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KOLMOGOROV EQUATIONS AND WEAK ORDER ANALYSIS FOR SPDES WITH

NONLINEAR DIFFUSION COEFFICIENT

CHARLES-EDOUARD BRÉHIER AND ARNAUD DEBUSSCHE

Abstract. We provide new regularity results for the solutions of the Kolmogorov equation associated to a
SPDE with nonlinear diffusion coefficients and a Burgers type nonlinearity. This generalizes previous results
in the simpler cases of additive or affine noise. The basic tool is a discrete version of a two sided stochastic
integral which allows a new formulation for the derivatives of these solutions. We show that this can be
used to generalize the weak order analysis performed in [16]. The tools we develop are very general and can
be used to study many other examples of applications.

1. Introduction

The Kolmogorov equation associated to a stochastic equation is a fundamental object. It is important to
have a good understanding of this equation since many properties of the stochastic equation can be derived.
For instance, it may be used to obtain uniqueness results - in the weak or strong sense - using ideas initially
developped by Stroock and Varadhan [41] or the so-called "Itô Tanaka" trick widely used by F. Flandoli and
co- authors, see for instance [19]. Also, it is the basic tool in the weak order analysis of stochastic equations,
see [42].

For Stochastic Partial Differential Equations (SPDEs), the associated Kolmogorov equation is not a stan-
dard object since it is a partial differential equations for an unknown depending on time and on an infinite
dimensional variable. In the case of an additive noise, it has been the object of several studies, see [8], [15],
[11], [30], [40] and the references therein. But for general diffusion coefficients, very little is known. In [12],
strict solutions are constructed but the assumptions are extremely strong and the result is of little interest
in the applications.

In this work, we consider a parabolic semilinear Stochastic Partial Differential Equation (SPDE) of the
following form:

(1) dXt = AXtdt+G(Xt)dt+ σ(Xt)dWt,

where W is a cylindrical Wiener process on a separable infinite dimensional Hilbert space H . Typically, H
is the space of square integrable functions on an open, bounded, interval in R so that the SPDE is driven by
a space time white noise.

We wish to study regularity properties of the solutions of the associated Kolmogorov equation. The main
application we have in mind is the weak order analysis of a Euler scheme applied to (1). This has been the
subject of many articles in the last decade, see [4], [5], [6], [16], [17], [20], [23], [28], [29], [43], [47], [48]. In
all these articles, the method is a generalization of the finite dimensional proof initially used in [42] (see also
the monographs [27] and [32] for further references) and based on the Kolmogorov equation associated to
(1). These results are restricted to the case of a σ satisfying very strong assumptions.

Thus our first aim is to obtain new regularity estimates on the transition semigroup (Pt)t≥. When (1)
has a unique solution (which is the case in the present article), denoted by (X(t, x))t≥0, it is defined by

(2) u(t, x) = Ptϕ(x) = E(ϕ(X(t, x))),
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where ϕ is a bounded borelian function on H . The function u formally satisfies the Kolmogorov equation:

(3)
du

dt
(t, x) =

1

2
Tr
(

σ(x)σ∗(x)D2u(t, x)
)

+ 〈Ax+G(x), Du(t, x)〉, u(0, x) = ϕ(x).

As usual, we have identified the first order derivative of u with respect to x and its gradient in H and the
second order derivative with the Hessian. The inner product in H is denoted by 〈·, ·〉.

Our arguments are general and can be applied in various situations. However, in order to concentrate on
the new arguments, we consider a prototype example. Namely, we take three functions F̃1, F̃2, σ : R → R, and
consider the following stochastic partial differential equation on the interval (0, 1) with Dirichlet boundary
conditions and driven by a space time white noise:







dX = (∂ξξX + F̃1(X) + ∂ξF̃2(X))dt+ σ̃(X)dW, t > 0, x ∈ (0, 1),
X(0, t) = X(1, t) = 0,
X(ξ, 0) = x(ξ).

The initial data x is given in L2(0, 1) and W is a cylindrical Wiener process (see [14]). This equation can be
rewritten in the abstract form (1) classically. Indeed, we define H = L2(0, 1) with norm | · |, A = ∂ξξ on the
domain D(A) = H2(0, 1) ∩H1

0 (0, 1), and the Nemytskii operators:

Fi(x) = F̃i

(

x(·)
)

, σ(x)h = σ̃
(

x(·)
)

h(·), x ∈ H, h ∈ H.

Assuming that F̃1, F̃2, and σ̃ are bounded, this defines F1, F2 : H → H and σ : H → L(H), where L(H)

is the space of bounded linear operators on H . Below, we assume that F̃1, F̃2 and σ̃ are functions of class
C3, which are bounded and have bounded derivatives. However, it is well-known that F1, F2 and σ do not
inherit these regularity properties on H . The control of their derivatives requires the use of Lp norms.

Finally, setting B = ∂ξ on H1(0, 1) and G = F1 + BF2, we obtain an equation in the abstract form (1)
above.

Global existence and uniqueness of a solution X ∈ L2(Ω;C([0, T ];H)) follow from standard arguments
(see [14] for instance). Indeed, we have boundedness and Lispchitz continuity properties on the coefficients
G and σ. Thus the transition semigroup can be defined by the formula (2).

The regularity results which are required for the numerical analysis and which we obtain in this article
have roughly the following form, under appropriate assumptions on ϕ: for t ∈ (0, T )

(4)
|Du(t, x) · h| ≤ C(T, ϕ)t−α|(−A)−αh|,

|D2u(t, x) · (h, k)| ≤ C(T, ϕ)t−(β+γ)|(−A)−βh||(−A)−γk|,
where (−A)−α denotes a negative power (for α > 0) of the linear operator −A. We do not make precise which
Lp norms appear on the right-hand side in (4). Precise and rigorous statements are given in Section 3.1.

Note that these regularity results are natural. They hold for instance in the case G = 0, σ = 0 for any
α, β, γ ≥ 0 thanks to the regularization properties of the heat semi-group. Using elementary arguments
(differentiation inside the expectation, control of the derivative processes using Itô’s formula and Gronwall
inequalities), see for instance [2], [16], one can consider the case when the diffusion coefficient σ is constant
- additive noise case. Then the estimate above holds for α ∈ [0, 1), and β, γ ∈ [0, 1) such that β + γ < 1.
The case of an affine σ is also treated in the above references but then we impose α, β, γ ∈ [0, 12 ). When
the diffusion coefficient σ is nonlinear (the so-called multiplicative noise case), the results obtained so far in
the literature are not satisfactory: the extra restriction β + γ < 1

2 is imposed. This is not sufficient for the
applications. For the weak order analysis, we need to take β + γ arbitrarily close to 1.

Also, the right hand side of (3) is well defined only if one is able to get (4) for α ∈ [0, 1), β, γ ∈ [0, 12 ) with

β + γ > 1
2 . This is important to prove existence of strict solutions to this Kolmogorov equation and thus to

generalize results available in the case of additive noise.
In this article, we introduce a new approach to obtain such results. Our first main contribution in this

article is to prove that in (4) one may take α ∈ [0, 1) and β, γ ∈ [0, 12 ), in the multiplicative noise case, for
SPDEs of the type of (1).

Our strategy is based on new expressions for the first and the second order derivatives of u. They are
obtained thanks to Malliavin integration by parts, and are written in terms of some two-sided stochastic
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integrals, with anticipating integrands. Such integrals can be defined in many different ways: see for in-
stance [1], [31], [35] where the definition of such integrals is motivated by simular reasons to ours. The
two-sided integrals which are required in this work are similar to those developed in [34], [37], [36], except
that we need to consider more general types of integrands.

We have not found the construction of the two-sided integrals required in our work in the literature.
Although interesting in itself, their rigorous and general construction would considerably lengthen the article;
this is left for future works. Instead, we have chosen a different approach: we have chosen to consider time
discretized versions of the problem, and to pass to the limit in estimates. Indeed, at the discrete time level
the construction of the two-sided integrals is straightforward. Nonetheless, we give a formal derivation of
the formulas in Section 4.1 to explain our ideas and the type of integrals which would be required to have a
direct proof in continuous time.

Once new regularity estimates on the solutions of Kolmogorov equations are obtained, our second contri-
bution is to address the weak order analysis of the following Euler scheme applied to (1):

Xn+1 −Xn = ∆t
(

AXn+1 +G(Xn)
)

dt+ σ(Xn)
(

W
(

(n+ 1)∆t
)

−W (n∆t)
)

, X0 = x,

where ∆t is the time step. We prove that the weak rate of convergence is equal to 1
2 : for arbitrarily small

κ ∈ (0, 12 ),
∣

∣Eϕ
(

X(N∆t)
)

− ϕ
(

XN

)∣

∣ ≤ Cκ(T, ϕ, x)∆t
1
2−κ,

where the integer N is such that N∆t = T , for arbitrary but fixed T ∈ (0,∞).
The value 1

2 for the weak order convergence is natural: indeed, it is possible to show that (for an appro-

priate norm ‖ · ‖) one has the strong convergence rate 1
4 : E‖X(N∆t)−XN‖ ≤ Cκ(T, x)∆t

1
4−

κ
2 .

Like in [5], [6], in the case of ergodic SPDEs, the analysis can be extended on arbitrarily large time
intervals, with a uniform control of the error. This yields error estimates concerning the approximation of
invariant distributions. In fact, under appropriate conditions on the Lipschitz constants of the nonlinear
coefficients, one can include factors of the type exp(−ct), with c > 0, on the right-hand sides of the equations
in (4); alternatively, these regularity estimates are transfered to the solutions of associated Poisson equations.
We do not consider this question further in this article.

We generalize the proof of [16], and of subsequent articles, which was done under the artificial assumptions
that F : H → H and σ : H → L(H) are of class C2, with bounded derivatives, and that the second order
derivative of σ satisfies a very restrictive assumption. As already explained above, the new regularity
estimates on the solutions of Kolmogorov equation obtained in the first part of the article are fundamental.
Here we treat diffusion coefficients of Nemytskii type, and drift coefficients which are sums of Nemytskii and
Burgers type nonlinearities. Treating Burgers type nonlinearities is one of the novelties, and one of the main
source of technical difficulties, of this work. Even if the decomposition of the error and ideas in the control of
the terms are similar to [16], we need to consider all the terms again since the functional setting is different.

Another approach, using the concept of mild Itô processes, see [10], [13], has been recently studied to
provide weak convergence rates for SPDEs (1) with multiplicative noise, for several examples of numerical
schemes: see [9], [24], [25], [26]. In particular, in [24], a similar result as ours is obtained when the Burgers
type nonlinearity is absent (F2 = 0). This requires also to work in a Banach spaces setting, with an
appropriate type of mild Itô formula [10]. It is not clear that this can be extended to the case F2 6= 0.
Moreover, we believe that our way of treating the discretization error is more natural and somewhat simpler.
We also mention that the regularity requirements are weaker in our work.

Also, in [3], a completely different approach is used; but up to now, this covers only additive noise, i.e.
the case when σ is constant.

In future works, we plan to analyze the weak error associated to spatial discretization, using Finite
Elements, like in [4]. Note that the analysis of the weak error may also be generalized to other examples of
time discretization schemes, such as exponential Euler schemes, like in [43], [47] for instance.

We have chosen to consider SPDEs (1) of one type, namely with Nemytskii diffusion coefficients, and
Nemytskii and Burgers type nonlinear drift coefficients, driven by space-time white noise, in dimension
1. We believe that natural generalizations hold true, for instance for equations in dimension 2 or 3, with
appropriate noise. Moreover, considering coefficients with unbounded derivatives, with polynomial growth
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assumptions, is also an important subject, which we have not chosen to treat; indeed it would have required
to deal with additional technical difficulties, resulting in hiding the fundamental ideas of our approach.

On a more theoretical point of view, we leave for future work the important question of the construction
in continuous time of the two-side stochastic integrals used in the proof of the new regularity results for the
solutions of Kolmogorov equations. It may also be interesting to generalize these estimates to higher order
derivatives. Finally, we believe that these results and the strategy of proof will have other applications,
beyond analysis of weak convergence rates.

This article is organized as follows. The functional setting is made precise in Section 2. Section 3 contains
the statements of our main results, on the regularity of the solution of the Kolmogorov equation (Section 3.1),
then on the weak rate of convergence of the Euler approximation (Section 3.2). Detailed proofs are given in
Section 4 and in Section 5 respectively.

2. Setting

We use the notation N
⋆ = {1, 2, . . .} for the set of (positive) integers.

Throughout the article, c or C denote generic positive constants, which may change from line to line. We
do not always precise the various parameters they depend on. When necessary, we write C = C...(. . .) to
emphasize the dependence on some parameters, by convention it is locally bounded on the domains where
the parameters live.

2.1. Functional spaces and stochastic integration. In all the article, given two Banach spaces E1 and
E2, C

k
b (E1;E2), or Ck

b (E1) when E1 = E2, is the space of bounded Ck functions from E1 to E2 with bounded
derivatives up to order k. Also L(E1;E2) denotes the space of bounded linear operators from E1 to E2. If
E1 = E2, we set L(E1) = L(E1;E1).

The SPDE (1) is considered as taking values in the separable Hilbert space H = L2(0, 1), with norm
(resp. inner product) denoted by | · | (resp. 〈·, ·〉). We will also extensively use the Banach spaces Lp(0, 1),
for p ∈ [1,∞]; the Lp norm is denoted by | · |Lp .

When K is a separable Hilbert space, the trace operator is denoted by Tr(·); recall that TrΨ is well defined
when Ψ ∈ L(K) is nuclear ([21]).

We recall that if Ψ ∈ L(K) is a nuclear operator and L ∈ L(K) is a bounded linear mapping, then LΨ
and ΨL are nuclear operators, and TrLΨ = TrΨL.

Let H1, H2 be two separable Hilbert spaces. For L ∈ L(H1, H2), we denote by L⋆ its adjoint. We now
introduce the space L2(H1;H2) of Hilbert-Schmidt operators fromH1 toH2: a linear mapping Φ ∈ L(H1;H2)
is an Hilbert-Schmidt operator if Φ⋆Φ ∈ L(H1, H1) is nuclear, and the associated norm ‖ ·‖L2(H1,H2) satisfies

‖Φ‖L2(H1;H2) = ‖Φ∗‖L2(H2;H1) = (TrΦΦ∗)
1
2 . We use the notation L2(H1) = L2(H1;H1).

For a function ψ ∈ C1(H ;R), we often identify the first order derivative and the gradient: 〈Dψ(x), h〉 =
Dψ(x) · h, for x, h ∈ H . Similarly, if ψ ∈ C2(H ;R), we often identify the second order derivative and the
Hessian: 〈D2ψ(x)h, k〉 = D2ψ(x) · (h, k), for x, h, k ∈ H

We are now in position to present basic elements about stochastic Itô integrals on Hilbert spaces, see [14]
for further properties. The cylindrical Wiener process on H is defined by

(5) W (t) =
∑

i∈N∗

βi(t)fi,

where
(

βi
)

i∈N∗
is a sequence of independent standard scalar Wiener processes on a filtered probability space

satisfying the usual conditions
(

Ω,F , (Ft)t≥0,P
)

and
(

fi
)

i∈N∗
is a complete orthonormal system of H .

It is standard that this representation does not depend on the choice of the complete orthonormal system
of H . Moreover, it is well-known that W (t) as defined by (5) does not take values in H ; however, the series
is convergent in any larger Hilbert space K, such that the embedding from H into K is an Hilbert-Schmidt
operator.
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Given a predictable process Φ ∈ L2(Ω× (0, T );L2(H ;K)), the integral
∫ T

0
Φ(s)dW (s) is a well defined Itô

integral with values in the Hilbert space K. Moreover, Itô’s isometry reads:

E

(

‖
∫ T

0

Φ(s)dW (s)‖2K

)

= E

(

∫ T

0

‖Φ(s)‖2L2(H;K)ds

)

.

In the sequel, we will need to control Lp norms of stochastic integrals, for p ∈ [2,∞), for processes Φ with
values in L(H ;E), where E = Lp(0, 1) is a separable Banach space. The space L2(H,K) of Hilbert-Schmidt
operators is then replaced by the space R(H,E) of γ- radonifying operator: a linear operator Ψ ∈ L(H,E)
is a γ-radonifying operator, if the image by Φ of the canonical gaussian distribution on H extends to a Borel
probability measure on E. The space R(H ;E) is equipped with the norm ‖ · ‖R(H,E) defined by

‖Φ‖2R(H;E) = Ẽ
∣

∣

∑

i∈N∗

γiΦfi
∣

∣

2
,

where (γi)i∈N∗ is a sequence of independent standard (mean 0 and variance 1) Gaussian random variables,

defined on a probability space (Ω̃, F̃ , P̃), with expectation operator denoted by Ẽ, and (fi)i∈N∗ is a complete
orthonormal system. The expression of ‖Φ‖R(H;E) does not depend on the choice of these elements. We
refer for instance to [7, 45, 46] for further properties.

An important tool which is used frequently in the sequel is the left and right ideal property for γ-
radonifying operators: for every separable Hilbert spaces K,K and for every Banach spaces E = Lp(0, 1),
E = Lq(0, 1), with p, q ∈ [2,∞), for every L1 ∈ L(E, E), Ψ ∈ R(K,E) and L2 ∈ L(K,K), one has L1ΨL2 ∈
R(K, E),
(6) ‖L1ΨL2‖R(K,E) ≤ ‖L1‖L(E,E)‖Ψ‖R(K,E)‖L2‖L(K,K).

For E = Lp(0, 1) with p ∈ [2,∞), the following generalization of Itô’s isometry holds true, in terms of an

inequality only: for predictable processes Φ ∈ L2(Ω × (0, T );R(H ;E)), the Itô integral
∫ T

0
Φ(s)dW (s) can

be defined, with values in E, and there exists cE ∈ (0,∞), depending only on the space E, such that

(7) E

(

‖
∫ T

0

Φ(s)dW (s)‖2E

)

≤ cEE

(

∫ T

0

‖Φ(s)‖2R(H,E)ds

)

.

Finally, generalizations of Burkholder-Davies-Gundy inequalities are also available and will be used
throughout the article.

To simplify the notation, we often write Lp instead of Lp(0, 1).

2.2. Coefficients of the SPDE. In this section, we give definitions and properties of the coefficients A,
G = F1 +BF2, and σ, which appear in (1).

The operator A is an unbounded linear operator on H = L2(0, 1): it is defined as the Laplace operator
on (0, 1), with homogeneous Dirichlet boundary conditions, on the domain D(A) = H2(0, 1) ∩ H1

0 (0, 1). It
satisfies Property 2.1 below.

Property 2.1. For i ∈ N
⋆, define ei =

√
2 sin

(

iπ·
)

and λi = (iπ)2. Then

•
(

ei
)

i∈N∗
is a complete orthornormal system of H, and, for all i ∈ N

∗,

Aei = −λiei.
• For any α ∈ R,

∑∞
i=1 λ

−α
i <∞ if and only if α > 1

2 .
• the family of eigenvectors is equibounded in L∞: supi∈N⋆ |ei|L∞ <∞.

In particular, for every p ∈ [2,∞], supi∈N⋆ |ei|Lp <∞. This equiboundedness property is crucial for many
estimates which will be proved in this article.

For every p ∈ (2,∞), A can also be seen as an unbounded linear operator on Lp(0, 1), with domain
Dp(A) = {x ∈ Lp(0, 1);Ax ∈ Lp(0, 1)}. Note the inclusion Dp(A) ⊂ Dq(A) ⊂ D(A) for p ≥ q ≥ 2.

The operator A generates an analytic semigroup
(

etA
)

t≥0
on Lp(0, 1), for every p ∈ [2,∞), see for

instance [38]. In the case p = 2, we have the following formula: etA =
∑∞

i=1 e
−tλi〈·, ei〉ei for every x ∈ H

and t ≥ 0.
5



We use the standard construction of fractional powers (−A)−α and (−A)α of A, for α ∈ (0, 1), see for
instance [38]:

(−A)−α =
sin(πα)

π

∫ ∞

0

t−α(tI −A)−1dt,

(−A)α =
sin(πα)

π

∫ ∞

0

tα−1(−A)(tI −A)−1dt,

where (−A)α is defined as an unbounded linear operator on Lp(0, 1), with domain Dp

(

(−A)α
)

. Definitions
are consistent when p varies. In the case p = 2, the construction is simple: indeed,

(−A)−αx =
∑

i∈N⋆

λ−α
i 〈x, ei〉ei, x ∈ H,

(−A)αx =
∑

i∈N⋆

λαi 〈x, ei〉ei, x ∈ D2

(

(−A)α
)

=

{

x ∈ H ;

∞
∑

i=1

λ2αi 〈x, ei〉2 <∞
}

.

We use the natural norms on Dp((−A)α), denoted by |(−A)α · |Lp . They do not in general coincide with
the norms of the standard Sobolev spaces W 2α,p = W 2α,p(0, 1); see [44, Section 4.2.1] for their definitions.
When 2α is not an integer, we may use the norm defined in [44, Section 4.4.1, Remark 2]. Nevertheless, for
any ǫ > 0, we have the following inequalities:

(8) |x|W 2α−ǫ,p ≤ cα,ǫ,p|(−A)αx|Lp , x ∈ Dp((−A)α) ; |(−A)αx|Lp ≤ cα,ǫ,p|x|Wα+ǫ,p , x ∈W 2α+ǫ,p,

for cα,ǫ,p ∈ (0,∞). These inequalities follow from combining several arguments from [44], and using the
inclusion Dp(A) ⊂W 2,p: see (3) from Section 1.15.2, (e) from Section 1.3.3, and (a), (b) from Section 4.6.1.

Moreover, the choice of norm on W 2α,p from [44, Section 4.4.1, Remark 2] immediatly yields the following
inequality: for α < 1

2 and ǫ > 0, any x ∈ Dp

(

(−A)α+ǫ
)

, and any Lipschitz continuous function g : R → R,

(9)
∣

∣(−A)αg(x)
∣

∣

Lp ≤ cα,ǫ|g(x)|W 2α+ǫ,p ≤ cα,ǫ(g)
(

1 + |x|W 2α+ǫ,p

)

≤ cα,ǫ(g)
(

1 + |(−A)α+ǫx|Lp

)

.

Similarly, for α < 1
2 , and x ∈W 2α,q, y ∈W 2α,r such that 1

p = 1
q + 1

r , one has

(10) |xy|W 2α,p ≤ cα,q,r
(

|x|Lq |y|W 2α,r + |x|W 2α,q |y|Lr

)

≤ cα,q,r|x|W 2α,q |y|W 2α,r ;

Using then (8), (10) yields that for α ∈ (0, 12 ), ǫ > 0, 1
p = 1

q + 1
r , and x ∈ Dq

(

(−A)α+ǫ
)

, y ∈ Dr

(

(−A)α+ǫ
)

,

one has

(11) |(−A)αxy|Lp ≤ cα,ǫ,q,r|(−A)α+ǫx|Lq |(−A)α+ǫy|Lr .

We will use below a last inequality concerning products, where one of the factors is controlled in a negative
space. For α < 1

2 , ǫ > 0, 1
p = 1

q + 1
r and x ∈ Lq, y ∈ Dr

(

(−A)α+ǫ
)

, one has

(12) |(−A)−α−ǫ(xy)|Lp ≤ cα,ǫ,q,r|(−A)−αx|Lq |(−A)α+ǫy|Lr .

Let us give a proof of inequality (12). Let z ∈ Dp′((−A)α+ǫ), where 1
p + 1

p′
= 1, then

〈xy, z〉 = 〈(−A)−αx, (−A)α(yz)〉 ≤ |(−A)−αx|Lq |(−A)α(yz)|Lq′ ,

where 1
q + 1

q′ = 1; note that 1
q′ =

1
r + 1

p′
. From (8) and (10), we obtain

|(−A)α(yz)|Lq′ ≤ c|yz|W 2α+ǫ,q′

≤ c|y|W 2α+ǫ,r |z|W 2α+ǫ,p′

≤ c|(−A)α+ǫy|Lr |(−A)α+ǫz|Lp′ .

We finally conclude the proof of (12) thanks to the following inequality:

〈xy, z〉 ≤ c|(−A)−αx|Lq |(−A)α+ǫy|Lr |(−A)α+ǫz|Lp′ .

The drift coefficient G is the sum of a Nemytskii and of a Burgers type nonlinearities: G = F1 + BF2,
where Bx = ∂ξx ∈ Lp(0, 1) for x ∈ W 1,p(0, 1), and where F1 and F2 are Nemytskii coefficients. Precisely, let

F̃1, F̃2 ∈ C3
b (R) be two real-valued functions. We assume moreover that they are bounded, to simplify the
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presentation, but this should not be seen as a restrictive assumption. Then define, for every x ∈ Lp, with
p ∈ [1,∞], Fi(x)(·) = F̃i

(

x(·)
)

, for i ∈ {1, 2}.
Straightforward applications of Hölder’s inequality yield Property 2.2 below.

Property 2.2. Let F ∈ {F1, F2}.
For every p ∈ [1,∞], there exists Cp ∈ (0,∞) such that for every x ∈ L2, h ∈ Lp

|F (x)|Lp ≤ Cp , |F ′(x).h|Lp ≤ Cp|h|Lp ;

moreover, if q1, q2, r1, r2, r3 ∈ [1,∞] are such that 1
q1

+ 1
q2

= 1
p and 1

r1
+ 1

r2
+ 1

r3
= 1

p , there exists Cp(q1, q2)

and Cp(r1, r2, r3) such that for every x ∈ L2

|F (2)(x).(h1, h2)|Lp ≤ Cp(q1, q2)|h1|Lq1 |h2|Lq2 , ∀ h1 ∈ Lq1 , h2 ∈ Lq2

|F (3)(x).(h1, h2, h3)|Lp ≤ Cp(r1, r2, r3)|h1|Lr1 |h2|Lr2 |h3|Lr3 , ∀ h1 ∈ Lr1 , h2 ∈ Lr2 , h3 ∈ Lr3 .

In order to control terms of the form BF2(x), we will use the following property

(13)
∣

∣(−A)−αB(−A)−β
∣

∣

L(Lp)
<∞, for α+ β >

1

2
.

Indeed, this inequality is a direct consequence of (8) when α = 0, and uses a duality argument when β = 0.
The general case follows by an interpolation argument.

The diffusion coefficient σ is a linear operator of Nemytskii type. Precisely, let σ̃ ∈ C3
b (R) be a real-

valued, bounded, function, with bounded derivatives up to order 3. Then, for every p ∈ [1,∞], define
(

σ(x)h
)

(·) = σ̃
(

x(·)
)

h(·) for all x, h ∈ Lp.
To state the regularity estimates on the derivatives of σ which will be used below, we need the following

result.

Lemma 2.3. For every p ∈ [2,∞), there exists C(p) ∈ (0,∞) such that for every x ∈ D
(

(−A) 1
4−

1
2p
)

(14) |x|Lp ≤ C(p)
∣

∣(−A) 1
4−

1
2p x|L2 .

Proof. The standard Sobolev inequality gives |x|Lp ≤ C(p)|x|
W

1
2
−

1
p
,2 . To conclude, we use the fact that, for

α ∈ [0, 14 ), the norms | · |W 2α,2 and |(−A)α · |L2 are equivalent on D
(

(−A)α
)

. �

Property 2.4. For every p, q ∈ [1,∞], σ : L2 → L(Lp, Lq) is of class C3. Moreover, the following conditions
on the derivatives of σ hold true.

For every p ∈ [2,∞], there exists Cp ∈ (0,∞) such that for every x ∈ L2

|σ(x)|L(Lp) ≤ Cp.

For every p ∈ [2,∞), there exists Cp ∈ (0,∞) such that for every x ∈ L2

∣

∣(−A)− 1
2p
(

σ′(x).h
)∣

∣

L(L2)
≤ Cp|h|Lp , ∀ h ∈ Lp,(15)

∣

∣(−A)− 1
2p
(

σ′′(x).(h, k)
)∣

∣

L(L2)
≤ Cp|h|L2p |k|L2p , ∀ h, k ∈ L2p,(16)

∣

∣(−A)− 1
2p
(

σ(3)(x).(h, k1, k2)
)∣

∣

L(L2)
≤ Cp|h|L2p |k1|L4p |k2|L4p , ∀ h ∈ L2p, k1, k2 ∈ L4p.(17)

Finally, for every x ∈ L2 and h ∈ Lp, k1, k2 ∈ L2p

(18) σ(x)⋆ = σ(x) ,
(

σ′(x).h
)⋆

= σ′(x).h ,
(

σ′′(x).(k1, k2)
)⋆

= σ′′(x).(k1, k2).

We sketch the proof of (15), the two other estimates (16) and (17) are obtained in the same way. For
every y, z ∈ L2,

〈(σ′(x).h)y, (−A)− 1
2p z〉 ≤ C|h|Lp |y|L2 |(−A)− 1

2p z|Lr

≤ C|h|Lp |y|L2 |(−A) 1
4−

1
2r−

1
2p z|L2,

thanks to Hölder’s inequality, with 1
r + 1

p = 1
2 , and inequality (14).

When no confusion is possible, we will often use the notations Fi for F̃i, and σ for σ̃.
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2.3. Test functions. We now give the regularity assumptions on the test functions ϕ. Typically, ϕ is only
defined on Lq(0, 1), for some q ∈ [2,∞). Considering regularized version ϕδ, defined in Assumption 2.5
below, allows us to consider functions defined and regular on H = L2(0, 1).

Assumption 2.5. For every δ ∈ (0, 1), define ϕδ(·) = ϕ
(

eδA·). We assume that ϕδ is of class C3 on H, for
every δ ∈ (0, 1). Moreover, we assume that the derivatives satisfy the following conditions, uniformly with
respect to δ ∈ (0, 1): there exists p, q ∈ [2,∞), K ∈ N

⋆ ∪ {0}, and C(p, q,K) ∈ (0,∞) such that for every
x ∈ Lp, and h1, h2, h3 ∈ Lq

(19)

∣

∣Dϕδ(x).h1
∣

∣ ≤ C(p, q,K)
(

1 + |x|Lp

)K |h1|Lq ,
∣

∣D2ϕδ(x).(h1, h2)
∣

∣ ≤ C(p, q,K)
(

1 + |x|Lp

)K |h1|Lq |h2|Lq ,
∣

∣D3ϕδ(x).(h1, h2, h3)
∣

∣ ≤ C(p, q,K)
(

1 + |x|Lp

)K |h1|Lq |h2|Lq |h3|Lq .

Interesting examples of test functions ϕ are constructed as follows. Let φ ∈ C3(R) a function of class C3;
we assume that the derivatives of φ have at most polynomial growth. Define

ϕ(x) =

∫ 1

0

φ
(

x(ξ)
)

dξ,

for x ∈ Ln(0, 1), where n ∈ N
⋆ is such that sup

x∈R

|ϕ′(x)|
(1+|x|)n <∞.

Since derivatives of ϕ take the form D(n)ϕ(x).
(

h1, . . . , hn
)

= φ(n)
(

x(·)
)

h1(·) . . . hn(·), Assumption 2.5 is
satisfied by applying Hölder’s inequality, with appropriately chosen parameters p, q.

If we assume that the derivatives of φ are bounded, we may choose K = 0 and p = 2; the estimate on the
third order derivative requires to choose q = 3.

2.4. Elements of Malliavin calculus. We recall basic definitions regarding Malliavin calculus, which is a
key tool for the analysis provided below; especially, we define the Malliavin derivative, and state the integra-
tion by parts formula which will be used. We simply aim at giving the main notation; for a comprehensive
treatment of Malliavin calculus, we refer to the classical monograph [33].

Malliavin calculus techniques will be required for both contributions of this article: first the proof of new
regularity estimates for the solution of Kolmogorov equations associated to SPDEs with nonlinear diffusion
coefficient, and second the analysis of weak convergence rates for the numerical discretization of the SPDE.
For the first part, we will only use discrete time versions of all objects, which are based on standard integration
by parts in the weighted L2

ρ spaces, where ρ is the Gaussian density. The full generality of Malliavin calculus,
in continuous time, is mainly needed in the second part.

Given a smooth real-valued function G on Hn and ψ1, . . . , ψn ∈ L2(0, T ;H), the Malliavin derivative of

the smooth random variable G
(∫ T

0
〈ψ1(r), dW (r)〉, . . . ,

∫ T

0
〈ψn(r), dW (r)〉

)

, at time s, in the direction h ∈ H ,
is defined as

Dh
sG
(

∫ T

0

〈ψ1(r), dW (r)〉, . . . ,
∫ T

0

〈ψn(r), dW (r)〉
)

=

n
∑

i=1

∂iG
(

∫ T

0

〈ψ1(r), dW (r)〉, . . . ,
∫ T

0

〈ψn(r), dW (r)〉
)

〈ψi(s), h〉.

We also define the process DG by 〈DG(s), h〉 = Dh
sG. It can be shown that D defines a closable operator

with values in L2(Ω × (0, T );H), and we denote by D
1,2 the closure of the set of smooth random variables

for the norm

‖G‖D1,2 =
(

E(|G|2 +
∫ T

0

|DsG|2ds)
)

1
2

.

We define similarly the Malliavin derivative of random variables taking values in H. If G =
∑

iGiei ∈
L2(Ω, H) with Gi ∈ D

1,2 for all i ∈ N
⋆ and

∑

i

∫ T

0 |DsGi|2ds <∞, we set

Dh
sG =

∑

i

Dh
sGiei, DsG =

∑

i

DsGiei.

The chain rule is valid: if u ∈ C1
b (R) and G ∈ D

1,2, then u(G) ∈ D
1,2 and D(u(G)) = u′(G)DG.
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For G ∈ D
1,2 and ψ ∈ L2(Ω × (0, T );H), such that ψ(t) ∈ D

1,2 for all t ∈ [0, T ], and such that
∫ T

0

∫ T

0
|Dsψ(t)|2dsdt <∞, we have the Malliavin integration by parts formula:

E

(

G

∫ T

0

(ψ(s), dW (s))

)

= E

(

∫ T

0

(DsG,ψ(s))ds

)

=
∑

i

E

(

∫ T

0

Dei
s G (ψ(s), ei)ds

)

,

where the stochastic integral is in general a Skohorod integral. However, in this article, it corresponds with
the Itô integral since we only need to consider the Skohorod integral of adapted processes. Moreover, the
integration by parts formula above holds for G ∈ D

1,2 and ψ ∈ L2(Ω × (0, T );H) when ψ is an adapted
process.

Recall that if G is Ft measurable, then DsG = 0 for s ≥ t.
Finally, we use the following integration by parts formula, see Lemma 2.1 in [16]: let G ∈ D

1,2, u ∈ C2
b (H)

and ψ ∈ L2(Ω× (0, T ),L2(H)) be an adapted process, then

E

(

Du(G) ·
∫ T

0

ψ(s)dW (s)

)

=
∑

i

E

(

∫ T

0

D2u(G) · (Dei
s G,ψ(s)ei) ds

)

= E

(

∫ T

0

Tr
(

ψ∗(s)D2u(G)DsG
)

ds

)

.

3. Main results

We consider the stochastic evolution equation (1), which we recall here:

(20) dXt = AXtdt+G(Xt)dt+ σ(Xt)dW (t), X(0) = x,

where x ∈ H is an arbitrary initial condition.
For every time T ∈ (0,∞), equation (20) admits a unique mild solution in C([0, T ];H), i.e. X =

(

Xt

)

t∈[0,T ]
is a H-valued continuous stochastic process such that for every 0 ≤ t ≤ T

(21) Xt = etAx+

∫ t

0

e(t−s)AG(Xs)ds+

∫ t

0

e(t−s)Aσ(Xs)dW (s),

where the H-valued stochastic integral is intepreted in Itô sense. We refer for instance to [14] for a proof of
this standard result.

To emphasize on the influence of the initial condition x, we often use the notation X(t, x). However, in
many computations we omit this dependence and write Xt for simplicity.

A rigorous treatment of the problem is made easier by considering regularized coefficients Gδ and σδ, for
δ > 0, defined as follows:

Gδ = eδAG
(

eδA·
)

= eδAF1

(

eδA·
)

+BeδAF2

(

eδA·
)

, σδ = eδAσ
(

eδA·
)

eδA.

It is straightforward to check that Properties 2.2 and 2.4 are preserved after regularization, with constants
which are uniform with respect to δ. Indeed, on the one hand, eδA is bounded with norm equal to 1, from Lp

to Lp, for every p ∈ [1,∞] and δ ∈ (0, 1); on the other hand, for δ > 0, eδA is also a bounded operator from
L2 to Lp for p > 2, and thus the regularized coefficients Fδ and σδ are C3

b on H (but with norm depending
on δ). Note that B and eδA do not commute.

Remark 3.1. We cannot use standard regularization methods in our setting, such as spectral Galerkin
projections, like in [16]. Indeed, the associated projection operators are not uniformly bounded (with respect
to dimension), in Lp spaces for p > 2.

The regularization we use in this article does not provide finite dimensional approximation of the process.
Alternatively, the not so different regularization proposed in [22] (see Lemma 3.1) may be used. It is based

on an additional truncation of modes larger than N(δ), in the definition of eδA, for a well-chosen integer
N(δ).

In the computations below, we often omit to mention the dependance on δ. All the estimates we state
and prove are uniform in δ.
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Working with regularized coefficients Fδ and σδ, with δ ∈ (0, 1), we introduce the regularized SPDE

(22) dXδ
t = AXδ

t dt+Gδ(X
δ
t )dt+ σδ(X

δ
t )dW (t), Xδ(0) = x.

When δ → 0, Xδ converges (in a suitable sense) to X . Consistently, the notation X0 = X will be used.
For every δ ∈ (0, 1), introduce the function uδ : [0, T ]× L2 → R, defined by

(23) uδ(t, x) = E
[

ϕδ(X
δ(t, x)

)]

,

and the function u : [0, T ]× L2 → R

(24) u(t, x) = E
[

ϕ(X(t, x)
)]

.

The function uδ, resp. u, is formally solution of the Kolmogorov equations associated to (22), resp. (20). As
already mentioned, the regularity results proved in this article could be used to prove that these functions
are in fact strict solutions of these Kolmogorov equations.

Consistently, we use the notation u0 = u. Indeed, results on u will be obtained from results proved for
δ > 0 and passing to the limit δ → 0.

Thanks to [2] or [8], for every δ ∈ (0, 1) and t ≥ 0, uδ(t, ·) is a function of class C3 on L2.

3.1. Regularity estimates on the derivatives of the Kolmogorov equation solution. The first main
results of this article are new estimates on the first and second order spatial derivatives of u.

For our results given below, we consider the setting of section 2.2 and section 2.3. Note that all the results
are valid for the parameter q, defined in Assumption 2.5, satisfying q ∈ [2,∞). The proofs of the cases q = 2
and q ∈ (2,∞) need to be treated separately. We only provide detailed proofs in the case q ∈ (2,∞). The
case q = 2 is easier.

Theorem 3.2. For every β ∈ [0, 1) and T ∈ (0,∞), there exists Cβ(T ), such that for every δ ∈ [0, 1),
t ∈ (0, T ], x ∈ Lp and h ∈ Lq

(25)
∣

∣Duδ(t, x).h
∣

∣ ≤ Cβ(T )

tβ
(1 + |x|Lmax(p,2q) )K+1|(−A)−βh|L2q .

This result can be interpreted as a regularization property: for every t > 0 and β ∈ (0, 1), we have
(−A)βDu(t, x) ∈ Lr, compared with Du(0, x) ∈ Lr, where r is the conjugated exponent of 2q, i.e. 1

r+
1
2q = 1.

Theorem 3.2 is not difficult for β ∈ [0, 12 ) (see [2], [16]). Getting the result for β ∈ [0, 1) with standard
arguments is possible only in the case of additive noise. We recall below in Section 4.1 where the limitation
β < 1

2 comes from in direct approaches, when σ is nonlinear. Then we give a formal description of our
strategy of proof of Theorem 3.2 and introduce new arguments.

We now turn to the result on D2u, which is also a regularization property.

Theorem 3.3. For every β, γ ∈ [0, 12 ) and T ∈ (0,∞), there exists Cβ,γ(T ), such that for every δ ∈ [0, 1),

t ∈ (0, T ], x ∈ Lp and h1, h2 ∈ L4q

(26)
∣

∣D2uδ(t, x).
(

h1, h2
)∣

∣ ≤ Cβ,γ(T )

tβ+γ

(

1 + |x|Lmax(p,2q)

)K+1|(−A)−βh1|L4q |(−A)−γh2|L4q .

Again, the novelty in Theorem 3.3 is the range [0, 12 ) for the parameters β and γ. More precisely, we

remove the restriction β + γ < 1
2 , for which a direct proof works, see [2], [16].

Another novelty is that we consider SPDEs with a spatial derivate in the nonlinear term. Moreover,
Nemytskii type diffusion and nonlinear terms are allowed. This requires bounds depending on Lq norms and
not only on L2 norms.

Remark 3.4. The presence of L2q and L4q norms in the right-hand side of (25) and (26) is not optimal.
A careful inspection of the proof reveals that norms on the right-hand side may be replaced with weaker Lq+ǫ

and L2q+ǫ norms, where ǫ is arbitrarily close to 0. Moreover, at the price of increasing the singularity in T ,
one may use the Markov property to get estimates which depend on Lr with much smaller r.
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The main motivation and application of Theorem 3.2 and Theorem 3.3 is the analysis of weak convergence
rates for numerical discretizations of the SPDE (20). For that purpose, being able to choose both β and
γ arbitrarily close to 1

2 is fundamental. Theorem 3.2 with β ∈ [0, 12 ) is sufficient to consider the case with
F2 = 0, but we need β close to 1 to treat the Burger’s type nonlinearity BF2.

In the additive noise case, it is possible to choose β, γ ∈ [0, 1), such that β + γ < 1 in Theorem 3.3. Then
we may choose for instance β ∈ [ 12 , 1), and this simplifies several arguments in the weak convergence analysis
- and also in the argument presented below to give a meaning to the trace term in (3). We believe that
the same strategy as for the proof of Theorem 3.2 can be adapted to prove that indeed the conclusion of
Theorem 3.3 is still valid for β, γ ∈ [0, 1) with β + γ < 1. Substantial generalizations of the arguments are
however required, and they will be studied in future works.

In addition to the analysis of weak convergence errors, Theorems 3.2 and 3.3 can be used to give a meaning
to the different terms in the right-hand side of (3). First the terms 〈Ax,Du(t, x)〉 has a meaning as soon as
|(−A)1−βx|Lq < ∞, for β arbitrarily close to 1. Choosing β > 3

4 is fundamental, since the solution X(t, x)

takes values in Dq

(

(−A)α
)

only for α < 1
4 . The term 〈G(x), Du(t, x)〉 = 〈F1(x) + BF2(x), Du(t, x)〉 is

well-defined also, choosing β > 1
2 thanks to (13). The trace term is more delicate. Thanks to Theorem 3.3,

for β, γ ∈ [0, 12 ) and x ∈ Lp we have

Tr
(

σ(x)σ∗(x)D2u(t, x)
)

=
∑

n

D2u(t, x).(σ2(x)en, en),

and
∑

n

∣

∣D2u(t, x).(σ2(x)en, en)
∣

∣ ≤ Cβ,γ(T )

tβ+γ

(

1 + |x|KLp

)

∑

n

|(−A)−β(σ2(x)en)|L4q |(−A)−γen|L4q

≤ Cβ,γ(T )

tβ+γ

(

1 + |x|KLp

)

∑

n

|(−A)−β(σ2(x)en)|L4qλ−γ
n ,

where we have used sup
n∈N⋆

|en|L4q <∞ thanks to Property 2.1.

Nevertheless, taking γ < 1
2 arbitrarily close to 1

2 and β = 0 is not sufficient, since
∑

n∈N⋆ λ−γ
n = ∞. To

overcome this issue, we use (12), then (9):

|(−A)−β(σ2(x)en)|L4q ≤ c|(−A)βσ2(x)|L8q |(−A)−β+ǫen|L8q ≤ c(1 + |(−A)β+ǫx|L8q )|(−A)−β+ǫen|L8q .

We choose γ, β ∈ [0, 12 ) and ǫ > 0 such that γ + β − ǫ > 1
2 :

∑

n

∣

∣D2u(t, x).(σ2(x)en, en)
∣

∣ ≤ Cβ,γ(T )

tβ+γ

(

1 + |x|KLp

)

(1 + |(−A)β+ǫx|L8q )
∑

n

λ−γ−β+ǫ
n .

Note that it is possible to choose β, ǫ arbitrarily close to 0. Therefore the trace term in (3) is meaningful as
soon as x ∈ D8q((−A)α) for some α > 0. Again the exponant 8q is not optimal.

For completeness, we also state a regularity result on the third order derivatives of uδ. This result is useful
to prove the two results above and in the analysis of the weak convergence rate for numerical approximations
below. Contrary to Theorems 3.2 and 3.3, since we consider a restrictive range for the parameters α, β, γ, i.e.
with the constraint α+β+γ < 1/2, standard arguments are sufficient and the proof is left to the reader. The
arguments used for Theorems 3.2 and 3.3 could be naturally extended to generalize Proposition 3.5, under
appropriate assumptions, as well as to higher order derivatives. We leave the study of such generalizations
to future works.

Proposition 3.5. For every α, β, γ ∈ [0, 12 ) such that α + β + γ < 1
2 , and T ∈ (0,∞), there exists Cβ(T ),

such that for every δ ∈ (0, 1), h1, h2, h3 ∈ L3q

(27)
∣

∣D3uδ(t, x).(h1, h2, h3)
∣

∣ ≤ Cβ(T )

tβ
(1 + |x|Lp)K |(−A)−αh1|L3q |(−A)−βh2|L3q |(−A)−γh3|L3q .

The results in Theorems 3.2, 3.3 are proved for the function uδ, defined by (23), for δ ∈ (0, 1). Thanks
to the result on the third order derivatives of uδ, we may take the limit δ → 0 in Theorems 3.2 and 3.3;
this provides Gâteau differentiability of first and second order of the function u, at points x ∈ Lp and in
directions h1, h2 ∈ Lq.
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If ϕ is a C2 function on H satisfying Assumption 2.5 with p = 2 = q = 2, using standard arguments, we
can prove similar estimates on Dkuδ, k = 1, 2, 3 with β = γ = 0 for x ∈ H and h, h1, h2, h3 ∈ H . Thus in
this case, we can prove that u is a C2 function on H .

3.2. Weak convergence of numerical approximations. As an application of the results of section 3.1,
we study the discretization of (20) by the following semi-implicit Euler scheme (also known as the linear
implicit Euler scheme). Let T ∈ (0,∞) be given, and let ∆t ∈ (0, T ) denote the time-step size of the scheme,
such that N = T

∆t ∈ N
⋆ is an integer.

Then for n ∈ {0, . . . , N − 1}, define

(28) Xn+1 −Xn = ∆t
(

AXn+1 +G(Xn)
)

+ σ(Xn)
(

W
(

(n+ 1)∆t
)

−W (n∆t)
)

, X0 = x.

The nonlinear terms G and σ are treated explicitly (which is possible thanks to global Lipschitz continuity
assumptions), whereas the linear operator A is treated implicitly. Note that (61) can be rewritten in an
explicit form

Xn+1 = S∆tXn +∆tS∆tG(Xn) + S∆tσ(Xn)
(

W
(

(n+ 1)∆t
)

−W (n∆t)
)

,

where S∆t =
(

I − ∆tA
)−1

. This proves the well-posedness of the scheme, thanks to nice regularization
properties of S∆t, see Lemmas 4.2 and 4.3.

The weak convergence result is given by Theorem 3.6; its proof is given in Section 5. It generalizes the
statement that the weak rate, equal to 1

2 , is twice the strong order 1
4 , which has been obtained for instance

in [39]. Recall that the values of p, q and K are determined by Assumption 2.5.

Theorem 3.6. For every κ ∈ (0, 12 ), T ∈ (0,∞) and every ∆t0 ∈ (0, 1), there exists Cκ(T,∆t0, ϕ), such

that for every ∆t ∈ (0,∆t0), with N = T
∆t ∈ N

⋆, for every x ∈ Lp ∩ L2q

(29)
∣

∣Eϕ
(

X(T )
)

− Eϕ
(

XN

)∣

∣ ≤ Cκ(T,∆t0, ϕ)
(

1 + |x|Lmax(p,8q)

)K+3
∆t

1
2−κ.

The proof is a generalization of [16], with several non trivial modifications, due to the assumptions made
on the drift and diffusion coefficients. In this article, we work in Lp spaces, and it seems that it is the first time
that a weak convergence result is provided for SPDEs with Burgers type drift coefficients, i.e. with a spatial
derivative in the drift nonlinear term. More importantly, our main contribution is the treatment of non
constant diffusion coefficients σ (the multiplicative noise case), under realistic assumptions. In particular,
we drop the artificial assumption on σ from [16].

As mentioned in the introduction, the approach using mild Itô calculus, see [9], [24], [25], [26], has also
recently been able to deal with such non constant diffusion coefficients. The main difference is in the way the
discretization error is analyzed: our approach is in our opinion somewhat simpler, and closer to the standard
approaches from finite dimensional cases. We require also lower regularity on the drift and diffusion terms.

Our proof is based on a decomposition of the error depending on the solution u of the Kolmogorov
equation. In particular, Theorem 3.2 (to handle Burgers type nonlinear drift coefficients), resp. Theorem 3.3
(to handle nonlinear diffusion coefficients), removing the condition β < 1

2 , resp. the condition β + γ < 1
2 ,

are essential tools.

4. Proof of the regularity estimates

4.1. Formal arguments in continuous time. In this section, we explain how Theorems 3.2 and 3.3 are
obtained. We first recall the origins of the limitations on parameters β and γ in standard approaches. We
then present the strategy of the proof, in particular what are the two-sided stochastic integrals that are
required.

As explained in the introduction, we do not intend to give a rigorous meaning in the continuous time
setting to the objects introduced below, and do not justify the computations. In order to simplify the
presentation, since we want to focus on the difficulties due to the diffusion coefficient σ being non constant,
in this section we assume that F1 = F2 = 0. Moreover, we work in an abstract setting: we assume that the
diffusion coefficient σ is a function on H of class C2, with bounded derivatives – this property not being true
for the Nemystkii coefficients considered in this paper. We also assume that the test function ϕ is of class
C2
b .
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First, differentiating (24), we obtain for h ∈ H :

Du(t, x).h = E
[

Dϕ(X(t, x)).ηh,x(t)
]

where ηh,x(t) is the solution of

dηh,x(t) = Aηh,x(t)dt+ σ′(X(t, x)).ηh,x(t)dW (t), ηh,x(0) = h.

Using the mild formulation of ηh,x(t) and Itô’s isometry,

E|ηh,x(t)|2 = E

∣

∣

∣

∣

etAh+

∫ t

0

e(t−s)Aσ′(X(s, x)).ηh,x(s)dW (s)

∣

∣

∣

∣

2

=
∣

∣etAh
∣

∣

2
+

∫ t

0

∣

∣e(t−s)Aσ′(X(s, x)).ηh,x(s)
∣

∣

2

L2(H)
ds

≤ Ct−2β |(−A)−βh|2 + C

∫ t

0

(t− s)−
1
2−κ

E|ηh,x(s)|2ds.

Indeed, for y, h ∈ H and κ ∈ (0, 12 )
∣

∣

∣eA(t−s)σ′(y).k
∣

∣

∣

2

L2(H)
≤
∣

∣

∣eA(t−s)
∣

∣

∣

2

L2(H)
|σ′(y).k|2L(H) ≤ C

∑

i∈N⋆

e−2λi(t−s)|k|2 ≤ c(t− s)−
1
2−κ|k|2,

since
∑

i∈N⋆ λ
− 1

2−κ
i <∞. Assuming that 2β < 1, and applying Gronwall’s Lemma, we get

sup
t∈(0,T ]

t2βE
(

∣

∣ηh,x(t)
∣

∣

2
)

≤ |(−A)−βh|2,

which then yields the required regularity result, for β ∈ [0, 12 ):

|Du(t, x) · h| ≤ c‖ϕ‖1t−β |(−A)−βh|.
The limitation β < 1

2 in previous articles thus comes from the fact that Itô’s formula is used to control the
stochastic integral, and naturally squares appear in integrals. In the additive noise case, since σ′ = 0, no
stochastic integral appears in the definition of ηh,x(t), and thus choosing β ∈ [0, 1) is possible.

A similar difficulty appears for the second order derivative: differentiating twice (24), for h, k ∈ H yields

D2u(t, x).(h, k) = E
[

D2ϕ(X(t, x)).
(

ηh,x(t), ηk,x(t)
)

+Dϕ(X(t, x)).ζh,k,x(t)
]

,

where ζh,k,x(t) is the solution of

dζh,k,x(t) = Aζh,k,x(t)dt + σ′(X(t, x)).ζh,k,x(t)dW (t) + σ′′(X(t, x)).
(

ηh,x(t), ηk,x(t)
)

dW (t),

with the initial condition ζh,k,x(0) = 0. The issue lies again in the control of the stochastic integral: indeed,
Itô’s isometry for the mild formulation of the equation gives

E|ζh,k,x(t)|2 ≤ C

∫ t

0

(t− s)−
1
2−κ

(

E|ζh,k,x(s)|2 + E
[

|ηh,x(s)|2|ηk,x(s)|2
])

ds,

and, generalizing the previous estimate on η to handle the fourth moment, we have

E
[

|ηh,x(s)|2|ηk,x(s)|2
]

≤ Cs−2β−2γ |(−A)−βh|2|(−A)−γk|2,

and
∫ t

0 (t− s)−
1
2−κs−2β−2γds <∞ if and only if β + γ < 1

2 . Under this condition, we obtain
∣

∣D2u(t, x).(h, k)
∣

∣ ≤ Ct−β−γ |(−A)−βh||(−A)−γk|.

In order to overcome the limitations on β and γ, we introduce new formulas for Du and for D2u. The
idea is to use Malliavin integration by parts formula, in order to replace stochastic Itô’s integrals, which
require temporal square integrability properties, with deterministic integrals, which require only temporal
integrability.

First, define η̃h,x(t) = ηh,x(t)− etAh, and write

Du(t, x).h = E
(

Dϕ(X(t, x)).etAh+Dϕ(X(t, x)).η̃h,x(t)
)

.
13



The first term on the right-hand side is easily bounded by t−β |(−A)−βh|, for β ∈ [0, 1). To control the
second term, note that

dη̃h,x(t) =
(

Aη̃h,x(t)dt+ σ′(X(t, x)).η̃h,xdW (t)
)

+ σ′(X(t, x)).etAhdW (t).

Formally, ζh,k,x and η̃h,x are the solutions of the same type of equations, and we have the following expressions
(at least at a formal level)

(30)

η̃h,x(t) =

∫ t

0

Π(t, s)σ′(X(s, x)).esAhdW (s),

ζh,x(t) =

∫ t

0

Π(t, s)σ′′(X(s, x)) · (ηh,x(s), ηh,x(s))dW (s),

where Π(t, s) is the evolution operator associated with the linear equation

dZt,s = AZt,sdt+ σ′(X(t, x)).Zt,sdW (t) , Zs,s = z,

i.e. Π(t, s)z = Zt,s. The difficulty of course comes from the randomness of Π(t, s), so that the stochastic
integrals in (30) are not defined as standard Itô integrals. Indeed, Π(t, s) is not adapted as a function of s.
As explained in the introduction, it may be possible to adapt the arguments from [1], [34], [35], [36] and [37]
and give a rigorous meaning to (30). This is not the strategy we follow; instead, we work on time-discrete
approximations of the problem, for which every object is easily defined and only standard tools of stochastic
analysis are used.

Once a precise meaning to (30) is provided, it remains to use Malliavin integration by parts formula
to get rid of the stochastic integrals. Only integrability in time is required for Π(t, s)σ′(X(s, x)).esAh and
Π(t, s)σ′′(X(s, x)) · (ηh,x(s), ηh,x(s)), instead of square integrability in previous approaches. This allows to
choose β ∈ [0, 1) (resp. β, γ ∈ [0, 12 )) in the estimate on the first order derivative (resp. the second order
derivative).

4.2. Discrete time approximation. In order to give a rigorous meaning to the arguments presented above
in Section 4.1, we replace the continuous time processes

(

Xδ(t)
)

t∈[0,T ]
, with δ ∈ [0, 1), with discrete-time

approximations. We use a numerical scheme, with time-step size ∆t = T
N ∈ (0, 1), with N ∈ N

⋆. We prove
regularity results for fixed N , with upper bounds not depending on N , and finally pass to the limit N → ∞.

We also require an additional regularization parameter, τ ∈ (0, 1). Some estimates depend on τ ; when it
is the case, it will always be stated precisely.

The discrete-time processes are defined using the linear-implicit Euler scheme: for 0 ≤ n ≤ N − 1

(31) Xδ,τ,∆t
n+1 = S∆tX

δ,τ,∆t
n +∆tS∆tGδ

(

Xδ,τ,∆t
n

)

+ eτAS∆tσδ
(

Xδ,τ,∆t
n

)

∆Wn,

with the standard notation ∆Wn =W
(

(n+ 1)∆t
)

−W
(

n∆t
)

, and S∆t = (I −∆tA)−1. Note that we have

added the regularization operator in the diffusion coefficient: eτA.
The remainder of this section is devoted to statements and proofs of some results concerning

∣

∣(−A)βSn
∆t

∣

∣

L(Lp)

and
∣

∣(−A)βSn
∆t

∣

∣

R(L2,Lp)
. Their are used to get a priori estimates on moments of Xn.

Lemma 4.1. For every p ∈ [2,∞), α ∈ [0, 14 ), M ∈ N
⋆ and T ∈ (0,∞), there exists C(p,M, T ), such that

for every n ∈ {1, . . . , N} (with N∆t = T ), and every x ∈ Dp

(

(−A)α
)

(32)
E|(−A)αXn(x)|2MLp ≤ C(p, α,M, T )

(

1 + t−α
n |x|2MLp

)

,

E|(−A)αXn(x)|2MLp ≤ C(p, α,M, T )
(

1 + |(−A)αx|2MLp

)

.

Lemma 4.2. For every β ∈ [0, 1) and p ∈ [2,∞), there exists C(p, β) such that for every n ∈ N
⋆

|(−A)βSn
∆t|L(Lp) ≤

C(p, β)

tβn
.

Lemma 4.3. For every β ∈ [0, 34 ), p ∈ [2,∞), and κ ∈ (0, 34 − β), there exists Cκ(p, β) such that for every
n ∈ N

⋆

∣

∣(−A)βSn
∆t

∣

∣

R(L2,Lp)
≤ Cκ(p, β)

t
1
4+β+κ
n

.
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Both results in the case p = 2 are obtained by straightforward computations, thanks to expansions using
the eigenbasis

(

en
)

n∈N⋆ of A. When p ∈ (2,∞), the arguments use properties of the analytic semigroup
(

etA
)

t≥0
in Lp. The proofs are given below since these results are not standard in the literature for SPDEs.

Arguments from [38] are used. The results are in fact valid for p ∈ (1,∞).

Proof of Lemma 4.2. The case β = 0 follows from the two inequalities |S∆t|L(L2) ≤ 1 (which is proved using

expansions in the Hilbert space L2 with the complete orthonormal system
(

ek
)

k∈N⋆) and |S∆t|L(L∞) ≤ 1.

By a standard interpolation argument, we thus have
∣

∣Sn+1
∆t

∣

∣

L(Lp)
≤ 1 for every p ∈ [2,∞].

Define the resolvent R(λ,A) =
∫∞

0 e−λtetAdt, for λ ∈ (0,∞). Then S∆t =
1
∆tR(

1
∆t , A). First, for x ∈ Lp,

we set y = S∆tx. Then |y|Lq ≤ |x|Lq , and Ay = 1
∆t (y − x). We thus obtain

|Ay|Lq = |AS∆tx|Lq ≤ 2

∆t
|x|Lq .

Second, when n ∈ N
⋆,

n!
∣

∣(−A)R(λ,A)n+1x
∣

∣

Lp =
∣

∣

∫ ∞

0

tne−λt(−A)etAxdt
∣

∣

Lp

≤ C(p, β)

∫ ∞

0

e−λttn−1dt|x|Lp

≤ C(p, β)(n− 1)!λ−n|x|Lp .

This gives
∣

∣(−A)Sn+1
∆t

∣

∣

L(Lp)
≤ C(p,β)

(n+1)∆t , for n ∈ N
⋆. Thus the result is proved for β = 1. The case β ∈ [0, 1)

follows by a standard interpolation argument:

∣

∣(−A)βSn+1
∆t x

∣

∣

Lp ≤
∣

∣(−A)Sn+1
∆t x

∣

∣

β

Lp

∣

∣Sn+1
∆t x

∣

∣

1−β

Lp ≤ C(p, β)
(

(n+ 1)∆t
)β

|x|Lp .

This concludes the proof of Lemma 4.2. �

Proof of Lemma 4.3. Let
(

γ̃k
)

k∈N⋆ denote a sequence of independent standard real-valued Gaussian random

variables, γ̃k ∼ N (0, 1).
Then, using standard properties concerning moments of Gaussian random variables,

∣

∣(−A)βSn
∆t

∣

∣

2

R(L2,Lp)
= E

∣

∣

∑

k

γk(−A)βSn
∆tek

∣

∣

2

Lp

≤
(

E
∣

∣

∑

k

γk(−A)βSn
∆tek

∣

∣

p

Lp

)
2
p

≤
(

∫ 1

0

E
∣

∣

∑

k

λβk
1

(1 + λk∆t)n
ek(ξ)γk

∣

∣

p
dξ
)

2
p

≤
(

∫ 1

0

E
(∣

∣

∑

k

λβk
1

(1 + λk∆t)n
ek(ξ)γk

∣

∣

2) p
2 dξ
)

2
p

≤
(

∫ 1

0

(

∑

k

λ2βk
1

(1 + λk∆t)2n
ek(ξ)

2
)

p
2 dξ
)

2
p

.

Using Property 2.1, and the estimate

∑

k

λ2βk
1

(1 + λk∆t)2n
≤
∑

k

λ
− 1

2−2κ

k

∣

∣(−A) 1
4+κ+βSn

∆tek|2L2 ≤ Cκt
− 1

2−2κ−2β
n ,

which follows from Lemma 4.2, we get the result.
�
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Proof of Lemma 4.1. First, note that, for 0 ≤ n ≤ N ,

(33) Xn = Sn
∆tx+∆t

n−1
∑

k=0

Sn−k
∆t BG(Xk) +

n−1
∑

k=0

Sn−k
∆t eτAσ(Xk)∆Wk.

Thanks to Property 2.2, inequality (13), and Lemmas 4.2 and 4.3, we have for κ > 0 such that 2α+2κ < 1
2 :

E|(−A)αXn|2Lp ≤ C|(−A)αSn
∆tx|2Lp + C

(

∆t

n−1
∑

k=0

|(−A)α+ 1
2+κSn−k

∆t |L(Lp)

)2

+ CE
∣

∣

n−1
∑

k=0

(−A)αSn−k
∆t eτAσ(Xk)∆Wk

∣

∣

2

Lp

≤ Ct−2α
n |x|2Lp + C

(

∆t
n−1
∑

ℓ=0

t
− 1

2−2α−κ

n−k

)2
+ C∆t

n−1
∑

k=0

E
∣

∣(−A)αSn−k
∆t eτAσ(Xk)

∣

∣

2

R(L2,Lp)

≤ C(1 + t−2α
n |x|2Lp) + C∆t

n−1
∑

k=0

∣

∣(−A)αSn−k
∆t

∣

∣

2

R(L2,Lp)
E
∣

∣eτAσ(Xk)
∣

∣

2

L(L2)

≤ C
(

1 + t−2α
n |x|2Lp +∆t

n−1
∑

k=0

t
− 1

2−2α−2κ

n−k

)

.

This proves (32) in the case M = 1. The case M ≥ 1 and the second estimate of (32) are obtained with
similar computations combined with standard arguments. This concludes the proof of Lemma 4.1. �

4.3. Derivatives in the discrete-time framework. We now repeat the discussion of section 4.1 in the
discrete-time framework and turn the formal arguments into rigorous ones.

Define the function uδ,τ,∆t : {0,∆t, . . . , (N − 1)∆t, N∆t = T } ×H → R, by

(34) uδ,τ,∆t(n∆t, x) = E
[

ϕδ

(

Xδ,τ,∆t
n (x)

)]

,

where Xδ,τ,∆t
n (x) is the solution of (31) with initial condition x.

Thanks to the regularity properties of G = F1+BF2, σ and ϕ, see Properties 2.2, 2.4 and Assumption 2.5,
for every n ∈ {0, 1, . . . , N}, x ∈ L2 7→ uδ,τ,∆t(tn, x) is of class C2, and it is easy to prove recursively that:

• the first order derivative satisfies

(35) Duδ,τ,∆t(tn, x).h = E
[

Dϕδ(Xn(x)).η
h
n

]

with ηh0 = h and, for n ∈ {0, . . . , N − 1},

(36) ηhn+1 = S∆tη
h
n +∆tS∆tG

′
δ(Xn).η

h
n + S∆te

τA
(

σ′
δ(Xn).η

h
n

)

∆Wn.

• the second order derivative satisfies

(37) D2uδ,τ,∆t(tn, x).(h, k) = E
[

D2ϕδ

(

Xn(x)
)

.
(

ηhn, η
k
n

)]

+ E
[

Dϕδ

(

Xn(x)
)

.ζh,kn

]

,

with ζh,k0 = 0 and, for n ∈ {0, . . . , N − 1},

(38)
ζh,kn+1 = S∆tζ

h,k
n +∆tS∆tG

′
δ(Xn).ζ

h,k
n + S∆te

τA
(

σ′
δ(Xn).ζ

h,k
n

)

∆Wn

+∆tS∆tG
′′
δ (Xn).(η

h
n, η

k
n) + S∆te

τA
(

σ′′
δ (Xn).(η

h
n, η

k
n)
)

∆Wn.

Define the auxiliary process
(

η̃hn
)

0≤n≤N
, by

(39) η̃hn = ηhn − Sn
∆th , η̃h0 = 0.

In order to simplify the notation, most of the time we will not mention the parameters δ, τ,∆t.
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Our objective is to obtain the following estimates, with arbitrarily small κ ∈ (0, 1):

(40)

∣

∣Duδ,τ,∆t(T, x).h
∣

∣ ≤ Cβ,κ(T )

T βτκ
(1 + |x|Lmax(p,2q))K+1|(−A)−βh|L2q , β ∈ [0, 1),

∣

∣D2uδ,τ,∆t(T, x).(h, k)
∣

∣ ≤ Cβ,γ,κ(T )

T β+γτκ
(1 + |x|Lmax(p,2q))K+1|(−A)−βh|L4q |(−A)−γk|L4q , β, γ ∈ [0,

1

2
).

Note that the right-hand sides do not depend on ∆t and on δ. Passing to the limit when these parameters
go to 0 is straightforward. To remove the parameter τ , interpolation arguments are used.

As explained in Section 4.1, the formal expressions of η̃(t) and ζ(t), given by (30), are essential to improve
these regularity results. Contrary to the continuous time situation, in the discrete time framework there is
no difficulty to obtain and give a rigorous meaning to such expressions, see (44) below.

Define random linear operators
(

Πn

)

0≤n≤N−1
as follows: for every n ∈ {0, . . . , N − 1} and every z ∈ H

(41) Πnz = S∆tz +∆tS∆tBe
τAG′(Xn).z + S∆te

τA
(

σ′(Xn).z
)

∆Wn.

Note that Πn = Π(Xn,∆Wn) with the deterministic linear operators Π(x,w) defined by

Π(x,w)z = S∆tz +∆tS∆tBe
τAF ′(x).z + S∆te

τA
(

σ′(x).z
)

w.

We emphasize on the following key observation: Πn depends on the Wiener increments ∆W0, . . . ,∆Wn−1

only through the first variable of Π(·, ·), and depends on ∆Wn only through its second variable.
Introduce the notation Πn−1:ℓ = Πn−1 . . .Πℓ for ℓ ∈ {0, . . . , n− 1}, and by convention Πn−1:n = I. These

operators are the discrete versions of the evolution operators Π(t, s) formally introduced in Section 4.1.

Recursion formulas for ηh· , η̃h· and ζh,k· , are rewritten in the following forms:

(42)

ηhn+1 = Πnη
h
n , ηh0 = h,

η̃hn+1 = Πnη̃
h
n +∆tS∆tG

′(Xn).S
n
∆th+ S∆te

τA
(

σ′(Xn).S
n
∆th)∆Wn,

ζh,kn+1 = Πnζ
h,k
n +∆tS∆tG

′′(Xn).(η
h
n, η

k
n) + S∆te

τA
(

σ′′(Xn).(η
h
n, η

k
n)
)

∆Wn

A straightforward consequence of the first equality in (42) is the equality

(43) ηhn = Πn−1:0h,

for every n ∈ {0, . . . , N}. Moreover, we get the following discrete-time analogs of (30), now taking into
account also nonlinear drift terms:

(44)

η̃hn = ∆t

n−1
∑

ℓ=0

Πn−1:ℓ+1S∆tG
′(Xℓ).S

ℓ
∆th+

n−1
∑

ℓ=0

Πn−1:ℓ+1S∆te
τA
(

σ′(Xℓ).S
ℓ
∆th)∆Wℓ,

ζh,kn = ∆t

n−1
∑

ℓ=0

Πn−1:ℓ+1S∆tG
′′(Xℓ).(η

h
ℓ , η

k
ℓ ) +

n−1
∑

ℓ=0

Πn−1:ℓ+1S∆te
τA
(

σ′′(Xℓ).(η
h
ℓ , η

k
ℓ )
)

∆Wℓ.

We treat separately the contributions of the drift and diffusion terms and introduce

(45)

η̃h,1n = ∆t
n−1
∑

ℓ=0

Πn−1:ℓ+1S∆tG
′(Xℓ).S

ℓ
∆th , η̃h,2n =

n−1
∑

ℓ=0

Πn−1:ℓ+1S∆te
τA
(

σ′(Xℓ).S
ℓ
∆th)∆Wℓ;

ζh,k,1n = ∆t
n−1
∑

ℓ=0

Πn−1:ℓ+1S∆tG
′′(Xℓ).(η

h
ℓ , η

k
ℓ ) , ζh,k,2n =

n−1
∑

ℓ=0

Πn−1:ℓ+1S∆te
τA
(

σ′′(Xℓ).(η
h
ℓ , η

k
ℓ )
)

∆Wℓ.

Using ηhn = Sn
∆th+ η̃h,1n + η̃h,2n , we obtain the decomposition

Duδ,τ,∆t(T, x).h = E
[

Dϕ(XN ).
(

SN
∆th

)]

+ E
[

Dϕ(XN ).η̃h,1N

]

+ E
[

Dϕ(XN ).η̃h,2N

]

= Dh,0
N +Dh,1

N +Dh,2
N ,

where to simplify the notation we denote ϕ instead of ϕδ.
17



We also obtain the following decomposition for the second-order derivative:

D2uδ,τ,∆t(T, x).(h, k) = E
[

D2ϕ
(

XN

)

.
(

ηhN , η
k
N

)]

+ E
[

Dϕ
(

XN

)

.ζh,k,1N

]

+ E
[

Dϕ
(

XN

)

.ζh,k,2N

]

= Eh,k,0
N + Eh,k,1

N + Eh,k,2
N .

The term Dh,0
N is straightforward to estimate using Lemma 4.2. The terms Eh,k,0

N , Dh,1
N and Eh,k,1

N are not
very difficult thanks to Lemma 4.4 stated below.

Finally, the terms Dh,2
N and Eh,k,2

N contain the discretized two-sided stochastic integrals and are treated
using a Malliavin integration by parts formula. Note that in the discrete time setting, this Malliavin integra-
tion by parts formula can simply be considered as a standard integration by parts formula in the weighted
L2 space corresponding with Gaussian density.

Let us first consider the first order derivative term Dh,2
N . Introducing the adjoint Π⋆

N−1:ℓ+1 of the operator
ΠN−1:ℓ+1, we get

Dh,2
N = E

[

〈Dϕ(XN ),

N−1
∑

ℓ=0

ΠN−1:ℓ+1S∆te
τA
(

σ′(Xℓ).S
ℓ
∆th

)

∆Wℓ〉
]

=

N−1
∑

ℓ=0

E
[

〈Π⋆
N−1:ℓ+1Dϕ

(

XN

)

,

∫ (ℓ+1)∆t

ℓ∆t

S∆te
τA
(

σ′(Xℓ).S
ℓ
∆th

)

dW (s)〉
]

=
N−1
∑

ℓ=0

Dh,2
N,ℓ.

We now perform the Malliavin integration by parts formula, and we get for every ℓ ∈ {0, . . . , N − 1}

Dh,2
N,ℓ =

∑

i∈N⋆

E

∫ (ℓ+1)∆t

ℓ∆t

〈Dei
s

(

Π⋆
N−1:ℓ+1Dϕ(XN )

)

, eτAS∆t

(

σ′(Xℓ).S
ℓ
∆th

)

ei〉ds

=
∑

i∈N⋆

E

∫ (ℓ+1)∆t

ℓ∆t

Dei
s 〈Dϕ(XN ),ΠN−1:ℓ+1e

τAS∆t

(

σ′(Xℓ).S
ℓ
∆th

)

ei〉ds

= Dh,2,1
N,ℓ +Dh,2,2

N,ℓ ,

where, thanks to the chain rule,

(46)

Dh,2,1
N,ℓ =

∑

i∈N⋆

E

∫ (ℓ+1)∆t

ℓ∆t

D2ϕ(Xn).
(

Dei
s XN ,ΠN−1:ℓ+1e

τAS∆t

(

σ′(Xℓ).S
ℓ
∆th

)

ei

)

ds,

Dh,2,2
N,ℓ =

∑

i∈N⋆

E

∫ (ℓ+1)∆t

ℓ∆t

〈Dϕ(XN ),Dei
s

(

ΠN−1:ℓ+1e
τAS∆t

(

σ′(Xℓ).S
ℓ
∆th

)

ei

)

〉ds

Similarly, for the second order derivative term Eh,k,2
N , we write

Eh,k,2
N =

N−1
∑

ℓ=0

E
[

〈Dϕ
(

XN

)

,ΠN−1:ℓ+1S∆te
τA
(

σ′′(Xℓ).(η
h
ℓ , η

k
ℓ )
)

∆Wℓ〉
]

=

N−1
∑

ℓ=0

E
[

〈Π⋆
N−1:ℓ+1Dϕ

(

XN

)

,

∫ (ℓ+1)∆t

ℓ∆t

S∆te
τA
(

σ′′(Xℓ).(η
h
ℓ , η

k
ℓ )
)

dW (s)〉
]

=

N−1
∑

ℓ=0

(

Eh,k,2,1
N,ℓ + Eh,k,2,2

N,ℓ

)

,

18



with

(47)

Eh,k,2,1
N,ℓ =

∑

i

E

∫ (ℓ+1)∆t

ℓ∆t

D2ϕ(XN ).
(

Dei
s XN ,ΠN−1:ℓ+1e

τAS∆t

(

σ′′(Xℓ).(η
h
ℓ , η

k
ℓ )
)

ei

)

ds,

Eh,k,2,2
N,ℓ =

∑

i

E

∫ (ℓ+1)∆t

ℓ∆t

〈Dϕ(XN ),Dei
s

(

ΠN−1:ℓ+1e
τAS∆t

(

σ′′(Xℓ).(η
h
ℓ , η

k
ℓ )
)

ei

)

〉ds.

To go further, we see that we need estimates on the random operators ΠN−1:ℓ+1, and on the Malliavin
derivatives DsXN and DsΠN−1:ℓ+1, for s ∈

(

ℓ∆t, (ℓ + 1)∆t
)

. Lemmas 4.4, 4.5, and 4.6 are proved in
Section 4.4 below.

Lemma 4.4. For any q ∈ [2,∞), M ∈ N
⋆, T ∈ (0,∞), and β ∈ [0, 12 ), γ ∈ [0, 14 ) if q = 2 and γ ∈ [0, 14 − 1

2q )

for q 6= 2, there exists Cβ,γ(M, q, T ), such that for any 0 ≤ ℓ < n ≤ N , and any σ
(

∆W0, . . . ,∆Wℓ−1

)

-
measurable random vector zℓ, then

(48)
(

E|(−A)γΠn−1:ℓzℓ|2MLq

)
1

2M ≤ Cβ,γ(M,p, T )t−β−γ
n−ℓ

(

E|(−A)−βzℓ|2MLq

)
1

2M .

Lemma 4.5. Let ℓ ∈ {0, . . . , n− 1}, and s ∈
(

ℓ∆t, (ℓ+ 1)∆t
)

. Then

(49) DsXn = Πn−1:ℓ+1S∆te
τAσ(Xℓ).

Lemma 4.6. For any q ∈ (2,∞), κ ∈ (0, 12 ), and T ∈ (0,∞), there exists Cκ(q, T ) ∈ (0,∞), such that for

any 0 ≤ ℓ < N − 1, any s ∈
(

ℓ∆t, (ℓ+1)∆t
)

, any z ∈ L2q and any σ
(

∆W0, . . . ,∆Wℓ−1

)

-measurable random
vector θℓ, then
(50)

E|Dθℓ
s Πn−1:ℓ+1z|2Lq ≤ Cκ(q, T )

(

E|θℓ|4L2q

)
1
2

(

∆t
(

1 +
1

t
1
2+

1
q
+κ

n−ℓ−1

)

|z|2L2q + 1n>ℓ+2

(

1 +
1

t
1
2+

1
q
+κ

n−ℓ−2

)∣

∣(−A)− 1
2+κz

∣

∣

2

L2q

)

.

Moreover, when ℓ = N − 1, DsΠN−1:ℓ+1z = 0.

In (50), the quantity Dθℓ
s ΠN−1:ℓ+1z is interpreted as the image of θℓ by the linear operator DsΠN−1:ℓ+1z.

The assumption that the random vector θℓ is σ
(

∆W0, . . . ,∆Wℓ−1

)

-measurable is crucial.

4.4. Proof of the auxiliary lemmas.

Proof of Lemma 4.5. Thanks to (31), we obtain

Xn = Sn−ℓ
∆t Xℓ +∆tSn−ℓ

∆t G(Xℓ) + Sn−ℓ
∆t eτAσ(Xℓ)∆Wℓ

+∆t
n−1
∑

m=ℓ+1

Sn−m
∆t G(Xm) +

n−1
∑

m=ℓ+1

Sn−m
∆t eτAσ(Xm)∆Wm,

where Xℓ is σ
(

∆W0, . . . ,∆Wℓ−1

)

-measurable. Thus DsXℓ = 0 for s > ℓ∆t.

Moreover, Dθ
s∆Wℓ = θ and, for m > ℓ, Dθ

s∆Wm = 0 for s ∈
(

ℓ∆t, (ℓ + 1)∆t
)

. Using the chain rule, we
thus obtain, for n > ℓ and any θ ∈ H ,

Dθ
sXn = Sn−ℓ

∆t eτAσ(Xℓ)θ +∆t

n−1
∑

m=ℓ+1

Sn−m
∆t G′(Xm).Dθ

sXm +

n−1
∑

m=ℓ+1

Sn−m
∆t eτA

(

σ′(Xm)Dθ
sXm

)

∆Wm,

which in turn gives Dθ
sXn = Πn−1Dθ

sXn−1 by definition (41). Since Dθ
sXℓ+1 = S∆te

τAσ(Xℓ), equality (49)
is satisfied, and this concludes the proof of Lemma 4.5. �

Lemmas 4.4 and 4.6 are both consequences of the following technical result.

Lemma 4.7. Let q ∈ [2,∞), M ∈ N
⋆, T ∈ (0,∞), and β ∈ [0, 12 ). There exists Cβ(M, q, T ) such that the

following holds true.
Let ℓ ∈ {0, . . . , N − 1} and consider a σ

(

∆W0, . . . ,∆Wℓ−1

)

-measurable random vector zℓ, and two se-

quences
(

Zj
n

)

n≥ℓ,j∈{1,2}
, such that Zj

n is σ
(

∆W0, . . . ,∆Wn−1

)

-measurable.
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Define the sequence
(

Y ℓ
n

)

ℓ≤n≤N
by Y ℓ

ℓ = zℓ, and for n > ℓ

Y ℓ
n = Πn−1Y

ℓ
n−1 +∆tS∆tGn−1 + S∆te

τA
(

σ′′(Xn−1).(Z
1
n−1, Z

2
n−1)

)

∆Wn−1,

with Gn−1 = G′′(Xn−1).(Z
1
n−1, Z

2
n−1).

Then, when q > 2, and every n ≥ ℓ+ 1,

(

E|Y ℓ
n |2MLq

)
1
M ≤ Cβ(M, q, T )

(

t−2β
n−ℓ(E|(−A)−βzℓ|2MLq )

1
M +∆t

n−1
∑

m=ℓ

(

1 +
1

t
1
2+

1
q
+κ

n−m

)

E
(

|Y ℓ
m|2MLq

)
1
M

+∆t
n−1
∑

m=ℓ

(

1 +
1

t
1
2+

1
q
+κ

n−m

)

(E|Z1
n|4ML2q )

1
2M (E|Z2

n|4ML2q )
1

2M

)

.

When q = 2, for every n ≥ ℓ+ 1

(

E|Y ℓ
n |2M

)
1
M ≤ Cβ(M,κ, T )

(

t−2β
n−ℓ(E|(−A)−βzℓ|2M )

1
M +∆t

n−1
∑

m=ℓ

(

1 +
1

t
1
2+κ
n−m

)

E
(

|Y ℓ
m|2ML2

)
1
M

+∆t

n−1
∑

m=ℓ

(

1 +
1

t
1
2+κ
n−m

)

(E|Z1
n|4ML4 )

1
2M (E|Z2

n|4ML4 )
1

2M

)

.

Before we give the proof of this result, let us mention that it will be useful when combined with the
following discrete Gronwall’s Lemma, see for instance Lemma 7.1 in [18] for details. Lemma 4.8 will also be
used repeatedly in Section 5.

Lemma 4.8. Let µ, ν ∈ (0, 1), and T ∈ (0,∞). Assume that ∆t = T
N , for some N ∈ N

⋆; for 1 ≤ n ≤ N , let
tn = n∆t.

Assume that the sequence
(

φn
)

0≤n≤N
, with values in (0,∞), satisfies the following condition: there exists

C1, C2 such that for every 1 ≤ n ≤ N

φn ≤ C1

(

1 + t−1+µ
n

)

+ C2∆t
n−1
∑

j=0

t−1+ν
n−j φj .

Then there exists C such that φn ≤ C(1 + t−1+µ
n ) for every 1 ≤ n ≤ N .

We now give a detailed proof of Lemma 4.7. We only consider the case q ∈ (2,∞); the case q = 2 is
treated with similar arguments, but with a slightly different treatment of the stochastic integral.

Proof of Lemma 4.7. Note that Y ℓ
n = Y 1,ℓ

n + Y 2,ℓ
n , where

Y 1,ℓ
n = Sn−ℓ

∆t zℓ +∆t

n−1
∑

m=ℓ

Sn−m
∆t F ′

1(Xm).Y ℓ
m +

n−1
∑

m=ℓ

Sn−m
∆t eτA

(

σ′(Xm).Y ℓ
m

)

∆Wm

+∆t
n−1
∑

m=ℓ

Fn,1 +
n−1
∑

m=ℓ

Sn−m
∆t eτAσ′′(Xm).(Z1

m, Z
2
m)∆Wm

and

Y 2,ℓ
n = ∆t

n−1
∑

m=ℓ

Sn−m
∆t BF ′

2(Xm).Y ℓ
m +∆t

n−1
∑

m=ℓ

Sn−m
∆t BFn,2,

where Fn,j = F ′′
j (Xm).(Z1

m, Z
2
m), j ∈ {1, 2}, are such that Gn−1 = Fn−1,1 +BFn−1,2. By Property 2.2,

|Fn,j |2MLq ≤ C|Z1
n|2ML2qE|Z2

n|2ML2q .

The quantity Y 1,ℓ
n is treated using properties of Sn

∆t whereas energy inequalities are used for Y 2,ℓ
n , which

contains all the terms where the linear operator B appears.
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Using a discrete time version of formula (7) and the corresponding Burkhölder-Davies-Gundy inequality,
as well as the ideal property (6), we get

E|Y 1,ℓ
n |2MLq ≤ CE|Sn−ℓ

∆t zℓ|2MLq + CE

(

∆t

n−1
∑

m=ℓ

(∣

∣Sn−m
∆t F ′

1(Xm).Y ℓ
m|2Lq +

∣

∣Sn−m
∆t eτA

(

σ′(Xm).Y ℓ
m

)∣

∣

2

R(L2,Lq)

)

)M

+ CE

(

∆t

n−1
∑

m=ℓ

(∣

∣Sn−m
∆t Fm,1

∣

∣

2

Lq +
∣

∣Sn−m
∆t eτAσ′′(Xm).(Z1

m, Z
2
m)
∣

∣

2

R(L2,Lq)

)

)M

≤ Ct−2βM
n−ℓ E|(−A)−βzℓ|2MLq + CE

(

∆t
n−1
∑

m=ℓ

(1 + |(−A) 1
2q Sn−m

∆t |2R(L2,Lq)

)

E|Y ℓ
m|2Lq

)M

+ CE

(

∆t
n−1
∑

m=ℓ

(1 + |(−A) 1
2q Sn−m

∆t |2R(L2,Lq)

)

E
[

|Z1
m|2L2q |Z2

m|2L2q

]

)M

,

thanks to Lemma 4.2 and Properties 2.2 and 2.4. Thanks to Lemma 4.3 and Minkowskii’s inequality, we
obtain

(

E|Y 1,ℓ
n |2MLq

)
1
M ≤ Ct−2β

n−ℓE
(

|(−A)−βzℓ|2M
)

1
M + C∆t

n−1
∑

m=ℓ

(

1 +
1

t
1
2+

1
q
+κ

n−m

)

E
(

|Y ℓ
m|2MLq

)
1
M

+ C∆t

n−1
∑

m=ℓ

(

1 +
1

t
1
2+

1
q
+κ

n−m

)(

E
[

|Z1
m|4ML2q

]

E
[

|Z2
m|4ML2q

])
1

2M .

We then estimate Y 2,ℓ
n with an energy inequality. First, note that

Y 2,ℓ
n − Y 2,ℓ

n−1 = ∆t
(

AY 2,ℓ
n +BF ′

2(Xn−1)Y
ℓ
n−1 +BeτAFn−1,2

)

.

Then, multiply the above equation by (Y 2,ℓ
n )q−1 and integrate in space. Recall that A = ∂ξξ, B = ∂ξ,

and that homogeneous Dirichlet boundary conditions are imposed. Standard manipulations, including using
Hölder’s inequality and integration by parts, yield the following inequalities:

1

q

(

|Y 2,ℓ
n |qLq − |Y 2,ℓ

n−1|qLq

)

≤ ∆t

∫ 1

0

(

(Y 2,ℓ
n )q−1AY 2,ℓ

n +B(F ′
2(Xn−1)Y

ℓ
n−1 + Fn−1,2)(Y

2,ℓ
n )q−1

)

dξ

≤ −(q − 1)∆t

∫ 1

0

(Y 2,ℓ
n )q−2|∂ξY 2,ℓ

n |2dξ

+ (q − 1)∆t

∫ 1

0

(F ′(Xn−1)Y
ℓ
n−1 + Fn−1,2)(Y

2,ℓ
n )q−2∂ξY

2,ℓ
n dξ

≤ −(q − 1)∆t

∫ 1

0

(Y 2,ℓ
n )q−2|∂ξY 2,ℓ

n |2dξ

+ C∆t

∫ 1

0

((Y ℓ
n−1)

2 + (Fn−1,2)
2)(Y 2,ℓ

n )q−2dξ +∆t

∫ 1

0

(Y 2,ℓ
n )q−2|∂ξY 2,ℓ

n |2dξ

≤ C∆t

∫ 1

0

((Y ℓ
n−1)

2 + (Fn−1,2)
2)(Y 2,ℓ

n )q−2dξ.

Recall that we work with regularized coefficients (with δ > 0), so that Y 2,ℓ
n and Y ℓ

n are sufficienctly regular
so that the computations above are rigorous.

Applying Hölder’s inequality, then Lemma 4.8, we obtain

|Y 2,ℓ
n |qLq ≤ c∆t

n−1
∑

m=ℓ

(|Y ℓ
m|2Lq + |Fm,2|2Lq)|Y 2,ℓ

m+1|q−2
Lq .
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Define Ȳ 2,ℓ
n = supm=ℓ,...,n |Y 2,ℓ

m |Lq ; then

|Y 2,ℓ
n |2Lq ≤ (Ȳ 2,ℓ

n )2 ≤ C∆t

n−1
∑

m=ℓ

(

|Y ℓ
m|2Lq + |Z1

m|2L2q |Z2
m|2L2q

)

.

Finally, taking expectation and using Minkowskii’s inequality yield

E
(

|Y 2,ℓ
n |2MLq

)
1
M ≤ C∆t

n−1
∑

m=ℓ

(

E
(

|Y ℓ
m|2MLq

)
1
M +

(

E
(

|Z1
m|4ML2q

)

E
(

|Z2
m|4ML2q

))
1

2M

)

.

Gathering the estimates on Y 1,ℓ
n and Y 2,ℓ

n concludes the proof of Lemma 4.7.
�

Remark 4.9. For the case q = 2; the contribution of the stochastic integral needs to be treated differently.
We have for instance, for any κ ∈ (0, 12 ),

∣

∣Sn−m
∆t eτA

(

σ′(Xm).Y ℓ
m

)∣

∣

2

L(L2)
= Tr

(

(

σ′(Xm).Y ℓ
m

)2
S
2(n−m)
∆t e2τA

)

=
∑

i

∣

∣

(

σ′(Xm).Y ℓ
m

)2 e−τλi

(1 + ∆tλi)n−m
ei
∣

∣

L2

≤ C|Y ℓ
m|2L2

∑

i

1

(1 + ∆tλi)2(n−m)
|ei|2L∞

≤ Cκ|Y ℓ
m|2L2t

− 1
2−κ

n−m .

Proof of Lemma 4.4. For γ = 0, Lemma 4.4 is a straightforward consequence of Lemma 4.7 with Z1
n = Z2

n = 0
and of the discrete Gronwall’s lemma, Lemma 4.8.

For γ > 0, we write, with Y ℓ
n = Πn−1:ℓzℓ,

Y ℓ
n = Sn−ℓ

∆t zℓ +∆t

n−1
∑

m=ℓ

Sn−m
∆t F ′

1(Xm).Y ℓ
m +

n−1
∑

m=ℓ

Sn−m
∆t eτA

(

σ′(Xm).Y ℓ
m

)

∆Wm,

and, thanks to Lemmas 4.2 and 4.3, and (13),

(

E(|(−A)γY ℓ
n |2MLq

)
1

2M ≤ ct−β−γ
n−ℓ E

(

|(−A)−βzℓ|2MLq

)
1

2M + c∆t

n−1
∑

m=ℓ

(t
− 1

2−κ−γ
n−m + 1)

(

E|Y ℓ
m|2MLq

)
1

2M

+ c

(

∆t

n−1
∑

m=ℓ

t
− 1

2−
1
q
−2γ−κ

n−m

(

E|Y ℓ
m|2MLq

)
1
M

)
1
2

.

Using the estimate obtained for γ = 0, and the condition 1
2 + 1

q + 2γ + κ < 1, for sufficiently small κ > 0,

then concludes the proof. �

Proof of Lemma 4.6. Again, we only treat the case q ∈ (2,∞).
Define Y ℓ

n = Πn−1:ℓ+1z, where 0 ≤ ℓ ≤ n− 1. If ℓ = n− 1, Y ℓ
n = z, and thus for s ∈

(

ℓ∆t, (ℓ+ 1)∆t
)

one

has DsY
ℓ
ℓ+1 = 0. If n > ℓ+ 1,

Y ℓ
n = Πn−1Y

ℓ
n−1 = S∆tY

ℓ
n−1 +∆tS∆tG

′(Xn−1).Y
ℓ
n−1 + S∆te

τA
(

σ′(Xn−1).Y
ℓ
n−1

)

∆Wn−1.

Using the chain rule and the identity Ds∆Wn−1 = 0 for s < (ℓ + 1)∆t ≤ (n− 1)∆t, for every θ ∈ H

Dθ
sY

ℓ
n = S∆tDθ

sY
ℓ
n−1 +∆tS∆tG

′(Xn−1).Dθ
sY

ℓ
n−1 + S∆te

τA
(

σ′(Xn−1).Dθ
sY

ℓ
n−1

)

∆Wn−1

+∆tS∆tG
′′(Xn−1).(Dθ

sXn−1, Y
ℓ
n−1) + S∆te

τA
(

σ′′(Xn−1).(Dθ
sXn−1, Y

ℓ
n−1)

)

∆Wn−1,
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We apply Lemma 4.7, with ℓ replaced by ℓ + 1, and zℓ+1 = 0, Z1
m = Dθ

sXm, Z2
m = Y ℓ

m), and M = 1. This
gives, for n ≥ ℓ+ 2,

E|Dθℓ
s Y

ℓ
n |2Lq ≤ C∆t

n−1
∑

m=ℓ+1

(

t
− 1

2−
1
q
−κ

n−m + 1
)

E|Dθℓ
s Y

ℓ
m|2Lq

+ C∆t

n−1
∑

m=ℓ+1

(

t
− 1

2−
1
q
−κ

n−m + 1
)(

E|Dθℓ
s Xm|4L2q

)
1
2
(

E|Y ℓ
m|4L2q

)
1
2 .

Thanks to Lemma 4.5 and Lemma 4.4, when m > ℓ+ 1,

E|Dθℓ
s Xm|4L2q ≤ CE|θℓ|4L2q ;

and

E|Y ℓ
m|4L2q = E|Πm−1:ℓ+1z|4L2q ≤ C t

−4( 1
2−κ)

m−ℓ−1

∣

∣(−A)− 1
2+κz

∣

∣

4

L2q .

For m = ℓ+ 1, we use E|Y ℓ
ℓ+1|4L2q = |z|4L2q .

Thus

C∆t

n−1
∑

m=ℓ+1

(

1+
1

t
1
2+

1
q
+κ

n−m

)(

E|Dθℓ
s Xm|4L2q

)
1
2
(

E|Y ℓ
m|4L2q

)
1
2

≤ C∆t
(

1 +
1

t
1
2+

1
q
+κ

n−l−1

)(

E|θℓ|4L2q

)
1
2 |z|2L2q

+ C∆t1n>ℓ+2

n−1
∑

m=ℓ+2

(

1 +
1

t
1
2+

1
q
+κ

n−m

) 1

t1−2κ
m−ℓ−1

(

E|θℓ|4L2q

)
1
2
∣

∣(−A)− 1
2+κz

∣

∣

2

L2q

≤ C∆t
(

1 +
1

t
1
2+

1
q
+κ

n−l−1

)(

E|θℓ|4L2q

)
1
2 |z|2L2q

+ C1n>ℓ+2

(

1 +
1

t
1
2+

1
q
−κ

n−ℓ−2

)(

E|θℓ|4L2q

)
1
2
∣

∣(−A)− 1
2+κz

∣

∣

2

L2q ,

using a straightforward comparison between the series and an integral. Applying Lemma 4.8 concludes the
proof. �

4.5. Control of the derivatives.

4.5.1. Estimate of Dh,1
N and of Eh,k,1

N . Using the Cauchy-Schwarz inequality, Lemma 4.1, and Assumption 2.5
on ϕ, we have

∣

∣Dh,1
N

∣

∣ ≤ C
(

1 + |x|Lp

)K(
E|η̃h,1N |2Lq

)
1
2 ,

∣

∣Eh,k,1
N

∣

∣ ≤ C
(

1 + |x|Lp

)K(
E|ζ̃h,k,1N |2Lq

)
1
2 ,

and below we control the moments of η̃h,1n and ζh,k,1n , for every n ≤ N .

We treat Dh,1
N first. Thanks to (45), applying Lemma 4.4 gives, for κ ∈ (0, 12 ),

(

E|η̃h,1n |2Lq

)
1
2 ≤ C∆t

n−1
∑

ℓ=0

(

E
∣

∣Πn−1:ℓ+1S∆tG
′(Xℓ).S

ℓ
∆th

∣

∣

2

Lq

)
1
2

≤ Cκ∆t
n−1
∑

ℓ=0

t
− 1

2+κ

n−ℓ

(

E
∣

∣(−A)− 1
2+κS∆tG

′(Xℓ).S
ℓ
∆th

∣

∣

2

Lq

)
1
2

≤ Cκ∆t
n−1
∑

ℓ=0

t
− 1

2+κ

n−ℓ

(

E
∣

∣F ′
1(Xℓ).S

ℓ
∆th

∣

∣

2

Lq

)
1
2

+ Cκ∆t

n−1
∑

ℓ=0

t
− 1

2+κ

n−ℓ

(

E
∣

∣(−A)− 1
2+κBF ′

2(Xℓ).S
ℓ
∆th

∣

∣

2

Lq

)
1
2 .
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By Property 2.2, we get
(

E
∣

∣F ′
1(Xℓ).S

ℓ
∆th

∣

∣

2

Lq

)
1
2 ≤ C|Sℓ

∆th|Lq ≤ C1ℓ 6=0t
−β
ℓ |(−A)−βh|Lq + 1ℓ=0|h|Lq .

As in the proof of Lemma 4.4, the presence of the operator B causes some difficulties. Using succe-
sively (13), (11), (8) and (9), and recalling that F ′

2(x).h = F ′
2(x)h is a product,

(

E
∣

∣(−A)− 1
2+κBF ′

2(Xℓ).S
ℓ
∆th

∣

∣

2

Lq

)
1
2 ≤ C

(

E
∣

∣(−A)2κF ′
2(Xℓ).S

ℓ
∆th

∣

∣

2

Lq

)
1
2

≤ CE
(∣

∣(−A)3κF ′
2(Xℓ)

∣

∣

2

L2q

∣

∣(−A)3κSℓ
∆th
∣

∣

2

L2q

)
1
2

≤ C
(

|1 + E|(−A)4κXℓ|2L2q

)
1
2 |(−A)3κSℓ

∆th|L2q .

Let κ > 0 be such that β + 7κ < 1. Then, thanks to Lemmas 4.1 and 4.2,
(

E|η̃h,1n |2Lq

)
1
2 ≤ Ct

− 1
2+κ

n ∆t|h|Lq + Ct
1
2+κ−β
n |(−A)−βh|Lq

+ Ct
− 1

2+κ
n ∆t(1 + |(−A)4κx|L2q )|(−A)3κh|L2q + Ct

1
2−6κ−β
n (1 + |x|L2q )|(−A)−βh|L2q

≤ C∆t
1
2+κ(1 + |(−A)4κx|L2q )|(−A)3κh|L2q + Ct

1
2−6κ−β
n (1 + |x|L2q )|(−A)−βh|L2q .

and we conclude that
∣

∣Dh,1
N

∣

∣ ≤ C∆t
1
2+κ

(

1 + |x|Lp

)K
(1 + |(−A)4κx|L2q )|(−A)3κh|L2q

+ Ct
1
2−6κ−β

N

(

1 + |x|Lp

)K
(1 + |x|L2q )|(−A)−βh|L2q .

We now treat Eh,k,1
N with similar arguments. Thanks to (45), applying Lemma 4.4 gives, for κ ∈ (0, 12 ),

(

E|ζ̃h,k,1n |2Lq

)
1
2 ≤ C∆t

n−1
∑

ℓ=0

(

E
∣

∣Πn−1:ℓ+1S∆tG
′′(Xℓ).(η

h
ℓ , η

k
ℓ )
∣

∣

2

Lq

)
1
2

≤ Cκ∆t

n−1
∑

ℓ=0

t
− 1

2+κ

n−ℓ

(

E
∣

∣F ′′
1 (Xℓ).(η

h
ℓ , η

k
ℓ )
∣

∣

2

Lq

)
1
2

+ Cκ∆t

n−1
∑

ℓ=0

t
− 1

2+κ

n−ℓ

(

E
∣

∣(−A)− 1
2+κBF ′′

2 (Xℓ).(η
h
ℓ , η

k
ℓ )
∣

∣

2

Lq

)
1
2 .

Recall from (43) that ηhℓ = Πℓ−1:0h. Property 2.2 then gives
(

E
∣

∣F ′′
1 (Xℓ).(η

h
ℓ , η

k
ℓ )
∣

∣

2

Lq

)
1
2 ≤ C1ℓ 6=0t

−β−γ
ℓ |(−A)−βh|L2q |(−A)−γk|L2q + C1ℓ=0|h|L2q |k|L2q .

The remaining term is treated similarly to the one in Dh,1
N . Using successively (13), (11), (8), and (9):

(

E
∣

∣(−A)− 1
2+κBF ′′

2 (Xℓ).(η
h
ℓ , η

k
ℓ )
∣

∣

2

Lq

)
1
2 ≤ C

(

E
∣

∣(−A)2κF ′′
2 (Xℓ).(η

h
ℓ , η

k
ℓ )
∣

∣

2

Lq

)
1
2

≤ CE
(∣

∣(−A)3κF ′′
2 (Xℓ)

∣

∣

2

L2q

∣

∣(−A)4κηhℓ
∣

∣

2

L4q

∣

∣(−A)4κηkℓ
∣

∣

2

L4q

)
1
2

≤ C
(

|1 + E|(−A)4κXℓ|6L2q

)
1
6

(

E
∣

∣(−A)4κηhℓ
∣

∣

6

L4q

)
1
6
(

E
∣

∣(−A)4κηkℓ
∣

∣

6

L4q

)
1
6

≤ C1ℓ 6=0t
−12κ−β−γ
ℓ (1 + |x|L2q )|(−A)−βh|L4q |(−A)−γk|L4q

+ C1ℓ=0

(

|1 + |(−A)4κx|L2q

)∣

∣(−A)4κh
∣

∣

L4q

∣

∣(−A)4κk
∣

∣

L4q ,

thanks to Lemma 4.4, for κ > 0 chosen sufficiently small to have 4κ < 1
4 − 1

8q .

We thus obtain, if β + γ + 12κ < 1,
(

E|ζ̃h,k,1N |2Lq

)
1
2 ≤ C∆t

1
2+κ|h|L2q |k|L2q + C∆t

1
2+κ

(

1 + |(−A)4κx|L2q

)

|(−A)4κh|L4q |(−A)4κk|L4q

+ Ct
1
2−11κ−β−γ

N (1 + |x|L2q )|(−A)−βh|L4q |(−A)−γk|L4q

≤ C∆t
1
2+κ

(

1 + |(−A)4κx|L2q

)

|(−A)4κh|L4q |(−A)4κk|L4q

+ Ct
1
2−11κ−β−γ

N (1 + |x|L2q )|(−A)−βh|L4q |(−A)−γk|L4q .
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and we conclude that
∣

∣Eh,k,1
N

∣

∣ ≤ C
(

1 + |x|Lp

)K
∆t

1
2+κ

(

1 + |(−A)4κx|L2q

)

|(−A)4κh|L4q |(−A)4κk|L4q

+ Ct
1
2−11κ−β−γ

N

(

1 + |x|Lp

)K
(1 + |x|L2q )|(−A)−βh|L4q |(−A)−γk|L4q .

4.5.2. Treatment of Dh,2
N and of Eh,k,2

N . We use the following basic identities:

(51)

(

σ′(Xℓ).S
ℓ
∆th

)

ei =
∑

j∈N⋆

〈
(

σ′(Xℓ).S
ℓ
∆th

)

ei, ej〉ej =
∑

j∈N⋆

〈
(

σ′(Xℓ).S
ℓ
∆th

)

ej , ei〉ej

(

σ′′(Xℓ).(η
h
ℓ , η

k
ℓ )
)

ei =
∑

j∈N⋆

〈
(

σ′′(Xℓ).(η
h
ℓ , η

k
ℓ )
)

ei, ej〉ej =
∑

j∈N⋆

〈
(

σ′′(Xℓ).(η
h
ℓ , η

k
ℓ )
)

ej , ei〉ej ,

thanks to (18), from Property 2.4.
The parameter τ > 0 plays an important role in the estimates below, to ensure summability with respect

to j ∈ N
⋆. Indeed, since Lemmas 4.4 and 4.6 are restricted to powers of −A strictly less than 1

2 , the

computations below for τ = 0 would only provide upper bounds in terms of
∑

j λ
− 1

2+κ
j = +∞.

Control of Dh,2,1
N,ℓ . From (46), (51), and Assumption 2.5, we have

∣

∣Dh,2,1
N,ℓ

∣

∣ =
∣

∣

∣

∑

j∈N⋆

E

∫ (ℓ+1)∆t

ℓ∆t

D2ϕ(XN ).
(

DsXN

(

σ′(Xℓ).S
ℓ
∆th

)

ej,ΠN−1:ℓ+1e
τAS∆tej

)

ds
∣

∣

∣

≤ C(1 + |x|Lp)K
∑

j∈N⋆

∫ (ℓ+1)∆t

ℓ∆t

(

E
∣

∣ΠN−1:ℓ+1e
τAS∆tej|2LqE

∣

∣DsXN

(

σ′(Xℓ).S
ℓ
∆th

)

ej
∣

∣

2

Lq

)
1
2 ds.

On the one hand, by Lemma 4.4, for ℓ ∈ {0, . . . , N − 2},
(

E
∣

∣ΠN−1:ℓ+1e
τAS∆tej|2Lq

)
1
2 ≤ Ct

− 1
2+κ

N−ℓ−1

∣

∣(−A)− 1
2+κeτAS∆tej

∣

∣

Lq ≤ Ct
− 1

2+κ

N−ℓ−1τ
−2κλ

− 1
2−κ

j .

When ℓ = N − 1,
(

E
∣

∣ΠN−1:ℓ+1e
τAS∆tej|2Lq

)
1
2 =

∣

∣eτAS∆tej |Lq ≤ C∆t−
1
2−κλ

− 1
2−κ

j .
On the other hand, using Lemmas 4.5 and 4.4, and then Properties 2.1 and 2.4,

(

E
∣

∣DsXN

(

σ′(Xℓ).S
ℓ
∆th

)

ej
∣

∣

2

Lq

)
1
2 =

(

E
∣

∣ΠN−1:ℓ+1S∆te
τAσ(Xℓ)

(

σ′(Xℓ).S
ℓ
∆th

)

ej
∣

∣

2

Lq

)
1
2

≤ C
(

E
∣

∣σ(Xℓ)
(

σ′(Xℓ).S
ℓ
∆th

)

ej
∣

∣

2

Lq

)
1
2

≤ C
∣

∣Sℓ
∆th

∣

∣

Lq

≤ C1ℓ 6=0t
−β
ℓ |(−A)−βh|Lq + C1ℓ=0|h|Lq .

Recall that
∑

j∈N⋆ λ
− 1

2−κ
j <∞ by Property 2.1. This yields

N−1
∑

ℓ=0

∣

∣Dh,2,1
N,ℓ

∣

∣ ≤ C(1 + |x|Lp)K

τ2κ
(

t
− 1

2+κ

N−1 ∆t|h|Lq + t
1
2+κ−β

N−1

∣

∣(−A)−βh
∣

∣

Lq

)

.

Control of Dh,2,2
N,ℓ . Thanks to (46), (51), and Assumption 2.5, we get

∣

∣Dh,2,2
N,ℓ

∣

∣ =
∣

∣

∣

∑

j∈N⋆

E

∫ (ℓ+1)∆t

ℓ∆t

〈Dϕ(XN ),D(σ′(Xℓ).S
ℓ
∆th)ej

s ΠN−1:ℓ+1e
τAS∆tej〉ds

∣

∣

∣

≤ C(1 + |x|Lp)K
∑

j∈N⋆

∫ (ℓ+1)∆t

ℓ∆t

(

E
∣

∣D(σ′(Xℓ).S
ℓ
∆th)ej

s ΠN−1:ℓ+1e
τAS∆tej

∣

∣

2

Lq

)
1
2 ds.
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In addition, observe that Dh,2,2
N,N−1 = 0, thanks to the second part of Lemma 4.6. Applying the estimate

in Lemma 4.6, for ℓ ∈ {0, . . . , N − 2}, one has

(

E
∣

∣D(σ′(Xℓ).S
ℓ
∆th)ej

s ΠN−1:ℓ+1e
τAS∆tej |2Lq

)
1
2

≤ C
(

E
∣

∣(σ′(Xℓ).S
ℓ
∆th)ej

∣

∣

L2q

∣

∣

4) 1
4∆t

1
2 |S∆te

τAej |L2q

(

1 +
1

t
1
4+

1
2q+κ

N−ℓ−1

)

+ C
(

E
∣

∣(σ′(Xℓ).S
ℓ
∆th)ej

∣

∣

L2q

∣

∣

4) 1
4
1ℓ<N−2|(−A)−

1
2+κS∆te

τAej|L2q

(

1 +
1

t
1
4+

1
2q+κ

N−ℓ−2

)

≤ C
(

1ℓ 6=0t
−β
ℓ |(−A)−βh|L2q + 1ℓ=0|h|L2q

)

τ−2κλ
− 1

2−κ
j

(

1 +
∆tκ

t
1
4+

1
2q+κ

N−ℓ−1

+
1ℓ<N−2

t
1
4+

1
2q+κ

N−ℓ−2

)

.

This yields

N−1
∑

ℓ=0

∣

∣Dh,2,2
N,ℓ

∣

∣ ≤ C(1 + |x|Lp)K

τ2κ
(

1 + t
1
2−

1
2q−κ−β

N−1

)

(

|(−A)−βh|L2q +
∆t

tN−1
|h|L2q

)

.

Control of Eh,k,2,1
N,ℓ . Thanks to (47) and Assumption 2.5 we get

∣

∣Eh,k,2,1
N,ℓ

∣

∣ =
∣

∣

∣

∑

j∈N⋆

E

∫ (ℓ+1)∆t

ℓ∆t

D2ϕ(XN ).
(

DsXN

(

σ′′(Xℓ).(η
h
ℓ , η

k
ℓ )
)

ej ,ΠN−1:ℓ+1e
τAS∆tej

)

ds
∣

∣

∣

≤ C(1 + |x|Lp)K
∑

j∈N⋆

∫ (ℓ+1)∆t

ℓ∆t

(

E
∣

∣ΠN−1:ℓ+1e
τAS∆tej |2LqE

∣

∣DsXN

(

σ′′(Xℓ).(η
h
ℓ , η

k
ℓ )
)

ej
∣

∣

2

Lq

)
1
2 ds.

On the one hand, by Lemma 4.4, for ℓ ∈ {0, . . . , N − 2},
(

E
∣

∣ΠN−1:ℓ+1e
τAS∆tej|2Lq

)
1
2 ≤ Ct

− 1
2+κ

N−ℓ−1τ
−2κλ

− 1
2−κ

j .

When ℓ = N − 1,
(

E
∣

∣ΠN−1:ℓ+1e
τAS∆tej|2Lq

)
1
2 =

∣

∣eτAS∆tej |Lq ≤ C∆t−
1
2−κλ

− 1
2−κ

j .
On the other hand, using Lemmas 4.5 and 4.4, and Property 2.4,

(

E
∣

∣DsXN

(

σ′′(Xℓ).(η
h
ℓ , η

k
ℓ )
)

ej
∣

∣

2

Lq

)
1
2 =

(

E
∣

∣ΠN−1:ℓ+1S∆te
τAσ(Xℓ)

(

σ′′(Xℓ).(η
h
ℓ , η

k
ℓ )
)

ej
∣

∣

2

Lq

)
1
2

≤ C
(

E
∣

∣σ(Xℓ)
(

σ′′(Xℓ).(η
h
ℓ , η

k
ℓ )
)

ej
∣

∣

2

Lq

)
1
2

≤ C
(

E|ηhℓ |4L2q

)
1
4
(

E|ηkℓ |4L2q

)
1
4

≤ C1ℓ 6=0t
−β−γ
ℓ |(−A)−βh|L2q |(−A)−γk|L2q + C1ℓ=0|h|L2q |k|L2q .

This yields

N−1
∑

ℓ=0

∣

∣Eh,k,2,1
N,ℓ

∣

∣ ≤ C(1 + |x|Lp)K

τ2κ
(

t
− 1

2+κ

N−1 ∆t|h|L2q |k|L2q + t
1
2+κ−β−γ

N−1 |(−A)−βh|L2q |(−A)−γk|L2q

)

.

Control of Eh,k,2,2
N,ℓ . Thanks to (47), (51) and Assumption 2.5 we get

∣

∣Eh,k,2,2
N,ℓ

∣

∣ =
∣

∣

∣

∑

j∈N⋆

E

∫ (ℓ+1)∆t

ℓ∆t

〈Dϕ(XN ),D(σ′′(Xℓ).(η
h
ℓ ,η

k
ℓ ))ej

s ΠN−1:ℓ+1e
τAS∆tej〉ds

∣

∣

∣

≤ C(1 + |x|Lp)K
∑

j∈N⋆

∫ (ℓ+1)∆t

ℓ∆t

(

E
∣

∣D(σ′′(Xℓ).(η
h
ℓ ,η

k
ℓ ))ej

s ΠN−1:ℓ+1e
τAS∆tej

∣

∣

2

Lq

)
1
2 ds.
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In addition, observe that Eh,2,2
N,N−1 = 0, thanks to the second part of Lemma 4.6. Applying the estimate in

Lemma 4.6, for ℓ ∈ {1, . . . , N − 2}, one has

(

E
∣

∣D(σ′′(Xℓ).(η
h
ℓ ,η

k
ℓ ))ej

s ΠN−1:ℓ+1e
τAS∆tej |2Lq

)
1
2

≤ C
(

E
∣

∣

(

σ′′(Xℓ).(η
h
ℓ , η

k
ℓ )
)

ej
∣

∣

L2q

∣

∣

4) 1
4∆t

1
2 |S∆te

τAej |L2q

(

1 +
1

t
1
4+

1
2q+κ

N−ℓ−1

)

+ C
(

E
∣

∣

(

σ′′(Xℓ).(η
h
ℓ , η

k
ℓ )
)

ej
∣

∣

L2q

∣

∣

4) 1
4
1ℓ<N−2|(−A)−

1
2+κS∆te

τAej |L2q

(

1 +
1

t
1
4+

1
2q+κ

N−ℓ−2

)

≤ C
(

E|ηhℓ |8L2q

)
1
8
(

E|ηkℓ |8L2q

)
1
8 τ−2κλ

− 1
2−κ

j

(

1 +
∆tκ

t
1
4+

1
2q+κ

N−ℓ−1

+
1ℓ<N−2

t
1
4+

1
2q+κ

N−ℓ−2

)

≤ C
(

1ℓ 6=0t
−β−γ
ℓ |(−A)−βh|L2q |(−A)−γk|L2q + 1ℓ=0|h|L2q |k|L2q

)

τ−2κλ
− 1

2−κ
j

(

1 +
∆tκ

t
1
4+

1
2q+κ

N−ℓ−1

+
1ℓ<N−2

t
1
4+

1
2q+κ

N−ℓ−2

)

This yields

N−1
∑

ℓ=0

∣

∣Eh,k,2,2
N,ℓ

∣

∣ ≤ C(1 + |x|Lp)K

τ2κ
(

1 + t
1
2−

1
2q−κ−β−γ

N−1

)

(

|(−A)−βh|L2q |(−A)−γk|L2q +
∆t

tN
|h|L2q |k|L2q

)

.

4.5.3. Estimate with τ > 0. Gathering all above estimates, we have - recall that tN = T - for β ∈ [0, 1):
∣

∣

∣Duδ,τ,∆t(T, x).h
∣

∣

∣ =
∣

∣

∣Dh,0
N +Dh,1

N +Dh,2
N

∣

∣

∣

≤ CT−β
(

1 + |x|Lp

)K |(−A)−βh|Lq

+ C∆t
1
2+κ

(

1 + |x|Lp

)K
(1 + |(−A)4κx|L2q )|(−A)3κh|L2q

+ CT
1
2−6κ−β

(

1 + |x|Lp

)K
(1 + |x|L2q )|(−A)−βh|L2q

+
C(1 + |x|Lp)K

τ2κ
(

T− 1
2+κ∆t|h|Lq + t

1
2+κ−β

N−1

∣

∣(−A)−βh
∣

∣

Lq

)

+
C(1 + |x|Lp)K

τ2κ
(

1 + T
1
2−

1
2q−κ−β

)(

|(−A)−βh|L2q +
∆t

T
|h|L2q

)

.

Define the auxiliary function uδ,τ by

(52) uδ,τ (t, x) = E
[

ϕδ

(

Xδ,τ(t, x)
)]

,

where

(53) dXδ
t = AXδ

t dt+Gδ(X
δ
t )dt+ eτAσδ(X

δ
t )dW (t), Xδ,τ(0) = x.

Letting ∆t → 0, we obtain Proposition 4.10.

Proposition 4.10. For every β ∈ [0, 1) and κ ∈ (0, 1), there exists Cβ,κ(T ), such that for every δ, τ ∈ (0, 1),
x ∈ Lp and h ∈ L2q

(54)
∣

∣Duδ,τ (T, x).h
∣

∣ ≤ Cβ,κ(T )

τκT β

(

1 + |x|K+1
Lmax(p,2q)

)

|(−A)−βh|L2q .

Gathering estimates concerning the second-order derivative, with D2uδ,τ,∆t(T, x).(h, k) = Eh,k,0
N +Eh,k,1

N +

Eh,k,2
N , and letting ∆t → 0, we also obtain Proposition 4.11.

Proposition 4.11. For every β, γ ∈ [0, 12 ) and κ ∈ (0, 1), there exists Cβ,γ,κ(T ) such that for every δ, τ ∈
(0, 1), x ∈ Lp and h, k ∈ L4q

(55)
∣

∣D2uδ,τ(T, x).
(

h, k
)∣

∣ ≤ Cβ,γ,κ(T )

τκT β+γ

(

1 + |x|K+1
Lmax(p,2q)

)

|(−A)−βh|L4q |(−A)−γh|L4q .
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4.5.4. Conclusion. To get rid of the singular factor τ−κ in the estimates (54) and (55) above, we use an
interpolation argument. We need the following result, which is not optimal – we expect an order 1

4 in (58)
as in (56) – but sufficient for our purpose.

Proposition 4.12. For every κ ∈ (0, 1), T > 0, there exists Cκ,ǫ(T ) ∈ (0,∞), such that for every δ, τ ∈
(0, 1), x ∈ Lp and h, k ∈ L2q

|uδ,τ (T, x)− uδ(T, x)| ≤ Cκ(T )τ
1
4−κ

(

1 + |x|KLp

)

(56)
∣

∣

(

Duδ,τ(T, x)−Duδ(T, x)
)

.h
∣

∣ ≤ Cκ(T )τ
1
4−κ

(

1 + |x|KLp

)

|h1|Lq(57)
∣

∣

(

D2uδ,τ (T, x)−D2uδ(T, x)
)

.
(

h, k
)∣

∣ ≤ Cκ(T )τ
1
8−κ

(

1 + |x|KLp

)

|h|L3q |k|L3q .(58)

Proof of Proposition 4.12. Again, we omit to write the dependance on δ, for instance we write uτ and u
instead of uδ,τ and uδ. Also, we only treat the case q > 2. For every τ ∈ [0, 1), let

(

Xτ
t

)

0≤t≤T
denote the

solution of

dXτ
t = AXτ

t dt+G(Xτ
t )dt+ eτAσ(Xτ

t )dW (t), Xτ
0 = x,

so that uτ (T, x) = E
[

ϕ(Xτ
t )
]

, X0 = X and u0 = u.
We first prove (56). Due to the regularity conditions on the test functions ϕ, see Assumption 2.5, it is

sufficient to prove the following bounds: for every M ∈ N
⋆ and every p, q ∈ [2,∞), for every γ ∈ [0, 12 ) and

κ > 0 sufficiently small, there exists CM,p,q(T ) ∈ (0,∞), such that for every 0 < t ≤ T and every x ∈ Lp, we
have

(59)

(

E|Xτ (t)|2MLp

)
1

2M ≤ Cγ,κ,p,q,M(T )(1 + |x|Lp),
(

E|Xτ (t)−X0(t)|2MLq

)
1

2M ≤ Cγ,κ,p,q,M (T )τ
1
4−κ

For simplicity, we treat only the case M = 1. The first inequality is easy because F1, F2, and σ are
bounded.

Since
(

etA
)

t≥0
is an analytic semi-group on Lp for every p ∈ [2,∞), it is standard that for α ∈ [0, 1),

there exists C(p, α) ∈ (0,∞) such that

(60)
∣

∣(−A)−α(eτA − I)
∣

∣

L(Lp,Lp)
≤ C(p, α)τα.

Let us write eτ = Xτ −X0, eτ = e1τ + e2τ with

e1τ =

∫ t

0

e(t−s)A
(

F1(X
τ
s )− F1(X

0
s )
)

ds+ (

∫ t

0

e(t−s+τ)A
(

σ(Xτ
s )− σ(X0

s )
)

dW (s)

+

∫ t

0

(

eτA − I
)

e(t−s)Aσ(X0
s )dW (s),

which yields, thanks to Properties 2.2 and 2.4,

E|e1τ (t)|2Lq ≤ C

∫ t

0

E|Xτ
s −X0

s |2Lqds

+ C

∫ t

0

∣

∣(−A) 1
2q e(t−s+τ)A

∣

∣

2

R(L2,Lq)
E|Xτ

s −X0
s |2Lqds

+ C

∫ t

0

∣

∣(−A)− 1
4+κ(eτA − I)

∣

∣

2

L(Lq,Lq)

∣

∣(−A) 1
4−κe(t−s+τ)A

∣

∣

2

R(L2,Lq)
ds

≤ C

∫ t

0

( 1

(t− s)
1
2+

1
q
+κ

+ 1
)

E|Xτ
s −X0

s |2Lqds+ Cτ
1
2−2κ,

using a continuous time version of Lemma 4.3.
The equation for e2 is

d

dt
e2τ = Ae2τ +

(

BF2(X
τ )−BF2(X

0)
)

, e2τ (0) = 0.

We estimate e2τ by an energy method. Recall that we work in fact with regularized coefficients, Gδ =
BeδAF2(e

δ·) + eδAF1(e
δ·), so that both Xτ and X are sufficiently regular to justify all the computations.
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Multiply the equation by (e2τ )
q−1, integrate in space to get thanks to standard manipulations as in the proof

of Lemma 4.7:
d

dt
|e2τ |qLq ≤ c|Xτ −X0|2Lq |e2τ |q−2

Lq

and
d

dt
|e2τ |2Lq ≤ c|Xτ −X0|2Lq .

Integrating in time and adding with the inequality above yields:

E|Xτ
t −X0

t |2Lq ≤ C

∫ t

0

(

1

(t− s)
1
2+

1
q
+κ

+ 1

)

E|Xτ
s −X0

s |2Lqds+ Cτ
1
2−2κ

and (56) follows from Gronwall Lemma.
The proof of (57) is similar but longer; details are left to the reader. Finally, instead of provgin (58) with

similar long but straightforward arguments (and a better estimate with τ
1
4−κ is obtained), it is simpler to

use Proposition 3.5 for k1, k2, k3 ∈ L3q:
∣

∣D3uδ(T, x).(k1, k2, k3)
∣

∣ ≤ Cβ(T )(1 + |x|Lp)K |k1|L3q |k2|L3q |k3|L3q .

and get the result by an interpolation argument. �

We are now in position to conclude the proof of Theorem 3.2. Identifying the first order derivative with
the gradient, and letting 1

r + 1
2q = 1, we may rewrite (54) and (57) as

∣

∣(−A)βDuδ,τ(T, x)
∣

∣

Lr ≤ Cβ,κ(T )

τκT β

(

1 + |x|Lp

)K
(1 + |x|L2q ),

∣

∣Duδ,τ(T, x)−Duδ(T, x)
∣

∣

Lr ≤ Cκ(T )τ
1
4−κ

(

1 + |x|Lp

)K
.

for β ∈ [0, 1). Take τk = 2−k, 0 < β < β̃ < 1, λ = β

β̃
and κ < 1

4 (1 − λ). Then we may write:

∣

∣(−A)βDuδ(T, x)
∣

∣

Lr ≤
∑

k∈N

∣

∣(−A)β
(

Duδ,τk+1(T, x)−Duδ,τk(T, x)
) ∣

∣

Lr

≤
∑

k∈N

∣

∣(−A)β̃
(

Duδ,τk+1(T, x)−Duδ,τk(T, x)
) ∣

∣

λ

Lr

∣

∣Duδ,τk+1(T, x)−Duδ,τk(T, x)
∣

∣

1−λ

Lr

≤ Cβ,κ(T )

T β

(

1 + |x|Lp

)K
(1 + |x|L2q )

∑

k∈N

2k(−κλ+( 1
4−κ)(1−λ))

≤ Cβ,κ(T )

T β

(

1 + |x|Lp

)K
(1 + |x|L2q ).

This yields (25), and concludes the proof of Theorem 3.2.
We proceed similarly for the proof of Theorem 3.3, and thus we will not provide all details. Identifying

the second order derivative with the Hessian, and letting 1
r + 1

4q = 1, we may rewrite (55) and (58) as

∣

∣(−A)γD2uδ,τ(T, x)(−A)βh
∣

∣

Lr ≤ Cβ,γ,κ(T )

τκT β+γ

(

1 + |x|KLp

)

(1 + |x|L2q )|h|L4q

∣

∣

(

D2uδ,τ(T, x)−D2uδ(T, x)
)

h
∣

∣

Lr ≤ Cκ,ǫ(T )τ
1
8−κ

(

1 + |x|KLp

)

|h|L4q .

Let us first take β = 0 and take γ < γ̃ < 1
2 , λ = γ

γ̃ and κ < 1
8 (1− λ); then, for τ1 ≤ τ2,

∣

∣(−A)γ
(

D2uδ1,τ (T, x)−D2uδ2,τ (T, x)
)

h
∣

∣

Lr

≤
∣

∣(−A)γ̃
(

D2uδ1,τ (T, x)−D2uδ2,τ (T, x)
)

h
∣

∣

λ

Lr

∣

∣

(

D2uδ1,τ (T, x)−D2uδ2,τ (T, x)
)

h
∣

∣

1−λ

Lr

≤ Cγ,κ(T )

T γ
τ

1
8 (1−λ)−κ
2

(

1 + |x|Lp

)K
(1 + |x|L2q )|h|L4q .

Since D2u is symmetric, it follows replacing γ by β ∈ [0, 12 ):

∣

∣

(

D2uδ1,τ (T, x)−D2uδ2,τ (T, x)
)

(−A)βh
∣

∣

Lr ≤ Cβ,α0(T )

T β
τα0
2

(

1 + |x|Lp

)K
(1 + |x|L2q )|h|L4q ,
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for α0 <
1
8 (1− β). We then repeat the argument to conclude the proof of Theorem 3.3.

5. Proof of Theorem 3.6

Recall the definition of the scheme, see (28): for n ∈ {0, . . . , N − 1},
(61) Xn+1 = S∆tXn +∆tS∆tG(Xn) + S∆tσ(Xn)∆Wn,

with the initial condition X0 = x, the condition N∆t = T , and the Wiener increments ∆Wn = W
(

(n +

1)∆t
)

−W
(

n∆t
)

. Recall the notation S∆t =
(

I −∆tA)−1.

Let ϕ be a function satisfying Assumption 2.5, and u(t, x) = E
[

ϕ
(

Xt(x)
)]

be defined by (24).
In order to justify all computations below, it is convenient to replace G and σ in (61) with the regularized

coefficients Gδ and σδ introduced in Section 3, and to consider uδ defined by (23) instead of u. Since all
upper bounds hold true uniformly with respect to δ, passing to the limit δ → 0 allows us to remove this
regularization parameter. To simplify the notation, we do not mention δ in the computations.

Associated with the scheme (61), we introduce an auxiliary, continuous-time, process
(

X̃(t)
)

t∈[0,T ]
, defined

on each interval [tn, tn+1] by

(62) X̃(t) = Xn + (t− tn)S∆tAXn + (t− tn)S∆tG(Xn) + S∆tσ(Xn)
(

W (t)−W (tn)
)

.

Equivalently, X̃(tn) = Xn, and for t ∈ [tn, tn+1],

(63) dX̃(t) = S∆tAXndt+ S∆tG(Xn)dt+ S∆tσ(Xn)dW (t).

Note that Lemma 4.1 is still true for δ = τ = 0 so that we have bounds on the moments of Xn in
D((−A)α), α < 1

4 . Moreover

(64) |(−A)αX̃(t)|Lp ≤ c|(−A)αXn|Lp , t ∈ [tn, tn+1).

Using the notation ℓs = ℓ if s ∈ [tℓ, tℓ+1), for s ∈ [0, T ], we have the formulation

(65) Xk = Sk
∆tx+∆t

k−1
∑

ℓ=0

Sk−ℓ
∆t G(Xℓ) +

∫ tk

0

Sk−ℓs
∆t σ(Xℓs)dW (s).

Following the standard approach, introduced first in the SDE setting, see [42] and the monographs [27]
and [32], the weak error (29) is decomposed as follows:

Eϕ
(

X(T )
)

− Eϕ
(

XN

)

= E
[

u(T, x)− u(0, XN)
]

=

N−1
∑

k=0

E
[

u(T − tk, Xk)− u(T − tk+1, Xk+1)
]

= E
[

u(T −∆t,X1)− u(T, x)
]

+

N−1
∑

k=1

(

ak + bk + ck
)

,

with

(66)

ak =

∫ tk+1

tk

E〈AX̃(t)−AS∆tXk, Du
(

T − t, X̃(t)
)

〉dt,

bk =

∫ tk+1

tk

E〈G(X̃(t))− S∆tG(Xk), Du
(

T − t, X̃(t)
)

〉dt,

ck =
1

2

∫ tk+1

tk

ETr
(

[

σ(X̃(t))2 − S∆tσ(Xk)
2S∆t

]

D2u
(

T − t, X̃(t)
)

)

dt,

where in ck we have used the property σ(·)⋆ = σ(·), see (18), Property 2.4.
In the following sections, we successively treat the terms E

[

u(T − ∆t,X1) − u(T, x)
]

, ak, bk and ck. A
technical result is given in Section 5.5.

We will control the error terms, in terms of ∆t
1
2−κ with positive, arbitrarily small κ. We do not try to

obtain optimal constants. The value of κ may change from line to line. At the end of the proof, gathering
the estimates and choosing an appropriate κ gives the result.
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5.1. Control of E
[

u(T −∆t,X1)− u(T, x)
]

. We note that
∣

∣E
[

u(T −∆t,X1)− u(T, x)
]∣

∣ ≤
∣

∣E
[

u(T −∆t,X1)− u(T −∆t,X(∆t))
]∣

∣

≤ C

(T −∆t)1−κ
(1 + |x|Lmax(p,2q))K+1

(

E
∣

∣(−A)−1+κ
(

X1 −X(∆t)
)∣

∣

2

Lq

)
1
2 ,

using Theorem 3.2.
We then write X1 −X(∆t) =

(

X1 − x
)

−
(

X(∆t)− x
)

, and note that

E|(−A)−1+κ(X1 − x)|2Lq ≤ C|(−A)−1+κ(S∆t − I)x|2Lq

+∆t|(−A)−1+κS∆tG(x)|2Lq + C∆t|(−A)−1+κ|2R(L2,Lq)|S∆tσ(x)|2L(L2)

≤ C∆t1−2κ|x|2Lq + C∆t.

We have used the two following inequalities. First, for every β ∈ [0, 1) and q ∈ [2,∞), there exists Cβ,q such
that

(67) |(−A)−β(S∆t − I)|L(Lq) = ∆t|(−A)1−βS∆t|L(Lq) ≤ Cβ,q∆t
β,

using the identity S∆t − I = ∆tAS∆t and Lemma 4.2 (with n = 1).
Second, adapting the proof of Lemma 4.3, for α > 1

4 ,

|(−A)−α|2R(L2,Lq) <∞.

Similarly,
E|(−A)−1+κ(X(∆t)− x)|2Lq ≤ C∆t1−2κ|x|2Lq + C∆t.

We thus obtain

(68)
∣

∣E
[

u(T −∆t,X1)− u(T, x)
]∣

∣ ≤ C(T )(1 + |x|Lmax(p,2q))K+1∆t
1
2−κ.

5.2. Control of ak.

5.2.1. Decompositions. For each k ∈ {1, . . . , N − 1}, ak is decomposed into the following terms:

(69) ak = a1k + a2k =
(

a1,1k + a1,2k + a1,3k

)

+
(

a2,1k + a2,2k + a2,3k

)

,

where

a1k = E

∫ tk+1

tk

〈A(I − S∆t)Xk, Du(T − t, X̃(t))〉dt,

a2k = E

∫ tk+1

tk

〈A(X̃(t)−Xk), Du(T − t, X̃(t))〉dt,

and a1k and a2k are further decomposed into

a1,1k = −∆tE

∫ tk+1

tk

〈A2Sk+1
∆t x,Du(T − t, X̃(t))〉dt,

a1,2k = −∆tE

∫ tk+1

tk

〈∆t
k−1
∑

ℓ=0

A2Sk−ℓ+1
∆t G(Xℓ), Du(T − t, X̃(t))〉dt,

a1,3k = −∆tE

∫ tk+1

tk

〈
k−1
∑

ℓ=0

A2Sk−ℓ+1
∆t σ(Xℓ)∆Wℓ, Du(T − t, X̃(t))〉dt,

and, using (62),

a2,1k = E

∫ tk+1

tk

(t− tk)〈S∆tA
2Xk, Du(T − t, X̃(t))〉dt,

a2,2k = E

∫ tk+1

tk

(t− tk)〈AS∆tG(Xk), Du(T − t, X̃(t))〉dt,

a2,3k = E

∫ tk+1

tk

〈AS∆tσ(Xk)
(

W (t)−W (tk)
)

, Du(T − t, X̃(t))〉dt.
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Indeed, I − S∆t = −∆tAS∆t, and

(70) Xk = Sk
∆tx+∆t

k−1
∑

ℓ=0

Sk−ℓ
∆t G(Xℓ) +

k−1
∑

ℓ=0

Sk−ℓ
∆t σ(Xℓ)∆Wℓ.

5.2.2. Treatment of a1k. We treat succesively the terms a1,1k , a1,2k and a1,3k . The first quantity only needs
elementary arguments and Theorem 3.2, with β ∈ [0, 12 ). The second quantity requires the stronger version
of Theorem 3.2, with β ∈ [0, 1), contrary to [16], due to the Burgers type nonlinearity. The third quantity
requires the use of Malliavin integration by parts formula, and of Theorem 3.3 with β, γ ∈ [0, 12 ).

We also use repeatedly (64) combined with Cauchy-Schwarz inequality.

Treatment of a1,1k . Using Theorem 3.2, with β = 1
2 − κ, we get for k ∈ {1, . . . , N − 1},

|a1,1k | ≤ Cκ(1 + |x|Lmax(p,2q))K+1∆t

∫ tk+1

tk

1

(T − t)
1
2−κ

∣

∣(−A)− 1
2+κA2Sk+1

∆t x
∣

∣

L2qdt

≤ Cκ(1 + |x|Lmax(p,2q))K+1∆t

∫ tk+1

tk

1

(T − t)
1
2−κ

∣

∣(−A) 1
2+2κS∆t(−A)1−κSk

∆tx
∣

∣

L2qdt

≤ Cκ(1 + |x|Lmax(p,2q))K+1|x|Lq

∆t
1
2−2κ

t1−κ
k

∫ tk+1

tk

1

(T − t)
1
2−κ

dt,

using Lemma 4.2.

Treatment of a1,2k . Similarly, thanks to (13), the boundedness of the mappings F1 and F2 from Lq to Lq,
thanks to Property 2.2, using Theorem 3.2 with β = 1− κ,

|a1,2k | ≤ Cκ(1 + |x|Lmax(p,2q))K+1∆t

∫ tk+1

tk

1

(T − t)1−κ
∆t

k−1
∑

ℓ=0

∣

∣(−A) 1
2+3κS∆t(−A)1−κSk−ℓ

∆t

∣

∣

L(L2q)
dt

≤ Cκ(1 + |x|Lmax(p,2q))K+1|x|Lq∆t
1
2−3κ

∫ tk+1

tk

1

(T − t)1−κ
dt∆t

k−1
∑

ℓ=0

1

t1−κ
k−ℓ

≤ Cκ(1 + |x|Lmax(p,2q))K+1|x|Lq∆t
1
2−3κ

∫ tk+1

tk

1

(T − t)1−κ
dt.

Treatment of a1,3k . Let k ∈ {1, . . . , N − 1}. For technical reasons, we decompose a1,3k = a1,3,1k + a1,3,2k where

a1,3,1k = −∆tE

∫ tk+1

tk

〈
k−2
∑

ℓ=0

A2Sk−ℓ+1
∆t σ(Xℓ)∆Wℓ, Du(T − t, X̃(t))〉dt

= −∆tE

∫ tk+1

tk

〈
∫ tk−1

0

A2Sk−ℓs+1
∆t σ(Xℓs)dW (s), Du(T − t, X̃(t))〉dt

a1,3,2k = −∆tE

∫ tk+1

tk

〈A2S2
∆tσ(Xk−1)∆Wk−1, Du(T − t, X̃(t))〉dt,

with the convention that a1,3,11 = 0.
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We first treat a1,3,1k . Using Malliavin’s integration by parts formula,

a1,3,1k = −∆tE

∫ tk+1

tk

〈
∫ tk−1

0

A2Sk−ℓs+1
∆t σ(Xℓs)dW (s), Du(T − t, X̃(t))〉dt

= −∆tE

∫ tk+1

tk

∫ tk−1

0

Tr
(

σ(Xℓs)
⋆A2Sk−ℓs+1

∆t D2u(T − t, X̃(t))DsX̃(t)
)

dsdt

= −∆tE

∫ tk+1

tk

∫ tk−1

0

Tr
(

σ(Xℓs)
⋆A2Sk−ℓs+1

∆t D2u(T − t, X̃(t))U(t, s)S∆tσ(Xℓs)
)

dsdt

= −∆tE

∫ tk+1

tk

∫ tk−1

0

∑

i

D2u(T − t, X̃(t)).
(

A2Sk−ℓs+1
∆t σ(Xℓs)

2ei, U(t, s)S∆tei

)

dsdt,

where we use that σ(x)⋆ = σ(x), and we have introduced the linear operator U(t, s) such that DsX̃(t) =
U(t, s)S∆tσ(Xℓs). We then apply Theorem 3.3.

On the one hand, using Property 2.4,

(

E
∣

∣A− 1
2+κ+2Sk−ℓs+1

∆t σ(Xℓs)
2ei
∣

∣

2

L4q

)
1
2

≤
∣

∣(−A)1−κSk−ℓs
∆t

∣

∣

L(L4q)

∣

∣(−A) 1
2+2κS∆t

∣

∣

L(L4q)

(

E
∣

∣σ(Xℓs)
2ei
∣

∣

2

L4q

)
1
2

≤ C∆t−
1
2−2κ

t1−κ
k−ℓs

|ei|L4q ,

thanks to Lemma 4.2, under the condition that ℓs < k − 1.
On the other hand, we use Lemma 5.1, see Section 5.5. Thanks to Theorem 3.3, we thus have

|a1,3,1k | ≤ C∆t(1 + |x|Lmax(p,2q))K+1

∫ tk+1

tk

∫ tk−1

0

C∆t−
1
2−2κ

(T − t)1−κt1−κ
k−ℓs

∑

i

(

E|(−A)− 1
2+κU(t, s)S∆tei|4L4q

)
1
4 dsdt

≤ C∆t
1
2−3κ(1 + |x|Lmax(p,2q))K+1

∫ tk+1

tk

C

(T − t)1−κ
dt
(

∆t

k−2
∑

ℓ=0

1

t1−κ
k−ℓ

)

∑

i

(

|(−A)− 1
2+2κS∆tei|L4q

+ C∆t
1
2 |S∆tei|L4q

)

dt

≤ C∆t
1
2−5κ(1 + |x|Lmax(p,2q))K+1

∫ tk+1

tk

C

(T − t)1−κ
dt

Indeed,
∑

i

(

|(−A)− 1
2+2κS∆tei|L4q + C∆t

1
2 |S∆tei|L4q

)

≤ C∆t−3κ.

It remains to treat a1,3,2k . This is done with much simpler arguments: using Theorem 3.2,

|a1,3,2k | ≤ C∆t(1 + |x|Lmax(p,2q) )K+1

∫ tk+1

tk

1

(T − t)
1
2−κ

(

∆tE|(−A)− 1
2+κA2S2

∆tσ(Xk−1)|2R(L2,L2q)

)
1
2 dt

≤ C∆t(1 + |x|Lmax(p,2q) )K+1

∫ tk+1

tk

1

(T − t)
1
2−κ

dt∆t
1
2−1+κ,

using |(−A)− 1
2+3κ|R(L2,L2) <∞ and |(−A)1−κS∆t|L(L2) ≤ C∆t−1+κ.

Conclusion. Gathering the estimates on a1,1k , a1,2k and a1,3k , and summing for k ∈ {1, . . . , N − 1}, we obtain

(71)

N
∑

k=1

∣

∣a1k
∣

∣ ≤ C∆
1
2−5κ(1 + |x|Lmax(p,2q))K+1

∫ T

0

1

(T − t)1−κ

(

1 +
1

t1−κ

)

dt.

5.2.3. Treatment of a2k.
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Treatment of a2,1k . Since AS∆t = − 1
∆t (I − S∆t), we rewrite

a2,1k = −E

∫ tk+1

tk

(t− tk)

∆t
〈A(I − S∆t)Xk, Du(T − t, X̃(t))〉dt

and observe that the right-hand side has the same structure as a1k. Using the straightforward inequality

t − tk ≤ ∆t when tk ≤ t ≤ tk+1, we thus directly obtain that
∑N−1

k=1 |a2,1k | is bounded from above by the
right-hand side of (71).

Treatment of a2,2k . We again use Theorem 3.2 (with β = 1 − κ), inequality (13) with Proposition 2.2, and
obtain

|a2,2k | =
∣

∣E

∫ tk+1

tk

(t− tk)〈AS∆tG(Xk), Du(T − t, X̃(t))〉dt
∣

∣

≤ C∆t(1 + |x|Lmax(p,2q))K+1

∫ tk+1

tk

1

(T − t)1−κ

∣

∣(−A) 1
2+2κS∆t(−A)−

1
2−κG(Xk)

∣

∣

L2qdt

≤ C∆t
1
2−2κ(1 + |x|Lmax(p,2q))K+1

∫ tk+1

tk

1

(T − t)1−κ
dt,

thanks to Lemma 4.2.

Treatment of a2,3k . To treat this term, we again use Malliavin’s integration by parts formula. Writing the
Wiener increment as a stochastic integral, we obtain

a2,3k = E

∫ tk+1

tk

〈
∫ t

tk

AS∆tσ(Xk)dW (s), Du(T − t, X̃(t))〉dt

= E

∫ tk+1

tk

E

∫ t

tk

Tr
(

σ(Xk)
⋆S∆tAD

2u(T − t, X̃(t))DsX̃(t)
)

dsdt

= E

∫ tk+1

tk

E

∫ t

tk

Tr
(

σ(Xk)
⋆S∆tAD

2u(T − t, X̃(t))S∆tσ(Xk)
)

dsdt

= E

∫ tk+1

tk

(t− tk)
∑

i

D2u(T − t, X̃(t)).
(

S∆tei, AS∆tσ(Xk)
2ei
)

dt,

where we have used σ(x)⋆ = σ(x), and the equality DsX̃(t) = S∆tσ(Xk) for tk ≤ s < t ≤ tk+1, obtained
from (62). We then use Theorem 3.3 and obtain

|a2,3k | ≤ C∆t(1 + |x|Lmax(p,2q))K+1

∫ tk+1

tk

1

(T − t)1−κ
dt
∑

i

∣

∣(−A)− 1
2+κS∆tei

∣

∣

L4q

∣

∣(−A) 1
2+κS∆tσ(Xk)

2ei
∣

∣

L4q

≤ C∆t(1 + |x|Lmax(p,2q))K+1

∫ tk+1

tk

1

(T − t)1−κ
dt
(

∆t−2κ
∑

i

1

λ
1
2+κ
i

)

∆t−
1
2−κ.

Conclusion. Gathering the estimates on a2,1k , a2,2k and a2,3k , and summing for k ∈ {1, . . . , N − 1}, we obtain

(72)

N
∑

k=1

∣

∣a2k
∣

∣ ≤ C∆
1
2−2κ(1 + |x|Lmax(p,2q))K+1

∫ T

0

1

(T − t)1−κ

(

1 +
1

t1−κ

)

dt.

5.3. Control of bk.
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5.3.1. Decompositions. For each k ∈ {1, . . . , N − 1}, bk is decomposed into the following terms:

(73) bk = b1k + b2k = b1k +
(

b2,1k + b2,2k + b2,3k + b2,4k

)

,

where

b1k =

∫ tk+1

tk

E〈(I − S∆t)G(Xk), Du
(

T − t, X̃(t)
)

〉dt,

b2k =

∫ tk+1

tk

E〈G(X̃(t))−G(Xk), Du
(

T − t, X̃(t)
)

〉dt

=

∫ tk+1

tk

E

∑

i

[

Gi(X̃(t)) −Gi(Xk)
]

∂iu
(

T − t, X̃(t)
)

dt,

where Gi(·) = 〈G(·), ei〉 and ∂iu(·, ·) = 〈Du(·, ·), ei〉.
In addition, b2k is further decomposed with

b2,1k = E

∫ tk+1

tk

∫ t

tk

∑

i

∂iu
(

T − t, X̃(t)
)

Tr
(

S∆tσ(Xk)
2S∆tD

2Gi(X̃(s))
)

dsdt

b2,2k = E

∫ tk+1

tk

∫ t

tk

∑

i

∂iu
(

T − t, X̃(t)
)

〈S∆tAXk, DGi(X̃(s))〉dsdt

b2,3k = E

∫ tk+1

tk

∫ t

tk

∑

i

∂iu
(

T − t, X̃(t)
)

〈S∆tF (Xk), DGi(X̃(s))〉dsdt

b2,4k = E

∫ tk+1

tk

∑

i

∂iu
(

T − t, X̃(t)
)

∫ t

tk

〈DGi(X̃(s)), S∆tσ(Xk)dW (s)〉dt,

thanks to Itô’s formula, and using σ(·)⋆ = σ(·).

5.3.2. Treatment of b1k. We directly apply Theorem 3.2, with β = 1 − κ, and thanks to (67), Property 2.2,
and inequality (13), we get

|b1k| ≤ C(1 + |x|Lmax(p,2q))K+1

∫ tk+1

tk

1

(T − t)1−κ

∣

∣(−A) 1
2+2κS∆t(−A)−

1
2−κG(Xk)

∣

∣

L(Lq)
dt

≤ C∆t
1
2−2κ(1 + |x|Lmax(p,2q))K+1

∫ tk+1

tk

1

(T − t)1−κ
dt,

As a consequence,
N−1
∑

k=1

|b1k| ≤ C∆t
1
2−2κ(1 + |x|Lmax(p,2q))K+1.

5.3.3. Treatment of b2k.

Control of b2,1k . To treat the term b2,1k , we expand the trace, using the orthonormal system
(

ei
)

i∈N⋆ , and
with straightforward calculations we write

b2,1k = E

∫ tk+1

tk

∫ t

tk

∑

i

∂iu
(

T − t, X̃(t)
)

Tr
(

S∆tσ(Xk)
2S∆tD

2Gi(X̃(s))
)

dsdt

= E

∫ tk+1

tk

∫ t

tk

∑

i,n

∂iu
(

T − t, X̃(t)
)

D2Gi(X̃(s)).
(

S∆ten, S∆tσ(Xk)
2en
)

dsdt

= E

∫ tk+1

tk

∫ t

tk

∑

n

〈Du
(

T − t, X̃(t)
)

, D2G(X̃(s)).
(

S∆ten, S∆tσ(Xk)
2en
)

〉dsdt
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Using Theorem 3.2, with β = 1
2 + κ, combined with inequality (13), and Properties 2.1 and 2.2, we get

|b2,1k | ≤ C(1 + |x|Lmax(p,2q))K+1
E

∫ tk+1

tk

1

(T − t)
1
2+κ

∫ t

tk

∑

j∈{1,2},n∈N⋆

(

E|D2Fj(X̃(s)).
(

S∆ten, S∆tσ(Xk)
2en
)

|2Lq

)
1
2+κ

dsdt

≤ C∆t(1 + |x|Lmax(p,2q))K+1
∑

n

|S∆ten|L2q

∫ tk+1

tk

1

(T − t)
1
2+κ

dt

≤ C∆t
1
2−κ(1 + |x|Lmax(p,2q))K+1

∑

n

1

λ
1
2+κ
n

∫ tk+1

tk

1

(T − t)
1
2+κ

dt.

Control of b2,2k . As for the term a1,3k , we need to further decompose

b2,2k = E

∫ tk+1

tk

∫ t

tk

〈Du
(

T − t, X̃(t)
)

, DG(X̃(s)).
(

S∆tAXk

)

〉dsdt

= b2,2,1k + b2,2,2k + b2,2,3k ,

where, using (70),

b2,2,1k = E

∫ tk+1

tk

∫ t

tk

〈Du
(

T − t, X̃(t)
)

, DG(X̃(s)).
(

Sk+1
∆t Ax

)

〉dsdt

b2,2,2k = E

∫ tk+1

tk

∫ t

tk

〈Du
(

T − t, X̃(t)
)

, DG(X̃(s)).
(

∆t

k−1
∑

ℓ=0

ASk−ℓ+1
∆t G(Xℓ)

)

〉dsdt

b2,2,3k = E

∫ tk+1

tk

∫ t

tk

〈Du
(

T − t, X̃(t)
)

, DG(X̃(s)).
(

k−1
∑

ℓ=0

ASk−ℓ+1
∆t σ(Xℓ)∆Wℓ

)

〉dsdt.

The terms b2,2,1k and b2,2,2k are estimated using Theorem 3.2 in a straightforward way..
On the one hand, thanks to (13),

|b2,2,1k | ≤ C∆t

∫ tk+1

tk

1

(T − t)
1
2+κ

dt(1 + |x|Lmax(p,2q))K+1
∣

∣Sk+1
∆t Ax|Lqdt

≤ C
∆t1−κ

t1−κ
k

(1 + |x|Lmax(p,2q))K+1

∫ tk+1

tk

1

(T − t)
1
2+κ

dt.

On the other hand,

|b2,2,2k | ≤ C∆t

∫ tk+1

tk

1

(T − t)
1
2+κ

dt(1 + |x|Lmax(p,2q))K+1∆t

k−1
∑

ℓ=0

(∣

∣ASk−ℓ+1
∆t

∣

∣

L(Lq)
+
∣

∣ASk−ℓ+1
∆t B

∣

∣

L(Lq)

)

≤ C∆t
1
2−2κ

∫ tk+1

tk

1

(T − t)
1
2+κ

dt(1 + |x|Lmax(p,2q))K+1
(

∆t

k−1
∑

ℓ=0

1

t1−κ
k−ℓ

)

.

It remains to treat b2,2,3k . Writing

k−1
∑

ℓ=0

ASk−ℓ+1
∆t σ(Xℓ)∆Wℓ =

∫ tk

0

ASk−ℓr+1
∆t σ(Xℓr )dW (r)
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as a stochastic integral, and subdividing the interval [0, tk] = [0, tk−1]∪ [tk−1, tk], we have the decomposition

b2,2,3k = E

∫ tk+1

tk

∫ t

tk

〈Du
(

T − t, X̃(t)
)

, DG(X̃(s)).
(

∫ tk

0

ASk−ℓr+1
∆t σ(Xℓr )dW (r)

)

〉dsdt

= E

∫ tk+1

tk

∫ t

tk

〈Du
(

T − t, X̃(t)
)

, DG(X̃(s)).
(

∫ tk−1

0

ASk−ℓr+1
∆t σ(Xℓr )dW (r)

)

〉dsdt

+ E

∫ tk+1

tk

∫ t

tk

〈Du
(

T − t, X̃(t)
)

, DG(X̃(s)).
(

∫ tk

tk−1

ASk−ℓr+1
∆t σ(Xℓr)dW (r)

)

〉dsdt

= b2,2,3,1k + b2,2,3,2k .

Using Malliavin’s integration by parts formula,

b2,2,3,1k

= E

∫ tk+1

tk

∫ t

tk

〈Du
(

T − t, X̃(t)
)

, DG(X̃(s)).
(

∫ tk−1

0

ASk−ℓr+1
∆t σ(Xℓr)dW (r)

)

〉dsdt

= E

∫ tk+1

tk

∫ t

tk

∑

n

〈Du
(

T − t, X̃(t)
)

, DG(X̃(s)).
(

∫ tk−1

0

ASk−ℓr+1
∆t σ(Xℓr )endβn(r)

)

〉dsdt

= E

∫ tk+1

tk

∫ t

tk

∑

n,m

〈Du
(

T − t, X̃(t)
)

, DG(X̃(s)).em〉
∫ tk−1

0

〈ASk−ℓr+1
∆t σ(Xℓr)en, em〉dβn(r)dsdt

= E

∫ tk+1

tk

∫ t

tk

∫ tk−1

0

∑

n,m

〈ASk−ℓr+1
∆t σ(Xℓr )en, em〉D2u(T − t, X̃(t)).

(

DrX̃(t)en, DG(X̃(s)).em
)

drdsdt

+ E

∫ tk+1

tk

∫ t

tk

∫ tk−1

0

∑

n,m

〈ASk−ℓr+1
∆t σ(Xℓr )en, em〉〈Du(T − t, X̃(t)), D2G(X̃(s)).

(

em,DrX̃(s)en
)

〉drdsdt

= E

∫ tk+1

tk

∫ t

tk

∫ tk−1

0

∑

n

D2u(T − t, X̃(t)).
(

U(t, r)S∆ten, DG(X̃(s))ASk−ℓr+1
∆t σ(Xℓr )

2en
)

drdtds

+ E

∫ tk+1

tk

∫ t

tk

∫ tk−1

0

∑

n

〈Du(T − t, X̃(t)), D2G(X̃(s)).
(

ASk−ℓr+1
∆t σ(Xℓr )

2en, U(s, r)S∆ten
)

〉drdsdt,

where we have used the identities DrX̃(t) = U(t, r)S∆tσ(Xℓr ) and DrX̃(s) = U(s, r)S∆tσ(Xℓr ) for r <
tk−1 ≤ s ≤ t ≤ tk.

To estimate b2,2,3,1k we first write

E|(−A)− 1
2+κDG(X̃(s))ASk−ℓr+1

∆t σ(Xℓr )
2en|2L4q ≤ cE|F ′

1(X̃(s))ASk−ℓr+1
∆t σ(Xℓr)

2en|2L4q

+ cE|(−A)2κF ′
2(X̃(s))ASk−ℓr+1

∆t σ(Xℓr )
2en|2L4q .

The treatment of the first term is straightforward, with upper bound given by c
∣

∣ASk−ℓr+1
∆t

∣

∣

L(L4q)
. For the

second term, we use (9) and (11):

E|(−A)2κF ′
2(X̃(s))ASk−ℓr+1

∆t σ(Xℓr )
2en|2L4q ≤ cE

(

1 + |(−A)3κX̃(s)|L8q )|(−A)1+3κSk−ℓr+1
∆t σ(Xℓr )

2en|L8q

)2

≤ cE
(

(1 + |(−A)3κX̃(s)|L8q )|(−A)1+3κSk−ℓr+1
∆t |L(L8q)

)2

.

Therefore, using (64), we obtain:

(

E|(−A)− 1
2+κDG(X̃(s))ASk−ℓr+1

∆t σ(Xℓr )
2en|2L4q

)
1
2 ≤ c(1 +

1

t3κk
|x|L8q )∆t−4κ 1

t1−κ
k−ℓr

.

Moreover by Lemma 5.1:

(

E|(−A)− 1
2+κU(t, r)S∆ten|2L4q

)
1
2 ≤ c

(

|(−A)− 1
2+κS∆ten|L4q +∆t

1
2−κ|S∆ten|L4q

)

,
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and using Theorem 3.3 we get
∣

∣

∣
ED2u(T − t, X̃(t)).

(

U(t, r)S∆ten, DG(X̃(s))ASk−ℓr+1
∆t σ(Xℓr )

2en
)

∣

∣

∣

≤ c(1 + |x|Lmax(p,2q))K+1 1

(T − t)1−2κ
(1 + t−3κ

k |x|L8q )∆t−4κ 1

t1−κ
k−ℓr

×
(

|(−A)− 1
2+κS∆ten|L4q +∆t

1
2−κ|S∆ten|L4q

)

≤ c(1 + |x|Lmax(p,2q))K+1 1

(T − t)1−2κ
(1 + t−3κ

k |x|L8q )∆t−6κ 1

t1−κ
k−ℓr

1

λ
1
2+κ
n

.

The second term of b2,2,3,1k is treated similarly thanks to Theorem 3.2 (with β = 1
2 + κ):

∣

∣

∣E〈Du(T − t, X̃(t)), D2G(X̃(s)).
(

ASk−ℓrr+1
∆t σ(Xℓr )

2en, U(s, r)S∆ten
)

〉
∣

∣

∣

≤ c(1 + |x|Lmax(p,2q))K+1 1

(T − t)
1
2+κ

E
∣

∣(ASk−ℓr
∆t σ(Xℓr )

2en)(U(s, r)S∆ten)
∣

∣

Lq

≤ c(1 + |x|Lmax(p,2q))K+1 1

(T − t)
1
2+κ

∣

∣ASk−ℓr
∆t

∣

∣

L(L2q)
E
∣

∣U(s, r)S∆ten
∣

∣

L2q

≤ c(1 + |x|Lmax(p,2q))K+1 1

(T − t)
1
2+κ

∆t−κ 1

t1−κ
k−ℓr

∣

∣S∆ten
∣

∣

L2q

≤ c(1 + |x|Lmax(p,2q))K+1 1

(T − t)
1
2+κ

∆t−
1
2−2κ 1

t1−κ
k−ℓr

1

λ
1
2+κ
n

.

We deduce

|b2,2,3,1k | ≤ C(1 + |x|Lmax(p,8q))K+2

∫ tk+1

tk

∫ t

tk

∫ tk−1

0

∑

n

1

(T − t)1−2κ
(1 + t−3κ

k |x|L8q )∆t−
1
2−κ 1

t1−κ
k−ℓr

1

λ
1
2+κ
n

drdsdt

≤ C∆t
1
2−4κ(1 + |x|Lmax(p,8q))K+3

∫ tk+1

tk

1

t3κ
1

(T − t)1−κ

(

∆t

k−1
∑

ℓ=0

1

t1−κ
k−ℓ

)(

∑

n

1

λ
1
2+κ
n

)

dt

≤ C∆t
1
2−4κ(1 + |x|Lmax(p,8q))K+3

∫ tk+1

tk

1

t3κ
1

(T − t)1−κ
dt,

using similar arguments to the control of a1,3k .

To treat the remaining term b2,2,3,2k , we again use Mallavin’s integration by parts formula. With the same

arguments as for b2,2,3,1k , we get the identity

b2,2,3,2k = E

∫ tk+1

tk

∫ t

tk

〈Du
(

T − t, X̃(t), DG(X̃(s)).
(

∫ tk

tk−1

AS2
∆tσ(Xk−1)dW (r)

)

〉dsdt

= E

∫ tk+1

tk

∫ t

tk

∫ tk

tk−1

∑

n

D2u(T − t, X̃(t)).
(

U(t, r)S∆ten, DG(X̃(s))AS2
∆tσ(Xk−1)

2en
)

drdtds

+ E

∫ tk+1

tk

∫ t

tk

∫ tk

tk−1

∑

n

〈Du(T − t, X̃(t)), D2G(X̃(s)).
(

AS2
∆tσ(Xk−1)

2en, U(s, r)S∆ten
)

〉drdsdt,

and we get, using Theorems 3.2 and 3.3, and Lemma 5.1,

|b2,2,3,2k | ≤ C∆t2(1 + |x|Lmax(p,2q))K+1

∫ tk+1

tk

1

(T − t)1−κ
dt

∑

n

(

|(−A)− 1
2+κS∆ten|L4q +∆t

1
2−κ|S∆ten|L4q

)

|(−A)1+κS2
∆t|L(L4q)

≤ C∆t
1
2−3κ(1 + |x|Lmax(p,2q))K+1

∫ tk+1

tk

1

(T − t)1−κ
dt
∑

n

1

λ
1
2+κ
n

.
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Control of b2,3k . The treatment of this term is straightforward, using Theorem 3.2, with β = 1
2 + κ, and

Property 2.2. Indeed,

|b2,3k | =
∣

∣

∣
E

∫ tk+1

tk

∫ t

tk

∑

i

∂iu
(

T − t, X̃(t)
)

〈S∆tG(Xk), DGi(X̃(s))〉dsdt
∣

∣

∣

=
∣

∣

∣E

∫ tk+1

tk

∫ t

tk

〈Du
(

T − t, X̃(t)
)

, DG(X̃(s)).
(

S∆tG(Xk)
)

〉dsdt
∣

∣

∣

≤ C(1 + |x|Lmax(p,2q))K+1

∫ tk+1

tk

1

(T − t)
1
2+κ

∫ t

tk

(

E
∣

∣(−A) 1
2+κS∆t(−A)−

1
2−κG(Xk)

∣

∣

2

Lq

)
1
2 dsdt

≤ C∆t
1
2−κ(1 + |x|Lmax(p,2q))K+1

∫ tk+1

tk

1

(T − t)
1
2+κ

dt,

using
∣

∣S∆tB
∣

∣

L(Lq)
≤ C∆t−

1
2−κ thanks to (13) and Lemma 4.2.

Control of b2,4k . The term b2,4k involves a stochastic integral. Similarly to the treatment of the term a3,2k , we

use Malliavin’s integration by parts formula, and the identity DsX̃(t) = S∆tσ(Xk) for tk ≤ s < t ≤ tk+1.
We obtain

|b2,4k | =
∣

∣

∣E

∫ tk+1

tk

∑

i

∂iu
(

T − t, X̃(t)
)

〈
∫ t

tk

〈DGi(X̃(s)), S∆tσ(Xk)dW (s)〉dt
∣

∣

∣

=
∣

∣

∣E

∫ tk+1

tk

∫ t

tk

Tr
(

(

DsX̃(t)
)⋆
D2u

(

T − t, X̃(t)
)

DG(X̃(s))S∆tσ(Xk)
)

dsdt
∣

∣

∣

=
∣

∣

∣E

∫ tk+1

tk

∫ t

tk

∑

n

D2u
(

T − t, X̃(t)
)

.
(

S∆ten, DG(X̃(s))S∆tσ(Xk)
2en
)

dsdt
∣

∣

∣

≤ C(1 + |x|Lmax(p,2q))K+1

∫ tk+1

tk

∫ t

tk

∑

n

1

(T − t)1−2κ
|(−A)− 1

2+κS∆ten|L4q

(

E
∣

∣(−A)− 1
2+κDG(X̃(s))S∆tσ(Xk)

2en
∣

∣

2

L4q

)
1
2 dsdt

≤ C∆t
1
2−4κ

∑

n

1

λ
1
2+κ
n

(1 + |x|Lmax(p,2q))K+1(1 +
1

t3κk
|x|L8q )

∫ tk+1

tk

1

(T − t)1−2κ
dt

≤ C∆t
1
2−4κ

∑

n

1

λ
1
2+κ
n

(1 + |x|Lmax(p,8q))K+2

∫ tk+1

tk

(

1 +
1

t3κ
) 1

(T − t)1−2κ
dt,

thanks to similar arguments as for the treatment of b2,2,3k .

Conclusion. Gathering the estimates on b2,1k , b2,2k , b2,3k and b2,4k , and summing for k ∈ {1, . . . , N − 1}, we
obtain

(74)
N
∑

k=1

∣

∣b2k
∣

∣ ≤ C∆
1
2−κ(1 + |x|Lmax(p,8q))K+2

∫ T

0

(

1 +
1

t3κ
)(

1 +
1

(T − t)1−κ

)

dt.

5.4. Control of ck.

5.4.1. Decompositions. For each k ∈ {1, . . . , N − 1}, ck is decomposed into the following terms:

(75) ck = c1k + c2k + c3k = c1k + c2k +
(

c3,Ak + c3,Bk + c3,Ck + c3,Dk

)

,
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where (using the symmetry of D2u)

c1k =
1

2
E

∫ tk+1

tk

Tr
(

(I − S∆t)σ
(

X̃(t)
)2
(I − S∆t)D

2u
(

T − t, X̃(t)
)

)

dt,

c2k = E

∫ tk+1

tk

Tr
(

S∆tσ
(

X̃(t)
)2
(I − S∆t)D

2u
(

T − t, X̃(t)
)

)

dt,

c3k =
1

2
E

∫ tk+1

tk

Tr
(

S∆t

[

σ
(

X̃(t)
)2 − σ(Xk)

2
]

S∆tD
2u
(

T − t, X̃(t)
)

)

dt.

In addition, c3k is further decomposed as follows: for Λ ∈ {A,B, C,D},

(76)

c3,Λk =
1

2
E

∫ tk+1

tk

Tr
(

S∆tΛS∆tD
2u
(

T − t, X̃(t)
)

)

dt

=
1

2
E

∫ tk+1

tk

∑

n

D2u(T − t, X̃(t)).
(

S∆tΛen, S∆ten
)

dt,

with the linear operators A,B, C,D obtained by applying Itô’s formula:

〈
[

σ
(

X̃(t)
)2 − σ(Xk)

2
]

h1, h2〉 =
∑

Λ∈{A,B,C,D}

〈Λh1, h2〉,

with

〈Ah1, h2〉 =
1

2

∫ t

tk

Tr
(

S∆tσ(Xk)
2S∆tD

2σ2
h1,h2

(X̃(s))
)

ds

〈Bh1, h2〉 =
∫ t

tk

〈S∆tAXk, Dσ
2
h1,h2

(X̃(s))〉ds

〈Ch1, h2〉 =
∫ t

tk

〈S∆tG(Xk), Dσ
2
h1,h2

(X̃(s))〉ds

〈Dh1, h2〉 =
∫ t

tk

〈Dσ2
h1,h2

(X̃(s)), S∆tσ(Xk)dW (s)〉ds,

using the notation σ2
h1,h2

= 〈σ(·)2h1, h2〉.
For future reference, note the following identity:

(77) 〈Dσ2
en,em(x), h〉 =

∫

(0,1)

(σ2)′
(

x(ξ)
)

en(ξ)em(ξ)h(ξ)dξ = 〈Dσ2
en,h(x), em〉.

5.4.2. Treatment of c1k. Since Theorem 3.3 is restricted to β, γ < 1
2 , this term needs some work:

|c1k| =
1

2

∣

∣

∣

∣

E

∫ tk+1

tk

Tr
(

(I − S∆t)D
2u
(

T − t, X̃(t)
)

(I − S∆t)σ
(

X̃(t)
)2
)

dt

∣

∣

∣

∣

≤ 1

2
E

∫ tk+1

tk

∑

n

∣

∣

∣D2u(T − t, X̃(t)).
(

(I − S∆t)en, (I − S∆t)σ(X̃(t))2en
)

∣

∣

∣ dt

≤ C
(

1 + |x|Lmax(p,2q)

)K+1∑

n

∫ tk+1

tk

1

(T − t)1−2κ

∣

∣(−A)− 1
2κ(I − S∆t)en

∣

∣

L4q

(

E
∣

∣(−A)− 1
2+κ(I − S∆t)σ

(

X̃(t)
)2
en
∣

∣

2

L4q

)
1
2 dt

≤ C
(

1 + |x|Lmax(p,2q)

)K+1
∆t

1
2−4κ

∑

n

λ
− 1

2+κ
n

∫ tk+1

tk

1

(T − t)1−2κ

(

E
∣

∣(−A)−3κσ
(

X̃(t)
)2
en
∣

∣

2

L4q

)
1
2 dt.

Using (9), (12), we get
∣

∣(−A)−2κσ
(

X̃(t)
)2
en
∣

∣

L4q ≤ C|(−A)−2κen|L8q

∣

∣(−A)4κσ
(

X̃(t)
)2∣
∣

L8q ≤ Cλ−2κ
n

(

1 +
∣

∣(−A)5κX̃(t)
∣

∣

L8q

)

.
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As a consequence, using (64),

|c1k| ≤ C
(

1 + |x|Lmax(p,8q)

)K+2
∆t

1
2−5κ

∫ tk+1

tk

(

1 +
1

t5κ
) 1

(T − t)1−κ
dt.

5.4.3. Treatment of c2k. The treatment of c2k is straightforward, using Theorem 3.3:

|c2k| ≤
∣

∣

∣E

∫ tk+1

tk

∑

n

D2u
(

T − t, X̃(t)
)

.
(

S∆ten, (I − S∆t)σ(X̃(t))
)

dt
∣

∣

∣

≤ C(1 + |x|Lmax(p,2q) )K+1

∫ tk+1

tk

1

(T − t)1−2κ

∑

n

|(−A)− 1
2+κS∆ten|L4q

∣

∣(−A)− 1
2+κ(I − S∆t)

∣

∣

L(L4q)
dt

≤ C(1 + |x|Lmax(p,2q) )K+1∆t
1
2−3κ

∫ tk+1

tk

1

(T − t)1−2κ
dt
∑

n

1

λ
1
2+κ
n

.

5.4.4. Treatment of c3k.

Control of c3,Ak . We proceed similarly, and applying Theorem 3.3 we obtain:

|c3,Ak | ≤ C(1 + |x|Lmax(p,2q))K+1

∫ tk+1

tk

1

(T − t)1−2κ

∑

n

|(−A)− 1
2+κS∆ten|L4q

(

E|(−A)− 1
2+κS∆tAen|2L4q

)
1
2 dt

≤ C∆t−2κC(1 + |x|Lmax(p,2q))K+1

∫ tk+1

tk

1

(T − t)1−2κ
dt
∑

n

1

λ
1
2+κ
n

(

E|Aen|2L4q

)
1
2 .

To have a control on
(

E|Aen|2L4q

)
1
2 , let any h1 ∈ L4q and h2 ∈ Lr, with 1

4q + 1
r = 1; then

〈Ah1, h2〉 =
1

2

∫ t

tk

Tr
(

S∆tσ(Xk)
2S∆tD

2σ2
h1,h2

(X̃(s))
)

ds

=
1

2

∫ tk+1

tk

∑

n

D2σ2
h1,h2

(X̃(s)).
(

S∆tσ(Xk)
2en, S∆ten

)

ds

≤ C∆t|h1|L4q |h2|Lr

∑

n

|S∆tσ(Xk)
2en|L∞ |S∆ten|L∞

≤ C∆t
1
2−κ|h1|L4q |h2|Lr

∑

n

1

λ
1
2+κ
n

.

Thus
(

E|Aen|2L4q

)
1
2 ≤ C∆t

1
2−κ, and we obtain

|c3,Ak | ≤ C∆t
1
2−3κC(1 + |x|Lmax(p,2q))K+1

∫ tk+1

tk

1

(T − t)1−2κ
dt
∑

n

1

λ
1
2+κ
n

.

Control of c3,Bk . Like a1,3k and b2,2k , the term c3,Bk contains a bad term and require a careful analysis. We

introduce the decomposition B = B1 + B2 + B3, and the associated terms c3,B1

k , c3,B2

k and c3,B3

k , with

〈B1h1, h2〉 =
∫ t

tk

〈Sk+1
∆t Ax,Dσ2

h1,h2
(X̃(s))〉ds

〈B2h1, h2〉 =
∫ t

tk

〈
∫ tk

0

Sk−ℓr+1
∆t AG(Xℓr )dr,Dσ

2
h1,h2

(X̃(s))〉ds

〈B3h1, h2〉 =
∫ t

tk

〈
∫ tk

0

ASk−ℓr+1
∆t σ(Xℓr )dW (r), Dσ2

h1,h2
(X̃(s))〉ds.
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The terms c3,B1

k and c3,B2

k do not present difficulties, using (77) and standard arguments. Indeed, for any

h1 ∈ L4q and h2 ∈ Lr, with 1
4q + 1

r = 1,

〈B1h1, h2〉 ≤ C∆t|h1|L4q |h2|Lr |ASk+1
∆t x|L∞ ≤ C|x|Lp

∆t
3
4−3κ

t1−κ
k

|h1|L4q |h2|Lr ,

using |(−A)κS∆tx|L∞ ≤ |(−A)κS∆tx|
W

1
2
+ κ

2
≤ C|(−A) 1

4+2κS∆tx|L2 ≤ C

∆t
1
4
+2κ

|x|Lp .

Similarly, we have for B2

〈B2h1, h2〉 ≤ C∆t|h1|L4q |h2|Lr

∫ tk

0

∣

∣Sk−ℓr+1
∆t AG(Xℓr )

∣

∣

L∞
dr.

Moreover, using Property 2.2 and G = F1 +BF2,

∣

∣Sk−ℓr+1
∆t AG(Xℓr )

∣

∣

L∞
≤
∣

∣(−A) 1
2+2κS∆t|

L(L
1
κ ,L∞)

|(−A)1−κSk−ℓr
∆t

∣

∣

L(L
1
κ )

(

1 +
∣

∣(−A)− 1
2−κB

∣

∣

L(L
1
κ )

)

≤ C
∣

∣(−A) 1
2+4κS∆t|

L(L
1
κ )

≤ ∆t−
1
2−4κt−1+κ

k−ℓr
,

using (13), as well as the following inequalities, which are consequences of Sobolev inequalities and of (8):

for any x ∈ L
1
κ ,

∣

∣(−A) 1
2+κS∆tx

∣

∣

L∞
≤ C

∣

∣(−A) 1
2+κS∆tx

∣

∣

W 2κ, 1
κ
≤ C

∣

∣(−A) 1
2+4κS∆tx

∣

∣

L
1
κ
.

We thus obtain

|c3,B1

k |+ |c3,B2

k | ≤ C(1 + |x|Lmax(p,2q))K+1∆t
1
2−5κ

∫ tk+1

tk

(

1 +
1

t1−κ

) 1

(T − t)1−2κ
dt
∑

n

1

λ
1
2+κ
n

.

Finally, cB3

k requires a Malliavin integration. First, we write

c3,B3

k =
1

2
E

∫ tk+1

tk

∑

n

D2u(T − t, X̃(t)).
(

S∆tB3en, S∆ten
)

dt

=
1

2
E

∫ tk+1

tk

∑

n,m

〈B3en, em〉D2u(T − t, X̃(t)).
(

S∆tem, S∆ten
)

dt

=
1

2
E

∫∫∫

∑

n,m,j

〈ASk−ℓr+1
∆t σ(Xℓr )ej , Dσ

2
en,em(X̃(s))〉D2u(T − t, X̃(t)).

(

S∆tem, S∆ten
)

dβj(r)dsdt,

where for simplicity we use the notation
∫∫∫ (

. . .
)

dβn(r)dsdt =
∫ tk+1

tk

∫ t

tk

∫ tk
0

(

. . .
)

dβn(r)dsdt.

Using Malliavin’s integration by parts, for t ∈ [tk, tk+1] and s ∈ [tk, t], then

E

[

∑

m,j

∫ tk

0

〈ASk−ℓr+1
∆t σ(Xℓr )ej , Dσ

2
en,em(X̃(s))〉D2u(T − t, X̃(t)).

(

S∆tem, S∆ten
)

dβj(r)
]

= E

[

∑

m,j

∫ tk

0

D2σen,em(X̃(s)).
(

ASk−ℓr+1
∆t σ(Xℓr )ej ,DrX̃(s)ej

)

D2u(T − t, X̃(t)).
(

S∆tem, S∆ten
)

dr
]

+ E

[

∑

m,j

∫ tk

0

〈ASk−ℓr+1
∆t σ(Xℓr )ej , Dσ

2
en,em(X̃(s))〉D3u(T − t, X̃(t)).

(

S∆tem, S∆ten,DrX̃(t)ej
)

dr
]

= E

[

∑

m,j

∫ tk

0

D2σen,em(X̃(s)).
(

ASk−ℓr+1
∆t ej ,DrX̃(s)σ(Xℓr )ej

)

D2u(T − t, X̃(t)).
(

S∆tem, S∆ten
)

dr
]

+ E

[

∑

j

∫ tk

0

D3u(T − t, X̃(t)).
(

S∆ten, S∆tDσ
2
en,ASk−ℓr+1

∆t
ej
(X̃(s)),DrX̃(t)σ(Xℓr )ej

)

dr
]

,
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using the identity σ(·)⋆ = σ(·) for both lines, and (77) for the second line. Moreover,
∣

∣

∣D2σen,em(X̃(s)).
(

ASk−ℓr+1
∆t ej ,DrX̃(s)σ(Xℓr )ej

)

∣

∣

∣ ≤ C|en|L∞ |em|L∞ |ASk−ℓr
∆t ej|L2 |DrX̃(s)σ(Xℓr )ej |L2

∣

∣

∣Dσ2
en,ASk−ℓr+1

∆t
ej
(X̃(s))

∣

∣

∣

L4q
≤ C|en|L∞ |ASk−ℓr+1

∆t ej |L∞ ,

and using Lemma 5.1 we get

E|DrX̃(s)σ(Xℓr )ej |2L2 ≤ CE|σ(Xℓr )ej |L2 ≤ C.

Then, using Theorem 3.3 and Proposition 3.5, we obtain

|c3,B3

k | ≤ C(1 + |x|Lmax(p,2q))K+1

∫ tk+1

tk

∫ t

tk

∫ tk

0

∆t−
1
2−6κ

t1−κ
k−ℓr

1

(T − t)1−2κ
drdsdt

+ C(1 + |x|Lmax(p,2q) )K+1

∫ tk+1

tk

∫ t

tk

∫ tk

0

∆t−
1
2−4κ

t1−κ
k−ℓr

1

(T − t)
1
2−κ

drdsdt

≤ C∆t
1
2−6κ(1 + |x|Lmax(p,2q))K+1

∫ tk+1

tk

1

(T − t)1−2κ
dt

+ C∆t
1
2−6κ(1 + |x|Lmax(p,2q))K+1

∫ tk+1

tk

1

(T − t)
1
2−κ

dt.

Control of c3,Ck . Using (76), similarly to c3,Ak , we get

|c3,Ck | ≤ C∆t−2κ

∫ tk+1

tk

1

(T − t)1−2κ
dt
∑

n

1

λ
1
2+κ
n

(

E|Cen|2L4q

)
1
2 .

For any h1 ∈ L4q and h2 ∈ Lr, with 1
4q + 1

r = 1, we get

|〈Ch1, h2〉| ≤ C∆t|h1|L4q |h2|Lr |S∆tG(Xk)|L∞ ≤ C∆t−1/2−κ|h1|L4q |h2|Lr .

We thus obtain

|c3,Ck | ≤ C∆t
1
2−2κ

∫ tk+1

tk

1

(T − t)1−2κ
dt
∑

n

1

λ
1
2+κ
n

.

Control of c3,Dk . Using (76), the definition of D, and Malliavin integration by parts formula,

c3,Dk =
1

2
E

∫ tk+1

tk

∑

n,m

〈Den, em〉D2u(T − t, X̃(t)).
(

S∆tem, S∆ten
)

dt

=
1

2
E

∫ tk+1

tk

∫ t

tk

∑

j,n,m

〈Dσ2
en,em(X̃(s)), S∆tσ(Xk)ej〉dβj(s)D2u(T − t, X̃(t)).

(

S∆tem, S∆ten
)

dt

=
1

2
E

∫ tk+1

tk

∫ t

tk

∑

j,n,m

D3u(T − t, X̃(t)).
(

DsX̃(t)ej , S∆tem, S∆ten
)

〈Dσ2
en,em(X̃(s)), S∆tσ(Xk)ej〉dsdt

=
1

2
E

∫ tk+1

tk

∫ t

tk

∑

j,n,m

D3u(T − t, X̃(t)).
(

S∆tσ(Xk)ej , S∆tem, S∆ten
)

〈Dσ2
en,em(X̃(s)), S∆tσ(Xk)ej〉dsdt

=
1

2
E

∫ tk+1

tk

∫ t

tk

∑

j,n

D3u(T − t, X̃(t)).
(

S∆tσ(Xk)ej , S∆tDσ
2
en,S∆tσ(Xk)ej

(X̃(s)), S∆ten
)

dsdt

=
1

2
E

∫ tk+1

tk

∫ t

tk

∑

j,n

D3u(T − t, X̃(t)).
(

S∆tej, S∆tDσ
2
en,S∆tσ(Xk)2ej

(X̃(s)), S∆ten
)

dsdt,

where we haved used (77), and then (18).
We now use Proposition 3.5. Note that

|〈Dσ2
en,S∆tσ(Xk)2ej

(X̃(s)), h〉| ≤ C|h|Lr |en|L4q |ej|L∞ ≤ C|h|Lr ,
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for any h ∈ Lr, with 1
4q + 1

r = 1; thus
(

E|Dσ2
en,S∆tσ(Xk)2ej

(X̃(s))|2L4q

)
1
2 ≤ C.

We obtain

|c3,Dk | ≤ C(1 + |x|Lp)K
∫ tk+1

tk

∫ t

tk

1

(T − t)
1
2−κ

∑

j,n

| −A)−
1
2+κS∆tej|L4q |S∆ten|L4qdsdt

≤ C∆t
1
2−3κ(1 + |x|Lp)K

∫ tk+1

tk

1

(T − t)
1
2−κ

dt
∑

n

1

λ
1
2+κ
n

∑

j

1

λ
1
2+κ
j

.

Conclusion. Gathering the estimates on c3,Ak , c3,Bk , c3,Ck and c3,Dk , and summing for k ∈ {1, . . . , N − 1}, we
obtain

(78)

N
∑

k=1

∣

∣c3k
∣

∣ ≤ C∆t
1
2−κ(1 + |x|Lmax(p,2q))K+1

∫ T

0

(

1 +
1

(T − t)1−κ

)

dt.

5.5. An auxiliary result. We used the estimate below for the treatment of several terms, for instance a1,3k

and b2,2,3,1k . Recall that DsX̃(t) = U(t, s)S∆tσ(Xℓ) for t ∈ [tk, tk+1), s ∈ [tℓ, tℓ+1), and ℓ ≤ k − 1.

Lemma 5.1. For every q ∈ [2,∞), T ∈ (0,∞) and κ > 0 sufficiently small, there exists Cq,κ(T ) such that
for every h ∈ Lq, t ∈ [tk, tk+1), s ∈ [tℓ, tℓ+1), with 1 ≤ k ≤ N ,

(79)
(

E|(−A)− 1
2+κU(t, s)h|2KLq

)
1

2K ≤ Cq,κ(T )
(

|(−A)− 1
2+κh|Lq +∆t

1
2−κ|h|Lq

)

if k > ℓ+ 1.

Proof of Lemma 5.1. Let s be fixed. It can be seen that Ut = U(t, s)h satisfies:

Ut = Utk +

∫ t

tk

(

AS∆tUtk + S∆tG
′(Xk).Utk

)

dr +

∫ t

tk

S∆t

(

σ′(Xk).Utk

)

dW (r),

Utk+1
= S∆tUtk +∆tS∆tG

′(Xk).Utk + S∆t

(

σ′(Xk).Utk

)

∆Wk,

Utℓ+1
= h.

First, for every t ∈ [tk, tk+1),

E|(−A)− 1
2+κUt|2Lq ≤ CE|(−A)− 1

2+κUtk |2Lq + C∆t2
∣

∣AS∆t

∣

∣

2

L(Lq)
E|(−A)− 1

2+κUtk |2Lq

+ C∆t1−2κ
E|Utk |2Lq + C∆tE

∣

∣(−A)− 1
2+κS∆t

(

σ′(Xk).Utk

)∣

∣

2

R(L2,Lq)

≤ CE|(−A)− 1
2+κUtk |2Lq + C∆t1−2κ

E|Utk |2Lq + C∆t|(−A) 1
2q −

1
2+κ|2R(L2,Lq)E|Utk |2Lq .

Note that |(−A) 1
2q−

1
2+κ|2R(L2,Lq) < ∞ when 1

2q − 1
2 + κ < − 1

4 ; this condition is satisfied when q > 2 and

κ > 0 is chosen sufficiently small.
The result is clear for k = ℓ+ 1. For k > ℓ+ 1, since Utk = Πk−1:ℓ+1h, we get, by Lemma 4.4,

∆t1−2κ
E|Utk |2Lq ≤ C∆t1−2κ

(k − ℓ− 1)1−2κ∆t1−2κ
|(−A)− 1

2+κh|2Lq ≤ C|(−A)− 1
2+κh|2Lq .

Now,

Utk = Sk−ℓ−1
∆t h+∆t

k−1
∑

m=ℓ+1

Sk−m
∆t BF ′(Xm).Utm +

k−1
∑

m=ℓ+1

Sk−m
∆t

(

σ′(Xm).Utm

)

∆Wm,
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and thus, with the condition 1
2q − 1

2 + κ < − 1
4 fulfilled for κ > 0 sufficiently small,

E
∣

∣(−A)− 1
2+κUtk |2L2q ≤ |(−A)− 1

2+κh|2Lq + C

(

∆t

k−1
∑

m=ℓ+1

1

t2κk−m

E|Utm |Lq

)2

+ C∆t

k−1
∑

m=ℓ+1

E|Utm |2Lq

≤ |(−A)− 1
2+κh|2Lq + C∆t2

1

t4κk−ℓ−1

|h|2Lq + C∆t|h|2Lq

+ C









∆t
k−1
∑

m=ℓ+2

1

t2κk−m

1

t
1
2−κ

m−ℓ−1





2

+∆t
k−1
∑

m=ℓ+2

1

t1−2κ
m−ℓ−1






|(−A)− 1

2+2κh|2Lq

≤ C|(−A)− 1
2+2κh|2Lq + C∆t|h|2Lq .

This concludes the proof of Lemma 5.1.
�
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