight the effects of ambient noise directivity on
the NCFs, we performed a frequency–wavenumber analysis (FK)
over a time period during which all the sensors were available
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Figure 2. Noise correlation functions (NCFs) filtered between 1 and 5 s. Each line of the plot corresponds to an NCF from one single station pair, and the
lines are sorted in two different ways. (a) NCFs are sorted by increasing interstation distance; by convention, the positive part of the NCF corresponds to noise
sources located west to the station pairs. (b) NCFs are grouped by similar distance ranges (delimited by the black horizontal solid lines); each group is sorted
as a function of azimuth of the station-pair (angle from 0◦ to 180◦ measured at the western station, clockwise from north).

Figure 3. Dominant noise propagation directions and resulting effects on the near-field NCFs. (a) Frequency–wavenumber (FK) transform obtained at 2.5 s
period from the continuous vertical noise records acquired for 27 d in May 2014. During this period all the sensors of the networks were available simultaneously.
Amplitudes are expressed in decibels. The white (resp. red) dashed circle indicates the locations in the (kx, ky) domain where the fundamental mode (resp. 1st
overtone) of the Rayleigh waves is expected according to the local 1-D velocity model. A positive kx (resp. ky) value corresponds to a plane wave propagating
toward the east (resp. toward the north). The black dashed circle indicates a horizontal phase speed of 7 km s−1. The white arrows indicate two dominant
patterns in the kx − ky domain corresponding to the noise coming from back-azimuths ∼310◦N and ∼150◦N. (b) Common Shotpoint Gather: NCFs filtered
at 2.5 s of period and displayed in the space domain relative to a common virtual origin (x = 0, y = 0; white star) at time t = 5.25 s. The black and white
dashed lines indicate the two dominant wavefronts that can be identified in the NCFs. The large and small black arrows indicate the back-azimuths ∼310◦N
and ∼150◦N respectively.

simultaneously. Fig. 3(a) shows the FK transform of the noise
records at 2.5 s period. The different modes of the Rayleigh waves
are expected to show up on circles whose radii depend on the phase-
speed. The FK analysis has a marked peak for positive kx (i.e. waves
propagating eastward, Fig. 3a, large white arrow), corresponding to
nearly plane waves with a 310◦N back-azimuth. A second, less en-

ergetic peak appears for positive ky values (i.e. waves propagating
northward, Fig. 3a, small white arrow) corresponding to a 150◦N
back-azimuth. These two dominant peaks indicate surface waves
with a phase speed of about 2.7 km s−1, which is in good agree-
ment with the theoretical phase speed of the first Rayleigh wave
overtone (Fig. 3a, red dashed circle) computed using the programs
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from Herrmann & Ammon (2002) and a local 1-D velocity model
constrained by borehole measurements (Beauce et al. 1991; Cuenot
et al. 2008). Application of the FK transform at different epochs
and period ranges indicated that this noise directivity pattern was
very stable over time between 1 and 7 s period (see supplementary
materials S1).

As the NCF should tend towards the Green’s function between
each receiver pair, we can theoretically reconstruct the wave field
emitted by each station and recorded by all others (e.g. Lin et al.
2009). In Fig. 3(b), we display a snapshot of all these spatial domain
wave fields centred on a virtual common origin located at Cartesian
coordinates x = 0 and y = 0 and filtered at 2.5 s. We refer to
this kind of representation as a Common Shotpoint Gather (CSG).
In the hypothetical case of a perfectly uniform noise distribution
and laterally invariant velocity, a CSG snapshot would look like a
circular wavefield centred on the virtual source. The part of Fig. 3(b)
at x > 0 corresponds to the causal part of the NCFs (i.e. the part of
the correlation functions affected by eastward propagating noise).
We interpret this figure as the interference between two dominant
wave fronts (Fig. 3b, black and white dashed lines) propagating
away from two common sources as time increases (black arrows).
Movie S2 in the supplementary materials shows the time history of
the Fig. 3(b) CSG.

This observation confirms that our NCFs are controlled to first or-
der by the main noise propagation directions. The significant phase
distortions we observe are probably caused by the small extent of
the network compared to the wavelength, as corroborated by Tsai
(2009), Yao & Van der Hilst (2009) and Weaver et al. (2009) who
find that the effect of a non-uniform noise distribution increases
with decreasing interstation distance and increasing period. For
small aperture networks in which most station pairs are shorter than
a few wavelengths, these phase distortions become prominent and
may induce significant errors in the resulting tomographic maps.
The errors depend on the proportion of short and long station-pairs
and the orientation of the station pairs with respect to the domi-
nant source directions. Using the inner networks (RT, SZ and KIT1,
Fig. 1), Lehujeur et al. (2015) showed that the strong phase distor-
tions can cause errors on tomographic maps of up to 30 per cent at
2 s period. In the following we address the feasibility of correct-
ing this first order effect to extract the correct spatial variation of
Rayleigh wave velocity.

Rejecting station pairs with an interstation distance shorter than
2 or 3 wavelengths would reduce the effect of the phase distortions
on the tomographic maps, but would severely decrease the amount
of available data. In our case, rejecting station pairs closer than
two wavelengths would remove 80 per cent of the dataset at 3 s of
period (wavelength ∼7.3 km) and 96 per cent at 4 s (wavelength
∼10.4 km).

Instead of rejecting data, we propose to interpret all the NCFs
by taking the noise directivity into account. To do so, we need
to determine the spatial distribution of the noise and release the
hypothesis that the NCFs are equal to the Green’s function of the
medium. This procedure is similar to how Yao & Van der Hilst
(2009) inverted for phase speed anomalies, azimuthal noise intensity
and azimuthal anisotropy. Their study was restricted to station pairs
longer than the two-wavelength limit and they worked in a period
band between 10 and 30 s, where the ambient noise has different
characteristics than in the 1–7 s range used here. They concluded
that the noise distribution had only minor effects on their phase
dispersion maps. In our case, however, the azimuthal distribution of
the noise energy dominates the NCFs (Figs 2 and 3) because of the
small aperture of the network.

4 I N V E R S I O N P RO C E D U R E

In this study, we invert the two-sided noise correlation waveforms
to determine simultaneously the spatial noise distribution and the
Rayleigh wave group and phase dispersion maps at different periods.
This procedure ensures safe velocity measurements by separating
the effects of a heterogeneous medium from those caused by a
non-uniform source distribution. It also avoids dispersion curve
computation and picking on each station pair, which in turn reduces
analyst involvement in the data processing and mitigates the risk of
misinterpretation.

4.1 Forward problem

4.1.1 Statement of the forward problem

This section describes how we model the correlation waveforms
for each station pair of a network, for a known velocity model and
spatial distribution of noise sources.

To solve this problem we assume that all noise sources are lo-
cated at the surface and far from the network and that the vertical
component of the seismic noise is dominated by unimodal Rayleigh
waves in the far-field domain. Under these assumptions - the valid-
ity of which is discussed in Section 5—a simplified expression of
the Green’s function can be written as:

G (rA, rS, ν) = e−γ (ν) S Ae
−i

(
2πν S A

c(ν) +ϕ0

)
√

2πh(ν)S A
(1)

where the subscripts S and A denote the source and receiver located
at coordinates rS and rA respectively and separated by a distance
S A = ||r S − r A||, ν is the frequency, c(ν) is the apparent phase
dispersion velocity along the SA path, γ (ν) is a positive real function
controlling the intrinsic attenuation, h(ν) represents the thickness of
the layer affected by the surface wave (the denominator corresponds
to the geometrical attenuation of a cylindrical wave), and ϕ0 is the
phase at the source.

From this expression for the Green’s function, we derive a sim-
plified expression of the correlation function (see Appendix A for
intermediate steps):

CAB (ν) = 1

2πh(ν)

∫ π

0
H (ξ, ν) e4iπνa cos ξ

c(ν) dξ (2)

where a is half the distance between the receivers A (eastern station)
and B (western station) and ξ is the hyperbolic coordinate (ranging
from 0 to π and measured counterclockwise from the A side of the
station pair) controlling the curvature of a hyperbola whose focus
points are the two stations A and B (ξ = π/2 is the perpendicular
bisector of the AB segment, ξ = 0 (resp. ξ = π ) corresponds to the
hyperbola whose branches are merged with the path joining the two
stations on the A (resp. B) side of the station pair, see Fig. A1 in
Appendix A). The exponential term of eq. (2) is referred to as the
interferometric phase. H(ξ, ν) is called the hyperbolic contribution
and represents the integrated amount of energy contributed to the
correlation function from sources located along the hyperbola of
parameter ξ . In the case of a uniform noise distribution, Snieder
(2004) used the stationary phase integration technique to approxi-
mate eq. (2) by its behaviour near the angular domains where the
interferometric phase is stationary (Fresnel zones). In this study, we
need to account for the azimuthal distribution of the noise energy
that is carried by the ξ -dependency of function H, so we chose
to solve eq. (2) by numerical integration over ξ using a classical
trapezium approach.
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Figure 4. Synthetic cross-correlation functions obtained by numerical integration of the weighted interferometric phase. Left part: Imposed uniform (black)
and non-uniform (red) distributions of the noise energy as a function of the hyperbolic parameter ξ . Central part: Interferometric phase weighted by the
non-uniform noise distribution, displayed in the time domain and derived temporally (i.e. along the horizontal axis). The green bars correspond to the angular
width of constructive interference area at different frequencies (Fresnel zones to within a quarter of period). Lower part: Synthetic correlation functions
obtained for the two noise energy distributions by integrating the interferometric phase over the ξ axis. Insert: Phase dispersion curve used for this example.
The interstation distance is 2a = 15 km and the period is bounded to the 1–5 s interval. In this specific example, the hyperbolic contribution is assumed to be
independent of the frequency.

As we assume that the noise sources are located far from the
network, the spatial distribution of the noise energy can be reduced
to a single azimuthal function (a similar assumption is proposed
by Yao & Van der Hilst (2009) and referred to as a plane wave
approximation). Under this assumption, we can write the hyperbolic
contribution Hα for a pair oriented with an angle α measured at the
western station clockwise from north as (see Appendix A for further
details)

Hα (ξ, ν) = A (α − ξ, ν) + A (α + ξ, ν) (3)

where function A(θ, ν) is the azimuthal noise distribution in a north
reference system and θ is the backazimuth measured clockwise from
north.

Eq. (2) allows us to compute synthetic correlation waveforms (i.e.
the CAB functions for every station pair of the network) by summing
the contribution of the noise sources located on hyperbolas whose
focal points are the receiver pairs. It represents the forward problem
of our study and provides a non-linear relation between the model
parameters (i.e. the azimuthal distribution of noise energy A(θ, ν)
and the phase dispersion curve c(ν)) and the data domain (i.e. the
correlation waveforms along each path). Fig. 4 shows an application
of eq. (2) in the time domain for synthetic parameters. We generate
a two-sided correlation function using a given dispersion curve
(Fig. 4, insert) and either a uniform (left side, black curve) or a
non-uniform (left side, red curve) azimuthal distribution of noise
energy. This example illustrates some of the effects highlighted on
the observed NCFs: asymmetry of the causal-acausal amplitudes,

distortion of the spectral content and frequency-dependent shift of
both phase and envelope of the correlation waveform.

4.1.2 Validation of the forward problem

To test the reliability of the correlation waveforms modelled by the
forward problem described above, we generated a set of synthetic
correlation functions from an imposed azimuthal noise distribution
(Fig. 5, blue curve). We computed a time shift value by compar-
ing each correlation waveform to a reference correlation function
obtained with the same amount of energy coming from all direc-
tions. This time shift represents the error on the Rayleigh wave
phase arrival time when neglecting the effect of a non-uniform
noise distribution. It is measured by computing the difference in
the instantaneous phase at the group arrival time. The comparison
was done at 2 s period by pre-filtering the two correlation functions
using a Gaussian filter applied in the frequency domain. We then
compared our measurements (Fig. 5, red and black dots) to the time-
shifts predicted using the formula from Weaver et al. (2009) and
Froment et al. (2010) (Fig. 5, solid red and black curves). We first
measured the time shift for all possible orientations of a hypothetic
station pair, keeping the interstation distance constant (2.6 times the
wavelength, Fig. 5a). The observed and predicted time-shifts are in
good agreement for all the orientations of the station pair and remain
low (<4 per cent) since the azimuthal noise distribution imposed is
smooth and the interstation distance is relatively long (Weaver et al.
2009). We also analysed the influence of the interstation spacing by
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Figure 5. Comparison between noise correlation time error as predicted using the formula by Weaver et al. (2009) (solid curve labelled as ‘predictions’) and
the time-error measured using our synthetic noise correlation functions (dots labelled as ‘measurements’) for a given synthetic azimuthal noise distribution
(blue curve, expressed in arbitrary units). In this application, the period and phase velocity are 2 s and 1.94 km s−1 respectively. (a) Effect of the station pair
orientation for a fixed interstation spacing 2a = 10 km = 2.6λ. Red dots (resp. black dots) correspond to the time shifts measured on the acausal (resp. causal)
part of the correlation function for a hypothetical station pair whose orientation varies from 0◦ (south–north) to 180◦ (north–south). The time shift (δt) is
measured at the wave arrival time (t). The black dashed line indicate the pair orientation used for subplot b. (b) Effect of the interstation distance relative to the
wavelength (2a/λ) for a fixed orientation of the station pair (260◦N). Measurements (black dots) and predictions (black solid curve) are shown for the causal
side of the correlation function. The black dashed line indicate the distance used for subplot a.

fixing the pair orientation to 260◦N and testing various interstation
distances from a fraction of a wavelength to 5 wavelengths (Fig. 5b).
The test confirms that the phase-error due to a non-uniform source
distribution tends to zero when increasing the interstation distance.
Below one wavelength, our observations are not consistent with
theoretical predictions. This is due to the fact that the formula by
Weaver et al. (2009) used to predict the time shifts is not valid for
distances too short relative to the wavelength (their formula have
a singularity for distances going to 0). In addition, our ‘measure-
ments’ are difficult to interpret for short distances since they are
obtained by picking the phase difference near the zero correlation
lag-time. In the rest of this study, we interpret the whole correlation
waveforms and not only the instantaneous phase at the wave arrival
time. This procedure is more robust for short interstation distances.
We always apply similar filters to synthetic and observed waveforms
before computing the waveform misfit function.

4.1.3. Parametrization

The full correlation waveform allows us to determine both group and
phase velocity of the Rayleigh waves. Because both azimuthal noise
distribution and Rayleigh wave velocities are frequency dependent,
we chose to solve an inverse problem for each of several periods in
the range 1–7 s. Each inversion is bounded to the neighbourhood of a
period 1/ν0 using a Fourier domain gaussian taper (e.g. Bensen et al.
2007, eq. 6 with parameter α = 15) applied to both the synthetic
and the observed NCF waveforms. Our model parameters are given
by a vector m whose components correspond to the Rayleigh wave
group and phase velocity in the N cells of a grid and to the amplitude
of the noise energy in M directions.

(1) The first N components of the model vector (noted c0, . . . ,
cN−1) contain the Rayleigh wave phase velocity at period 1/ν0 in
each cell of the grid.

(2) The next N components of the model vector (noted
l0, . . . , lN−1) contain to the first derivative of the dispersion curve
at period 1/ν0 in each cell. In the neighbourhood of frequency ν0,
we assume that the phase dispersion curve (c(ν)) can be linearly
approximated in the decimal logarithmic domain (log(ν), log(c)):

c(ν) ≈ 10l(ν0)(log(ν)−log(ν0)) +log(c(ν0)) where l (ν0) = d log c

d log ν

)
ν0

= ν0
c′ (ν0)

c (ν0)
(4)

The group velocity at period 1/ν0 can be directly inferred from
the pair of parameters (c(ν0), l(ν0)) using:

u (ν0) = 2π
dν

dk

)
ν0

= c (ν0)

1 − ν0
c′(ν0)
c(ν0)

= c (ν0)

1 − l (ν0)
(5)

where k(ν) = 2πν/ c(ν) is the wave number. The group velocity in
the jth cell of the grid is thus u j = c j/ (1 − l j ).

(3) The last M components of the model vector (noted A0, . . . ,
AM−1) contain a discretized version of function A(θ, ν0) for theta
ranging from 0 to 2π and represent the amount of energy received
by the network from each of the M directions.

We end up with model space of dimension 2N + M. We as-
sume that all the parameters are independent and therefore that the
covariance matrix on the model parameters is diagonal. The effec-
tive velocity parameters encountered along the path joining the ith
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Tomography with non-uniform seismic noise 199

Figure 6. Parametrization of the dispersion maps. (a) Spatial coverage of the network obtained from the cumulated length of interstation rays crossing each
pixel, in km−1. (b) Azimuthal coverage of the network defined as the complementary angle to the largest azimuthal gap found in each pixel, in degrees. (c)
Sum of both the normalized spatial and the azimuthal coverage maps as an indicator of the ‘network quality’. This indicator is smoothed laterally and used to
place the Voronoı̈ seeds (white dots) that control the mesh (solid lines).

station pair of the network are obtained by summing the contribu-
tions of the structures along the interstation ray-path⎧⎪⎪⎨
⎪⎪⎩

ci (ν0) =
∑

j di j∑
j di j /c j (ν0)

li (ν0) =
∑

j di j l j (ν0)/c j (ν0)∑
j di j c j (ν0)

(6)

where di j is the fraction of the ith interstation ray that crosses the
jth cell, expressed in distance units.

To minimize the number of cells of the grid, and thus the num-
ber of parameters in the model, we use an irregular Voronoı̈ mesh
constructed from the spatial and azimuthal coverage of the network.
We define spatial coverage as the cumulated length of interstation
rays that cross a given pixel of the map per surface unit (expressed
in km−1, Fig. 6a). We define azimuthal coverage as the complemen-
tary angle of the largest azimuthal gap found in each pixel (ranging
from 0 to 180 degrees, Fig. 6b). These two functions are normal-
ized to their maxima and averaged to give us a ‘network quality
map’ (Fig. 6c, colour scale) that is smoothed and used to place
the Voronoı̈ seeds (Fig. 6c, white dots) that control the size and
density of Voronoı̈ grid cells (Fig. 6c, solid lines). The outer cells
are bounded by an 18 km radius circle centred on the Rittershoffen
site. The resulting grid has 81 cells (N = 81) with surfaces ranging
from 0.7 to 84.4 km2. Most of the small cells are clustered in the
central part of the map, where the network quality indicator is high
(>0.25).

4.2 Inverse problem, application to synthetic data

4.2.1 Inverse problem

The inverse problem corresponding to the forward problem given
by 2 is nonlinear. We define the a posteriori probability density
function (PDF) as

σM (m) =

exp

(
− 1

2

(
I−1∑
i=0

(
g(m)i − dobs

i

σi

)2

+
N−1∑
j=0

Sj

S

(
c j − cprior

j

σc

)2

+
N−1∑
j=0

Sj

S

(
l j − lprior

j

σl

)2

+
M−1∑
k=0

(
Ak − Aprior

k

σA

)2
))

(7)

With dobs a length I data vector made of all the samples of the
NCFs filtered around frequency ν0. σi is the uncertainty associated

to the i th component of dobs taken as the standard deviation of the
NCF in the coda part, m is the model vector described in the previous
section, g(m) is a vector of synthetic data obtained from eq. (2) and
filtered in the same way as the real data, cprior

j , lprior
j and Aprior

k are
the components of the a priori model and σc, σl and σA are the
corresponding uncertainties (their adjustment allows us to control
the regularization of the inverse problem), Sj denotes the area of
the j th cell and S is the total area of the grid. The quadratic misfits
on the c j and l j parameters are weighted by the Sj/S coefficients
because the parameter space is not a normed space due to the
irregular mesh (e.g. Spakman & Bijwaard 2001). We search for the
maximum of σM using an iterative gradient method: at each iteration
we compute the gradient of σM and we perform a grid search along
the steepest ascent direction. This method is fast and can handle
high-dimensional problems, however, the solution might depend on
the model chosen to initiate the iteration (referred to as initial model
in the following).

As our NCFs are mostly controlled by the spatial distribution
of the noise sources (Figs 2 and 3), we decompose the inversion
into two steps: in step 1, we reduce the grid to a single cell (i.e.
an homogeneous model; N = 1), which means that the velocity
model has only two parameters corresponding to the average phase
and group speed, while the noise model has 36 parameters that
are free to vary (M = 36). The solution of this step provides a
preliminary noise model as well as the average phase and group
velocity of the region. These parameters are used as initial model
and prior information for step 2 of the inversion, in which the grid
is refined into the N = 81 Voronoı̈ grid cells (Fig. 6c). During
step 2, both the noise parameters and the velocity parameters are
adjusted to maximize the a posteriori PDF. This second inversion
step estimates the spatial variations of the Rayleigh wave velocity
around the average homogenous model and refines the preliminary
noise model.

4.2.2 Synthetic test

We tested the two-step inversion procedure at period 4.5 s on a set of
synthetic NCFs generated from a synthetic noise distribution model
(Fig. 7, blue curve) and a random group and phase velocity model
(Figs 8a and b). These NCFs were obtained from the forward prob-
lem presented in Section 4.1 using the same network configuration
as for real data (Fig. 1). A white Gaussian noise with a standard
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200 M. Lehujeur et al.

Figure 7. Synthetic noise model and results of the inversion tests A and
B at 4.5 s of period. The corresponding dispersion maps are presented in
Fig. 8. The corresponding data are presented in Fig. 9.

deviation of 1 per cent of the maximum amplitude was added to
them to simulate measurement inaccuracies (Fig. 9a).

The objectives of the synthetic test were (1) to estimate the error
made on the velocity maps if the noise model is constrained to
remain uniform, (2) to evaluate if our network can distinguish the
effects caused by the non-uniform noise distribution from those
controlled by the perturbations of the velocity model and (3) to test
the influence of the initial model on the stability of the solution.

We performed two inversion tests (referred to as ‘A’ and ‘B’) on
the same synthetic data set. In inversion ‘A’, the noise model was
constrained to remain uniform in azimuth by using a single noise

parameter (i.e. M = 1). This procedure forced the inversion to con-
verge toward a solution in which, the same amount of energy was
coming from all directions, therefore simulating the assumption of
an azimuthally uniform noise distribution. In inversion ‘B’, the noise
model was subdivided into 36 parameters (M = 36) to account for
azimuthal variations of the noise energy. This inversion test corre-
sponded to the method developed in this study. The parametrization
of the velocity model was identical for both synthetic tests A and
B (N = 81). The noise and velocity models obtained after inver-
sion tests A and B are presented in Figs 7–9 for comparison with
the synthetic models used to generate the synthetic data set. For
both inversions A and B, we tested several initial models with no
significant impact on the solution. Inversion test B explained the
expected noise model (Fig. 7, green histogram). In inversion test
A, the amplitude of the noise converged to the average amount of
energy of the expected model (Fig. 7, red histogram) since the noise
model was restricted to a single-parameter.

The inner part of the group and phase dispersion maps obtained
for both inversion tests A and B are presented in Fig. 8. The veloc-
ity values obtained in each cell were attributed to the centre of the
Voronoı̈ cells and smoothed laterally using a linear interpolation for
graphical display. It appears that constraining the noise model to
remain uniform in azimuth (inversion A, Figs 8c and d) induced se-
vere errors in the velocity model (velocity anomalies with opposite
signs or over-estimated amplitudes). Allowing azimuthal variations
of the noise energy allowed us to recover the overall characteristics
of the expected velocity model (inversion B, Figs 8e and f). The
solution for phase speed dispersion was more accurate (Fig. 8e)
than for group speed dispersion (Fig. 8f). The good quality disper-
sion maps from inversion B confirm that the correlation waveforms
remained sensitive to the spatial variations of the Rayleigh wave

Figure 8. Inner part of the synthetic dispersion maps and solutions of inversion tests A and B at 4.5 s of period. (a, b) Synthetic noise phase and group speed
dispersion maps. The solid lines correspond to the Voronoı̈ grid. (c, d) Results of inversion A in which the noise model is kept azimuthally uniform. The maps
are smoothed by linear interpolation of the velocity values in each cell of the grid. The contour lines reproduce the expected velocity anomalies from maps (a)
and (b) for comparison. (e, f) Results of inversion B. The red dots correspond to the stations.
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Tomography with non-uniform seismic noise 201

Figure 9. Synthetic and inverted noise correlation functions at 4.5 s of period. The NCFs are sorted as a function of the interstation distance and azimuth. (a)
Synthetic dataset obtained from the noise model of Fig. 7 (blue curve) and the velocity model of Figs 8(a) and (b). A white Gaussian noise is added to the
waveforms to mimic measurement inaccuracies. (b, c) Data sets obtained from the solutions of inversion tests A and B respectively.

velocity despite the highly non-uniform noise model imposed and
the small scale of the network.

If we forward model NCFs from the solutions of inversion A and
B (Figs 9b and c), we notice that inversion B explains the synthetic
data (Fig. 9a) much more accurately. In particular, the causal-acausal
asymmetry of amplitude, the phase distortions and the azimuthal
variations of amplitude are well explained by inversion B, while
these details cannot be explained by inversion A because it assumed
a azimuthally uniform source distribution.

The synthetic tests above show that joint inversion of the noise
and velocity parameters using our two-step procedure can safely
estimate the group and phase dispersion maps in non-uniform noise
conditions, despite the reduced aperture of the network compared to
the Rayleigh wave wavelength. They also show that we need to take
the non-uniformity of the noise model into account to estimate the
dispersion maps correctly given our network configuration. This is
particularly true for the longest periods (above 3 s). At shorter peri-
ods (synthetic tests at 2 s period are presented in the supplementary
materials), the error on the dispersion maps diminished, however
inverting both the speed anomalies and the azimuthal distribution
of the noise energy improved the accuracy of the dispersion maps
over inverting speed anomalies alone.

The synthetic test showed that there may be a trade-off between
the noise model and the velocity model, meaning that an incorrect
noise model may induce incorrect velocity estimations. This effect
can be more or less pronounced depending on the network config-
uration and the targeted period. For the configuration of this study,
it is strong enough to justify the need for joint inversion of the
noise and velocity parameters. The solutions of the synthetic tests
were only weakly dependent on the initial model, which means that
the azimuthal and spatial coverage of the network are sufficient to
permit unambiguous determination of phase and group speed mod-
els and azimuthal distribution of noise sources. The outer regions
of the map are less well resolved because fewer station pairs were
available and the cells are larger.

4.3 Application to observed data

We applied our procedure to the observed NCFs at 9 periods chosen
between 1 and 7 s. In the first step of the inversion we estimated
the average phase and group velocity as well as a preliminary noise
model at each period (Fig. 10).

The noise models obtained for all the periods indicate a dom-
inant direction of about 310◦N, i.e., the Northern Atlantic Ocean
(Fig. 10, polar histograms). This dominant direction varies slightly
with period from about 315◦N at 1 s to 280◦N at 3.7 s. It is consistent
with the results of the FK transform performed on the noise records
(Fig. 3a and Supporting Information). Near 1 s period (Fig. 10, case
i), the relative amount of energy received by the network from the
northwest diminishes and the azimuthal distribution flattens out.
This might be caused by the emergence of other sources such as the
long period part of the local to regional anthropogenic noise (e.g.
McNamara & Buland 2004; Groos & Ritter 2009) or seismic sources
activated by wind (e.g. Withers et al. 1996; Bonnefoy-Claudet et al.
2006).

For periods below 2 s and above 5 s, the dispersion parameters
converged toward the fundamental Rayleigh wave mode predicted
by the local 1-D velocity model (see letters a, b, g, h, i and curve
SZ0 in Fig. 10, left side). On the contrary, dispersion parameters
obtained between 2 and 4 s were closer to the first overtone (letters
c, d, e and f and SZ1 curve). A sharp velocity offset was observed
near 4 s period (i.e. between b and c, Fig. 10). These results suggest
that the first overtone dominated the NCFs between 2 and 4 s, as
confirmed by performing a slant stack on the time domain NCFs
(Fig. 10, left side, colour scale). It is likely that the first overtone
dominated the NCFs in this period range because it also dominated
the ambient seismic noise itself as revealed by the FK transform (see
Fig. 3a and supplementary materials). We interpreted the velocity
offset near 4 s period as a change in the relative weight of the
two modes occurring near the cut-off period of the first overtone
predicted by the 1-D local velocity model (upper bound of the SZ1
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202 M. Lehujeur et al.

Figure 10. Results of the first inversion step applied to the real NCFs at nine periods from 1 s to 7 s (denoted by letters a to i). During this step, the velocity
model is assumed to be laterally homogeneous and the mesh has only one cell. Left side: Average phase speed (blue dots) and first derivative of the dispersion
curve (blue lines) obtained for each period. SZ0, SZ1 and SZ2 denote the theoretical dispersion curves of the fundamental and the two first overtones of the
Rayleigh waves computed from the local 1-D velocity model. The background colour scale represents the average phase speed measured via slant-stack on
the NCFs at different periods. A value of 1 means good phase coherence of the NCFs. Right side: Azimuthal distribution of the noise energy obtained at each
period (T) in arbitrary units, the same scale is used for all the polar histograms.

curve). Based on these observations, we interpreted the velocity
maps obtained between 2 and 4 s period (letters c, d, e and f) as
corresponding to the first overtone of the Rayleigh wave, and those
at other periods (letters a, b, g, h and i) as corresponding to its
fundamental mode.

The synthetic wavefield predicted from this first step agrees with
the observed NCF phases and relative amplitudes. The compar-
ison between the observed and synthetic wavefields at 2.5 s pe-
riod is presented in Fig. 11 using CSGs (common Shotpoint gath-
ers) at different times. The synthetic correlation functions fit the
data down to a fraction of a wavelength (see black dotted cir-
cles spaced by one wavelength). This confirms that the forward-
problem theory we used in this study to model the NCFs remains
valid for short paths. Additionally, we show that the overall char-
acteristics of the NCFs can be explained during the first step of
the inversion despite assuming a laterally homogeneous velocity
model, which confirms that our NCFs were indeed controlled to
first order by the noise directivity. Based on the results of the
synthetic tests, we infer that the information concerning the spa-
tial variations of the Rayleigh wave velocity (which will be ex-
tracted in the second step of the inversion) is contained in the
second order discrepancies between the observed and the modelled
datasets.

During the second step of the inversion, we released the assump-
tion of a laterally homogeneous velocity and split the grid into 81
Voronoı̈ cells. We set the a priori phase and group-velocity models
to those obtained from the first step of the inversion. We regu-
larized the inverse problem by adjusting σc and σl in eq. 7 (the
uncertainties on the prior dispersion parameters). Optimal values of
these parameters were determined using a grid-search approach (see
Appendix B).

The phase and group dispersion maps obtained after the two
inversion steps for periods 6.7, 2.5 and 1.1 s (letters a, e and i
on Fig. 10) are presented in Fig. 12. The maps were smoothed
laterally using the same parameters as for the synthetic inversion
test (Fig. 8). The relative variations of the phase and group velocities
are similar. A velocity gradient from the northwest to the southeast
indicates decreasing velocities towards the central part of the Rhine
Graben. This trend is particularly pronounced for dispersion maps
dominated by the first overtone (e.g. maps e in Fig. 12). For the
shortest periods dominated by the fundamental mode (e.g. maps i in
Fig. 12), we observe short scale variations of the velocity, including
a +5 per cent speed anomaly located under Soultz-sous-forêts and
a −10 per cent located west of the Rittershoffen fault. Although
no constraint is applied to the noise model parameters during the
second inversion step (i.e. σA is infinity in eq. 7), the final noise
models (not shown) are similar to those from the first inversion step
to within a constant factor.

5 D I S C U S S I O N

We have developed a method that allows us to perform noise-
correlation-based imaging in situations in which there is a strong
sensitivity to the azimuthal distribution of noise sources, and ap-
plied it successfully to a small-aperture network. The proposed
approach was motivated by the need to exploit NCFs from station
pairs closer than two wavelengths. These data, although significantly
influenced by the noise directivity, contained useful information for
the construction of the dispersion maps. Including short station
pairs in the data processing increases the lateral resolution. Further-
more, the methodology presented allows extending the upper limit
of the observable period range and thus the sensitivity to the deep
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Tomography with non-uniform seismic noise 203

Figure 11. Comparison between observed NCFs at 2.5 s of period (left columns) and inverted NCFs after the first step of the inversion (right columns). The
NCFs are presented as Common Shotpoint Gather at different times. Thin dotted circles indicate the distance with respect to the source in wavelength units.
The thick black dashed circle corresponds to a distance of 3 times the wavelength of the Rayleigh wave at 2.5 s.

structures. In our case, we were able to interpret NCFs at periods
up to 7 s, while a two-wavelength distance cut-off would have re-
stricted that limit to about 3 s. We discuss in the following the
specific assumptions made.

We assumed that the noise sources were located along a horizon-
tal plane and sufficiently far from the network so that their spatial
distribution could be reduced to a 1-D azimuthal function. This
assumption arose because the secondary microseismic peak domi-
nates the ambient seismic noise at periods between 1 and 10 s (e.g.
Stutzmann et al. 2000). In northern Alsace, the main direction of the
noise (∼310◦N) observed in both the noise records and the NCFs
corresponds to the northern Atlantic, which has been identified as
the origin of most of the secondary microseismic noise recorded

in Europe and north America (Gutenberg 1936; Kedar et al. 2008;
Sergeant et al. 2013). The secondary incoming direction of the
noise (∼150◦N) might be related to sources in the Mediterranean
Sea or in the Indian Ocean. At periods below 1 s, the assumption of
a azimuthal distribution of far-field noise sources would no longer
have been valid since the noise at these periods is dominated by
more local sources such as anthropogenic activity, especially in
such densely populated zone (Lehujeur et al. 2015).

We also assumed that the Green’s function was unimodal, that is,
dominated either by the fundamental mode or by a single overtone
depending on the frequency. This assumption seems reasonable be-
cause the ambient seismic noise and the correlation functions were
clearly dominated by a single mode for all the 9 periods studied as
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204 M. Lehujeur et al.

Figure 12. Phase and group dispersion maps (upper and lower line respectively) obtained after inversion step 2 for periods 6.7 s (column labelled ‘a’ as in
Fig. 10), 2.5 s (column ‘e’) and 1.1 s (column ‘i’). Maps a and i are attributed to the fundamental mode of the Rayleigh waves; maps e are attributed to the first
overtone. Amplitudes are expressed in per cent relative to a reference speed (cref, and uref). The black dots correspond to the stations, the white stars marked S
and R indicate the site of Soultz-sous-forêts and Rittershoffen respectively. The horizontal white bars indicate the wavelength of the Rayleigh waves at each
period. Boundaries of the Voronoı̈ cells are shown as dotted lines. The solid black lines indicate the faults at top basement (from Baillieux et al. 2011). The
purple line delineates the area (non-shaded), where the network quality exceeds 0.25 (Fig. 6c).

proven by the FK and slant-stack analyses (Fig. 3a, supplementary
materials and Fig. 10 left). The average phase and group veloc-
ities observed were consistent with theoretical dispersion curves
computed from the local 1-D velocity model. More specifically,
the velocity values were closer to the fundamental mode below 2 s
and above 5 s and to the first overtone between 2 and 4 s. The
sharp offset in the phase-dispersion diagram (Fig. 10, left) occurred
near the expected cut-off period of the first overtone according
to the local 1-D velocity model, further corroborating our modal
interpretation.

We used the ray approximation to locate the velocity anoma-
lies, that is, we attributed the observed velocity variations to the
structures encountered along the interstation paths (eq. 6). This as-
sumption is theoretically valid when the scale of the heterogeneities
is large relative to the wavelength studied and applies ideally to
infinite frequency signals. Here, we worked at finite frequency but
the scale of the velocity anomalies observed remains large relative
to the wavelength (Fig. 12). The velocity anomalies were spread
over broader areas than the ray-paths because of the size of the grid-
cells and the regularization of the inverse problem. These factors
smoothed the lateral sensitivity, thus approximating the use of a
more complex finite frequency sensitivity kernel projected onto the
discretized grid.

The influence of the noise distribution decreases with increas-
ing spacing as originally demonstrated by Weaver et al. (2009).
As the effects of noise directivity are strongest for low interstation
distances, the short aperture of our network compared to the wave-

length explains why the azimuthal biases dominate the NCFs. It
would seem that the shortest station-pairs of the network mainly
constrain the noise model, and that the long station-pairs are more
sensitive to the velocity model. The case of station pairs with inter-
mediate distances (between 1 and 3 wavelengths) seems to be more
complex since the NCFs are sensitive to both the noise and the veloc-
ity models. For that pairs, the relative sensitivity to the noise/velocity
parameters also depends on the complexity of the noise distribution
and the orientation of the station pairs. For instance, in the extreme
case of a plane wave emitted by a single source at infinite distance,
the station pairs that are orthogonal to the propagation direction
are weakly sensitive to the velocity parameters since the wavefronts
reach the two stations at the same time whatever the velocity be-
tween them. The pairs that are aligned with the noise source (i.e.
having the noise source within their Fresnel constructive zone) are
mostly sensitive to the velocity parameters and only weakly sensi-
tive to the location of the source. For the proportion of long station
pairs to be sufficient to constrain the velocity model, the network
aperture should not be too small. The stability and accuracy of the
solution seem to rely strongly on the spatial and azimuthal coverage
of the network, which can be examined using a synthetic approach.
We have shown that our network was indeed able to determine both
the noise and the velocity models unambiguously in the targeted pe-
riod range. The outer regions of the network were covered by large
Voronoı̈ cells because of low spatial and azimuthal coverage, and
consequently returned poorer resolution and lower relative velocity
anomalies.
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Figure 13. Comparison between the group dispersion maps obtained at period 3 s with the two-step inversion procedure that takes the noise distribution into
account (a) and with a more standard approach (b). Group-velocity variations are given in per cent relative to a reference velocity of 1.81 km s−1. The black
ellipse indicate a positive velocity anomaly interpreted as a probable azimuthal effect caused by a local dominance of station pairs orthogonal to the main noise
direction (∼310◦N).

To further show the usefulness of taking the noise directivity into
account, we compared the obtained group dispersion map to a more
standard approach at period 3 s (after rejecting the pairs shorter than
2 wavelengths, Fig. 13, see supplementary materials for details).
The differences between the two approaches are significant. The
lower amplitudes observed in the ‘standard’ case (Fig. 13b) are
interpreted as a consequence of the uniform-noise assumption in
which, most of the travel time measurements cannot be explained
by the inversion because of the azimuthal biases. Such biases forced
us to use relatively high regularization constraints. The SW-NE
positive anomaly (Fig. 13b, black ellipse) is understood as the result
of a local dominance of station pairs oriented in that direction (i.e.
perpendicular to the Atlantic noise). Except from that pattern, the
sign of the velocity anomalies observed with both approaches is
relatively consistent.

At periods below 2 s (Fig. 12i), the short scale velocity anomalies
we recovered probably resulted from heterogeneities inside the sed-
imentary cover (e.g. local horsts and grabens) since the fundamental
mode Rayleigh wave at these periods is mostly sensitive to structures
within the first kilometre from the surface. The +5 per cent velocity
anomaly observed under the region of Soultz-sous-forêts might have
been caused by a local Horst structure (Renard & Courrioux 1994;
Genter et al. 2010; Baillieux et al. 2011; Dezayes et al. 2011). The
sharp velocity contrast observed at Rittershoffen (Fig. 12i, label R)
coincides with a westward dipping normal fault (Baillieux 2012;
Baujard 2015) with lower velocities to the west.

The significant velocity gradient observed at periods above 2 s
(Figs 12a and e; Fig. 14a) seems to be correlated to first order
with the thickness of the sedimentary cover that increases from
the Vosges massif to the northwest, towards the central axis of the
Upper Rhine Graben to the east (Fig. 14b; Baillieux 2012). At these
periods Rayleigh waves are sensitive to a thick layer extending down
to the granitic basement. At Soultz-sous-forêts (Fig. 14b, label S),
the granitic basement depth is about 1.5 km (e.g. Cautru 1988;
Genter & Traineau 1996), while it is about 2.5 km at Rittershoffen
(Fig. 14b, label R; Baujard 2015). The two sites are located on
horst structures bounded to the west by westward dipping faults

that probably contribute to positive thermal anomalies at the top
of the basement (Baillieux et al. 2014, Fig. 14c). The change in
the sign of the speed anomaly occurs near Rittershoffen (Fig. 14a),
and coincides with an increase of the thickness of the low density
Cenozoic sediments as shown from gravity survey (Rotstein et al.
2006; Fig. 14c, mark 3, late Oligocene layer).

6 C O N C LU S I O N S

We analysed the ability to perform ambient noise surface wave to-
mography at a local scale, in the case of directive seismic noise
combined with a limited network aperture. Using data acquired
near the geothermal sites of Soultz-sous-Forêts and Rittershof-
fen, France, we confirmed that such conditions induce signifi-
cant distortion of the phase of the NCFs and prevent operators
from applying the usual procedures for ambient noise surface wave
tomography.

We overcame this issue by developing a two-step inversion of the
NCF waveforms that could mitigate the effects of the non-uniform
source distribution and produce phase and group dispersion maps
of the area as well as a model of the azimuthal distribution of the
noise energy. We confirmed the importance of taking the spatial
distribution of the noise sources into account for ambient noise
tomography on local networks using synthetic tests.

The ambient seismic noise recorded in our target region in the
period range 1 s–7 s originated from two dominant directions: the
Northern Atlantic (310◦N) and the Mediterranean Sea (150◦N).
We observed that the ambient seismic noise and the resulting NCF
were dominated either by the fundamental mode or by the first
overtone of the Rayleigh wave, depending on the period.

We obtained a set of group and phase dispersion maps at periods
between 1 and 7 s. The primary feature that emerged from these
maps at periods above 2 s was a marked velocity decrease from
the edge of the Upper Rhine Graben toward its central axis. We
interpreted this gradient as the signature of the dipping crystalline
basement. We interpreted shorter scale velocity anomalies observed
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Figure 14. (a) Phase dispersion map obtained in this work at period 2.5 s. The purple line delineates the area, where the network quality exceeds 0.25 (Fig. 6c).
(b) Top basement elevation of the area modified after Baillieux (2012). The black line and numbers from 1 to 4 correspond roughly to the section presented
on sketch (c). (c) 2-D density model of the area obtained by inverting gravity measurements (modified after Rotstein et al. 2006) densities are expressed in
g cm−3. (d) Temperature anomalies in ◦C at top basement modified after Baillieux et al. (2014). White dots correspond to the seismological stations used in
this study. The black lines indicate the local faults at the top of the basement (Baillieux et al. 2011; Dezayes et al. 2011).

at periods below 2 s as the signatures of heterogeneities inside the
sedimentary cover such as local horsts and grabens.

We showed that our approach can be used to include NCFs from
station pairs shorter than the empirical limit of 2 or 3 wavelengths in
imaging problems without inducing errors in the recovered velocity
models. The short station pairs were more sensitive to the azimuthal
distribution of the noise intensity than to the velocity anomalies
themselves. In order to ensure the usefulness as well as the reliability
of tomographic images, we suggest limiting the use of our method
to networks that have a significant proportion of station-pairs longer
than one wavelength.

The method we propose could be applied to the high density
short-period networks that are currently being deployed for passive
imaging at local scales (e.g. Lin & Tsai 2013; Hand 2014; Zigone
et al. 2015; Vergne et al. 2015) and should be able to lead to high
resolution 3-D models, free from the bias caused by non uniformly
distributed seismic noise.
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sismique, C. R. Geosci., 343, 487–495.
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Pedersen, H.A. & Krüger, F., 2007. Influence of the seismic noise charac-
teristics on noise correlations in the Baltic shield, Geophys. J. Int., 168,
197–210.

Poli, P., Pedersen, H.A. & Campillo, M., 2012. Emergence of body waves
from cross-correlation of short period seismic noise, Geophys. J. Int., 188,
549–558.

Renard, P. & Courrioux, G., 1994. Three-dimensional geometric modeling
of a faulted domain: the Soultz Horst example (Alsace, France), Comput.
Geosci., 20, 1379–1390.

Rotstein, Y., Edel, J.-B., Gabriel, G., Boulanger, D., Schaming, M. &
Munschy, M., 2006. Insight into the structure of the Upper Rhine Graben
and its basement from a new compilation of Bouguer Gravity, Tectono-
physics, 425, 55–70.

Roux, P., Sabra, K.G., Gerstoft, P., Kuperman, W.A. & Fehler, M.C., 2005a.
P-waves from cross-correlation of seismic noise, Geophys. Res. Lett., 32,
doi:10.1029/2005GL023803.

Roux, P., Sabra, K.G., Kuperman, W.A. & Roux, A., 2005b. Ambient noise
cross correlation in free space: theoretical approach, J. acoust. Soc. Am.,
117, 79–84.

Sabra, K.G., Gerstoft, P., Roux, P., Kuperman, W.A. & Fehler, M.C., 2005.
Surface wave tomography from microseisms in Southern California, Geo-
phys. Res. Lett., 32, doi:10.1029/2005GL023155.

Sergeant, A., Stutzmann, E., Maggi, A., Schimmel, M., Ardhuin, F. & Obreb-
ski, M., 2013. Frequency-dependent noise sources in the North Atlantic
Ocean, Geochem. Geophys. Geosyst., 14, 5341–5353.

Shapiro, N.M. & Campillo, M., 2004. Emergence of broadband Rayleigh
waves from correlations of the ambient seismic noise, Geophys. Res. Lett.,
31, doi:10.1029/2004GL019491.

Shapiro, N.M., Campillo, M., Stehly, L. & Ritzwoller, M.H., 2005. High-
resolution surface-wave tomography from ambient seismic noise, Science,
307, 1615–1618.

Shapiro, N.M., Ritzwoller, M.H. & Bensen, G.D., 2006. Source location of
the 26 sec microseism from cross-correlations of ambient seismic noise,
Geophys. Res. Lett., 33, L18310, doi:10.1029/2006GL027010.

Snieder, R., 2004. Extracting the Green’s function from the correlation of
coda waves: a derivation based on stationary phase, Phys. Rev. E, 69,
046610, doi:10.1103/PhysRevE.69.046610.

Spakman, W. & Bijwaard, H., 2001. Optimization of cell parameterizations
for tomographic inverse problems, Pure appl. Geophys., 158, 1401–1423.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/208/1/193/2527897 by C

N
R

S - ISTO
 user on 19 O

ctober 2021



208 M. Lehujeur et al.

Stehly, L., Campillo, M. & Shapiro, N.M., 2006. A study of the seismic
noise from its long-range correlation properties, J. geophys. Res., 111,
doi:10.1029/2005JB004237.

Stehly, L., Fry, B., Campillo, M., Shapiro, N.M., Guilbert, J., Boschi, L. &
Giardini, D., 2009. Tomography of the Alpine region from observations
of seismic ambient noise, Geophys. J. Int., 178, 338–350.

Stutzmann, E., Roult, G. & Astiz, L., 2000. Geoscope station noise levels,
Bull. seism. Soc. Am., 90(3), 690–701.

Tsai, V.C., 2009. On establishing the accuracy of noise tomography travel-
time measurements in a realistic medium, Geophys. J. Int., 178, 1555–
1564.

Vergne, J., Blachet, A. & Lehujeur, M., 2015. Sources of high frequency
seismic noise: insights from a dense network of ∼250 stations in northern
Alsace (France), Presented at the EGU General Assembly Conference
Abstracts, Vienna, Austria, 9164 pp.

Wapenaar, K., van der Neut, J. & Ruigrok, E., 2008. Passive seismic interfer-
ometry by multidimensional deconvolution, Geophysics, 73, A51–A56.

Wapenaar, K., Ruigrok, E., van der Neut, J. & Draganov, D., 2011.
Improved surface-wave retrieval from ambient seismic noise by
multi-dimensional deconvolution, Geophys. Res. Lett., 38, L01313,
doi:10.1029/2010GL045523.

Weaver, R., Froment, B. & Campillo, M., 2009. On the correlation of non-
isotropically distributed ballistic scalar diffuse waves, J. acoust. Soc. Am.,
126, 1817–1826.

Withers, M.M., Aster, R.C., Young, C.J. & Chael, E.P., 1996. High-frequency
analysis of seismic background noise as a function of wind speed and
shallow depth, Bull. seism. Soc. Am., 86, 1507–1515.

Yang, Y., Ritzwoller, M.H., Levshin, A.L. & Shapiro, N.M., 2007. Ambient
noise Rayleigh wave tomography across Europe, Geophys. J. Int., 168,
259–274.

Yao, H. & van der Hilst, R.D., 2009. Analysis of ambient noise energy
distribution and phase velocity bias in ambient noise tomography, with
application to SE Tibet, Geophys. J. Int., 179, 1113–1132.

Yao, H., Van Der Hilst, R.D. & De Hoop, M.V., 2006. Surface-wave
array tomography in SE Tibet from ambient seismic noise and two-
station analysis – I. Phase velocity maps, Geophys. J. Int., 166,
732–744.

Young, M.K., Rawlinson, N., Arroucau, P., Reading, A.M. & Tkalčić, H.,
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Additional Supporting Information may be found in the online ver-
sion of this paper:

Figure S1.1. FK analysis of the ambient seismic noise recorded in
May 2014 by the available network. Each line corresponds to a given
period (T = 10, 5.2 and 3.4 s). The right column is the FK transform
of the noise records. The dashed circles indicate various phase speed
values: the black dashed circle corresponds to a phase speed of
7 km s−1; the white, red and yellow dashed circles correspond to the
fundamental mode and the two first overtones of the Rayleigh waves
respectively. Their radius varies with the period and is computed
using the local 1-D velocity model. The left column corresponds to
the array transfer function displayed at the same zoom levels as the
FK transforms.
Figure S1.2. Same figure as Fig. S1.1 at periods 2 s (upper line)
and 1.5 s (lower line).
Figure S3.1. Synthetic and inverted noise correlation functions at
period 4.5 s. The NCFs are sorted as a function of the interstation
distance and azimuth. (a) Synthetic dataset obtained from the noise

model of Fig. S3.2 (blue curve) and the velocity model of Figs
S3.4(a) and (b). A white Gaussian noise is added to the waveforms to
mimic measurement inaccuracies. (b, c) Inverted data sets obtained
from inversion tests A and B, respectively.
Figure S3.2. Synthetic noise model and results of the inversion tests
A and B at 2 s of period.
Figure S3.3. Inner part of the synthetic dispersion maps and solu-
tions of inversion tests A and B at 2 s of period. (a, b) Synthetic
noise phase and group speed dispersion maps. The solid lines cor-
respond to the Voronoı̈ grid. (c, d) Results of inversion A in which
the noise model is kept spatially uniform. The maps are smoothed
by linear interpolation of the velocity values in each cell of the grid.
The contour lines reproduce the expected velocity anomalies from
maps (a) and (b) for comparison. (e, f) Results of inversion B. The
red dots correspond to the stations. Full-scale maps are presented
in Fig. S3.4.
Figure S3.4. Full-scale synthetic and inverted dispersion maps at
period 2 s.
Figure S4.1. Group-velocity measurements used in the ‘standard’
approach at period 3 s. (a) Noise correlation functions between
pairs longer than two wavelengths, band-pass filtered at 3 s and
sorted by distance. The vertical grey bars indicate the time interval
(between 0.5 and 5 km s−1) in which the maximum of the envelope
is searched (black dots). The red bars indicate the measurement
uncertainties taken as half the difference in time between the causal
and acausal travel times. (b) Group-velocity values for each pair
obtained using the mean of the causal and acausal arrival times.
Red bars indicate the group-velocity uncertainties computed from
the time uncertainties of subplot (a). (c) Same data as panel (b)
displayed as a function of the pair orientation (measured at the
eastern station, clockwise from north).
Figure S4.2. Comparison between the group dispersion maps ob-
tained at period 3 s with the two-step inversion procedure that takes
the noise distribution into account (a) and with a more standard ap-
proach (b). Group-velocity variations are given in per cent relative
to a reference velocity of 1.81 km s−1. Grey paths indicate the sta-
tion pairs used in the standard approach. The black ellipse indicate a
positive velocity anomaly interpreted as a probable azimuthal effect
caused by a local dominance of station pairs orthogonal to the main
noise direction (∼310◦N).
(http://gji.oxfordjournals.org/lookup/suppl/doi:10.1093/gji/
ggw373/-/DC1).

Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.

A P P E N D I X A : M O D E L L I N G T H E N O I S E
C O R R E L AT I O N F U N C T I O N S

We consider that the ambient seismic noise can be modelled as a
superposition of noise sources distributed randomly in space and
time. This conceptualization of the noise has been used to establish
the link between the cross-correlation function and the Green’s
function if the spatial distribution of the noise sources is uniform
(Snieder 2004; Roux et al. 2005). Here we assume that the noise
sources are located in the horizontal plane, so that the vertical
displacement can be written in the frequency domain as

U (r, ν) =
∫

R2
S(r S, ν)G(r, r S, ν)dr S (A1)
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With ν the frequency; r S the location of the source in the 2-D
plane; S(r S, ν) the source term and G(r, r S, ν) the Green’s func-
tion between locations r and r S. Following Roux et al. (2005) we
call A and B two stations located on the surface at Cartesian co-
ordinates r A = (+a, 0) and r B = (−a, 0). The cross-correlation
function between stations A and B in the frequency domain is

CAB(ν) = U (r A, ν) U ∗ (r B, ν) (A2)

where ∗ denotes the complex conjugation. We apply it to the sig-
nal recorded by station B (i.e. the western station) for consistency
with the orientation convention used by Stehly et al. (2006), which
implies that a wave that propagates toward the east emerges on the
causal part of the cross-correlation function. Under the assump-
tion of temporally uncorrelated noise sources (Snieder 2004; Roux
et al. 2005), the cross-correlation of distinct source functions over
infinite times is zero, while their autocorrelation gives the power
spectral density of the source term at a given location, which can be
considered as the seismic energy delivered at that point:

S (r S, ν) S
(
r ′

S, ν
)∗ = |S (r S, ν)|2 δ

(
r S − r ′

S

)
= E (r S, ν) δ

(
r S − r ′

S

)
(A3)

where δ is the Dirac function and E(r S, ν) is the spatial distribution
of the noise energy. Combining eqs (A1) and (A3) we obtain:

CAB(ν) =
∫

R2
E(r S, ν)G(r A, r S, ν)G∗(r B, r S, ν)dr S (A4)

The elliptical coordinate system is especially suited to that prob-
lem because the sources that affect a given lag-time of the cor-
relation functions are located on a hyperbola whose focal points
are the two stations (Roux et al. 2005). In the 2-D case, we use
x = a cos ξ cosh μ, y = a sin ξ sinh μ with ξ ranging by conven-
tion from 0 to π and μ ranging from −∞ to +∞ (see Fig. A1). In
that system, A4 becomes

CAB(ν) =
∫ +∞

−∞

∫ π

0
E(ξ, μ, ν)G(r A, r S, ν)G∗(r B, r S, ν)

× J (ξ, μ)dξdμ (A4′)

where J (ξ, μ) = a2 (cosh2μ − cos2ξ ) is the Jacobian of the coor-
dinate system transformation.

One can show the following relations:⎧⎨
⎩

S A − SB = −2a cos ξ

S A + SB = 2a cosh μ

S A × SB = a2
(
cosh2μ − cos2ξ

) = J (ξ, μ)
(A5)

with SA the distance between source S and receiver A. Using
eq. (1), we obtain

G (r A, r S, ν) G∗ (r B, r S, ν) = e−γ (ν)(S A+SB)e−2iπν
(S A−SB)

c(ν)

2πh(ν)
√

S A × SB

= e−2aγ (ν) cosh μe4iπνa cos ξ
c(ν)

2πh(ν)
√

J (ξ, μ)
(A6)

After substituting this result into eq. (A4′), we obtain the cross
correlation function between receivers A and B in the frequency
domain for any source distribution:

CAB (ν) = 1

2πh(ν)

∫ π

0
H(ξ, ν)e4iπνa cos ξ

c(ν) dξ (A7)

Figure A1. Coordinate systems used to locate the noise sources. Sources
(red and green stars) are disposed on an ellipse (thick black line) of param-
eter μ0 
 0 that can be approached by a circle of radius r0 (red dashed
circle). The station pair (AB) is oriented with an angle α with respect to the
north. The source location is expressed relative to the station pair using the
elliptical coordinate system (ξ, μ0) or relative to the north using the polar
coordinate system (r0, θ ). Blue lines indicate constant values of μ (ellipses)
or ξ (hyperbolas).

whereH corresponds to the integrated amount of energy contributed
by the sources located on a hyperbola of parameter ξ :

H (ξ, ν) =
∫

R

E (ξ, μ, ν) e−2aγ (ν)cosh μ
√

J (ξ, μ) dμ. (A8)

The case of a uniform noise distribution can be modelled by
taking E(ξ, μ, ν) constant relative to the spatial coordinates ξ, μ. In
such case, function H(ξ, ν) is smooth over ξ , which has motivated
the use of the stationary phase integration technique to establish the
well known link between the derivative of the correlation function
and the interstation Green’s function (Snieder 2004). This technique
is not used in the present paper and eq. (A7) is integrated numerically
to account for the ξ -dependecy of function H.

In this work, we assume that the noise sources are located far from
the network so that the noise distribution can be reduced to a 1-D
azimuthal function. Such assumption implies that the distribution
of the noise energy has the following form

E (ξ, μ, ν) = Ẽ (ξ, ν) δ (μ − μ0)

+ Ẽ(−ξ, ν)δ (μ + μ0) μ0 
 0 (A9)

Where Ẽ represents the azimuthal variation of the noise energy
relative to the AB station pair [similar to the function referred as
B by Weaver et al. (2009) and Froment et al. (2010)]. Eq. (A9)
assumes that the noise distribution can be modelled as a set of
effective sources disposed along an ellipse with constant parameter
μ0. Because μ0 is taken very large, this ellipse can be approached
by a circle (see Fig. A1) with radius r0 = a cosh μ0 = a sinh μ0

(because limμ→∞
cosh μ

sinh μ
= 1) and r0 
 a.
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Figure B1. Grid search on the regularization parameters for inversion step 2 at 2.5 s of period. σc and σl denote the uncertainties on the prior dispersion
parameters cprior and lprior imposed according to the results of inversion step 1. χ2

red represents the data misfit, ||c − cprior||2 and ||l − lprior||2 represent the
misfit between the inverted and prior dispersion maps. (a) σl is fixed to 0 and several values of σc are tested from 0 (infinite constraint on the a priori phase
dispersion map) to infinity (no constraint on the phase dispersion map). (b) Once the best value of σc is determined (0.03), σc is fixed and σl is perturbed from
0 to infinity.

Inserting (A9) into (A8), we get

H (ξ, ν) = (
Ẽ (ξ, ν) + Ẽ(−ξ, ν)

)
e−2aγ (ν) cosh μ0

√
J (ξ, μ0)

= (
Ẽ (ξ, ν) + Ẽ(−ξ, ν)

)
e−2r0γ (ν)

√
r 2

0 − a2cos2ξ .

(A10)

Noting that
√

r0
2 − a2cos2ξ = r0 − a2cos2ξ

2r0
+ o( 1

r2
0

) ≈ r0, we

get

H(ξ, ν) ≈ (
Ẽ (ξ, ν) + Ẽ(−ξ, ν)

)
r0e−2r0γ (ν) if r0 
 a. (A11)

Eq. (A11) shows that in the specific case where the same amount
of energy reaches the network from all directions (i.e. Ẽ (ξ, ν) =
Ẽ (−ξ, ν) = E0 (ν)), then H(ξ, ν) ≈ 2E0(ν)r0e−2r0γ (ν) suggesting
that the azimuthal variation ofH can be neglected at first order when
Ẽ is constant and when the sources are very far from the network.
The assumption of an azimuthally uniform noise distribution was
therefore modeled using H constant over ξ (Fig. 4, black curve).

A discretized version of function Ẽ might be used to parametrize
the azimuthal distribution of the noise energy relative to the station
pair. Instead, we use a north reference system and introduce func-
tion A(θ, ν) that corresponds to the amount of energy received at
frequency ν from back-azimuth θ counted clockwise from north.
The link between functions A and Ẽ for a station pair that is ori-
ented with an angle α measured at the western station clockwise
from north is given by{

A (α − ξ, ν) = Ẽ (+ξ, ν)r0e−2r0γ (ν)

A (α + ξ, ν) = Ẽ (−ξ, ν)r0e−2r0γ (ν)
(A12)

Combining (A11) and (A12), we get eq. (3) that provides us the
link between the north referenced distribution of the noise energy
(A) and the hyperbolic contribution Hα for each station pair.

A P P E N D I X B : R E G U L A R I Z AT I O N O F
I N V E R S I O N ( S T E P 2 ) O F O B S E RV E D
DATA

Inversion step 2 is regularized by adjusting the uncertainty on the
phase speed parameters (σc) and on the first derivative of the group
dispersion curve (σl ). We perform a grid search on these two pa-
rameters to minimize both the data misfit (χ 2

red) and the misfits
between the inverted and the prior dispersion maps (||c − cprior||2
and ||l − lprior||2) defined as:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

χ 2
red = 1

I

I−1∑
i=0

(
g(m)i − dobs

i
σi

)2

||c − cprior||2 =
N−1∑
j=0

S j

S

(
c j − cprior

j

)2

||l − lprior||2 =
N−1∑
j=0

S j

S

(
l j − lprior

j

)2

(B1)

The grid search is done in two stages: first, the σl value is fixed
to 0 (i.e. the first derivative of the dispersion curve in each cell j is
constrained to the prior value lprior

j ) and we look for the best σc value.
Second, σc is fixed and we look for the best value of σl . At 2.5 s of
period, the regularization coefficients retained are σc = 0.03 and
σl = 0.09 (Fig. B1).
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