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Exact algorithms for the picking problem

Lucie Pansarta,∗, Nicolas Catussea, Hadrien Cambazarda

aUniv.Grenoble Alpes, CNRS, G-SCOP, 38000 Grenoble, France

Abstract

Order picking is the problem of collecting a set of products in a warehouse in
a minimum amount of time. It is currently a major bottleneck in supply-chain
because of its cost in time and labor force. This article presents two exact and
effective algorithms for this problem. Firstly, a sparse formulation in mixed-
integer programming is strengthened by preprocessing and valid inequalities.
Secondly, a dynamic programming approach generalizing known algorithms for
two or three cross-aisles is proposed and evaluated experimentally. Performances
of these algorithms are reported and compared with the Traveling Salesman
Problem (TSP) solver Concorde.

Keywords: integer programming, picking, Steiner TSP, TSP, dynamic
programming

1. Introduction

The order picking activity lies at the heart of logistic. It consists in collecting
products from storage in a specific quantity given by a customer order. This
process is often considered as the most important warehousing process since it is
estimated that it accounts for 55% of the total operational warehouse costs [25].
Many order picking systems are currently used in warehouses. The methods
are classified following who pick the orders (humans or machines), who moves
(picker or products) and the strategy used. We focus here on manual systems
where the order picker moves in a regular rectangular warehouse.

An efficient way to optimize order picking in this case is to reduce picker
travel time. Thus, we are concerned with the following issue: how to optimize
the routing time in the warehouse ? This problem is called picker routing
problem, or picking problem for sake of simplicity. To the best of our knowledge,
this problem cannot be solved in polynomial time.
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Figure 1: Problem description

We show in this paper that the problem can be efficiently solved optimally
with mixed integer programming using a sparse formulation as well as adequate
preprocessing and valid inequalities. Moreover, we extend a dynamic program-
ming algorithm initially proposed by Ratliff and Rosenthal for 2 cross-aisles [19],
to any number of cross-aisles and evaluate it experimentally. It turns out to scale
for a number of cross-aisles large enough to deal with real-life warehouses. This
approach is however less suited to accommodate side-constraints.

This article begins with a description of the picking problem and a literature
review (section 2). Section 3 presents different ways of preprocessing the data
to improve algorithms efficiency. Two exact algorithms are then presented in
sections 4 and 5. Finally, we report experimental results in section 6.

2. Problem description and literature review

We consider a regular rectangular warehouse with a single depot used to
take the order and to drop it off. The warehouse is made of v vertical aisles
and h horizontal cross-aisles. Products are located on both sides of vertical
aisles. Cross-aisles do not contain any products but enable the order picker to
navigate in the warehouse (see Fig.1(a)). We make two common hypothesis on
the warehouse:
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Hypothesis 1. Aisles are narrow (the distance for crossing is considered null).
Hypothesis 2. All aisle’s lengths are equal. All cross-aisle’s lengths are equal.

An order is given by a picking list, i.e. a set of n products, indexed from
1 to n and described by their location in the warehouse. We define by R the
indexes of all locations to visit (the products) including 0 which is the index
of the depot so R = {0, . . . , n}. The set I denotes the indexes of intersections
between aisles and cross-aisles of the warehouse, excluding the depot. The set
of all relevant locations in the warehouse is therefore V = I ∪R. The problem
is stated as follows: given n products to pick in a rectangular warehouse, what
is the shortest tour (beginning and ending at the depot) to collect all these
products ?

It is a particular case of the Traveling Salesman Problem (TSP), the well-
known NP-hard [13] problem, where the salesman is the order picker and cities
are products to collect. This problem, introduced by Dantzig, Fulkerson and
Johnson in 1954 [6], is one of the most studied in Operations Research. The
survey of Orman and Williams [17] gives an overview of integer programming
formulations for the TSP. Efficient exact algorithms have been designed for the
TSP and Concorde is one of the best exact solver (see Hahsler and Hornik [10]
or Mulder and Wunsch [15]). To solve the specific case of picking problem,
many heuristics have been proposed in particular by Hall [11]. Some perfor-
mance analysis of the most popular heuristics were made by Petersen [18] and
by Roodbergen and De Koster [21]. Theys, Bräysy, Dullaert and Raa [23] pro-
posed to combine classical TSP heuristics with picking heuristics and provided
a benchmark which is used in this work.

An exact approach using dynamic programming has been proposed for the
first time by Ratliff and Rosenthal in the case of a single block (i.e., 2 cross-
aisles) in 1983 [19]. It was extended by Roodbergen and De Koster [20] in the
case of three cross-aisles. These algorithms are polynomial in the number of
aisles and products of the warehouse and used in heuristics for cases with more
than three cross-aisles [27, 21]. Cambazard and Catusse developed a dynamic
programming approach which can solve any rectilinear TSP [3]. This algorithm
can be applied to the picking problem for any rectangular warehouse with h
cross-aisles, but it is exponential in h. Although this extension was suggested
in several articles [20, 19], it has never been detailed nor implemented. The
reason is that the extensive analysis made by [19, 20] of the possible states of
the dynamic program does not easily generalize beyond three cross-aisles. We
give in section 5 a simple and general version of this exact algorithm for any
number of cross-aisles to use it as a baseline in the experiments.

Practical comparisons have been performed between heuristics and exact
algorithms, notably by De Koster and Van der Poort [7]. They compared the
dynamic program with the commonly used S-shape heuristic and conclude that
"the numerical results suggest that the savings in travel time may be substantial
when using the optimal algorithm instead of the S-shape heuristic". This result
strengthens the motivation for exact and efficient algorithms.

The problem can be seen as a Steiner TSP [22] which is a variant of the TSP
proposed independently by Fleischmann [8] and Cornuéjols, Fonlupt and Naddef
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in 1985 [5] although Orloff introduced the idea some years before [16]. Burkard
et al. [2] categorized the picking problem applied to the case of series-parallel
graph in well-solvable special cases of the TSP, which includes warehouses with 2
cross-aisles [5]. Our Mixed Integer Linear Programming (MILP) model is based
on the compact MILP formulations proposed by Letchord, Nasiri and Theis [14].

The Steiner TSP (also known as subset TSP) is stated in a directed graph
D = (V, A) (see Figure 1(b)) where V is the set of vertices and A is the set of
arcs, defined as follows: ∀i, j ∈ V, (ij) ∈ A ⇔ one of the following conditions
holds:

1. i and j are horizontally adjacent intersections (e.g. 4 and 5 in Fig 1(b)).

2. i and j are extreme intersections of an empty sub-aisle (e.g. 4 and 8).

3. j is an extreme products and i the adjacent intersection (e.g. 3 and 16).

4. i and j are adjacent products (e.g. 2 and 3).

Each arc (ij) is weighted by dij , the distance between i and j in the ware-
house. We study here the symmetric TSP, which means the graph D is such
that ∀(ij) ∈ A : (ji) ∈ A and dij = dji. We generalize this distance by defining
the function d : V × V → N as follows: d(i, j) is the distance of a shortest path
between vertices i and j.

We define by Pij the set of all shortest paths between the two products i
and j. More formally, Pij = {P = (v0v1v2...vK)|v0 = i, vK = j, (vk−1vk) ∈ A

∀k = 1...K and
K∑

k=1
dvk−1vk

= d(i, j)}. The set of neighbors of a vertex i is

denoted Γ(i) so that Γ(i) = {j ∈ V |(ij) ∈ A}. Note that we don’t need to
distinguish the successeurs and predecessors of a vertex since they are the same
by construction of D.

3. Preprocessing

The size of the problem can be considerably reduced, which is a good lever
to reduce computation time. First, we can reduce the size of the picking list,
i.e., the number of vertices in R. Then, we show how to reduce the number of
arcs in the graph, keeping a sufficient set of arcs to find an optimal solution.
Figure 3 shows an example of the impact of the preprocessing.

3.1. Reducing the number of vertices
In this part, we describe two preprocessings reducing the number of products

without changing the problem. The first algorithm must be used only when the
solver accepts additional constraints while the second one is general.

Both algorithms are based on the following result due to Ratliff and Rosen-
thal: in an optimal solution, there exists six unique ways to traverse a sub-aisle
(shown in Figure 2) [19]. Case (e) is the only configuration that might not be

4



i0

i1

(a)

i0

i1

(b)

i0

i1

(c)

i0

i1

(d)

i0

i1

(e)

i0

i1

(f)

i0

i1

bS

tS

bT

tT

(g)

i0

i1

(h)

Figure 2: To the left: The six ways to traverse a sub-aisle. We distinguish two groups (black
and white vertices) where all vertices of one group are taken in one go. In the middle: the
result after preprocessing 3.1.1. Dashed vertices are removed from the problem and lines show
mandatory paths. To the right: the result after preprocessing 3.1.2

unique. However, only configurations where the gap between black and white
groups is the largest will occur in an optimal solution. The largest gap of a
sub-aisle is defined as the longest empty distance between two vertices of a sub-
aisle. Several configurations can still exist if the largest gap is not unique in the
sub-aisle, but they will all have the same cost in an optimal solution. A similar
preprocessing was proposed independently by Scholz et al. [22].

3.1.1. Additional constraints available
In any case, the black vertices are all picked in one go (one after the other)

and the white vertices as well. So, for both subsets, we can keep only extreme
products and impose an arc to be taken between these two extreme products.

Definition 1 (Preprocessing). The vertex preprocessing is defined by the fol-
lowing algorithm:

for every sub-aisle do
- Compute a largest gap between two vertices
- Identify the set S (resp. T) containing all products below (resp.
above) the largest gap
- In each subset (S and T), keep the two products tS and bS (resp. tT

and bT ) that are the farthest apart
- Add the constraints forcing the order picker to traverse each set at
least once. This means the order picker must traverse arc (tSbS) or
(bStS) and similarly arc (tT bT ) or (bT tT ). 1

end
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Note that S and T can be empty or singletons (tS = bS). Figure 2(g)
shows the result after preprocessing the sub-aisle depicted. The vertices of set
S are drawn in black whereas the vertices of T are white. Note that the six
configurations have either (tSbS) or (bStS) (or both) on one side and either
(tT bT ) or (bT tT ) (or both) on the other side, hence the constraints added by
the preprocessing.
Remark 1. The preprocessing does not change the value of the optimal solution
and leaves at most 4 products by sub-aisle.

3.1.2. With a distance matrix
When it is not allowed to add constraints, for example when using Concorde,

we can still suppress some vertices. Indeed, the constraints (1) added by the
preprocessing are required only if the removal of vertices changes the position
of the largest gap in the sub-aisle. Thus, we can still suppress vertices as long
as the largest gap remains between bT and tS (see Figure 2(h)).

3.2. Reducing the number of arcs
Let’s now focus on the arcs. We compute the minimum 1-spanner in terms of

number of edges, i.e., we are looking for a subset of the arcs preserving at least
one original shortest path between any pairs of required vertices. The rationale
is that any solution of the picking problem gives a tour where two products
picked successively are linked by a shortest path. So any optimal solution can
be found in a 1-spanner of G.

Definition 2. A k-spanner of a graph G is a sub-graph H ⊂ G such that:
• H contains all the vertices of G.
• The distance between each pair of vertices in H is at most k times their
distance in G.

In our case, we search for a minimum "1-spanner" in the Steiner graph, re-
stricted to the required vertices, which can also be seen as a particular case
of the Minimum Manhattan Network. Let’s consider the undirected graph
G = (V = I ∪ R, E) where E is defined as A by removing orientation. We
search for a subgraph of G such that between each pair (i, j) of required ver-
tices there exists a shortest path which keeps the initial distance d(i, j). Namely
we search a graph H = (VH , EH) such that: R ⊂ VH , VH ⊂ V , EH ⊂ E and
∀i, j ∈ VH : ∃ a (i, j)-path P ∈ H|

∑
(uv)∈P

duv = d(i, j).

To compute a minimum 1-spanner, we choose the minimum set of edges with
respect to the preceding properties. We use an integer linear program to solve

1In the MILP (see section 4) it translates into the following constraints:

xtSbS
+ xbStS

≥ 1 if tS 6= bS and xtT bT
+ xbT tT

≥ 1 if tT 6= bT
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Figure 3: Example of an instance and its preprocessing. Red edges show edges forced by
the node preprocessing. The instance has 105 vertices and 270 arcs while the preprocessed
instance has 65 vertices and 156 arcs.

the problem of the 1-spanner, based on a model for the Minimum Manhattan
Network from Benkert et al. ([1]). The resulting set of selected edges E∗ forms
the 1-spanner which can be used to state the Steiner TSP.

The Minimum Manhattan Network is NP-hard [4] but its resolution with
MILP turns out to be really fast in practice for the benchmark considered.
Finally, note that we don’t need to compute the optimal network and any feasible
1-spanner can be used for preprocessing. Figure 3 gives an overview of the
preprocessing performed.

4. MILP formulation

The Steiner variant of the TSP was proposed by Cornuéjols, Fonlupt and
Naddef in 1985 [5]. It was introduced especially to solve problems where the
graph is sparse. The principle is that the graph contains some required ver-
tices which must be visited and some Steiner vertices which can be visited.
Moreover, in a Steiner Traveling Salesman Problem (STSP), the graph is not
complete and edges as well as vertices can be visited more than once. In
this section, we apply a Steiner approach to the picking problem.

We define the Steiner graph from the directed graph modeling an instance
(see Fig. 1(b)): the required vertices are the products plus the depot and the
Steiner vertices are the intersections in the warehouse. We look for a shortest
tour in this graph, going through all the required vertices at least once.

4.1. Flow-based formulation
We can use the compact single commodity flow formulation proposed by

Letchford, Nasiri and Theis [14]. It follows the flow principle: the order picker
leaves the depot with n units of a commodity and delivers one unit each time
he picks a product.

We define the variables: ∀(ij) ∈ A

xij =
{

1 if the tour uses the arc (ij)
0 otherwise
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yij = amount of commodity passing through arc (ij).

The solution of the STSP is then found by solving the following mixed-
integer linear program further called SCFS, standing for Single Commodity
Flow Formulation for a Steiner TSP:

(SCFS)

z∗ = min
∑

(ij)∈A

dijxij (1)

s.t.
∑

j∈Γ(i)
xij ≥ 1 ∀i ∈ R (2)∑

j∈Γ(i)
xij =

∑
j∈Γ(i)

xji ∀i ∈ V (3)∑
j∈Γ(i)

yji −
∑

j∈Γ(i)
yij = 1 ∀i ∈ R \ {0} (4)∑

j∈Γ(i)
yji −

∑
j∈Γ(i)

yij = 0 ∀i ∈ V \ {R} (5)

yij ≤ nxij ∀(ij) ∈ A (6)
xij ∈ N ∀(ij) ∈ A (7)
yij ≥ 0 ∀(ij) ∈ A (8)

Constraints (2) ensure that each required vertex is visited at least once.
Constraints (3) ensure that the tour arrives in any vertex as many times as it
leaves it. The flow constraints are different depending on whether a vertex is
required or not: constraints (4) impose that the order picker delivers one unit
of the commodity to each product while constraints (5) impose that the flow
stays the same through a non-required vertex. Constraints (6) link the y to the
x variables so that if some flow transits through (ij) then the arc (ij) is chosen.
Remark 2. The variables y are real variables (8) but the optimal solution will
be integer due to the fact that y represent a flow.
Remark 3. We know from Lemma 1 in Letchford, Nasiri and Theis [14] that
every optimal solution of the STSP uses an arc at most once and thus satisfies
xij ≤ 1, ∀(ij) ∈ A. It is therefore sufficient to define x as a positive integer
(constraints (7)). So the linear relaxation amounts to xij ≥ 0.

This formulation is compact and really sparse, especially thanks to the pre-
processings described above. However, we notice that the quality of the lower
bound given by the linear relaxation is weaker than the one given by a more
standard formulation as it is explained below.

4.2. Theoretical study of the formulation
In this section, we compare the formulation described above with a stan-

dard flow-based formulation for the TSP. We consider the problem of finding
a shortest tour in the complete and directed graph composed of all the prod-
ucts and where the distance between two vertices is the shortest distance in the
warehouse. For sake of simplicity, we use the directed version of the TSP. Thus,
we compare the standard single-commodity flow formulation for the TSP (as
defined by Gavish & Graves [9]) with the single-commodity flow formulation
described above for the Steiner TSP.
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We recall the Gavish and Graves formulation (denoted by SCF), adapted
to a directed graph:

(SCF )

z′∗ = min
∑

i,j∈R
i 6=j

d(i, j)x′ij (9)

s.t.
∑

j∈R
j 6=i

x′ij = 1 ∀i ∈ R (10)

∑
j∈R
j 6=i

x′ji = 1 ∀i ∈ R (11)

∑
j∈R
j 6=i

y′ji −
∑

j∈R
j 6=i

y′ij = 1 ∀i ∈ R \ {0} (12)

y′ij ≤ nx′ij ∀i, j ∈ R, i 6= j (13)
x′ij ∈ {0, 1} ∀i, j ∈ R, i 6= j (14)
y′ij ≥ 0 ∀i, j ∈ R, i 6= j (15)

Constraints (10) and (11) are usual assignment constraints ensuring that
each vertex is visited exactly once. Constraints (12) ensure that, except for
the depot, the salesman deliver one unit at each vertex and retains the rest of
the flow. Constraints (13) are Big-M constraints linking y and x. Finally, the
objective (9) is to minimize the total distance of the tour.

To compare both formulations, we define a projection proj which projects
a fractional solution of (SCF) in the space of (SCFS) by keeping the distance
value. The idea is to divide the value x′ between two required vertices on all
the shortest paths.

Definition 3 (Projection proj).

proj : R|R|
2
→R|A|

x′ →x
(16)

Where proj(x′) is defined by:

xuv =
∑

i,j∈R

∑
P∈Pij

(uv)∈P

x′ij
|Pij |

∀(uv) ∈ A (17)

By construction, the conservation is checked at each vertex (property (19))
and each required vertex is "visited" at least as many times as in the standard
TSP solution (property (18)). A required vertex can be visited more if it lies
on a shortest path between two other required vertices.
Remark 4 (Properties of proj). Let x′ ∈ R|R|2 and x = proj(x′). Then:

(i)
∑

j∈Γ(i)

xij ≥
∑
j∈R

x′ij ∀i ∈ R (18)

(ii)
∑

j∈Γ(i)

xij =
∑

j∈Γ(i)

xji ∀i ∈ V (19)
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(iii)
∑

(ij)∈A

xijdij =
∑

i,j∈R

x′ijd(i, j)

Lemma 1. The linear relaxation of the Steiner single commodity flow formu-
lation (SCFS) is weaker than the linear relaxation of the standard TSP single
commodity flow formulation (SCF).
Proof. Every projection of an optimal solution of SCF is feasible in SCFS, so
z′∗LP ≥ z∗LP and there exists a case for which z′∗LP 6= z∗LP so that SCF is a better
formulation than SCFS. The two cases are detailed below:
• z∗LP ≤ z′∗LP

Let (x′, y′) an optimal fractional solution of the linear relaxation of (SCF) and
(x, y) = (proj(x′), proj(y′)). Then (x, y) is a feasible solution for the linear
relaxation of (SCFS) since:

- Assignment constraints (2) are respected due to the property (18) of proj.
- Conservation constraints are respected due to the property (19) of proj.
- For the same reasons, the flow constraints (4) and (5) are respected.
- Constraints (6) is respected: since the transformation is the same on x′

and y′ to obtain x and y, the ratio is kept: yuv

xuv
= y′ij

x′
ij
≤ n so

yuv ≤ nxuv ∀(uv) ∈ Pij ,∀i, j ∈ R
Thus, (x, y) is feasible for SCFS and zLP = z′LP .
• z∗LP 6= z′∗LP

We consider an example with 3 products and show that z∗LP ≤ 18 < z′∗LP =
20. Figure 4(a) shows the representations of this example with the Steiner graph
and with the complete graph. Solving the linear relaxation of (SCF) leads to
z′∗LP = 20 because of constraints (10) and (11). On the other side, we can easily
build a feasible solution of the linear relaxation of (SCFS) with a cost 18 as
shown on Figure 4(b). Thus, in this example we have z∗LP < z′∗LP .

In the following, we introduce improvements to offset the weakness of the
initial formulation and get closer, or overcome, the quality of the Standard TSP
single-commodity flow formulation.

4.3. Strengthening of the bound
Constraints (6) are big-M constraints that make the formulation quite weak

and can be improved following Letchford, Nasiri and Theis [14].
Without loss of generality, we can assume that the order picker delivers the

unit of commodity due to each required vertex at his first visit. Due to the
warehouse structure, a minimum number nR(i) of required vertices might have
to be visited before visiting vertex i (in particular after preprocessing). We can
apply a shortest path algorithm to compute nR(i) and reinforce the bound on
yij . Constraints (6) are replaced by:

yij ≤ (n− nR(i)) xij ∀i ∈ V, j ∈ Γ(i) (20)
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(b) Feasible solution of (SCFS) with
z = 18

Figure 4: Example with z∗LP < z′∗LP

4.4. Additional cuts
The Dantzig-Johnson-Fulkerson formulation based on sub-tour elimination

constraints is the most well known formulation of the TSP and exhibits a very
strong linear relaxation. We consider here a polynomial number of sub-tour
elimination constraints depending on the warehouse dimensions rather than the
number of products. In the single-flow formulation, the connectivity between all
the required vertices is guaranteed. However, because of the big-M constraints
(20), the fractional value of x can be really small. Many sets of vertices are
violating the sub-tour elimination constraints in practice. We focus on sets
defined as cuts (S, S̄) partitioning the warehouse into two subsets S, S̄ ⊂ V
where S ∩ R 6= ∅ and S̄ ∩ R 6= ∅. In other words, each subset contains at least
one required vertex. Thus, there must be at least one arc going from S to S̄
and at least one arc going from S̄ to S. The following valid inequality is added
for each cut (S, S̄):

x
(
S : S̄

)
≥ 1 (21)

Remark 5. It is easy to see, with constraints of conservation (3) that this in-
equality is sufficient to impose also x

(
S̄ : S

)
≥ 1

We introduce the following cuts (see Figure 5):

• Line cuts: horizontal (resp. vertical) cuts C = (S, S̄) separating the ware-
house horizontally (resp. vertically). See cuts (a) and (b) on Figure 5.

• Corner boxes cuts: we can combine horizontal and vertical cuts to create
boxes attached to a corner of a warehouse. See cut (c) on Figure 5.

• Sub-aisle connexity: we define S ⊂ V as a set of adjacent vertices in the
same sub-aisle (|S| ≥ 2). See cut (d) on Figure 5. There exists at most 6
sets of adjacent vertices in a sub-aisle since there are at most 4 products.
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Figure 5: Examples of the different cuts in a warehouse

• Cross cuts: S is defined as the interval between the highest product and
the lowest product of two adjacent sub-aisles in the same aisle. See cut (e)
on Figure 5.

Note that the total number of cuts considered is polynomial in the size of the
warehouse (complexity in O(hv)). We can also add valid inequalities implied
by the structure of the graph:

• Intersection connexity: a path reaching an intersection (except the depot)
can not immediately backtrack in an optimal solution. Namely, if an arc
comes in an intersection, i.e, a Steiner vertex, by one side, an arc must go
out by another side. Thus, we add the following constraints:

xij ≤
∑

k∈Γ(i)\{j}

xki ∀i ∈ I, j ∈ Γ(i)

xji ≤
∑

k∈Γ(i)\{j}

xik ∀i ∈ I, j ∈ Γ(i)

• Patterns: we can identify logical implications from the 6 ways to go
through a sub-aisle. We recall that a sub-aisle is surrounded by two inter-
sections (denoted s and t) and, after the preprocessing, contains at most
4 products (denoted a,b,c,d).

s

d
c

b
a

t

xsd ⇒ xdc and xds ⇒ xcd

xta ⇒ xab and xat ⇒ xdc

xcb ⇒ xdc ∧ xba and xbc ⇒ xab ∧ xcd

12



They are added as linear constraints thanks to the following scheme: P ⇒
Q is linearized into P ≤ Q and P ⇒ Q∧R is linearized into z ≥ Q+R−1,
z ≤ Q, z ≤ R and P ≤ z, where P , Q, R and z are boolean variables.

Finally, notice that any tour leads to a symmetric one by reversing the di-
rection of traversal. Although constraints can be added to break this symmetry,
it did not pay off in our experiments and they were removed.

5. Dynamic programming

A dynamic programming algorithm has been proposed by Ratliff and Rosen-
thal for the picking problem in a rectangular warehouse with two cross-aisles
in 1983 [19]. It was extended in 2001 to the case of three cross-aisles by Rood-
bergen and De Koster [20]. More generally, the rectilinear TSP can be solved
by dynamic programming using the very same ideas. An algorithm, proposed
by Cambazard and Catusse [3], is proved to have a O(hn7h) (or more precisely
O(hv7h)) runtime complexity where n cities are located on h horizontal lines
and v vertical lines. The distance considered between any pair of cities is the
l1 (rectilinear or manhattan) distance. This algorithm is directly applicable to
the picking problem which can be seen as a specific case. We will now give
the key ideas and a summary of this approach in the present section. We refer
the reader to [3] for the details and in particular the proofs of correctness and
complexity analysis.

We consider the problem in an undirected grid graph such as the one shown
in Figure 1(b). The set of vertices located on a vertical aisle or two adjacent
vertical aisles is a planar separator of this grid graph (e.g. {5, 9, 14}, {d, 9, 14}
or {d, 10, 14} are separators in the graph of Figure 1(b)). The rationale of the
dynamic programming algorithm is that the problem can be split into two sub-
problems, to the right and to the left of a separator by considering all the possible
configurations of the separator (degree parity of the vertices and connected
components described below). The algorithm builds a tour subgraph that
can be directed as a post-processing step to obtain a picking tour. An example
of such tour subgraph is shown on Figure 6.

Figure 6: The black edges represent a partial tour subgraph and the dashed edges represent
one possible completion to a complete tour subgraph. The white vertices in the gray area
represents the current state {(E,E,E)(1,1,2)}.
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5.1. States
A state of the dynamic program is a possible configuration of a separator.

In the following, such a state ω is denoted ω = {(x1, . . . , xh), (c1, . . . , ch)} where
xi ∈ {U, E, 0} and ci are respectively the parity label and the connected compo-
nent of the i-th vertex of ω. We use the same notation as Ratliff and Rosenthal
[19] to describe degree parities: even = E, odd = U (uneven) and zero = 0.
Connected components are described by their indices or "−" for a zero degree.
Figure 6 gives an example of a state where all vertices have an even degree and
belong to two distinct connected components.

5.2. Transitions
There are two types of transitions between states: vertical and horizontal

transitions, corresponding to the decisions made on vertical or horizontal edges
of the grid graph. Horizontal transitions are of three kinds: no edge, a single
edge or a double edge. Vertical transitions are of the six kinds identified by
Ratliff and Rosenthal [19]: no edge, a single edge, a single double edge, two
double edges connected to the top vertex, two double edges connected to the
bottom vertex and four double edges defined by the largest gap (see Figure 2).

1: ω0 ← {(0, . . . , 0), (−, . . . ,−)}; T (w0, 0) = 0; Layer0 ← {w0}
2: l← 0
3: for each edge e of the grid graph from bottom to top and left to right do
4: Layerl+1 ← ∅
5: for each state ω ∈ Layerl do
6: for each possible transitions tr for e do
7: ω′ ← ω + tr
8: if check(ω′, l + 1) then
9: if ω′ ∈ Layerl+1 then
10: if T (ω′, l + 1) > T (ω, l) + length(tr) then
11: T (ω′, l + 1)← T (ω, l) + length(tr)
12: else
13: T (ω′, l + 1)← T (ω, l) + length(tr)
14: Layerl+1 ← Layerl+1 ∪ {ω′}
15: l← l + 1
16: wopt ← argminω∈Lhv

T (ω, hv)
17: return wopt

Algorithm 1: Dynamic Programming algorithm for rectangular picking

5.3. Outline of the algorithm
Algorithm 1 processes the edges of the grid graph from bottom to top and

then from left to right (line 3). Typically on Figure 1(b), the edges would be
considered in the following order: (4,8), (8,13), (4,5), (8,9), (13,14), (5,9) and so
on. All the states obtained after adding l transitions (denoted Layerl) belong
to the l-th layer and the algorithm can be seen as a shortest path algorithm in a
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l=1 l=2 l=3

(0 0 0) 
(- - -) 

(0 U U) 
(- 1 1) 

(0 E E) 
(- 1 2) 

(0 E E) 
(- 1 1) 

(0 0 E) 
(- - 1) 

(0 E 0) 
(- 1 -) 

(E E E) 
(1 1 1) 

(0 E E) 
(- 1 1) 

(E E E) 
(1 2 2) 

(U U E) 
(1 1 1) 

(U U 0) 
(1 1 -) 

(U U E) 
(1 1 1) 

Figure 7: Example of the graph underlying the dynamic programming algorithm. Each layer
is identified with a value of l. Three transitions are possible from each state. The partial
toursubgraph obtained by following the black path is shown on the bottom right corner.

layered graph (see Fig. 7). From any state (line 5), the possible transitions are
considered (line 6); three or six depending if the edge considered is a vertical
or horizontal one. We denote by T (ω, l) the value of the shortest path to reach
state ω located on layer l. Lines 7-14 update the possible states of the next
layer (l+1) by extending the considered state ω of layer l with the considered
transition tr. The new state ω′ might not be a valid tour subgraph and it is
checked line 8. For instance, a partial tour subgraph is not valid if a vertex is
left with an odd number of incident edges, if a product is not collected (zero
degree) or if it has more than one connected component on the last layer (since
the final tour subgraph must be connected). A shortest partial tour subgraph
might be already known to reach ω′ and this is checked line 10.

An illustrative execution of the algorithm is given Fig. 7, where a particular
path is outlined showing the relation between states and partial tour subgraphs.

6. Experimental results

6.1. Implementation
We used the CPLEX Java API (version 12.6) to solve the different linear

programs. An initial upper bound is given as "warm start" and obtained with
the Lin-Kernighan heuristic [12] implemented in the software LKH (freely avail-
able at http://webhotel4.ruc.dk/~keld/research/LKH/). This gives a bet-
ter comparison with the TSP solver Concorde that takes advantage of an initial
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parameter values
the number of vertical aisles { 5, 15, 60 }
the number of cross-aisles { 3, 6, 11 }

the number of products in the picking list { 15, 60, 240 }
the storage policy { volume (V), random (R) }

the location of the depot in the warehouse { central, decentral }

Table 1: Parameters and values of the instances

accurate upper bound. The instances solved come from an academic benchmark
proposed by Theys, Dullaert and Herroelen [24]. Some of these instances seem
bigger than realistic data, but allow to test the limits of the algorithms and
to perform a comparison with previously published results on the exact same
instances [23].

Experiments were performed on an Intel Xeon E5-2440 v2 @ 1.9 GHz pro-
cessor and 32 GB of RAM. The experiments ran with a memory limit of 8 GB
of RAM.

6.2. Description of the instances
The benchmark of Theys et al. contains 108 classes of instances, where a

class is defined by 5 parameters described in Table 1. The storage policy is
either random-based or volume-based. A random policy means the products
are randomly affected in the warehouse. A volume-based policy means a twenty
percent of the most demanded items are located near the first cross-aisle. For
more details on the instance, see Theys et al. [23].

Early experiments showed that the location of the depot (central or decen-
tral) does not affect the efficiency of our models. Thus, we report our results
on the 54 classes with a central depot where each class contains 10 instances.

6.3. Results
The performances of the following algorithms are compared:

• SCFS: the basic Steiner single commodity flow formulation

• SCFS_PP: SCFS with preprocessing of section 3

• SCFS+: SCFS with preprocessing and the additional valid inequalities

• SCF+: the standard single commodity flow formulation with vertex pre-
processing 3.1.1

• CDE: Concorde

• CDE+: Concorde with preprocessed input (described in section 3.1.2)

• PDYN: dynamic programming (section 5)

16



Total Storage policy # aisles # cross-aisles # products
R V 5 15 60 3 6 11 15 60 240

TSP 20580 20580 20580 20580 20580 20580 20580 20580 20580 240 3660 57840
TSP+ 6676 9228 4123 2319 6042 11665 3744 7238 9046 217 2350 17460

Evolution -68% -55% -80% -89% -71% -43% -82% -65% -56% -9% -36% -70%
Steiner 768 790 746 192 481 1633 355 705 1245 678 743 884
Steiner+ 474 543 405 157 347 917 267 456 698 216 446 760
Evolution -38% -31% -46% -18% -28% -44% -25% -35% -44% -68% -40% -14%

Table 2: Average number of arcs in TSP graph and Steiner graph, with and without preprocessing

Total Storage policy # aisles # cross-aisles # products
R V 5 15 60 3 6 11 15 60 240

SCFS 46.4% 43.12% 49.68% 34.85% 45.8% 58.53% 41.95% 47.13% 50.11% 46.9% 45.24% 47.05%
SCFS_PP 39.32% 37.41% 41.22% 24.49% 38.91% 54.55% 33.23% 40.68% 44.03% 44.74% 40.55% 32.65%
SCFS+ 1.4% 1.68% 1.13% 2.7% 1.05% 0.46% 1.72% 1.28% 1.21% 0.4% 1.21% 2.6%

Table 3: Average gap of linear relaxations for single-commodity flow formulations

To start with, we report an analysis of the problem’s size, which is the biggest
advantage of the SCFS formulation. Then, we look at the strength of the linear
relaxation of each formulation and note that SCFS strongly benefits from the
improvements proposed. In the end, we compare resolution times. The tables
report the average value of the quantity studied (size, gap, cpu times) for all
instances restricted to the value of the parameter given as the column header.

Size analysis. Table 2 shows the number of arcs in the TSP case (complete
graph) and in the Steiner graph with and without the preprocessing 3. The
lines "Evolution" show the percentage of arcs removed when the preprocessing
is applied. We notice that the preprocessing is really more efficient in the TSP
case due to the completeness of the graph. We also notice that the number of
aisles, cross-aisles and products have an opposite effect depending on the solver.

Finally note that the number of arcs in the Steiner graph is much smaller
than in the complete graph which significantly improve the memory scaling of
the MILP formulations.

Analysis of lower bounds. Table 3 compares the average gap between the lin-
ear relaxation and the optimal value for each parameter and for the different
single-commodity flow formulations. The gap is computed as z∗−z∗LP

z∗ ×100. The
results clearly demonstrate that the improvements proposed are very effective

Total Storage policy # aisles # cross-aisles # products
R V 5 15 60 3 6 11 15 60 240

SCFS+ 0.65% 1.01% 0.29% 1.33% 0.36% 0.27% 0.81% 0.53% 0.61% 0.04% 0.34% 1.59%
SCF+ 6.44% 7.47% 5.48% 2.39% 4.73% 13.3% 7.6% 6.27% 5.34% 0.37% 5.09% 15.36%
CDE+ < 0.1%

Table 4: Average gap of root node relaxations for single-commodity flow formulations and Concorde
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Total Storage policy # aisles # cross-aisles # products
R V 5 15 60 3 6 11 15 60 240

SCFS+ 18 18 0 1 4 13 1 2 15 0 0 18
SCF+ 136 88 48 19 34 83 51 41 44 0 26 110
PDYN 180 0 0 0 0 0 0 0 180 0 0 0

# instances 540 270 270 180 180 180 180 180 180 180 180 180

Table 5: Number of unsolved instances after 30 minutes

Total Storage policy # aisles # cross-aisles # products
R V 5 15 60 3 6 11 15 60 240

SCFS+ 1.3% 1.3% - 0.85% 0.46% 1.59% 0.23% 0.29% 1.51% - - 1.3%
SCF+ 19.63% 19.1% 20.51% 10.19% 18.8% 23.45% 16.37% 21.19% 23.91% - 7.79% 23.47%

Table 6: Average gap between best upper and lower bounds for unsolved instances

to strengthen the linear relaxation. The gap moves from 46% to 1% in average
without increasing significantly the computing time which moves from 0.07 sec-
ond to 0.2 second in average. To compare our results to Concorde (see Table
4), we observe the gap between the lower bound at the root node of the
search tree and the optimal value. This lower bound is better than the linear
relaxation since CPLEX and Concorde apply many techniques to improve it.

SCFS+ has a strong linear relaxation despite the fact that the initial for-
mulation SCFS is weaker than all the other ones. In practice, we observe that
the linear relaxation of the improved Steiner single commodity flow formulation
(SCFS+) is significantly stronger than the linear relaxation of the improved
standard single commodity flow formulation (SCF+).

Performances. We set a time-limit of 30 minutes for SCFS+ and SCF+. Some
instances were unsolved in this time limit. Table 5 shows the number of unsolved
instances after 30 minutes of processing depending on the different parameters.

The improved Steiner formulation completely outperforms the standard com-
pact TSP formulation. Note that the dynamic programming is unable to solve
instances with 11 horizontal cross-aisles due to memory issues, while we can
hope that further work on SCFS will enable it to overcome current limitations.
Moreover, the instances which cannot be solved by SCFS+ are from only 5
classes from the biggest ones and only with a random policy (15_11_240_R,
5_11_240_R 60_11_240_R, 60_3_240_R, 60_6_240_R). On the other hand,
instances from 16 classes cannot be solved by the SCF solver. The only param-
eter guaranteeing an optimal resolution is # products = 15. Moreover, as the
Table 6 shows, the gap between the lower and upper bounds is really smaller
for the SCFS+, which indicates that the upper bound can be used as a good
feasible solution.

To compare resolution time, we choose the instances solved in less than 30
minutes by solver SCFS+. Formulation SCF+ has too much unsolved instances
after this time limit so it appears irrelevant to include it in the comparison.
Table 7 shows the numerical results. For each parameter, SCFS+ is slower
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Total Storage policy # aisles # cross-aisles # products
R V 5 15 60 3 6 11 15 60 240

SCFS+ 36.07 61.21 12.62 23.89 56.96 27.12 3.44 35.88 71.69 0.07 4.05 111.64
PDYN 0.27 0.28 0.27 0.05 0.16 0.61 0 0.54 - 0.24 0.27 0.30
CDE 6.86 12.8 0.93 17.61 2.11 0.88 14.82 3.89 1.88 0.01 0.13 20.45
CDE+ 1.60 2.97 0.23 3.45 1.04 0.30 2.20 1.55 1.04 <0.01 0.1 4.68

Table 7: Average time of optimal resolution (in seconds) for instances solved in less than 30 minutes with each
solver

than Concorde and dynamic programming. However, on many instances the
computing time is reasonable.
We also included results for solver CDE to show the impact of the preprocessing
on the Concorde solver. Note that, with the preprocessing, any instance of
the entire benchmark of [23] can be solved optimally in less than 1 minute by
Concorde.

Instances from Scholz et al.. Scholz et al. introduced other instances for the
case of a single-block layout [22]. For each one of their classes, we generated
10 instances of the same size. As expected, since these instances have only
one block, dynamic programming is extremely efficient and solves any instance
optimally in less than a second. Our model also provides optimal solution for
most instances almost instantaneously. Indeed, the maximal time of resolution is
6.7 seconds for the biggest instance (30 aisles and 90 products) and the average
on all the instances is 0.28 seconds. In comparison, the models presented in
Scholz et al. can fail to solve some of the instances optimally in the time limit
of 30 minutes.

7. Conclusion

We have studied two exact algorithms for the picking problem based on dy-
namic programming and mixed integer linear programming.
The first approach was previously proposed for warehouses with up to three
cross-aisles. We extend it to any number of cross-aisles which has often been
mentioned but never done before. This algorithm proves to be extremely ef-
ficient for realistic size of warehouses. However, it can not accommodate side
constraints such as precedences, flow directions or multiple depots: a MILP is
better suited to deal with these requirements.
With this in mind, we showed that, on one hand, the compact formulations
based on modeling the problem as a TSP do not scale in memory and are un-
able to solve realistic size instances. On the other hand, a flow based formulation
modeling the problem as a Steiner TSP is very sparse but has a weak linear re-
laxation. As a result, it is also inefficient in practice.
Scholz et al. proposed a new formulation, with improvement by preprocessing.
However, their model is rather complex and does not provide convincing results
regarding its efficiency when the layout grows. We thus proposed a number of
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improvements by taking advantage of the warehouse structure. These improve-
ments are based on valid inequalities and procedures to significantly reduce the
instance’s size without loosing optimality. The resulting model remains sparse
and exhibits a strong linear relaxation in practice. It outperforms the compact
TSP model and proves able to solve very large instances efficiently up to being
nearly competitive with dedicated TSP approaches on the benchmark studied.

Note finally that some of the ideas proposed here can be applied to improve
the efficiency of Concorde. The entire benchmark proposed by Theys, Bräysy,
Dullaert and Raa [23] can be thus be solved to optimality very efficiently without
the need of the heuristics proposed by the same authors.

The analysis of the results showed that the improvement was stronger when
the products were stored with a volume policy. It may be a promising track to
solve the picking problem jointly with other warehouse issues such as storage
policy or batching. Valle et al. follow this track in a recent paper [26] as did
Won and Olafsson a few years ago [28].
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