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Abstract

We present a novel method for detecting some structural characteristics of multidimen-
sional functions. We consider the multidimensional Gaussian white noise model with an
anisotropic estimand. Using the relation between the Sobol decomposition and the ge-
ometry of multidimensional wavelet basis we can build test statistics for any of the Sobol
functional components. We assess the asymptotical minimax optimality of these test statis-
tics and show that they are optimal in presence of anisotropy with respect to the newly
determined minimax rates of separation. An appropriate combination of these test statistics
allows to test some general structural characteristics such as the atomic dimension or the
presence of some variables. Numerical experiments show the potential of our method for
studying spatio-temporal processes.

Keywords: Adaptation, anisotropy, atomic dimension, Besov spaces, Gaussian noise model,
hyperbolic wavelets, hypothesis testing, minimax rate, Sobol decomposition, structural model-
ing.

1 Introduction

Multidimensional data often exhibit a simpler underlying structure, meaning that their effective
dimension is smaller than the observed dimension. Detecting the presence of such structure can
enhance the understanding of the data and allows for more effective modeling and inferential
strategies. There is a flourishing literature dealing with nonparametric methods for structure
detection. These contributions are concerned with different types of structures (such as addi-
tivity, small atomic dimension and variable selection) and with different modeling approaches
according to the nature of the noise, the smoothness assumptions, etc. A brief overview of the
most directly related contributions are given hereafter. The main characteristic of this paper is to
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provide a rigorous theoretical study of structure detection in the presence of an anisotropically
smooth estimand. We consider a multidimensional Gaussian white noise model and derive test
statistics for the atomic dimension of multidimensional objects (i.e., the maximal degree of in-
teraction between the variables) and for variable selection. Then, following the Sieve estimation
of Birgé and Massart (1998), we build a data-driven procedure. It is first tested in ’idealistic’
numerical experiments before being applied to a more sophisticated context of time series data
analysis.

The main ingredient of our methodology is to project the data onto an hyperbolic (wavelet)
basis and to build test statistics based on the projection coefficients. Its motivation relies on the
relation that emerges between the geometry of that basis and the ‘functional components’ of
the Sobol decomposition of the estimand (Sobol, 1969). The use of an appropriate basis allows
to benefit from a sparse representation and an optimal adaptation to the anisotropic smooth-
ness of the estimand. In this paper we construct optimal testing procedures for the functional
components accordingly to the minimax hypothesis testing framework (Ingster, 1993a,b,c). Ap-
propriately combined these functional components can be rephrased in terms of more general
structures such as the atomic dimension.

This project is motivated by the recent results of Autin et al. (2014, 2015) who studied the
ability of a tensor-product wavelet basis, the so-called hyperbolic wavelet basis to estimate
multidimensional functions having anisotropic smoothness. Tensor-product bases (Fourier or
wavelets) have already been widely used in signal detection notably to test for additivity (i.e.
atomic dimension equals to 1) as in De Canditiis and Sapatinas (2004). Nevertheless, in the lat-
ter they do not provide deep theoretical results on the performance of their method. Abramovich
et al. (2008) describe another procedure for testing additivity. They propose an adaptive pro-
cedure based on the thresholding wavelet coefficients and derive interesting theoretical results.
Nevertheless, they exploit a standard (isotropic) wavelet basis that cannot optimally deal with
the more realistic situation of having anisotropic estimands. Moreover, their method is limited
to test for additivity and does not exploit the full directional representation of a multidimen-
sional wavelet basis. The functional framework (where the dimension d → ∞) has also been
investigated by Gayraud and Ingster (2012) who studied the problem of signal detection in the
case of sparse additive functions. Other developments include, for example, multichannel signal
detection (Ingster and Suslina, 2005), and detection in inverse models (Ingster et al., 2014).
Comminges and Dalalyan (2013) made profound theoretical contributions on hypothesis testing
procedures based on quadratic functionals. They study various testing problems involving mul-
tidimensional anisotropic functions. They exploit a tensor-product Fourier basis to build non
adaptive procedures, i.e. procedures that are built on the knowledge of the regularity parameters
of the anisotropic function spaces in the alternative. In this paper, we focus on the consequences
of dealing with anisotropic estimands. Therefore, we define two classes of testing procedures,
referred to as minimax and adaptive minimax optimal methods for the Besov balls, see Sec-
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tion 4. The former methodology is built using the full knowledge of the regularity parameters
while the latter uses only a part of it.

These methods differ by the nature of the truncation applied to the hyperbolic wavelet coeffi-
cients sequence. An intuitive way to think about this is to consider the better known multidi-
mensional function estimation context. The truncation rule characterizing the minimax optimal
method can be viewed as a linear but directionally dependent smoothing. While the truncation
rule of the adaptive minimax optimal method finds its roots in the approximation of the hyper-
bolic cross that is naturally associated to tensor-product spaces (Schmeisser and Sickel, 2004;
Schmeisser, 2006; Sickel and Ullrich, 2009). Tensor-product spaces are also often considered
in various statistical contexts such as in estimation with for example the tensor-product space
ANOVA model (Lin, 2000) or in signal detection (Ingster and Stepanova, 2009). They are of
great interest since one can hope to reach performances close to the unidimensional case. It
is sometimes promoted as a way to ‘tackle’ the curse of dimensionality, nevertheless it is a
restrictive assumption. In the context of functional ANOVA, for example, assuming a tensor-
product model means that the interaction term’s complexity has to be inversely proportional to
its degree. In this paper we do not restrict to the structure detection of functions belonging to
tensor-product of Besov spaces but to larger classes such as the anisotropic Nikolskii class. We
show that our methods attain the optimal separation rates between the null and the alternative
hypothesis and we discuss how to combine sets of testing procedures in a way that is adapted to
the anisotropic case.

Such testing procedures find applications in many fields. We illustrate its usage in time series
data analysis. Our aim is to test the structure of the spatio-spectrum associated to a spatio-
temporal process that is time stationary. This allows us also to illustrate how to adapt such
testing procedure in the context of multidimensional data where the number of observations is
very large, making p-values useless.

This paper is structured as follows. First, in Section 2, we give the fundamental knowledge on
hyperbolic wavelet bases and their relation to the Sobol decomposition of a multidimensional
function. In Section 3 we introduce the multidimensional Gaussian white noise model and the
minimax hypothesis testing framework. Then we describe our test statistics for Sobol functional
components in Section 4 before introducing tests for global structural characteristics in Section
5. Section 6 describes our data-driven adaptation and validation in a practical setting of the
adaptive minimax optimal procedure and a final discussion is provided in Section 7. The proofs
of the theoretical results are postponed to the appendix.
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2 Hyperbolic wavelet bases

We start from a one-dimensional periodized wavelet basis B1 of L2([0, 1)) which is built from
the dilations and translations of a scaling function φ and a wavelet ψ with V (for some V ≥ 1)
vanishing moments,

B1 =
{
φ(.), ψ j,k(.) = 2 j/2ψ(2 j. − k) : j ∈ N, k ∈ {0, . . . , 2 j − 1}

}
.

A d-dimensional hyperbolic wavelet basis results by forming d-variate functions taking appro-
priate products of the univariate functions φ and ψ as follows,

Bd =

{
φ0,0(.), ψi

j, k(.) : i ∈ {0, 1}d \ 0, j ∈ Ji, k ∈ K j

}
where 0 = (0, . . . , 0), φ0,0(.) = φ(.) × · · · × φ(.), ψi

j,k(.) = ψi1
j1,k1

(.) × · · · × ψid
jd ,kd

(.), i = (i1, . . . , id)
with the following notations:

ψiu
ju,ku

(·) =

 2 ju/2φ(2 ju · −ku) if iu = 0
2 ju/2ψ(2 ju · −ku) if iu = 1

and

Ji =
{
j = ( j1, . . . , jd) : ∀u ∈ {1, . . . , d}, ju = j′uiu, j′u ∈ N

}
,

K j =
{
k = (k1, . . . , kd) : ∀u ∈ {1, . . . , d}, ku ∈ {0, . . . , 2 ju − 1}

}
.

The basis Bd is generated by a set of a scaling function φ0,0 and translated and dilated wavelet

functions
{
ψ

i
j,k

}
. If all the components of the vector of directional dilations j are equal, this

results in the standard (isotropic) wavelet basis. Hereafter we consider that the components of
j can take different values. The wavelet functions are then supported on hyper-rectangles and
the resulting wavelet basis, the so-called hyperbolic or tensor-product wavelet basis, is proven
to be able to optimally deal with anisotropic functions (Autin et al., 2014, 2015). We say that
each of the 2d elements of i defines an orientation. In such a basis, any f ∈ L2([0, 1)d) can be
decomposed as follows:

f = 〈 f , φ0,0〉2φ0,0 +
∑
i,0

(∑
j∈Ji

∑
k∈K j

〈 f , ψi
j,k〉2ψ

i
j,k

)
≡ f0 +

∑
i,0

fi (1)

where 〈., .〉2 is the L2-scalar product. This representation facilitates a characterization of a spe-
cific structure, such as additivity. Indeed, for an additive function fadd, that is a function with
Sobol decomposition fadd(x1, . . . , xd) = f0 +

∑d
u=1 fu (xu), the coefficients θi

j,k = 〈 f , ψi
j,k〉2 in each

orientation i with |i| = i1 + i2 + · · ·+ id > 1 are exactly equal to 0. Information about the compo-
nent functions fi in equation (1) can be retrieved via the wavelet coefficient sequence through
the geometry of the hyperbolic wavelet basis. This enables the design of specific testing proce-
dures for structural information for multivariate functions, more general than merely testing for
additivity.



This version January 30, 2017 5

Dalalyan et al. (2014) introduced the atomic dimension in the physical domain that we de-
note as δ( f ). It reflects the maximal degree of interaction between the d variables in the
Sobol decomposition. For instance, the additive model fadd has δ( fadd) = 1, while a func-
tion f (x1, . . . , xd) =

∑d
u=1 fu(xu) +

∑d
u=1

∑d
v=1,v,u f 3

u (xu) fv(xv) has δ( f ) = 2. In the sequel, we
use the definition from Autin et al. (2014) of the atomic dimension in the wavelet coefficient
domain relating the orientations of the nonzero wavelet coefficients with corresponding Sobol
functional components.

Definition 2.1 Let f ∈ L2([0, 1)d) be decomposed in the hyperbolic wavelet basis as

f = f0 +
∑
i,0

fi = αφ0,0 +
∑
i<0

∑
j∈Ji

∑
k∈K j

θ
i
j,kψ

i
j,k

 .
DefineA f = {i ∈ {0, 1}d \ 0; θi

j,k , 0 for some ( j, k)}. The atomic dimension of f with respect to
Bd is the integer δBd = δBd ( f ) ∈ {0, . . . , d} such that:

δBd =

 max{|i|; i ∈ A f } ifA f , ∅

0 ifA f = ∅.

Definition 2.1 gives us more flexibility than its definition in the physical domain. Indeed, the
atomic dimension δBd depends on the number of vanishing moment (even directional ones) of
the considered basisBd. More precisely, the atomic dimension δ( f ) of a d-dimensional function
f in the physic domain and the atomic dimension δBd ( f ) of the same function f in the coefficient
domain are clearly tied by the following inequality: δBd ( f ) ≤ δ( f ). We mention here two situa-
tions to emphasize the practical importance of being able to characterize the atomic dimension
in the coefficient domain. The first example concerns multidimensional function estimation.
Autin et al. (2014) introduced a novel estimation procedure based on the thresholding of the
hyperbolic wavelet coefficients. They show that it outperforms the standard hard thresholding
whenever some structural conditions on the estimand are satisfied. These conditions also in-
clude some constraint on the value of the atomic dimension δBd . Here we provide a test statistic
to test the structure of the estimand before applying the aforementioned estimation method. A
second example concerns the exploitation of sparsity in statistical modeling that can be useful
for building a statistical model using the hyperbolic wavelet coefficients or in generalized linear
modeling. For example, Zhou et al. (2013) describe such a generalized linear model with multi-
dimensional covariates, their first step consists in dimension reduction by tensor decomposition.
One could instead exploit the sparsity of the hyperbolic wavelet sequence. In such a case, one
may seek for the hyperbolic wavelet basis that provides the sparsest situation.

3 Model and minimax approach for hypothesis testing

The observed signal under the Gaussian white noise model is a realization of the process

dYε(x) = f (x)dx + εdW(x) (2)
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where x = (x1, . . . , xd) ∈ [0, 1)d, f ∈ L2([0, 1)d), W(x) is the Brownian sheet and ε is the noise
level, considered here to be close to zero. For technical reasons (see the proofs of Proposition
9.3 and Proposition 9.4), without loss of generality, we assume that it is smaller than εo = e−e,
where e denotes the Euler’s number. We consider the sequential version of the Gaussian white
noise model which consists of the observations of the following random variables

α̂ = α + εξ = 〈 f , φ0,0〉L2 + εξ and θ̂
i
j,k = θ

i
j,k + εξ

i
j,k = 〈 f , ψi

j,k〉L2 + εξ
i
j,k

where, ξ, ξi
j,k are i.i.d. N (0, 1) and ( j, k) ∈ Nd × K j.

For any chosen orientation i , 0, we may test the the following null hypothesisHi,0 versus one
of the two stated alternative hypothesesHi,a andH ′i,a:

Hi,0 : f ∈ Ni(R) =

 f : ‖ f ‖2 ≤ R, fi(x) =
∑
j∈Ji

∑
k∈K j

θ
i
j,kψ

i
j,k(x) = 0, ∀x ∈ [0, 1)d

 , (3)

Hi,a : f ∈ Ai(R,C, s, rε,i) =

 f : f ∈ F s(R), ‖ fi‖2 =

∑
j∈Ji

∑
k∈K j

(
θ

i
j,k

)2


1
2

≥ Crε,i

 , (4)

H ′i,a : f ∈ ∪s:
∑

u iu s−1
u =γ−1

i
Ai(R,C, s, r′ε,i). (5)

In the above expression, C is a positive constant which does not depend on ε and rε,i, r′ε,i are
continuous sequences of positive real numbers tending to 0 as ε goes to 0. F s(R) denotes a
ball of radius R in a function space characterized by a vector of directional regularities s with
harmonic sum in the orientation i denoted as γ−1

i .
Given a simultaneous control on the probabilities of type I and II errors, we consider the asymp-
totic minimax setup: we aim at providing, for any orientation i, the order of the optimal separa-
tion rates in the sense of Section 2.6 in Ingster and Suslina (2003) between the null hypothesis
Hi,0 and each one of the alternative hypothesesHi,a andH ′i,a associated to a particular choice of
F s when:

• s is known;

• only the harmonic sum γ−1
i =

∑
u ius−1

u of s with respect to orientation i is known.

Related to this, we search for both a sequence of F s-minimax optimal testing procedures and a
sequence of F s-adaptive minimax optimal testing procedures.

Definition 3.1 Let α ∈
(
0, 1

2

)
, s ∈ (0,+∞)d and i ∈ {0, 1}d \0. We say that rε,i corresponds to the

F s-minimax rate separating the hypothesesHi,0 andHi,a, up to a constant, if the two following
statements are satisfied:

1. (Upper bound) there exists a sequence of testing procedures
(
∆∗ε,α

)
ε

such that, for any
constant C large enough,

sup
0<ε<εo

 sup
f∈Ni(R)

P f (∆∗ε,α = 1) + sup
f∈Ai(R,C,s,rε,i)

P f (∆∗ε,α = 0)

 ≤ α,
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2. (Lower bound) for any C small enough,

sup
0<ε<εo

inf
∆

 sup
f∈Ni(R)

P f (∆ = 1) + sup
f∈Ai(R,C,s,rε,i)

P f (∆ = 0)

 > α.
The sequence of testing procedures

(
∆∗ε,α

)
ε

is said to be F s-minimax optimal.

Definition 3.2 Let α ∈
(
0, 1

2

)
. Consider i ∈ {0, 1}d such that |i| > 1 and let γi > 0. We say that

r′ε,i corresponds to the F s-adaptive minimax rate separating the hypothesesHi,0 andH ′i,a, up to
a constant, if the two following statements are satisfied:

1. (Upper bound) there exists a sequence of testing procedure
(
∆?
ε,α

)
ε

such that, for any C
large enough,

sup
0<ε<εo

 sup
f∈Ni(R)

P f (∆?
ε,α = 1) + sup

s:
∑

u iu s−1
u =γ−1

i

sup
f∈Ai

(
R,C,s,r′ε,i

)P f (∆?
ε,α = 0)

 ≤ α,

2. (Lower bound) for any C small enough,

sup
0<ε<εo

inf
∆

 sup
f∈Ni(R)

P f (∆ = 1) + sup
s:

∑
u iu s−1

u =γ−1
i

sup
f∈Ai

(
R,C,s,r′ε,i

)P f (∆ = 0)

 > α.
The sequence of testing procedures

(
∆?
ε,α

)
ε

is said to be F s-adaptive minimax optimal.

In the latter situation, we have only the information about the harmonic sum of the directional
smoothness parameters of the function class in the alternative. To determine the minimax and
adaptive minimax rates, we naturally consider the combination of directional smoothness with
a given harmonic sum that is giving the worst type II error rate. The fully adaptive case cor-
responds to an unknown value γi. It is a direct extension studied here which could be called
partially adaptive, that is to say when γi is known. In this work for the sake of simplicity we use
adaptive instead of partially adaptive.

Remark 3.1 The definition of minimax and adaptive minimax rates are equivalent to the ones
given in Section 1 of Lepski and Tsybakov (2000) (Section 1) and slightly more precise than the
ones given in Section 2.6 of Ingster and Suslina (2003). We will show that both the minimax
rate and the adaptive minimax rates of testing depend on the smoothness of the underlying
functional space and the noise level ε whereas there is a relationship between the constants
C,R and the level α as remarked at the end of Appendix.
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4 Nonparametric tests for a given orientation

In this paragraph we present test statistics and testing procedures that are used in the sequel.
These test statistics are going to provide sequences of testing procedures that are minimax and
adaptive minimax optimal in the particular case where F s corresponds to a Besov space with s
as smoothness parameter.

Definition 4.1 (Test statistic) Let i , 0 and j = ( j1, . . . , jd) ∈ Ji. The nonnegative random
variable

Ti, j =
∑

j′∈Ji: j′u<max( ju,1),∀u

∑
k∈K j′

(θ̂i
j′,k)

2

is called the i-oriented test statistic with level parameter j.

Definition 4.2 (Testing procedure) Let i , 0, j = ( j1, . . . , jd) ∈ Ji and t > 0. The random
variable

∆i, j(t) = 1{Ti, j>t}

is called the (i, j, t)-testing procedure.

4.1 Bs
2,∞-minimax optimal sequence of testing procedures

We define appropriate test statistics based on the estimated empirical energy that is the sum
of the squared values of the empirical hyperbolic wavelet coefficients within the specified ori-
entation over certain scales. We show that this sequence of tests constructed using hyperbolic
wavelet bases gets optimal minimax properties when f belongs to a Besov ball with smoothness
parameter s.

Definition 4.3 (Besov ball) Let R > 0 and s = (s1, . . . , sd) ∈ (0,+∞)d. We say that f ∈
L2([0, 1)d) belongs to the Besov ball Bs

2,∞(R) if and only if

sup
i,0

sup
j∈Ji

max
1≤u≤d
{22 ju su} ·

∑
k∈K j

|θ
i
j,k|

2 ≤ R2.

In this section we assume that we have the full knowledge about the smoothness parameter s of
the functions in the alternative. In other words it corresponds to the non adaptive set up. We
define a vector j∗ = ( j∗1, . . . , j∗d) ∈ Ji of truncation scales such that

2− j∗u ≤ ε4iuγi/(1+4γi)su < 21− j∗u (6)

with γi = (
∑d

u=1 ius−1
u )−1.

Theorem 4.1 Let α ∈
(
0, 1

2

)
, R > 0, s in (0,+∞)d and i ∈ {0, 1}d \ 0. Consider, as in (3) and

(4), testing the hypotheses Hi,0 versus Hi,a where F s(R) = Bs
2,∞(R). Then the sequence of the

(i, j∗, tε,i,α)-testing procedures
(
∆i, j∗(tε,i,α)

)
ε

is Bs
2,∞-minimax optimal with j∗ as in (6), and with
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ε−2tε,i,α = χ1−α/2(2| j
∗ |), the 1 − α/2 quantile of the Chi-Square distribution with 2| j

∗ | = 2 j∗1+···+ j∗d

degrees of freedom. Moreover the Bs
2,∞-minimax rate separatingHi,0 andHi,a is of order of

rε,i = ε
4γi

1+4γi .

The proof of Theorem 4.1 is stated in the appendix.

This theorem can be compared to the results given in the book of Ingster and Suslina (2003)
for Besov bodies in the one-dimension case. In this book, Theorem 3.9 states distinguishability
conditions and sharp asymptotics are given in Theorem 4.4. The results stated above in Theo-
rem 4.1 is similar but in any dimension; therefore the smoothness parameter is replaced by the
average smoothness value obtained from the harmonic sum.

The reader could note that the worst rate is associated with γ1 with 1 = (1, . . . , 1), i.e. to the
interaction term of highest degree. This case is similar to the one considered in Ingster and
Stepanova (2011) (Remark 3.3). We obtain the same minimax rate of testing hypotheses in-
volving the harmonic sum of smoothness as the one they found for a signal function f in a
Sobolev space. Nevertheless we can point that their null hypothesis H0 : f = 0 is different from
the one considered here and briefly reformulated as H1,0 : f1 = 0 which consists of functions
with an atomic dimension strictly smaller than the dimension d.The separation rate can be dif-
ferent for every orientation. When it comes to test for the structure of a d-dimensional function,
a sequential testing procedure based on these different test statistics seems to be ideal because
one can benefit from better separation rates.

Remark 4.1 In the context of multidimensional function estimation, the maxiset approach in-
troduced by Kerkyacharian and Picard (2000) has been proved useful to study the performance
of wavelet-based estimators (Autin et al., 2014). It consists in determining the largest function
space such that the risk of an estimator is controlled at a chosen rate. If the choice of the rate
is often an issue, it is common to use the minimax or near-minimax rates over some ’standard’
functional spaces F . Then the maxiset approach reveals a set of functions that contains F
strictly or not. This is an optimistic approach in the sense that finally, we can estimate at the
minimax or near-minimax rate more functions that previously thought. In minimax hypothesis
testing problems, we can get inspired from the maxiset approach to remark that under the alter-
native, we naturally model the ‘estimand’ as a function in a d-variate smoothness space, here
Bs

2,∞(R). Nevertheless, since we are only concerned by the presence of information along given
directions, the behavior along the directions that are not of interest can be let ‘uncontrolled’.
Hence, the sequence space in the alternative can be enlarged to the set of all Besov spaces
Bs′

2,∞(R) with s′u ≤ su for iu = 0 and s′u = su otherwise.
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4.2 Bs
2,∞-adaptive minimax procedure

We now suppose that the regularity parameter s appearing in the alternative hypothesis is un-
known but its harmonic sum γ−1

i =
∑d

u=1 ius−1
u is known for a chosen i such that |i| > 1. In some

sense, we consider now the adaptive setup.

To define the test statistic using the knowledge about γ, we denote by Ji the integer such that

2−Ji ≤
(
ε4 log log ε−1

) 1
1+4γi < 21−Ji . (7)

Theorem 4.2 Let α ∈
(
0, 1

2

)
, R > 0, i ∈ {0, 1}d satisfying |i| > 1 and let γi > 0. Consider,

as in (3) and (5), testing the hypotheses Hi,0 versus H ′i,a where F s(R) = Bs
2,∞(R), where γ−1

i =∑d
u=1 ius−1

u . Then the sequence of testing procedures
(
∆i,max(t′ε,i,γi,α

)
)
ε

built from the maximum of
the (i, j, t′ε,i,γi,α

)-testing procedures ∆i, j(t′ε,i,γ,α) for which j is satisfying | j| = Ji is Bs
2,∞-adaptive

minimax optimal provided that, for any ε ∈ (0, εo), ε−2t′ε,i,γi,α
= χ1−α/2Kγi

(2Ji), with Kγi = #{ j ∈
Ji : | j| = Ji}. Moreover the Bs

2,∞-adaptive minimax rate separatingHi,0 andHi,a is of order of

r′ε,i =
(
ε4 log log ε−1

) γi
1+4γi .

The proof of Theorem 4.2 is stated in the appendix.

Results given for adaptation in Theorem 4.2 can be compared to usual results obtained for
adaptation in hypothesis testing problems. The unavoidable loss due to adaptation is the usual
one that can also be found for example in Theorem 7.2 in Ingster and Suslina (2003). The
results stated above in Theorem 4.2 can be compared to the loss obtained by Spokoiny (1998)
in the Gaussian white noise model in one-dimension for the signal detection problem.

Remark 4.2 Note that compared to the Bs
2,∞-minimax case, the optimal separation rate is

slower because log log ε−1 → ∞ as ε → 0. This attests of the deterioration of the informa-
tion about the function space in the alternative. Nevertheless, in the alternative hypothesis, the
union of sequence spaces Bs

2,∞(R) can be replaced by another larger sequence space, denoted
Aγi,2(R) and defined hereafter.

Definition 4.4 (Truncation ball) Let R > 0, i ∈ {0, 1}d satisfying |i| > 1 and γi > 0. We say
that f ∈ L2([0, 1)d) belongs to the truncation ball Aγi,2(R) if and only if

sup
j∈Ji

22| j|γi
∑
k∈K j

(θi
j,k)

2 ≤ R2.

The truncation ball Aγi,2(R) is similar to a Besov ball in the sense that it controls the decay of
the energy of the hyperbolic wavelet coefficients over the scales and hence it is used to control
the approximation error. Following Lemma 2.2 of Neumann (2000), the following inclusion
property holds.
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Proposition 4.1 Fix i ∈ {0, 1}d \ 0. Let γi > 0. For any R > 0, there exists R′ > 0 such that⋃
s: i1 s−1

1 +...id s−1
d =γ−1

i

Bs
2,∞(R) ⊂ Aγi,2(R′).

Considering the functional component fi of f does not only enable us to explore fine structures
but it is also a way to improve the performance of the testing procedures for more general
structure, see Section 6.

5 Tests that combine different orientations

Many interesting hypotheses on the structure of a function can be tested by ’aggregating’ the
previously described optimal testing procedures for the Sobol functional components. In this
paragraph we describe such results in the context of the Bs

2,∞-minimax framework, but it can
be easily given for the Bs

2,∞-adaptive minimax setting as well. We first state the following
proposition:

Proposition 5.1 [Max-testing] Fix α ∈
(
0, 1

2

)
, s ∈ (0,+∞)d and consider β = 1 −

(
1 − α

2

)|I|
such that |I| denotes the cardinality of a nonempty set of orientations I that characterizes the
alternative hypothesis.

Consider the following testing hypotheses

H0 : f ∈ S(R,I) = { f : ‖ f ‖2 ≤ R, fi = 0, ∀i ∈ I},

Ha : f ∈ T (R,I) = { f : f ∈ Bs
2,∞(R),∃ i ∈ I, ‖ fi‖2 ≥ Crε,i}.

(8)

Then, for any ε ∈ (0, εo), the testing procedure ΛI,ε,α = maxi∈I ∆i, j∗(tε,i,α) is β-level, i.e. its
probability of a type I error is equal to β.

The proof of Proposition 5.1 is an immediate consequence of Theorem 4.1. Since the testing
procedures involved are independent for different orientations, the limiting distributions can be
exactly computed and we do not need the probably conservative FWER. For any ε ∈ (0, εo),

sup
f∈S(R,I)

P f (ΛI,ε,α = 1) = sup
f∈S(R,I)

(
1 − P f

(
max

i∈I
∆i, j∗(tε,i,α) = 0

))
= 1 −

(
1 −

α

2

)|I|
= β.

Remark 5.1 Under the alternative, we naturally model the estimand as a function in a d-
variate smoothness space, here and once again a Bs

2,∞(R). Nevertheless, inspired from Re-
mark 4.1, we can state another analogy with the maxiset approach. Let us consider the testing
problem with the same hypotheses as in (8) but with a rate that is chosen to be the worst optimal
one with respect to s, that is rε,1 = ε4γ/(1+4γ). Since we are only concerned by the presence of
information along at least one given direction that belongs to I, no assumption on the smooth-
ness is needed in the other orientations. Hence, the sequence space in the alternative associated
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with the chosen rate rε,1 can be considered larger than the initial one, Bs
2,∞(R). More precisely

it could be replaced by the sequence space defined by the union of all Besov balls Bs′

2,∞(R) with
s′ ∈ (0,+∞)d such that

∑
u ius′u = γ−1 for at least one i ∈ I.

In what follows, we present some examples where the optimal testing procedures that combine
different orientations could be useful.

5.1 Testing the structure of the goal function

Take the set I(δ0) = {i ∈ {0, 1}d : |i| > δ0} that contains all orientations for which the number
of contributing components of the d-vector is strictly larger than a specified value δ0. The
corresponding hypotheses for testing for the atomic dimension are:

H0 : f ∈ S(R,I(δ0)) = { f : ‖ f ‖2 ≤ R, δBd ( f ) ≤ δ0},

Ha : f ∈ T (R,I(δ0)) = { f : f ∈ Bs
2,∞(R),∃ i ∈ I(δ0), ‖ fi‖2 ≥ Crε,i}.

(9)

Tests for the atomic dimension are more versatile than merely testing for additivity, the latter
which is a special case with δ0 = 1. Concluding that a structure is simpler than a full d-
dimensional object leads to an efficiency gain in estimation by using the appropriate methods
escaping (at least partly) the curse of dimensionality when δ( f ) is smaller than d.
Combining tests over multiple orientations i ∈ I can be done by computing the maximum of
testing procedures in the separate orientations.
From our testing procedures ∆i, j∗

(
tε,i,α

)
, i , 0, there is a quite natural way to estimate the

structure of the goal function f by considering

Â f ,tε,i,α =
{
i ∈ {0, 1}d \ 0 : ∆i, j∗

(
tε,i,α

)
= 1

}
as an estimator of A f . Nevertheless this estimator coud lead to many false discoveries that are
any orientation i ∈ A f ,tε,i,α such that fi = 0. Obviously the larger α, the bigger the number of
expected false discoveries.
There is also a way to naturally get an estimator δ̂ of the atomic dimension δ( f ) of a d-
dimensional signal f by putting, for a chosen α ∈

(
0, 1

2

)
,

δ̂Bd =

 max{|i|; i ∈ Â f ,tε,iα} if Â f ,tε,iα , ∅

0 if Â f ,tε,iα = ∅.

Rejecting a combined orientations null hypothesis as in (9) when δ̂Bd ≥ δ0 is equivalent with
rejecting H0 when ΛI(δ0),ε,α = 1.

5.2 Reduction of model: selection of variables

Another application is to test whether some variables among x1, . . . , xd may be omitted from
the model or not. Consider the case of leaving out variable xm for some m ∈ {1, . . . , d}. In this
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case Im = {i = (i1, . . . , im, . . . , id) ∈ {0, 1}d : im = 1} and the relevant hypotheses are

H0 : f ∈ U(R,m) ={ f : ‖ f ‖2 ≤ R,∀i ∈ Im, fi = 0},

Ha : f ∈ V(R,m) ={ f : f ∈ Bs
2,∞(R),∃ i ∈ Im, ‖ fi‖2 ≥ Crε,i}.

(10)

In addition to possibly reduce the model, when considering such a testing problem could find
applications in modeling time series (see Section 6 for details).

Following the two previous paragraphs, an interesting point must be underlined here. Estimating
the atomic dimension of a d-dimensional object or reducing the number of its relevant variables
can be considered as a first step to guarantee that the object is a function of a number of variables
smaller than d (usually called ‘sparse variable function’). This assumption was often assumed
in recent works in estimation problem as in Autin et al. (2014) and in testing problem as in
Ingster and Suslina (2015). From the data, our methodology also permits to test whether this
assumption is reasonable or not.

6 Numerical experiments

In this section we first describe a practical implementation of the adaptive method. We present
its performance in terms of empirical power curves w.r.t signal to noise ratio for testing the
atomic dimension of some multidimensional functions corrupted by an additive Gaussian white
noise. Then, we propose an application in time series analysis that consists in exploring the
structure of the spatio-spectrum of spatio-temporal processes.

6.1 Data-driven structure detection

To link our theory to the practical setting we refer the reader to Reiss (2008) for the equivalence
in the Le Cam’s sense between the multidimensional nonparametric regression problem (11)
and the Gaussian white noise model (2). This equivalence is assumed to hold and typically
relies on some minimal regularity conditions and an appropriate calibration of the noise level
ε = σN−

d
2 . Let ζl1,...,ld be i.i.d. N(0, 1),

Yl1,...,ld = f
(

l1

N
, . . . ,

ld

N

)
+ σζl1,...,ld , 1 ≤ lu ≤ N, 1 ≤ u ≤ d. (11)

Both, the Bs
2,∞-minimax and Bs

2,∞-adaptive minimax optimal procedures studied previously trun-
cate the wavelet coefficient sequence at scales that are calibrated based on the knowledge of the
unknown smoothness of the estimand (based either on the knowledge of all the directional reg-
ularities or only of their harmonic sum). Following the idea of Sieve estimation described in
Birgé and Massart (1998), we build a data-driven version of the adaptive testing procedure. In
this numerical part, we consider only the Bs

2,∞-adaptive minimax optimal method since its al-
gorithmic complexity is of about O

(
log2(N)

)
compared to O

(
log2(N)|i|

)
for the Bs

2,∞-minimax
optimal method.
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Let us consider the sets of all possible adaptive models FMA
N

based on ε−2 observations,

FMA
N

=
{
f̂mA = α̂φ0,0 +

∑
i,0

∑
( j,k)∈mA

i

θ̂
i
j,kψ

i
j,k; mA := {mA

i ∈ M
A
N,i}

}
,

with MA
N,i :=

{
m′i,J :=

{
( j, k) ∈ Ji × K j; | j| ≤ J; ju ≤ log2(N), ∀u

}
; J ≤ |i| log2(N)

}
.

An oracle choice of the nuisance parameters leads to the following optimization problem

mA
o = arg min

f̂mA∈FMA
N

E‖ f̂mA − f ‖22 = arg min
f̂mA∈FMA

N

−
∑

(i, j,k)∈mA

(
(θi

j,k)
2 −

σ2

Nd

) .
The optimizer is found by solving the following problem for every i ∈ {0, 1}d\{0},

mA
i,o = arg min

mA
i ∈M

A
N,i

−
∑

( j,k)∈mA
i

(
(θi

j,k)
2 −

σ2

Nd

) .
In practice, we plug in empirical quantities and adjust for the variability in the data proposing
the following optimization, with λ̂ = σ̂

√
2dN−d log N the universal threshold,

m̂A
i,o = arg min

mA
i ∈M

A
N,i

−
∑

( j,k)∈mA
i

(
(θ̂i

j,k)
2 − λ̂2

) . (12)

6.2 Empirical power functions

In this section we consider 3-dimensional functions f and we test for their atomic dimension
H0 : δ ( f ) = 1 versus H1 : δ ( f ) > 1. Therefore we consider the hyperbolic Haar wavelet basis
so that δBd ( f ) = δ ( f ). For sake of simplicity, we generate them using the Sobol decomposition
of a d-variate function f ∈ L2([0, 1)d) into orthogonal summands of growing dimensions,

f (x1, . . . , xd) =

d∑
u=1

∑
i1<···<iu

fi1...iu(xi1 , . . . , xiu). (13)

The marginal functional components are chosen to be univariate functions that are frequently
considered in the wavelet literature (Antoniadis et al., 2001). The interaction terms are obtained
as weighted product of the marginal functions. In this experiment we choose the following test
functions we describe below.

A: f1 (x1): ‘blip’, f2 (x2): ‘blip’, f3 (x3): ‘blip’,

B: f1 (x1): ‘blip’, f2 (x2): ‘wave’, f3 (x3): ‘bumps’.

We consider the null hypothesis with δ ( f ) = 1 and two functions in the alternative with atomic
dimension δ ( f ) = 2 or δ ( f ) = 3.
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• under H0 : δ ( f ) = 1, f (x1, x2, x3) = f1 (x1) + f2 (x2) + f3 (x3)

• under H1 : δ ( f ) = 2, f (x1, x2, x3) = f1 (x1) + f2 (x2) + f3 (x3) + D f1 (x1) f2 (x2)

• under H1 : δ ( f ) = 3, f (x1, x2, x3) = f1 (x1) + f2 (x2) + f3 (x3) + D f1 (x1) f2 (x2) +

D′ f1 (x1) f2 (x2) f3 (x3).

Here, Figure 1 gives an illustration of some of these test functions.

(a) Test function A; δ ( f ) = 1 (b) Test function A; δ ( f ) = 2

(c) Test function B; δ ( f ) = 1 (d) Test function B; δ ( f ) = 2

Figure 1: Three dimensional test functions that are used in the numerical experiments.

The total energy of these functions f (x1, x2, x3) is normalized. Then the observed data are gen-
erated by adding Gaussian white noise to the test functions. The empirical power is computed
as a function of the SNR as follows:

P ( j) =
1
M

M∑
m=1

11{
Λ(δ0)m,S NR j =1

},
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where the signal to noise ratio (SNR) is defined as the ratio of the standard deviation of the
function values to the standard deviation of the noise. Λ (δ0)m,S NR j

is the result of the procedure
ΛI(δ0),ε,α (with δ0 ∈ {1, 2, 3}) at the S NR j and m−th Monte Carlo iteration. We generate these
data sets with sample sizes N ∈ {32, 64}, 1 ≤ j ≤ 50 and with M = 100 Monte Carlo replications
at every values of S NR j. The results are summarized in Figure 2.

(a) Test functions A (b) Test functions B

Figure 2: Simulated rejection probabilities under H0 and H1 for both sets of test functions A
and B, as a function of the signal to noise ratio.

Figure 2 shows that for both test functions, the nominal level of the test at α = 5% under the
null hypothesis H0 is maintained over the different values of the SNR. Under the alternative, we
observe firstly that the detection appears at very low SNR values, secondly, an increase in the
sample size improves the detection power of the method, and thirdly, under the two different
alternatives, when the energy of the function is more spread over orientations (δ ( f ) = 3), the
detection power decreases. These tests confirm the proper calibration of the data-driven adaptive
method. We can now apply it to a more realistic data example.

6.3 Application in time series analysis

Neumann and von Sachs (2000) consider testing the stationarity of a time series by studying the
structure of its time-varying spectrum. They form local contrast test statistics in the time direc-
tion also based on hyperbolic wavelet coefficients of an estimator of the time-varying spectral
density, namely the preperiodogram. A crucial problem for practical application of this method
in testing stationarity is due to the inherent nature of the preperiodogram data which suffers
from interferences, very low SNR and non Gaussian noise distribution. This may strongly af-
fect the performances of the data-driven choice of the truncation scales. Adapting our testing
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methodology to this context is an interesting research problem in itself. In the sequel, we test
the structure of the spatio-spectrum of spatio-temporal processes that are time stationary. A
specific concern for this application is the high dimensional setting. We face the problem of
having small p-values due to a large number of observations (Lin et al., 2013). We illustrate
how to properly use our results to assess the structure of such data. We first define a class
of spatio-temporal processes, its spatio-spectrum, explain how to estimate this and finally we
apply our data-driven method to simulated data.

6.3.1 Spatio-temporal model

Following Ombao et al. (2008), we define the Cramér representation of a spatio-temporal pro-
cess

{
Xt

(
u
)

; u = (u1, u2) ∈ [0, 1)2, 1 ≤ t ≤ T
}
, where u is the spatial index, as follows:

Xt

(
u
)

=

∫ π

−π

A
(
u, ω

)
exp (iωt) dZ (ω) (14)

where Z (ω) is a complex-valued stochastic process with zero mean and orthogonal increments,
which satisfies

E [dZ (ω)] = 0, Cov (dZ (ω1) , dZ (ω2)) = Dirac (ω1 − ω2) dω1

where Dirac(.) means the Dirac function at mass point 0 and A
(
u, λ

)
is the spatial complex-

valued transfer function. It is Hermitian A (.,−ω) = A∗ (., ω), where A∗ is the adjoint operator.
The location-dependent spectrum is given by

f
(
u, ω

)
:=

∣∣∣∣A (
u, ω

)∣∣∣∣2 .
6.3.2 Estimation

In a practical setting we observe the spatio-temporal process over a discrete grid of dimensions
(N × N × T ). Since we assume it to be time stationary, we can compute the bias-corrected
log-periodogram at every spatial location

log

 1
2πT

∣∣∣∣∣∣∣
T∑

t=1

Xt

(
u
)

exp (iωt)

∣∣∣∣∣∣∣
2 + κ

where κ = 0.57721 is the Euler-Mascheroni constant, as in Wahba (1980).
From these spatial log-periodograms we test the structure of the spatio-spectrum f

(
u, ω

)
. Here-

after we directly apply our methodology without adaptation for the non Gaussian nature of the
log-periodogram ordinates. The central limit theorem in the coefficient domain permits to con-
sider that the wavelet coefficients are approximately normally distributed up to comparatively
fine scales. The actual procedure could be improved in that specific context, for example by
adapting the methodology of Gao (1997) in the penalization of the data-driven selection of
the truncation scales. Nevertheless, omitting this adaptation helps us to illustrate the practical
application of our method considering a slightly suboptimal procedure.
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In the previous section we checked that our method is well-calibrated. In this time series ex-
ample, we are away from this idealistic framework. We are now dealing with periodogram data
that are non Gaussian and the spatio-spectrum may have a complicated structure (in terms of
energy along the different orientations). In this high-dimensional and more realistic context, the
p-values have not longer any practical importance. For (very) large sample sizes, p-values are
almost always extremely small, suggesting the rejection of the null hypothesis since, with real
life data, the situation of total absence of information in some orientation is rarely exactly true.
A solution in this context is to use our test statistic values to describe the proportions to the total
energy of the function that are in the different orientations, similarly as in principal components
analysis. This is the approach adopted hereafter for time series data examples.

6.3.3 Results

We generate the following time series models using a discretized version of their Cramér rep-
resentation given by equation (14). We consider two spatial AR(1) processes, i.e, their spatio-
spectrum is given by

f
(
u, ω

)
=
σ2

2π

(
1 − 2φ

(
u
)

cosω + φ
(
u
)2
)−1

.

Let ‘Model 1’ be a constant parameter over space, i.e., φ
(
u
)

= φ = 0.9, ∀u ∈ [0, 1]2, and
‘Model 2’ to have a complex spatial AR(1) structure over space as illustrated in Figure 3.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 3: Spatial AR(1) parameter for the time series application. The value of the AR(1)
parameter at each spatial location ranges from 0.2 (black) to 0.99 (white color).

Table 1 gives the result of the Monte Carlo experiments on generated time series data for N =

128. Looking at the energy repartition for the logarithm of the true spatio-spectrum under Model
1, it is clear that all the information is just contained in the marginal function of frequency.
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Under the Model 2, one can realize that the difference in the energy in orientations involving
the space variable is pretty low. For what concerns the repartition estimation in the different
orientation, there is no problem for identifying the first leading orientation, nevertheless, under
model 2, we do not get a clear message about the second dominant orientation.

Model 1 Model 2
orientation i True repartition Estimated True repartition Estimated

(1,0,0) 0 0 (0.013) 0.1 0.1 (0.09)
(0,1,0) 0 0 (0.01) 0 0.1 (0.078)
(1,1,0) 0 0 (0.01) 0 0.1 (0.069)
(0,0,1) 100 99.9 (0.014) 91.8 90.5 (0.150)
(1,0,1) 0 0 (0.001) 4.9 3.3 (0.051)
(0,1,1) 0 0 (0.001) 3.1 5.9 (0.074)
(1,1,1) 0 0 (0.001) 0 0 (0.008)

Table 1: True vs Estimated repartition of the total energy (in %).

7 Discussion

In this paper we describe how the Sobol decomposition in relation to the geometry of the multi-
dimensional hyperbolic wavelet basis allows to build simple test statistics with impressive the-
oretical performance in the presence of anisotropic estimand. Appropriately combined, these
tests statistics allow to test for general structural properties such as the atomic dimension. We
determine the minimax rates for separating the null and alternative hypothesis for detecting the
Sobol functional component in cases of full or partial knowledge about the smoothness param-
eter. We propose two sequences of testing procedures that are based on different knowledges
of the smoothness parameter (full or partially known) and we show that they are asymptotically
optimal in the minimax sense. Interestingly we observe on the one hand that a loss of informa-
tion about the smoothness parameter is accompanied with a deterioration of the minimax rate of
separation; on the other hand the set of functions in the alternative hypothesis is larger. Finally,
we describe a methodology for a data driven version of the testing procedure and its application
to time series data.
In the context of time series analysis, we consider extending our application example to deal
with spatial and time non-stationary processes. We are therefore interested in spatial time-
varying spectrum of these processes. We can compute at every spatial locations an estimator
of the time-varying spectrum such as the preperiodogram (Neumann and von Sachs, 2000).
Neumann and von Sachs (1997) provide arguments about the asymptotic equivalence of the
preperiodogram estimation problem, the Gaussian white noise model and the multidimensional
nonparametric regression model so that our theory actually can easily be extended to this con-
text. Nevertheless, in a practical setting, the nature of the preperiodogram data requires to
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develop an adapted methodology for choosing the truncation scales. In combination with the
fully adaptive testing procedure, this method certainly encounters success for practical appli-
cations. Already in the context of estimation of the time-varying spectral density, the adaptive
smoothing of the preperiodogram is still an actual research topic (van Delft and Eichler, 2015).
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9 Appendix

9.1 Proof of Theorem 4.1

The proof of Theorem 4.1 is a direct consequence of Propositions 9.1 and 9.2 that respectively
deal with the upper bound and the lower bound of the minimax result.

Proposition 9.1 Under the same assumptions of Theorem 4.1, for any ε ∈ (0, εo),

sup
f∈Ni(R)

P f
(
∆i, j∗

(
tε,i,α

)
= 1

)
=
α

2
and sup

f∈Ai(R,C,s,rε,i)
P f

(
∆i, j∗

(
tε,i,α

)
= 0

)
≤
α

2

provided that C, which does not depend on ε, is large enough.

Proof: Consider ε ∈ (0, εo). Suppose that f ∈ Ni(R). Then ε−2Ti, j∗ has a Chi-Square distribution
with 2| j

∗ | degrees of freedom. Hence

P f

(
∆i, j∗

(
tε,i,α

)
= 1

)
= P f

(
Ti, j∗ > tε,i,α

)
= P f

(
ε−2Ti, j∗ > χ1− α2

(
2| j
∗ |
))

=
α

2
.

Suppose now that f ∈ Ai(R,C, s, rε,i). Then ε−2Ti, j∗ is a noncentral Chi-Square distribution with

2| j
∗ | degrees of freedom. Moreover, if V i

j∗ characterizes the following linear span of{
ψ

i
j,k : j ∈ Ji : ju < max( j∗u, 1),∀u and k ∈ K j

}
,

then,

E f (Ti, j∗) = ε22| j
∗ | +

∑
j∈Ji: ju<max( j∗u,1),∀u

∑
k∈K j

(
θ

i
j,k

)2
= ε22| j

∗ | + ‖Pro j
V

i
j∗

( fi)‖22,

Var f (Ti, j∗) = 2ε42| j
∗ | + 4ε2

∑
j∈Ji: ju<max( j∗u,1),∀u

∑
k∈K j

(
θ

i
j,k

)2
= 2ε42| j

∗ | + 4ε2‖Pro j
V

i
j∗

( fi)‖22.
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By considering the Cramér-Chernoff method (see Chapter 2 of Massart, 2003), we easily ob-
tain the following concentration inequality for the noncentral Chi-Square distribution with 2| j

∗ |

degrees of freedom,

P f

(
E f (Ti, j∗) − Ti, j∗ ≥ u

)
≤ exp

− u2

2Var f (Ti, j∗)

 , ∀u > 0.

So,

P f

(
∆i, j∗

(
tε,i,α

)
= 0

)
= P f

(
Ti, j∗ ≤ tε,i,α

)
= P f

(
E f (Ti, j∗) − Ti, j∗ ≥ E f (Ti, j∗) − tε,i,α

)
≤ exp

−
(
E f (Ti, j∗) − tε,i,α

)2

2Var f (Ti, j∗)


= exp

−
ε22| j

∗ | + ‖Pro j
V

i
j∗

( fi)‖22 − tε,i,α

2

4ε42| j
∗ | + 8ε2‖Pro j

V
i
j∗

( fi)‖22


= exp

−
ε22| j

∗ | + ‖ fi‖
2
2 − ‖ fi − Pro j

V
i
j∗

( fi)‖22 − tε,i,α

2

4ε42| j
∗ | + 8ε2‖ fi‖

2
2

 .
Remark that fi belongs to Bs

2,∞(R) because f does.

Since ‖ fi‖
2
2 ≥ C2r2

ε,i and χ1− α2

(
2| j
∗ |
)
≤ 2| j

∗ | + 2
(
2| j
∗ | log(2α−1)

) 1
2 (see the exponential inequality

for Chi-Square distribution given in Lemma 1 of Laurent and Massart, 2000), one gets,(
− log

(
P f

(
∆i, j∗

(
tε,i,α

)
= 0

)))−1

≤
4ε42| j

∗ |
+ 8ε2‖ fi‖22ε22| j

∗ |
+ ‖ fi‖22 − ‖ fi − Pro j

V
i
j∗

( fi)‖22 − tε,i,α

2

≤
4ε42| j

∗ |
+ 8ε2‖ fi‖22(

ε22| j
∗ |

+ ‖ fi‖22 − R22−2| j∗ |γi − tε,i,α
)2

≤
4ε42| j

∗ |(
(C2 − R2)2−2| j∗ |γi − 2ε2

(
2| j
∗ | log(2α−1)

) 1
2

)2 +
8ε2‖ fi‖22(

‖ fi‖22 − R22−2| j∗ |γi − 2ε2
(
2| j
∗ | log(2α−1)

) 1
2

)2

=
4ε42(1+4γi)| j∗ |(

C2 − R2 − 21+
|i|
2
(
log(2α−1)

) 1
2

)2 +
8C4ε2‖ fi‖−2

2(
C2 − R2 − 21+

|i|
2
(
log(2α−1)

) 1
2

)2

≤
22+(1+4γi)|i| + 8C2e

− 2e
1+4γi(

C2 − R2 − 21+
|i|
2
(
log(2α−1)

) 1
2

)2 (15)

≤
(
log

(
2α−1

))−1
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provided that C ≥ Ci,α. The constant Ci,α is the largest value of C such that the last inequality
can be replaced by an equality. That leads to P f

(
∆i, j∗

(
tε,i,α

)
= 0

)
≤ α

2 for any C large enough.
As Ci,α does not depend on ε, we deduce that the inequalities obtained are uniform in f .

Note that the smaller α the larger Ci,α. This remark is not a surprise obviously because when α
is chosen to be small, the problem of detection becomes harder. Nevertheless the order of the
minimax rate does not depend on α. We also note that (15) is obtained because we assumed that
ε < e−e.

Proposition 9.2 Under the same assumptions of Theorem 4.1, for any ε ∈ (0, εo),

inf
∆

 sup
f∈Ni(R)

P f (∆ = 1) + sup
f∈Ai(R,C,s,rε,i)

P f (∆ = 0)

 > α
provided that C, which does not depend on ε, is small enough.

Proof: For any ε ∈ (0, εo) let us consider

fζ =
∑

k∈K j∗

θ
i
j∗,kψ

i
j∗,k =

∑
k∈K j∗

L
d∏

u=1

2− j∗u(γi+
1
2 )ζk

ψi
j∗,k

where L > 0 and ζk ∈ {−1, 1} for any k. The values j∗u are chosen as in the upper bound. We
recall that

2− j∗u ≤ ε
4iuγi

(1+4γi)su < 21− j∗u , ∀ u = 1, . . . , d.

First we check that fζ is in the alternative, that is to say it belongs to the Besov ball of radius R
with the expected parameter of regularity and it is separated from 0 sufficiently. According to
the definition of the Besov ball with radius R, we have to check that

max
1≤u≤d
{22 j∗u su}

∑
k∈K j∗

∣∣∣∣θi
j∗,k

∣∣∣∣2 < R2.

Because of our choice of θi
j∗,k, we have

max
1≤u≤d
{22 j∗u su}2

∑d
u=1 j∗u L2

d∏
u=1

2−2 j∗u(γi+
1
2 ) = L2 max

1≤u≤d
{22 j∗u su}

d∏
u=1

2−2 j∗uγi ≤ 2
min
1≤u≤d

su
L2.

A first condition on the constant L is that it has to be chosen smaller than R
√

2minu su
. It ensures that

fζ belongs to the Besov ball under consideration.
Next we compute the square of the L2-distance between fζ and 0. We have

∑
k∈K j∗

(
θ

i
j∗,k

)2
= L2

d∏
u=1

2−2 j∗uγi

≥ L22−2|i|γiε
8γi

4γi+1 .
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Therefore L has to be larger than 2|i|γiC. This kind of choice guarantees that ‖ fζ‖2 ≥ Crε,i

Following Propositions 2.11 and 2.12 of Ingster and Suslina (2003), we have that:

inf
∆

 sup
f∈Ni(R)

P f (∆ = 1) + sup
f∈Ai(R,C,s,rε,i)

P f (∆ = 0)

 ≥ 1 −
1
2

√
E

((
Eπ

(
L fζ

))2
)
− 1 (16)

where π is any prior probability measure concentrated on the set of alternativesAi

(
R,C, s, rε,i

)
and

L fζ = exp
(
ε−2

∫
fζ(x) dY(x) −

1
2
ε−2

∫
fζ(x)2 dx

)
.

Therefore, according to (16), it suffices to prove that for judicious choices of π we can get

E
((
Eπ

(
L fζ

))2
)
< 4(1 − α)2 + 1. (17)

We consider now the probability measure π such that the ζk’s are independent Rademacher
random variables with parameter 1

2 . Note that

L fζ = exp
(
ε−2

∫
fζ(x) dY(x) −

1
2
ε−2

∫
fζ(x)2 dx

)
= exp

−1
2
ε−2L22| j

∗ |

d∏
u=1

2−2 j∗u(γi+
1
2 )

 ∏
k∈K j∗

exp

ε−1L ζk ξ
i
j∗,k

d∏
u=1

2− j∗u(γi+
1
2 )

 .
As a first step we take the expectation according to the prior probability measure π.

Eπ
(
L fζ

)
= exp

−1
2
ε−2L22| j

∗ |

d∏
u=1

2−2 j∗u(γi+
1
2 )


×

∏
k∈K j∗

1
2

exp

ε−1L ξi
j∗,k

d∏
u=1

2− j∗u(γi+
1
2 )

 + exp

−ε−1L ξi
j∗,k

d∏
u=1

2− j∗u(γi+
1
2 )

 .
As a second step we take the expectation according to the independent standard Gaussian ran-
dom variables ξi

j∗,k:

E
((
Eπ

(
L fζ

))2
)

=
∏
k∈K j∗

cosh

ε−2L2
d∏

u=1

2− j∗u(2γi+1)

 (18)

≤ exp

1
2

2| j
∗ |ε−4L4

d∏
u=1

2−2 j∗u(2γi+1)


≤ exp

(
L4

2

)
< 4(1 − α)2 + 1.

The last inequality is obtained by choosing L < min
((

2 log(1 + 4(1 − α)2)
) 1

4
, R
√

2minusu

)
. So (17)

is proved, when considering C small enough, that is C ≤ ci,α = 2−|i|γi L.
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9.2 Proof of Theorem 4.2

The proof of Theorem 4.2 follows the same path as the proof of Theorem 4.1. It is a direct
consequence of Proposition 9.3 and Proposition 9.4 that respectively deal with the upper bound
and the lower bound of the minimax result.

Proposition 9.3 Under the same assumptions of Theorem 4.2, for any ε ∈ (0, εo),

sup
f∈Ni(R)

P f

(
∆i,max

(
t′ε,i,γi,α

)
= 1

)
≤
α

2
and sup

s:
∑

u iu s−1
u =γ−1

i

sup
f∈Ai

(
R,C,s,r′ε,i

)P f

(
∆i,max

(
t′ε,i,γi,α

)
= 0

)
≤
α

2

provided that C, which does not depend on ε, is large enough.

Proof: Consider ε ∈ (0, εo). Suppose that f ∈ Ni(R). Then, for any j ∈ Ji, ε−2Ti, j has a
Chi-Square distribution with 2| j| degrees of freedom. Hence

P f

(
∆i,max

(
t′ε,i,γi,α

)
= 1

)
= P f

 max
j∈Ji:| j|=Ji

∆i, j

(
t′ε,i,γi,α

)
= 1


≤

∑
j∈Ji:| j|=Ji

P f

(
∆i, j

(
t′ε,i,γi,α

)
= 1

)
=

∑
j∈Ji:| j|=Ji

P f

(
Ti, j > t′ε,i,γi,α

)
=

∑
j∈Ji:| j|=Ji

α

2Kγi

=
α

2
.

Suppose now that f ∈ Ai(R,C, s, r′ε,i) where s :
∑

u ius−1
u = γ−1

i . Then, for any fixed j′ ∈ Ji

such that | j′| = Ji, ε−2Ti, j′ is a noncentral Chi-Square distribution with 2Ji degrees of freedom.

Hence, if V i
j′ characterizes the following linear span of{

ψ
i
j,k : j ∈ Ji : ju < max( j′u, 1),∀u and k ∈ K j

}
,

then,

P f

(
∆i,max

(
t′ε,i,γi,α

)
= 0

)
≤ P f

(
Ti, j′ ≤ t′ε,i,γi,α

)
= P f

(
E f (Ti, j′) − Ti, j′ ≥ E f (Ti, j′) − t′ε,i,γi,α

)
≤ exp

−
(
E f (Ti, j′) − t′ε,i,γi,α

)2

2Var f (Ti, j′)


= exp

−
ε22Ji + ‖Pro j

V
i
j′
( fi)‖22 − t′ε,i,γi,α

2

4ε42Ji + 8ε2‖Pro j
V

i
j′
( fi)‖22

 .
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Since ‖ fi‖
2
2 ≥ C2(r′ε,i)

2 and χ1−α/2Kγ

(
2Ji

)
≤ 2Ji + 2

(
2Ji log(2α−1Kγi)

) 1
2 (see Laurent and Massart,

2000) with (K0 log ε−1)|i|−1 ≤ Kγi ≤ (K1 log ε−1)|i|−1 for some K0,K1 > 0, when computing
similar calculus as in the non adaptive framework, we get(
− log

(
P f

(
∆i,max

(
t′ε,i,γi,α

)
= 0

)))−1

≤
4ε42Ji + 8ε2‖ fi‖22ε22Ji + ‖ fi‖22 − ‖ fi − Pro j

V
i
j′

( fi)‖22 − t′ε,i,γi,α

2

≤
4ε42Ji + 8ε2‖ fi‖22(

ε22Jγ + ‖ fi‖22 − R22−2Jiγi − t′ε,i,γi,α

)2

≤
4ε42Ji + 8ε2‖ fi‖22(

‖ fi‖22 − R22−2Jiγi − 2ε2
(
2Ji log(2α−1Kγi

) 1
2

)2

=
4ε42(1+4γi)Ji(

C2 − R2 − 2
3
2
(
log(2α−1) + d(log K1 + 1)

) 1
2

)2 +
8C4ε2‖ fi‖−2

2(
C2 − R2 − 2

3
2
(
log(2α−1) + d(log K1 + 1)

) 1
2

)2

≤
22+(1+4γi)(log log ε−1)−1(

C2 − R2 − 2
3
2
(
log(2α−1) + d(log K1 + 1)

) 1
2

)2 +
8C4ε2‖ fi‖−2

2(
C2 − R2 − 2

3
2
(
log(2α−1) + d(log K1 + 1)

) 1
2

)2

≤
22+(1+4γi) + 8C2e

− 2e
1+4γi(

C2 − R2 − 2
3
2
(
log(2α−1) + d(log K1 + 1)

) 1
2

)2 (19)

≤
(
log

(
2α−1

))−1

provided that C ≥ C′i,α. The constant C′i,α is the value of C for which the last inequality can be

replaced by an equality. That leads to P f

(
∆i,max

(
t′ε,i,γi,α

)
= 0

)
≤ α

2 for any C large enough. As
C′i,α does not depend on ε, we deduce that the inequalities obtained are uniform in f . We also
note that (19) is obtained because we assumed that ε < e−e.

Note, once again, that the smaller α the larger C′i,α.

Proposition 9.4 Under the same assumptions of Theorem 4.2, for any ε ∈ (0, εo),

inf
∆

 sup
f∈Ni(R)

P f (∆ = 1) + sup
s:

∑
u iu s−1

u =γ−1
i

sup
f∈Ai

(
R,C,s,r′ε,i

)P f (∆ = 0)

 > α
provided that C, which does not depend on ε, is small enough.

Proof: For any ε ∈ (0, εo) let us consider the family of d-uple J =
{
j ∈ Ji : | j| = Ji

}
.

Remember that:



This version January 30, 2017 26

• Ji is such that 2−Ji ≤
(
ε4 log log ε−1

) 1
1+4γi < 21−Ji ,

• #J = Kγi ≥ (K0 log ε−1)|i|−1 for some K0.

For j ∈ J , define

fζ, j =
∑
k∈K j

θ
i
j,kψ

i
j,k =

∑
k∈K j

L
d∏

u=1

2− ju(γi+
1
2 )ζk

ψi
j,k

where L > 0 and ζk ∈ {−1, 1} for any k.
As in the proof of Proposition 9.2, we can easily check that fζ, j is in the alternative, provided
that 2γC ≤ L ≤ R√

2γi
.

Since

inf
∆

 sup
f∈Ni(R)

P f (∆ = 1) + sup
s:

∑
u iu s−1

u =γ−1
i

sup
f∈Ai

(
R,C,s,r′ε,i

)P f (∆ = 0)

 ≥ 1 −
1
2

√√√√√√
E


 1

Kγ

∑
j∈J

Eπ′
(
L fζ, j

)
2 − 1(20)

where π′ is a prior probability measure concentrated on the set of alternatives Ai

(
R,C, s, r′ε,i

)
and

L fζ, j = exp
(
ε−2

∫
fζ, j(x) dY(x) −

1
2
ε−2

∫
fζ, j(x)2 dx

)
.

Therefore, according to (20), it suffices to prove once again that for judicious choices of π′ we
can get

E


 1

Kγ

∑
j∈J

Eπ′
(
L fζ, j

)
2 =

1
K2
γ

E
∑
j∈J

(
Eπ′

(
L fζ, j

)2
)
< 4(1 − α)2 + 1. (21)

The left hand equality is due to the orthogonality of the hyperbolic wavelets.
We consider now the probability measure π′ such that the ζk’s are independent Rademacher ran-
dom variables with parameter 1/2. Similarly to (18), we can easily get the following inequality

E
((
Eπ′

(
L fζ, j

))2
)

=
∏
k∈K j

cosh

ε−2L2
d∏

u=1

2− ju(2γi+1)


≤ exp

1
2

2Jiε−4L4
d∏

u=1

2−2 ju(2γi+1)


≤ exp

(
L4

2
log log ε−1

)
≤

(
log ε−1

) L4
2
.

Since Kγi ∼ (K log ε−1)|i|−1, we get the following inequalities:
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1
K2
γi

E
∑
j∈J

(
Eπ′

(
L fζ, j

)2
)
≤

1
K2
γi

E
∑
j∈J

(
log ε−1

) L4
2

= K−1
γi

(
log ε−1

) L4
2

≤ K1−|i|
0

(
log ε−1

)1−|i|+ L4
2

≤ K1−|i|
0 e1−|i|+ L4

2

< 4(1 − α)2 + 1.

The last two inequalities are obtained by choosing

L < min
((

2 log(K |i|−1
0 (1 + 4(1 − α)2)) + 2(|i| − 1)

) 1
4
,

R
√

2γi

)
and by assuming that ε < e−e. So (21) is proved, when considering C small enough, that is
C ≤ c′i,α = 2−γi L.

Following the proofs of Propositions 9.1 to 9.4, it clearly appears that there is a relationship
between the constants C,R and the level α. Moreover, as the threshold values tε,i,α and t′ε,i,γi,α

of our sequence of testing procedures depend on α, it also means that they are related to the
constants C and R. From a theoretical point of view, we decided to fix the constant R and
the level α and we exhibit the constant C leading to the required level. Nevertheless, from a
practical point of view, one can think of fixing two of these constants and get some information
about the third one.
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