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We discuss recent quantitative results in connexion with Kronecker's theorem on the density of subgroups in R n and with Dani and Raghavan's theorem on the density of orbits in the space of frames. We also propose several related problems. The case of the natural linear action of the unimodular group SL 2 (Z) on the real plane is investigated more closely. We then establish an intriguing link between the configuration of (discrete) orbits of primitive points and the rate of density of dense orbits.

Introduction

Let m and n be positive integers and let ⇥ 2 Mat n,m (R) be an n ⇥ m matrix with real entries. We associate to ⇥ the subgroup

⇤ = ⇥Z m + Z n ⇢ R n
generated over Z by the m columns of ⇥ and by Z n and its subset of primitive points ⇤ prim = n ⇥q + p ; q 2 Z m , p 2 Z n with gcd(q, p) = 1 o .

Put also

X = (⇥, I n ) 2 Mat n,m+n (R),
where I n is the identity matrix in Mat n,n (R), so that we can write ⇤ = XZ m+n and ⇤ prim = XP (Z m+n ).

Here and throughout the article, P (Z d ) denotes the set of primitive points in Z d , that is the set of integer d-tuples with coprime coordinates.

Then we can state the following criterion of density:

Theorem (Kronecker, Dani-Raghavan). The following assertions are equivalent.

(i) The n rows of the matrix ⇥ are Z-linearly independent vectors in R m /Z m . (ii) The subgroup ⇤ is dense in R n . (iii) The set ⇤ prim is dense in R n . (iv) The orbit XSL m+n (Z) of X under the action of the unimodular group SL m+n (Z) by right matrix multiplication is dense in Mat n,m+n (R).

The equivalence of properties (i) and (ii) is the content of the classical Kronecker density theorem, see for instance [START_REF] Cassels | An Introduction to Diophantine Approximation[END_REF], while the equivalence of (i) and (iv) is due to Dani and Raghavan, see Theorem 3.4 in [START_REF] Dani | Orbits of Euclidean frames under discrete linear groups[END_REF]. The implications (iv) )(iii) ) (ii) are clear; observe that upon identifying an n ⇥ (m + n) matrix with the (m + n)-tuple of its columns, we have the inclusions

XSL m+n (Z) ✓ (⇤ prim ) m+n ⇢ (R n ) m+n ' Mat n,m+n (R),
since the column vectors of any matrix in SL m+n (Z) belong to P (Z m+n ).

Quantitative results of density for the subgroup ⇤ are well understood. Assuming that the rows of ⇥ satisfy some measure of Z-linear independence modulo Z m , we can control by a transference principle the quality of the approximation of any point in R n by elements of ⇤. We refer to Chapters III and V of Cassels' monograph [START_REF] Cassels | An Introduction to Diophantine Approximation[END_REF] for this classical issue of Diophantine approximation, and to [START_REF] Bugeaud | Exponents of inhomogeneous Diophantine approximation[END_REF] for a formulation in terms of exponents of approximation. The inhomogeneous variants [START_REF] Schmidt | Metrical theorem on fractional parts of sequences[END_REF][START_REF] Sprindzuck | Metric Theory of Diophantine Approximations[END_REF] of the metrical Khintchine-Groshev theorem may as well be considered as quantitative versions of the assertion (ii) for a generic matrix ⇥.

The purpose of this article is to exhibit some e↵ective density results in connexion with the assertions (iii) and (iv), both for a given matrix ⇥ and for ⇥ generic. Our knowledge concerning quantitative versions of (iii) and (iv) is much more limited and another goal of the paper is to formulate some related questions, or conjectures, which may lead to further improvements on these two issues. We display in Section 2 a metrical theory involving primitive points, in a generalized meaning, obtaining results refining the Khintchine-Groshev theorem. Regarding (iv), even the generic exponent of Diophantine approximation (the analogue of Dirichlet's exponent m/n for ⇤) remains unknown for any value of the dimensions m and n. We propose in Section 3 a conjectural value for this critical exponent which is motivated by recent works [START_REF] Ghosh | Diophantine approximation exponents on homogeneous varieties in "Recent Trends in Ergodic Theory and Dynamical Systems[END_REF][START_REF] Ghosh | Best possible rates of distribution of dense lattice orbits in homogeneous spaces[END_REF] due to Ghosh, Gorodnik and Nevo in a much more general framework. Sections 4 and 5 are devoted to the case m = n = 1. We develop a conditional approach to reach the expected exponent 1/2 based on some hypothesis concerning the repartition in the plane of truncated SL 2 (Z)-orbits of primitive integer points, a problem which may have an independent interest.

Metrical theory for ⇤ prim

We have obtained in [START_REF] Dani | Multi-dimensional metric approximation by primitive points[END_REF] metrical statements in the style of the Khintchine-Groshev theorem involving primitive points in a refined sense. In this section, we describe and discuss our results.

The set-up is as follows. Let ⇧ be a partition of the set {1, . . . , m + n} = `t j=1 ⇡ j . We assume that all components ⇡ j of ⇧ have cardinality at least n + 1. We then define P (⇧) to be the set of integer (m+n)-tuples (v 1 , . . . , v m+n ) such that gcd(v i ) i2⇡ j = 1 for all j = 1, . . . , t. Note that the trivial partition (the one having only one component) satisfies the assumption and that we have P (⇧) = P (Z m+n ) in that case. Moreover P (⇧) ✓ P (Z m+n ) for any relevant partition ⇧. Now let : N 7 ! R + be a function with positive values. We assume that the map x 7 ! x m 1 (x) n is non-increasing and that the series P ` 1 `m 1 (`) n diverges; the latter assumption being the necessary and su cient condition occurring in the statement of the classical Khintchine-Groshev theorem.

In the following two theorems, we implicitely assume that the above hypotheses on ⇧ and are satisfied. The symbol | • | indicates the supremum norm in R n and in R m . Our first result is a doubly metrical statement.

Theorem 1. For almost every pair (⇥, y) 2 Mat n,m (R) ⇥ R n
, there exist infinitely many points (q, p) 2 P (⇧) such that |⇥q + p y|  (|q|).

Problem 1. Fix arbitrarily the target point y 2 R n . Show that the same conclusion holds for almost every ⇥ 2 Mat n,m (R).

Notice that the weaker inhomogeneous problem where the coprimality requirement (q, p) 2 P (⇧) has been removed is in fact a well-known result. That is the inhomogeneous version of the Khintchine-Groshev theorem which follows from Theorem 1 of [START_REF] Schmidt | Metrical theorem on fractional parts of sequences[END_REF] for m = 1 and Theorem 15 in Chapter 1 of [START_REF] Sprindzuck | Metric Theory of Diophantine Approximations[END_REF] when m 2. We have established in Theorem 2 in [START_REF] Dani | Multi-dimensional metric approximation by primitive points[END_REF] that Problem 1 holds true in the homogeneous case y = 0. It is also shown in [START_REF] Dani | Multi-dimensional metric approximation by primitive points[END_REF] that Theorem 1 is equivalent to the following result concerning the smallness of a generic system of inhomogeneous linear forms: Theorem 2. For every y 2 R n and for almost every matrix X 2 Mat n,m+n (R), there exist infinitely many points (q, p) 2 P (⇧) such that

X ✓ q p ◆ y  (|q|).
The constant term y is fixed in Theorem 2, on the contrary to Theorem 1. Finer statements of this kind, but without any coprimality constraint, have been recently worked out by Dickinson, Fischler, Hussain, Kristensen and Levesley. We refer to [START_REF] Fischler | A converse to linear independence criteria, valid almost everywhere[END_REF][START_REF] Hussain | Metrical results on systems of small linear forms[END_REF], and to the references therein, for a discussion of their results. Problem 2. Suppress, or relax, the (unnecessary ?) assumptions on ⇧ and occurring in the theorems 1 and 2. Namely, the lower bounds card ⇡ j n + 1 and the monotonicity of the function x 7 ! x m 1 (x) n . It is worth noting that the condition card ⇡ j n + 1 is needed to ensure the ergodicity of the action of some group ⇧ used in the proof of Theorems 1 and 2. More precisely, let us denote by SL ⇡ j (Z) the subgroup of SL m+n (Z) acting as an unimodular matrix on the coordinates with index in ⇡ j and as the identity elsewhere. Let ⇧ = Q t j=1 SL ⇡ j (Z) be the product of these commuting subgroups. Clearly, ⇧ is a subgroup of SL m+n (Z). Then, the action of ⇧ on Mat n,m+n (R) by right matrix multiplication is ergodic, with respect to the invariant Lebesgue measure on Mat n,m+n (R) ' R n(m+n) , if and only if card ⇡ j n + 1 for every index j = 1, . . . , t. Notice in particular that the action of SL m+n (Z) on Mat n,m+n (R) is ergodic.

Exponent of Diophantine approximation of dense orbits

We deal in this section with quantitative versions of the assertion (iv). To that purpose, we introduce the following exponent of Diophantine approximation. Let X and Y be two matrices in Mat n,m+n (R). We define µ(X, Y ) as the supremum of the real numbers µ such that there exist infinitely many 2 SL m+n (Z) satisfying the inequality

(1) |X Y |  | | µ .
Few informations are known concerning the exponent µ(X, Y ). In the case m = n = 1, the following theorem follows from [START_REF] Laurent | Approximation to points in the plane by SL(2, Z)-orbits[END_REF], see also [START_REF] Maucourant | Lattice actions on the plane revisited[END_REF] for a weaker lower bound in (i).

We identify Mat 1,2 (R) with R 2 .

Theorem 3. Let X = (x 1 , x 2 ) be a non-zero point in R 2 with irrational slope x 1 /x 2 . (i) For every point Y in R 2 , we have the lower bound µ(X, Y ) 1/3. (ii) If Y is any non-zero point in R 2
with rational slope (i.e. the ratio of the two coordinates is a rational number), the inequality µ(X, Y ) 1/2 holds, with equality for almost every point X.

Singhal [START_REF] Singhal | Diophantine exponents for standard linear actions of SL 2 over discrete rings in C, to appear in[END_REF] has partly extended the results of Theorem 3 to the linear action of the group SL 2 (O K ) on C 2 , where O K stands for the ring of integers of an imaginary quadratic field K for which a convenient theory of continued fractions is available.

Our knowledge concerning generic values of µ(X, Y ) is a bit richer, thanks to the recent results of [START_REF] Ghosh | Diophantine approximation exponents on homogeneous varieties in "Recent Trends in Ergodic Theory and Dynamical Systems[END_REF][START_REF] Ghosh | Best possible rates of distribution of dense lattice orbits in homogeneous spaces[END_REF]. Observe that the function µ(X, Y ) is SL m+n (Z) ⇥ SL m+n (Z)invariant by componentwise right matrix multiplication. Since the action of SL m+n (Z) on Mat n,m+n (R) is ergodic, the function µ(X, Y ) is equal to a constant µ m,n (say) almost everywhere. In other words, for a fixed exponent µ < µ m,n and for almost every pair (X, Y ) 2 Mat n,m+n (R) ⇥ Mat n,m+n (R), the inequation (1) has infinitely many solutions 2 SL m+n (Z), while if µ > µ m,n it has only finitely many solutions 2 SL m+n (Z) almost surely. The determination of the value of µ m,n is an open problem. First, we prove the following upper bound: Theorem 4. For any integers m 1 and n 1, we have the inequality

µ m,n  m(m + n 1) n(m + n) .
Proof. We follow the proof of the special case m = n = 1 given in Section 5 of [START_REF] Laurent | Inhomogeneous approximation with coprime integers and lattice orbits[END_REF].

For simplicity, put a = m(m + n 1) and d = n(m + n). Let µ be a real number > a/d. We plan to show that the set 

E µ = {(X, Y ) 2 Mat n,m+n (R) ⇥ Mat n,m+n (R) ; µ(X, Y ) >
E µ (X, ⌦) ✓ lim sup 2SL m+n (Z) X 2⌦ | | µ B(X , | | µ ) ✓ lim sup 2SL m+n (Z) X 2⌦⌘ B(X , | | µ ) =: B ⌘ .
Fix an ⌘ > 0 su ciently small so that ⌦ ⌘ remains contained in the open set Mat rank n n,m+n (R). We now use a fundamental counting result due to Gorodnik. Setting

N R = Card{ 2 SL m+n (Z) ; X 2 ⌦ ⌘ , | | = R},
we have the upper bound ( 2)

N 1 + • • • + N R = Card{ 2 SL m+n (Z) ; X 2 ⌦ ⌘ , | |  R}  cR a
for some positive constant c depending only on X and ⌦ ⌘ and any positive integer R. Indeed, assuming that the orbit XSL m+n (Z) is dense in Mat n,m+n (R), it is established in Theorem 3 of [START_REF] Gorodnik | Uniform distribution of orbits of lattices on spaces of frames[END_REF] that we have an asymptotic equivalence of the form

Card{ 2 SL m+n (Z) ; X 2 ⌦ ⌘ , | |  R} ⇠ R a
as R tends to infinity, with an explicit formula for the coe cient depending only on X and ⌦ ⌘ . Using (2), we majorize

X 2SL m+n (Z) | |R , X 2⌦⌘ ⇣ B(X , | | µ ) ⌘ = 2 d R X k=1 N k k dµ = 2 d R 1 X k=1 (N 1 + • • • + N k ) ✓ 1 k dµ 1 (k + 1) dµ ◆ + N 1 + • • • + N R R dµ !  2 d c R 1 X k=1 k a ✓ 1 k dµ 1 (k + 1) dµ ◆ + R a R dµ !  2 d cµd R 1 X k=1 k a dµ 1 ! + 2 d cR a dµ .
We deduce from the above inequality that the sum

X 2SL m+n (Z) X 2⌦⌘ ⇣ B(X , | | µ )
⌘ converges, since we have assumed that µ > a/d. By Borel-Cantelli lemma, the limsup set B ⌘ has null Lebesgue measure, as well as it subset E µ (X, ⌦). We have proved the claim.

Selecting a countable family of compacts ⌦ covering Mat rank n n,m+n (R), we deduce from the claim that the fiber {Y 2 Mat n,m+n (R); (X, Y ) 2 E µ } of E µ over X has null Lebesgue measure whenever the orbit XSL m+n (Z) is dense. Now, Fubini theorem yields that E µ is a null set, since the set of X 2 Mat n,m+n (R) for which XSL m+n (Z) is not dense has null Lebesgue measure by the criterion of Dani and Raghavan.

Remark: The set Mat rank n n,m+n (R) is an homogeneous space H\SL m+n (R), where H is the semi-direct product H = SL m (R) n Mat m,n (R) and SL m (R) acts on the Rvector space Mat m,n (R) by left matrix multiplication. One can also prove Theorem 4 as part of deep results obtained by Ghosh, Gorodnik and Nevo in [START_REF] Ghosh | Diophantine approximation exponents on homogeneous varieties in "Recent Trends in Ergodic Theory and Dynamical Systems[END_REF][START_REF] Ghosh | Best possible rates of distribution of dense lattice orbits in homogeneous spaces[END_REF]. They give estimates of generic exponents of Diophantine approximation associated to the action of lattice orbits on homogeneous spaces. In fact, the above upper bound corresponds to the easiest part of their results. See Section 3.1 of [START_REF] Ghosh | Best possible rates of distribution of dense lattice orbits in homogeneous spaces[END_REF] and Section 4.1 of [START_REF] Ghosh | Diophantine approximation exponents on homogeneous varieties in "Recent Trends in Ergodic Theory and Dynamical Systems[END_REF] for more details in the case n = 1. For comparison, notice however that the exponent  occurring in [START_REF] Ghosh | Diophantine approximation exponents on homogeneous varieties in "Recent Trends in Ergodic Theory and Dynamical Systems[END_REF][START_REF] Ghosh | Best possible rates of distribution of dense lattice orbits in homogeneous spaces[END_REF] is a uniform exponent, according to the terminology of [START_REF] Bugeaud | Exponents of inhomogeneous Diophantine approximation[END_REF], while our exponent µ is an ordinary one. Following [START_REF] Laurent | Approximation to points in the plane by SL(2, Z)-orbits[END_REF], let us define the uniform variant μ(X, Y ) of the exponent µ(X, Y ) as the supremum of the real numbers µ such that for any large real number R, there exists 2 SL m+n (Z) satisfying

| |  R and |X Y |  R µ .
Obviously μ(X, Y )  µ(X, Y ) and it is expected that μ(X, Y ) and µ(X, Y ) have the same generic value µ m,n . The exponent (X, Y ) studied in [START_REF] Ghosh | Diophantine approximation exponents on homogeneous varieties in "Recent Trends in Ergodic Theory and Dynamical Systems[END_REF][START_REF] Ghosh | Best possible rates of distribution of dense lattice orbits in homogeneous spaces[END_REF] is the infimum of the real numbers  such the inequalities

| |  R  and |X 1 Y |  R 1 .
have a solution 2 SL m+n (Z) for any large real number R. It is now expected that (X, Y ) has the generic value 1/µ m,n .

Problem 3. Show that the formula

(3) µ m,n = m(m + n 1) n(m + n)
holds for every (at least one) pair of positive integers m and n.

In view of the proof of Theorem 4, the conjecture may be considered as an optimistic version of the box principle. Fix a compact subset ⌦ ⇢ Mat rank n n,m+n (R). For large values of the radius R, the set { 2 SL m+n (Z) ; X 2 ⌦, | |  R} has cardinality ⇠ R a whenever the orbit XSL m+n (Z) is dense. It is expected that the images X are well distributed in ⌦ when ranges over this set, at least for a generic matrix X. However, Theorem 3 only yields the lower bound µ 1,1 1/3 and it follows from Proposition 4.1 of [START_REF] Ghosh | Diophantine approximation exponents on homogeneous varieties in "Recent Trends in Ergodic Theory and Dynamical Systems[END_REF] that µ m,1 m/(m + 1) when m 2. Speculating further on the validity of formula (3), we shall prove in Section 5 that µ 1,1 has the expected value 1/2, assuming some strong properties on the distribution of truncated SL 2 (Z)-orbits of primitive points in the plane, which remain unproved but seem plausible. This is the topic of the next section.

Discrete orbits in the plane

The set of primitive points P (Z 2 ) is an SL 2 (Z)-orbit in the plane. In other words, we have XSL 2 (Z) = P (Z 2 ) for any X 2 P (Z 2 ). We are interested in the repartition of the finite set of primitive points X when 2 SL 2 (Z) ranges over a ball | |  R. Let us first recall a result due to Erdős [START_REF] Erdős | On an elementary problem in number theory[END_REF] on the distribution of primitive points in the real plane:

Theorem (Erdős). (i) For any Y in R 2
with |Y | large enough, there exists Z 2 P (Z 2 ) such that

|Z Y |  log |Y | log log |Y | .
(ii) There exists Y in R 2 with |Y | arbitrarily large such that we have the lower bound We now come to the study of the orbit XSL 2 (Z) where X is a given primitive point. For each point Z 2 P (Z 2 ), we choose a matrix Z 2 SL 2 (Z) whose first row is equal to Z having norm |Z| = |Z|. Using Bézout, it is easily seen that there are two such matrices Z, unless Z = (±1, 0) or Z = (0, ±1) in which cases there are three. Then, we can obviously reformulate (i) in the matricial form

|Z Y | 1 2 ✓ log |Y | log log |Y | ◆ 1/2 , for any Z 2 P (Z 2 ). Let Y = (y 1 , y 2 )
|(1, 0)Z Y |  log |Y | log log |Y | .
Writing (1, 0) = XX 1 , we replace in the above inequality the base point (1, 0) by an arbitrary primitive point X 2 P (Z 2 ). Setting = X 1 Z 2 SL 2 (Z) and R = 3|X||Y |, we thus obtain the estimates

(4) | |  2|X| ✓ |Y | + log |Y | log log |Y | ◆  R and |X Y |  log R log log R ,
when |Y | is large enough. We wish to find analogous estimates for smaller values of R, enlarging possibly the upper bound log R/ log log R for the distance between X and Y . More precisely we propose the following Problem 5. Let " be a positive real number. Show that for any large real number R, any primitive point X 2 P (Z 2 ) and any real point

Y 2 R 2 with norm |Y |  (|X|R) 1 1+" , there exists 2 SL 2 (Z) such that (5) | |  R and |X Y |  |X| 1+" R " .
The above hypothesis may be viewed as a property of uniform repartition of the truncated orbit {X ; 2 SL 2 (Z), | |  R} in the following way. The number of

2 SL 2 (Z) whose norm | | is  R is ⇣ R 2 , while |X |  2|X|| |  2|X|R. If we divide the square {Y 2 R 2 ; |Y |  2|X|R} into ⇣ R 2 small squares with side ⇣ |X|, each small square should ideally contain a point of the set {X ; 2 SL 2 (Z), | |  R}.
On the other hand, the correspondence 7 ! X is not one to one, but the objection is irrelevant here. Indeed, putting Z = X 2 P (Z 2 ), we can express 2 SL 2 (Z) in the form

= ✓ x 0 2 z 1 x 2 z 0 1 ux 2 z 1 x 0 2 z 2 x 2 z 0 2 ux 2 z 2 x 0 1 z 1 + x 1 z 0 1 + ux 1 z 1 x 0 1 z 2 + x 1 z 0 2 + ux 1 z 2 ◆
for some u 2 Z, where

X = ✓ x 1 x 2 x 0 1 x 0 2 ◆ and Z = ✓ z 1 z 2 z 0 1 z 0 2 ◆
are the respective liftings of X and Z in SL 2 (Z) previously considered. It follows that there exist at most 2R/(|X||Z|) + 1 matrices 2 SL 2 (Z) for which | |  R and X = Z. The number of such matrices is thus bounded by 3 when R  |X||Z|. Now, the number of 2 SL 2 (Z) for which

| |  R and |X |  R/|X| is at most X Z2P (Z 2 ) |Z|R/|X| 2R |X||Z| + 1  3R |X| X Z2P (Z 2 ) |Z|R/|X| 1 |Z| = 3R |X| bR/|X|c X k=1 8'(k) k  24R 2 |X| 2 .
We easily deduce from the preceding considerations that the cardinality of the set of points {X ; Y as in ( 4)). Therefore, we have a concentration of points around the origin when R |X|. However, the analogy with a grid remains meaningful inside some annulus centered at the origin.

2 SL 2 (Z), | |  R} is ⇣ R 2 when R is su ciently large independently of X,

A corollary

We relate the distribution of truncated integral orbits to the rate of density of dense orbits, showing that a positive answer to Problem 5 implies that µ 1,1 = 1/2.

We say that a real number y is very well approximated by rationals if for some exponent ! > 2, the inequation |y p/q|  q ! has infinitely many rational solutions p/q. An irrational number y is not very well approximated by rationals if and only if the sequence (s j ) j 0 of denominators of its convergents satisfies the asymptotic growth condition s j+1  s 1+" j for every " > 0. It is well-known that almost every real number y is not very well approximated by rationals. It then su ces to prove the Proposition. Let X = (x 1 , x 2 ) and Y = (y 1 , y 2 ) be two points in R 2 . We suppose that the point Y does not belong to the orbit XSL 2 (Z), that the slope x 1 /x 2 of X is an irrational number and that the slope y 1 /y 2 of Y is an irrational number which is not very well approximated by rationals. Assume that Problem 5 has been a rmatively resolved for any " > 0. Then µ(X, Y ) 1/2.

Proof. We have to show that for any ⌘ > 0, there exist infinitely many 2 SL 2 (Z) such that

(6) |X Y |  | | 1/2+⌘ .
The proof is a variant of that of Theorem 1 in [START_REF] Laurent | Approximation to points in the plane by SL(2, Z)-orbits[END_REF]: we replace the unipotent matrix of the form

✓ 1 0 1 
◆ occurring there by a matrix G whose transposed matrix is a solution to Problem 5. Put ⇠ = x 1 /x 2 and y = y 1 /y 2 . Let (p k /q k ) k 0 and (t j /s j ) j 0 be the sequences of convergents of ⇠ and y respectively and set

M k = ✓ q k q k 1 p k p k 1 ◆ , N j = ✓ t j s j t j 1 s j 1 ◆ .
The indices k and j will be restricted to odd integers, so that both M k and N j belong to SL 2 (Z). We construct in the form

= M k GN j where G = ✓ a b c d ◆ 2 SL 2 (Z) and |G|  R.
The indices j, k and the norm upper bound R will be chosen later.

Put ✏ n = q n ⇠ p n and recall the estimate

1 2q n+1  |✏ n |  1 q n+1
derived from the theory of continued fractions. Our starting point is the identity

q k ✏ k 1 q k 1 ✏ k = 1. Multiplying by y 2 /x 2 , we find (7) y 2 x 2 = (q k y 2 x 2 )✏ k 1 + ( q k 1 y 2 x 2 )✏ k
and on the other hand, we have the obvious equality

(8) 0 = (q k y 2 x 2 )q k 1 + ( q k 1 y 2 x 2 )q k . Now write X Y = x 2 (⇠, 1)M k GN j Y = x 2 (✏ k , ✏ k 1 )GN j Y = (z 1 , z 2 ) with (9) z 1 =x 2 ⇣ (at j + bt j 1 )✏ k + (ct j + dt j 1 )✏ k 1 ⌘ y 1 z 2 =x 2 ⇣ (as j + bs j 1 )✏ k + (cs j + ds j 1 )✏ k 1 ⌘ y 2 =x 2 ✓✓ as j + bs j 1 + q k 1 y 2 x 2 ◆ ✏ k + ✓ cs j + ds j 1 q k y 2 x 2 ◆ ✏ k 1 ◆ , using (7) 
for the last equality. Put = max

✓ as j + bs j 1 + q k 1 y 2 x 2 , cs j + ds j 1 q k y 2 x 2 ◆ .
We immediately deduce from ( 9) that ( 10)

|z 2 |  2|x 2 | q k .
Using again the expressions [START_REF] Gorodnik | Uniform distribution of orbits of lattices on spaces of frames[END_REF], observe now that [START_REF] Laurent | Inhomogeneous approximation with coprime integers and lattice orbits[END_REF] 

|z 1 yz 2 | = |x 2 | (t j s j y)(a✏ k + c✏ k 1 ) + (t j 1 s j 1 y)(b✏ k + d✏ k 1 )  4|x 2 | R s j q k .
Combining ( 10) and ( 11), we deduce from the triangle inequality the upper bound

(12) |X Y | = max(|z 1 |, |z 2 |) ⌧ q k + R s j q k .
We now bound the norm of = M k GN j and claim that

(13) | | ⌧ q k + s j R q k + q k R s j . Expand the product = ✓ q k q k 1 p k p k 1 ◆ ✓ a b c d ◆ ✓ t j s j t j 1 s j 1 ◆ = ✓ A B C D ◆ ,
where we have set A = q k (at j + bt j 1 ) + q k 1 (ct j + dt j 1 ), B = q k (as j + bs j 1 ) + q k 1 (cs j + ds j 1 ), C = p k (at j + bt j 1 ) p k 1 (ct j + dt j 1 ), D = p k (as j + bs j 1 ) p k 1 (cs j + ds j 1 ). Since (t j , t j 1 ) = y(s j , s j 1 ) + O ✓ 1 s j ◆ and (p k , p k 1 ) = ⇠(q k , q k 1 ) + O

✓ 1 q k ◆ ,
we have the estimates

A = yB + O ✓ Rq k s j ◆ , D = ⇠B + O ✓ Rs j q k ◆ , C = ⇠yB + O ✓ Rq k s j ◆ + O ✓ Rs j q k ◆ .
Using (8), we can express B in the form B = q k ✓ as j + bs j 1 + q k 1 y 2 x 2 ◆ + q k 1 ✓ cs j + ds j 1 q k y 2 x 2 ◆ which yields the bound |B|  2q k . The inequality ( 13) is thus established.

At this stage, we use the (conjectural) estimate (5) of the preceding section applied to the pair of points (s j , s j 1 ) 2 P (Z 2 ) and ( q k 1 y 2 x 2 , q k y 2

x 2 ) 2 R 2 in order to majorize in a non-trivial way. Fix arbitrarily " > 0 and set

(14) R = (|y 2 |q k /|x 2 |) 1+" s j .
The condition

q k |y 2 | |x 2 | = ( q k 1 y 2 x 2 , q k y 2 x 2
)  (|(s j , s j 1 )|R) ✓ as j + bs j 1 + q k 1 y 2 x 2 , cs j + ds j 1 q k y 2 x 2 ◆  s 1+" j R " . Now fix an odd index k and choose j odd so that s j should be located in the interval (16) q 1/3 k  s j  q 1/3+" k . This is possible when k is large enough, since we have assumed that y is not very well approximated by rationals. Then, combining the estimates (12) to ( 16) easily yields the upper bounds

|X Y | ⌧ q 2/3+2"+2" 2 k and | | ⌧ q 4/3+2"+2" 2 k . It follows that |X Y | ⌧ q 2/3+2"+2" 2 k ⌧ | | 1/2+⌘
, where ⌘ = 9(" + " 2 )/(4 + 6" + 6" 2 ) is arbitrarily small when " is su ciently small. We have thus established [START_REF] Fischler | A converse to linear independence criteria, valid almost everywhere[END_REF].

The above construction produces infinitely many solutions to (6) when k ranges over the odd integers, because the distance |X Y | tends to 0 as k tends to infinity, while remaining positive (recall that we have assumed that Y does not belong to the orbit XSL 2 (Z)). The proposition is proved.

Problem 4 .

 4 be the coordinates of Y . Erdős' results are in fact expressed differently in term of the quantity min(|y 1 |, |y 2 |) rather than |Y |. The above formulation involving the norm |Y | = max(|y 1 |, |y 2 |) is a straightforward consequence of the statements (2) and (3) of [4] and their proof. An interesting, but di cult, open question is to sharpen (i) and/or (ii): Determine the smallest possible upper bound in the assertion (i) of Erdős Theorem as a function of the norm |Y |.

  where the two multiplicative coe cients implicitely involved in the symbol ⇣ are absolute constants.Notice that we have relaxed somehow the constraints by assuming that|Y |  (|X|R)1/(1+")  2|X|R and requiring only the weaker upper bound |X Y |  |X| 1+" R " , because these estimates are su cient for our purpose. Of course, sharper estimates may reveal useful as well. Remark. The finite set {X ; 2 SL 2 (Z), | |  R} does not look like a grid of step |X| in R 2 , as one might believe at first glance. Any point Y 2 P (Z 2 ) with norm |Y |  R/(2|X|) belongs to this set (take = X 1

1 1+"◆ 2

 12 = (s j R) 1 1+"occurring in Problem 5 is obviously satisfied. It then follows from (5) that there exists a matrix G = SL 2 (Z) with norm |G|  R such that[START_REF] Singhal | Diophantine exponents for standard linear actions of SL 2 over discrete rings in C, to appear in[END_REF] = max