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Abstract

We consider an infinite number of one-dimensional bilinear Schrédinger
equations on a segment. We prove the simultaneous local exact con-
trollability in projection for any positive time and the simultaneous
global exact, controllability in projection for sufficiently large time.
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1 Introduction

Let .2 be an infinite dimensional Hilbert space. In quantum mechanics,
any statistical ensemble can be described by a wave function (pure state)
or by a density matrix (mixed state) which is a positive operator of trace 1.
For any density matrix p, there exists a sequence {1;};en C 2 such that

1) p=2 LWl > =1, ;>0 VjeN.

jeN jEN



The sequence {¢;}jen is a set of eigenvectors of p and {l;}cn are the corre-
sponding eigenvalues. If there exists jo € N such that I;, =1 and [; = 0 for
each j # jo, then the corresponding density matrix represents a pure state
up to a phase. For this reason, the density matrices formalism is said to be
an extension of the common formulation of the quantum mechanics in terms
of wave function.

Let us consider T' > 0 and a time dependent self-adjoint operator H ()
(called Hamiltonian) for ¢ € (0,7)). The dynamics of a general density
matrix p is described by the Von Neumann equation

@ i) = [H(1), p(t)], te(0,7),

p(0) = p°, ((H,p] = Hp— pH),
for p° the initial solution of the problem. The solution is p(t) = Uyp(0)U},
where U, is the unitary propagator generated by H(t), i.e.

L0, = —iH(t)U, te (0,7),
Up = Id.

In the present work, we consider .7 = L?((0,1),C) and H(t) = A +
u(t)B, for A = —A the Dirichlet Laplacian (i.e. D(A) = H2N H}), B a
bounded symmetric operator and u € L?((0,T),R) control function. From
now on, we call I'} the unitary propagator U; when it is defined. The
problem (2) is said to be globally exactly controllable if, for any couple
of unitarily equivalent density matrices p! and p?, there exist 7' > 0 and
u € L?((0,T),R) such that p? = I'*p!(I'%)*. Thanks to the decomposition
(1), the controllability of (2) is equivalent (up to phases) to the simultaneous
controllability of the Cauchy problems in 7

3
¥ ;(0) = 42, Vi€ N.

{wﬁpj(t) — Adj(t) + u(t)Byy(t), e (0,T),

The state z/)? is the j-th eigenfunction of p° corresponding to the eigenvalue
Aj and p0 = > )\j|1/1?><1/)?|. The j-th solution of (3) is v;(t) = I‘}JQ/)?.
To this purpose, we study the simultancous global exact controllability of
infinitely many problems (3) and we only rephrase the results in terms of
the density matrices.

The controllability of the bilinear Schrodinger equation (3) has been
widely studied in the literature and we start by mentioning the work on the
bilinear systems of Ball, Mardsen and Slemrod [BMS82]. In the framework
of the bilinear Schrédinger equation, for B : D(A) — D(A), the work shows
the well-posedness of (3) in 2 for controls belonging to L} (R,R) and an
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important non-controllability result. In particular, let S be the unit sphere
in S and

Z(ho) = {tp € D(A)| 3T >0, Ir > 1,Fu € L"((0,T),R) : b =TT}

For every 99 € SND(A), the attainable set Z (1)) is contained in a countable
union of compact sets and it has dense complement in S N D(A).

Despite this non-controllability result, many authors have addressed the
problem for weaker notions of controllability. We call M,, the multiplication
operator for a function p € S and Hfo) := D(|A|3) for s > 0.

For instance in [BL10], Beauchard and Laurent improve the work [Bea05]
and they prove the local exact controllability of (3) in a neighborhood of the
first eigenfunction of A in SN H, (30) when B = M, for a suitable u € H?.
The global approximate controllability in a Hilbert space has been studied
by Boscain, Caponigro, Chambrion, Mason and Sigalotti in [BCCS12] and
[CMSBO09]. In both, simultaneous global approximate controllability results
are provided.

Morancey proves in [Morl4] the simultaneous local exact controllability in
SNH (30) for at most three problems (3) and up to phases, when B = M, for

suitable p € H3.

In [MN15], Morancey and Nersesyan extend the result. They provide the
existence of a residual set of functions @ in H* so that, for B = M,, and
1 € @, the simultaneous global exact controllability is verified for any finite
number of (3) in H(‘lv) = D(|A+V|?) for V € H*.

In the present work, we use part of the notations of [BL10], [Mor14],
[MN15] and we carry on the previous results. We provide explicit conditions
in B that imply the simultaneous global exact controllability in projection
of infinitely many problems (3) in H (30) by projecting onto suitable finite
dimensional subspaces of H, (30). Another goal of this work is to prove the
simultaneous local exact controllability in projection for any positive time
T > 0 up to phase-shifts. We use different techniques from the Coron’s
return method usually adopted for those types of results, e.g. [Morl4] and
[MN15]. Indeed, in the appendix we develop a perturbation theory technique
that we use in order to get rid of an issue appearing in the proof of the
local controllability: the “eigenvalues resonances”. The formulation of the
controllability for orthonormal basis allows to provide the result in terms of
density matrices and unitarily equivalent sets of functions.

1.1 Framework and main results

We denote /# = L%((0,1),C), its norm || - || and its scalar product (-,-).
The operator A is the Dirichlet Laplacian, i.e. A = —%22 and D(A) =
HZ((0,1),C)NH?((0,1),C). The control function u belongs to L2((0, 7)), R)

and B is a bounded symmetric operator.



We consider an Hilbert basis {¢;};en composed by eigenfunctions of A re-
lated to the eigenvalues {\;};en and we have

(4) ¢;(t) = e Mgy = TN,
Let us define the spaces for s > 0

[e @)

1
Hiyy = Hipy(0,10,€) i= D(AD), (|-l = - g, = (184 00012) 7,
k=1

208 = {{¥5hien © 2| sup 5]l < oo},

W) = {{Uihien © 2] 3G 5])? < oo}
j=1

We call H® := H*((0,1),C), H§ := H§((0,1),C) and, for N € N
(5) N = {(,k) eNx{1,..,N}:j#k}.

Assumptions (I). The bounded symmetric operator B satisfies the follow-
ing conditions.

1. For any N € N, there exists Cy > 0 so that for every j < Nand k € N
[(n, Bo;)| > On /K.

2. Ran(B|H(20)) C H(20) and Ran(B|H(30)) C H3n H.

3. For every N € N and (j, k), (I, m) € IV such that (j,k) # (I,m) and
J2 = k? — 17 + m? = 0, there holds (¢;, Bo;) — (dr, Bow) — (¢, Bdy) +
<¢m7 B¢m> # 0'

Remark 1.1. If a bounded operator B satisfies Assumptions I, then B €
L(H?O),H(%)). Indeed, B is closed in J, so for every {up}nen C H such

that uy, 2w and Bu, N v, we have Bu = v. Now, for every {uytnen C

2 2
H(20> such that u,, IE u and Bu,, Hﬂg v, the convergences with respect to the
FC-norm are implied and Bu = v. Hence, the operator B is closed in H(QO)
and B € L(H?O),H(ZO)). The same argument leads to B € L(H(?’O),H?’ N HY)
since Ran(B|H(30)) C H3n oy}

Example 1.2. Assumptions I are satisfied for B : 1) — 2%¢. Indeed, the
condition 2) is trivially verified, while the first directly follows by considering
(=1)7+*

(65,2200 = | (e — e, ik,

[(6r2%01) | = |§ = 32, keN.
The point 3) holds since for (j, k), (I,m) € IN so that (j, k) # (I,m)
Pk -PrmiP=0 = 2k -124m 240




Let ¥ := {¢j}jen C A and AN (V) = span{v; : j < N}. We define
7N (P) the orthogonal projector onto sy (¥).

Definition 1.3. The problems (3) are simultaneously globally exactly con-
trollable in projection in H(BO) if there exist 7' > 0 and ¥ := {¢;}jen C A
such that the following property is verified. For every {1/1]1 }ien, {z/)?} jen C

H (30> unitarily equivalent, there exists u € L?((0,7T),R) such that

(6) TN (07 =y (U, vjeN.
In other words, (¢x,9%) = (i, [44)}) for every j,k € Nand k < N.

Definition 1.4. Let us define

Ocr :={{¢j}jeN C Hipy| (5, 9k) = 05 sup |95 — 65(T)ll3) < 6}-
jeN

The problems (3) are simultaneously locally exactly controllable in pro-
jection in O.p C H(Bo) up to phases if there exist ¢ > 0, T" > 0 and
U = {¢;}jen € O such that the following property is verified. For every
‘W’}b’eN € O, there exist {0;};en C R and u € L*((0,T),R) such that

N (Q)) = v (L) Ty, ViEN.
In other words, (¥, 1/);> = €5 (yy,, Ip;) for every j.k € Nand k < N.

Let U(52) be the space of the unitary operators on .#. We present the
simultaneous local exact controllability in projection for any I' > 0 up to
phases.

Theorem 1.5. Let B satisfy Assumptions I. For every T > 0, there ex-
ist € > 0 and ¥ = {¢;}jen € Ocr such that the following holds. For
any {7/{,1-}3‘61\1 € O and = U(S) such that {fz/)}}jeN = {¢j}jen, if
{fcﬁj }jEN C H?o)v then there exist {0;}j<n C R and u € L?((0,T),R) such
that

T (U)o = T ()T j<N,
T (U)o} = T (U)T%;, j>N.
Proof. See Proposition 2.1. O

Now, we present the simultaneous global exact controllability in projec-
tion up to phases in the components.

Theorem 1.6. Let B satisfy Assumptions I and W3 = {Q/J?}jeN - H(30)
be an orthonormal system. Let {z/zjl}jeN, {T/J?}jeN; C H(z’;]) be complete or-
thonormal systems so that there exists I' € U(S) such that {FT/JJQ-}J‘GN =

5



{w}}jeN- If {fz/;?}jEN C H(?’O), then for any N € N, there exist T > 0,
u € L*((0,7),R) and {0k }r<n C R such that

(7) e, vf) = (Wi Ti).  VikeEN, k<N
Proof. See Section 3. O

In Theorem 1.6, if U3 = 2, then T} € Hpy. As e (g2, 4?) =
gy = e <@ZJ%,¢?> for every j, k € N, the relation (7) becomes

TN (U?) €92 = mn (U2)Tap) j<N,
TN (U?) 7 = mn (U2, j>N.

As W2 is composed by orthogonal elements, then ﬂN(\II2)wJ2- = 1/1]2 when
j < N, otherwise 771\;(\112)1/)]2 = 0. Then the next corollary follows.

Corollary 1.7. Let B satisfy Assumptions I. Let Ul := {%l'}jeNa U2 =
{T/)Jz}jeN - H(g’o) be complete orthonormal systems. For any N € N, there
exist T >0, u € L*((0,T),R) and {0;}j<n C R such that

Thapi = ey, J<N,
7N (0?) T} =0, j>N.

Remark. One can notice that Corollary 1.7 implies the simultaneous global
exact controllability (without projecting) of N bilinear Schrédinger equa-
tions. As we have mentioned before, a similar result is proved by Morancey
and Nersesyan in [MN15, Main Theorem]. They prove the existence of a
class of multiplication operators B that quarantees the validity of the result.
Howewver, Corollary 1.7 provides a novelly as we are able to explicit condi-
tions in B implying the controllability. Given any bounded operator B, one
can verify if those assumptions are satisfied, e.g. B = 2.

Let Pqﬂ; be the projector onto the orthogonal space of ¢; and the operator

BOMJ) = B0y - ],) (0 - ),.) 'PEB) PE

for M,j5 € N. When (A, B) satisfies Assumptions I and the following as-
sumptions, the phase ambiguities {6;};<ny C R appearing in Theorem 1.6
can be removed. Let 0™ be the null vector in Q™ with n € N.
Assumptions (A). If for every N € N there exists {r;}o<j<ny € QVF1\
ON+1 such that ro + Zﬁvzl rjAj = 0, then cither we have Zﬁvzl r;Bjj # 0,
or there exists M € N such that Z;v:1 ri{¢j, B(M,j)¢;) # 0.



Remark. When the operator B is such that {Bj ;};<n are rationally inde-
pendent with N € N, the Assumptions A are verified as, for any {r;}o<;j<nQN 1\
ONFL, there holds Zjvzl riBj; # 0.

Theorem 1.8. Let N € N. Let B satisfy Assumptions I and Assumptions
A. LetA\Il3 = {1/15’}]-61\1 C Hgo)Acmd {1/1}}]-61\1, {@/sz}jeN, CAH(30) such that there
caists U € U(A) such that {T92}jen = {0} }jen. If {T¢3}jen © H(?;)), then
there exist T > 0 and u € L2((0,T),R) such that

N (9%) ¢F = oy (0°) Thef,  jeN.
Proof. See Paragraph 3. O

Remark. If U3 = U2, then the same result of Corollary 1.7 is also provided
when B satisfies Assumptions A thanks to Theorem 1.8.

1.2 Well-posedness

We mention now the crucial result of well-posedness for the problem in .77
0 (t) = Ap(t) + u(t)ub(t),
$(0) = 47, te (0,7).

Proposition 1.9. [BL10, Proposition 2] Let p € H3, T > 0, ¢V ¢ Hgo)

and v € L*((0,T),R). There exists a unique mild solution of (8) in HE‘O),
i.e. ¥ € CO[0,T], Hy,) so that

(8)

t
(0) b(t.2) = 0w [ (sl s, Ve 0T
0

Moreover, for every R > 0, there exists C = C(T,u, R) > 0 such that,
if lullzzomryr) < R, then, for every Y0 € H3. . the solution satisfies

(0)’
[lleoqormmg,) < CllY°l sy and %) = 4Nl for every t € [0,T).

The result of Proposition 1.9 is also valid if one substitute u € H® with
B € L(H(BO),H 3N H}Y). When B satisfies Assumptions I, we know that

B € L(H (30),H 31 H}) (see Remark 1.1) and there exists a unique mild
solution of (3) in H ?0) so that

t
it z) = e_’Atzp?(a:) — z/ e A=y (5) B (s, ) ds.
0
In conclusion, for every {t;};en € KOO(H?O)) (respectively in hS(H(SO))), it
follows that {I"}e);}jen € £7°(H, (30)) (respectively in h3(H ?0))).
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1.3 Time reversibility

An important feature of the bilinear Schrédinger equation is the time re-
versibility. If we substitute ¢ with T'—¢ for 7" > 0 in the bilinear Schrodinger
equation (3), then we obtain

i 0 = —ATY._ 0 — u(T — t)BI'%_ 4", te (0,7),
r%_OwO _ r%wo — wl'

We define T such that ['%_ 40 = T¥p! for a(t) := u(T — t) and

(10) O it = (—A — a(t) B)Liqp?, te (0,T),
Ty =y,

Thanks to 9 = f%Fl}z/;O and ! = I”jﬂl:gﬂ/)l, it follows fl} = (T%)~! =

(T'%)*. The operator I'{ describes the reversed dynamics of I'}* and represents

the propagator of (10) generated by the Hamiltonian (—A — u(t)B).

1.4 Scheme of the work

In Section 2, we provide Proposition 2.1 and its proof. The proposition ex-
tends Theorem 1.5 and it ensures the simultaneous local exact controllability
in projection for any positive time up to phases. In order to motivate the
modification of the problem, we emphasize the obstructions to overcome.
In Section 3, we provide the simultaneous global approximate controllability
of N problems (3) in Proposition 3.3, then the simultaneous global exact
controllability of N (3) (Proposition 3.4). Those results lead to the proofs
of Theorem 1.6 and Theorem 1.8, while in Section 4, we provide the main
result in terms of density matrices.

In Appendix 1.3, we explain the time reversibility of the (3), while in Ap-
pendix A, we briefly discuss the solvability of the moment problems.

In Appendix B, we develop the perturbation theory technique adopted in
the work.

2 Simultaneous locale exact controllability in pro-
jection for 7" > 0

2.1 Preliminaries

In this section, we discuss the simultaneous local exact controllability in
projection. We explain first why we modify the problem.

Let ® = {¢;}jen be an Hilbert basis composed by eigenfunctions of A.
We study the local exact controllability in projection in O, with respect
to mn(®). Let Ty = > 07 ¢k(T){(ox(T), T} ¢;) be the solution of the j-th



(3). We consider the map a(u), the infinite matrix with elements ay ;(u) =
(or(T),T%j), for every k,j € N and k& < N. Our goal is to prove the
existence of € > 0 such that for any {¢;}jen € Or, there exists u €
L?((0,T),R) such that

N (P)Th¢; = nn (@), VjeN

This outcome is equivalent to the local surjectivity of o for T" > 0. To this
end, we want to use the Generalized Inverse Function Theorem ([Lue69,
Theorem 1; p. 240]) and we study the surjectivity of v(v) := (d,(0)) - v,
the Fréchet derivative of « the infinite matrix that, for j,k € Nand k£ < N,

T T

Yij(v) 1 = <¢k(T), —i/ e_iA(T_S)v(s)Be_iAs¢jds> = —i/ v(s)e_i()‘f_)‘k)sdsBkyj,
0 0

for By ; = (¢r, Boj) = (Bor.¢j) = Bjj. The surjectivity of v consists in

proving the solvability of the moment problem

Tk T il —
(11) =21 = —z/ u(s)e MRS g
By j 0
for each infinite matrix x, with elements xy, ;, belonging to a suitable space.
One would use Haraux Theorem as explained in Remark A.1 ([KLO5, Theorem 4.6])
but the eigenvalues resonances occur: for some j, k,n,m € N, (j, k) # (n,m)
and k,m < N, there holds \; — Ay, = A, — Ay, which implies

Thy -/T i -AR)S e -/T —iOn=Am)s g _ Tnm

—= = u(s)e "N TMIdg = —4 u(s)e T AmSdg = ——
Bk,j 0 0 Bn,m

An example is \y — A\ = Ag — Ay, but they also appear for all the diagonal
terms of v since A; — A\, = 0 for j = k.

We avoid the problem by adopting the following procedure. First, we de-
compose A+u(t)B = (A+ugB)+ui(t)B for ug € R and uy € L2((0,T),R).
We consider A + ugB instead of A and we modify the eigenvalues gaps by
using ugB as a perturbating term in order to remove all the non-diagonal
resonances. Second, we redefine « in a map @ depending on the parameter
ug. We introduce a® by acting phase-shifts in order to remove the reso-

nances on the diagonal terms, i.e. Jj(t, x) = %%wj(t,m), which implies

o (u) = 4 A (w)-

2.2 The modified problem

Let N € N and u(t) = ug + ui(t), for ug and u;(t) real. We introduce the
following Cauchy problem
(12) i@t@/}j (t)=(A+ UQB)Q/JJ' (t) + Ul(t)BQ/)j (t), te(0,7), jeN,

Y =1;(0).



Its solutions are v;(t) = F;‘O"’"lz/;?, where T}°T"! is the unitary propagator
of the dynamics, which is equivalent to the one of the problems (3).

As B is bounded, A 4 ugB has pure discrete spectrum. We call {)\}LO }ien
the eigenvalues of A 4+ upB that correspond to an Hilbert basis composed
by eigenfunctions ®“0 := {¢"};en. We set ¢7°(T) := e_z’\JOT¢>;.‘° and

Ol = {{(skien < Hio| (s w) = Gias supllsy = 657D < o}

We choose |ug| small so that A\;® # 0 for every k € N (Lemma B.4, Appendix
B). The introduction of the new Hilbert basis imposes to define H (30) =

1
D(|A+u0B|%) equipped with |- ||;I(30> = (chzl ||)\ZO|%<'7¢I€>|2) *. However,
from now on, due to Lemma B.6 (Appendix B), we have H (30) =H (30).

We define a, the infinite matrices with elements for £ < N and j € N
such that ay, ;(u1) = (¢.° (1), F;ﬂ”“lqb?% and the map a0 with elements

u a(m) ~ .
(13) {ak?j(m) 3 Can)] ke (1), Jik <N,
O!Z?J(Ul) = ak,](u1)7 ] > ‘]\]’7 k< N.

Now, the local surjectivity of the map a¥° in a suitable space is equivalent
to the simultaneous local exact controllability in projection up to N phases
on OgOOT for a suitable ¢y > 0 since for j € N,

io, . 05(u1)

(14) 7y (dU)elThot gto =N " g0 (T) a0 (ug), e :
o Z k3 @, (u1)

Let v“0(v) = ((dy,@")(0))-v be the Fréchet derivative of a“® and B”OJ =
(¢, Bo;®) for k < N and j € N. Defined 7,;(v) = ((dy,@)(0)) - v, we
compute v (v) such that 1% = (3;,0k,j +73k,j — Or,;R(7;,;)) when j,k <N,
while 71?2 =k, when £ < N and j > N. Thus for £ < N and j € N,

~ . T —i(AY0 )"0 .
as) {8 =k = iy meeT STBY k2,
28— R(Fpp) 0, k=

The relation ;% = 0 comes from (i7y;) € R since 7 ; = —ﬁ for j,k < N.

Due to the phase-shifts of a"0, the diagonal elements of v*0 are all 0.

Remark. As 0"0T is composed by orthonormal elements, we have

Ty O ={ {5} jen © £(Hiy))| (80, 05) = (07, ) }-

10



For every k € N, from Lemma B.6, there exists C > 0 so that
[e’¢) +oo _ _ N _ _ _
D e P = ST g, )| = \IT%“"I@SZOII%?O) < O[T 90|75 < oo

as the propagator I‘“"Jr“1 (see Appendiz 1.3) preserves H(U) Hence, {azoj}jeN €

h3(C) for every k € N, then the maps a® and "0 take respectively values
ZnQN —{{lkg}kgeNG(h N|5L’kk6R k‘<N} and

:{{l'k,j}k,jeN € (]L3(C))N’ T = —m, Tk = 0 j,k’ < N}
E<N

2.3 Proof of Theorem 1.5

In the next proposition, we ensure the simultaneous local exact controllabil-
ity in projection for any 7" > 0 up to phases.

Proposition 2.1. Let N € N and B satisfy Assumptions I. For every T >
0, there exist € > 0 and up € R such that, for any {1;};en € Ocr and

[ € U(A) such that {T}} jen = {6} jen, if
(16) {T6;},en C Hiy),

then there exist a sequence of real numbers {0;}jcn = {{@}KN,O, } and
u € L?((0,T),R) such that

TN (D) = m (B0)e VT, Vj e N.

Proof. 1) Let ug in the neighborhoods defined in Appendix B by Lemma
B4, Lemma B.5, Lemma B.6 and Remark B.9. First, the relation (16) is
required for the following reason. Let {I'} qS“O}jeN = {Fqu}jeN for T > 0,

u € L2((0,T),R) and T e U(F). For |up| small enough, thanks to Lemma
4 (Appendix B), there exists C; > 0 such that j% < Cl|)\;”°|3. From
Lemma B.6 (Appendix B), there exists Cy > 0 such that, for every k € N,

T30k ) = 75 O 0w, 0°) < CLOaIITT x|y < o0,
121 8w, T03) 2 Zj 1J6| (@r, D)2 = 3125 01T, 65) 7 = [Ty,

Second, thanks to the third point of Remark B.9 (Appendix B), the control-
lability in OZLOO’T implies the controllability in O, r for suitable € > 0. Indeed,
if [upl is small enough, then sup;cy ||¢; — (b}“)H(g) < €9 (Remark B.9). For
every {¢;}jen € O%' 1, we have {t);}jen € Oa¢,1 since

sup [|¢; — ¢;(T)||3) < sup 165° = ¢5(T)l(3) + sup [[¥; — ¢;°(T)||3) < 2eo.
jeN jeN

11



Third, thanks to the discussion about the relation (14), the local surjectivity
of the map a0 guarantees the simultaneous local exact controllability in
projection up to phases (Definition 1.4) of (3) with initial state {d);“) }jen on
O/ for eg small enough.

We consider Generalized Inverse function Theorem ([Lue69, Theorem 1; p.
240]) since QYN and G" are real Banach spaces. If ¥ is surjective in G,
then the local surjectivity of o in QY is ensured. The map v"° is surjective
when the following moment problem is solvable

ZI?k . T (A0 _)\¥0
a0 g =i [ e KOs e kSN k£
0

for every {122} € GN. The equations of (17) for k = j are redundant

j,keN
k<N

as 1y, = 0 and 2% = 0 for every k < N and {xzoﬂ}zfﬁ? € GN. Thus, we

prove the solvability of the moment problem for j # k and j = k = 1. Now,

{iL'Z?j ken € (h3)N and {7};2 iken € (h3)N. From Lemma B.5 (Appendix
E<N k<N

2(C))N and {mo/B,

B), it follows {mzoj/B}: 2(C)N.

,Oj}j,keN € (
k<N
Thanks to Lemma B.8 (Appendix B), for IV defined in (5), there exist
G = inf(j,k),(n.m)eIN |)\;t0 - )‘ZO - AZO + )\gﬂ >0 and

(4,k)#(n,m)

}j,keN € (
E<N

& = sup ( inf IO = AR = AR + )\;‘,ﬂ) >’
ACIN N (G.Kk),(nm)eIN\ A
(7.k)#(n,m)
where A runs over the finite subsets of IV. The solvability of the moment
problem (17) is guaranteed from Remark A.1 by considering the sequence of

numbers {)\;‘0 — A%} kew, ken - Indeed, 1% = 0 and Remark B.9 ensures

j#k or j=k=1
that A/® — AL # N© — AW for every j. k,I,m € N. The proof is achieved

since a0 is locally surjective for 7' > 0 large enough.

2) We show that the first point is valid for every T' > 0 as &4 = +oco. Let
AM .= {(j,n) € N?| j,n > M; j # n} for M € N. Thanks to the relation
(30) in the proof of Lemma B.4 (Appendix B), for |ug| small enough and for
every K € R, there exists My > 0 large enough such that inf (jn)cAMK |)\;‘° —
Ato| > K. Indeed, the relation (30) implies that, for |ug| small enough,

IS0 = AR = A = Aal = OJuol) 2 20 min{j1 — Aj, Angt — An} — O(Juo))-

Thus ¢ > sup ey (inf(;eam IAFO = ARe| — 2A%?) > 0. Now, for |up| small
enough, Lemma B.4 (Appendix B) implies the existence of C' > 0 such that

> i i - R B Ny -
9 >C( lim g 12 =l 20x) 2 € lim (a2 = Aarr — 2N7%) = 00
O

12



3 Simultaneous global exact controllability in pro-
jection

The common approach adopted in order to prove the global exact control-
lability (also simultaneous) consists in gathering the global approximate
controllability and the local exact controllability.

However, this strategy can not be used to prove the controllability in pro-
jection as the propagator I'}, does not preserve the space WN(\I/)H(BO) for
any ¥ := {¢;}jen C H (30), making impossible to reverse and concatenate
dynamics. We adopt an alternative strategy that we call “transposition ar-
gument” (see remark below). In particular, under suitable assumptions, we
prove that the controllability in projection onto an N dimensional space is
equivalent to the controllability of N problems (without projecting).

Remark 3.1. From time reversibility (Appendiz 1.3), for every j, k € N,

_— U0 _i(\¥0 L )\u0y ~—
(01 (1), T17%) = M T (Do, gj°) = e "M AT (o (1), o).
Now, e_i()‘ZOH‘?O)T does not depend on u and the last relation implies that
the surjectivity of the two following maps is equivalent

{<¢zO(T)7F%¢?O>}jILk<ENN L L2((0,7),R) — {{xk,j}jklieNN : {zr;}jen € K*(C), Yk < N}

For this reason, the simultaneous global exact controllability in projection
onto a suitable N dimensional space is equivalent to the controllability of N
problems (without projection).

The transposition argument is particularly important as it allows to

concatenate and reverse dynamics on (H. (30))N , which is preserved by the
propagator when one wants to prove the controllability in projection.
For the simultaneous local exact controllability result, we can use Proposi-
tion 2.1 with the transposition argument, but this is not always the most
convenient approach. Indeed, when B satisfies Assumptions A, we consider
[MN15, Theorem 4.1] that requires stronger assumptions on the operator
B but provides the result without phase ambiguities (as in Theorem 1.6).

3.1 Approximate simultaneous controllability
In this section, we prove the simultaneous global approximate controllability.

Definition 3.2. The problems (3) are said to be simultancously globally
approximately controllable in H ('50) if, for every N € N, ¢y, ..., 9N € H(SO),

Te U(H#) such that fz/zl, Ty € H{y) and € > 0, then there exist T > 0
and u € L?((0,T),R) such that ||fz/1k — I'%pr|| s < € for every 1 <k < N.

13



Theorem 3.3. Let B satisfy Assumptions I. The problems (3) are simulta-
neously globally approrimately controllable in H, (3’0).

Proof. Let N € N and up belong to the neighborhoods provided by Remark
B.7 and Remark B.9 (Appendix B). We define ||| - ||| ) = Il L(HE, 1, )

and [|f|gvr) = [IfllBv0m)r) = SUPg y0c o ep 2ogmt [ (E) — f(ti-1)],
where f € BV((0,T),R) and P is the set of the partitions of (0,7") such
that tg = 0 < t; < ... < t, = T. We consider the techniques developed by
Chambrion in [Chal2] and we start by choosing ¢; = ¢; for every j < N.
Now, (A + upB, B) admits a non-degenerate chain of connectedness (see
[BACC13, Definition 3]) thanks to Remark B.9 (Appendix B). Up to a
reordering of {¢y}ren, we can assume that for every m € N, the couple
(T (@) (A + g B) 7 (D), 7y (P) B (P)) admits a non-degenerate chain of
connectedness in .77,,.

1) Preliminaries:

Claim. For every e > 0, there exist N; € N and le € U(s4) such
that 7y, (®)Ty, 7N, (P) € SU (A, ) and

(18) ITn, ¢ — Dojllsy <€, Vj < N.

Let N/ € N be such that N’ > N. We apply the orthonormalizing Gram-
Schmidt process to {TFN/( )F¢,}]<N and we define the sequence {¢J}J<N
that we complete in {¢] }j<n’, an orthonormal basis of #. The operator
r N+ is the unitary map such that r qubj gi)], for every 7 < N’. The provided
definition implies limp7_, 0 ||I‘Nr¢] - F¢j||%3) = 0 for every j < N. Thus, for
every € > 0, there exists N’ € N large enough such that

(19) ITwgs = Tojll <, Vi<,
We denote N; the number N’ > N such that the relation (19) is verified.

2) Finite dimensional controllability: We call T, the set of the admis-
sible transitions, i.e. the couples (j,k) € {1, ..., N1}? such that B;j # 0 and
INj — Xk| = |Am — Ni| with m,l € N implies {j, k} = {m,l} or By, ; =0.

For every (j,k) € {1,...,N1}? and 0 € [0,27), we define E? ik the N1 x NV;
matrix with elements (Eik)l,m =0, (Ej Wik = € and (Efk) gy = —e ',
for (I,m) € {1,...N1}2\ {(4, k), (k,5)}. We call E,q = {EM . (k) €
Toa, 0 € [0,2%)} and we consider Lie(E,q). We introduce the following
finite dimensional control system on SU(.#%,)

{j:(t) = z(tw(t), te(0,7),

(20)
IL‘(O) = [dSU(%fVI)

where the set of admissible controls v is the set of piecewise constant func-
tions taking value in F,; and 7 > 0.

14



Claim. (20) is controllable, i.e. for R € SU (%, ), there exist p € N,
Mi,...,M, € Eyuq, a1, ..., € R such that R = etMio o etrMp,

For every (j,k) € {1,..,N1}?, we define the Ny x N; matrices R;y,

Cjy and D; as follow. For (I,m) € {1,...N1}?\ {(j. k), (k, )}, we have
(Rj,k)l,m = 0 and (Rj,k*)j,kv = 7(Rj,k*)k’,j = 1, while (Cj,k:)l,m = 0 and
(Cix)jk = (Cjx)k = i Moreover, for (I,m) € {1,....,Ni1}*\ {(1,1), (4,5)}
(Dj)im = 0 and (Dj)11 = —(Dj);5 = i-
Now, e := {Rji}je<n, U{Cintikcn, U{D;}j<n, is a basis of su(Hy,).
Thanks to [Sac00, T'heorem 6.1], the controllability of (20) is equivalent to
prove that Lie(E,q) 2O su(H,) for su(H%,) the Lie algebra of SU (A, ).
The claim si valid as it is possible to obtain the matrices R;, Cjx and D,
for every j, k < Nj by iterated Lie brackets of elements in E.

3) Finite dimensional estimates: Thanks to the previous claim and to
the fact that mn, (®)I'n, 7N, (P) € SU(Hy, ), there exist p € N, My, ..., M, €
E,q and az, ..., a, € R such that

(21) ﬂ-Nl(@)leﬂ-Nl(q)) — Mo oMy,

Claim. For every I < p and e®™: from (21), there exist {T% }ieny € RT
and {ul,},en such that u!, : (0,T!) — R for every n € N and

. uly M, o
(22) Jim (D0 — e Mgr3) =0, Yk <Ny,
sup [|uby || gy 2,y < o0, sup [|uly || Lo ((0.1).8) < 00,
(23) ne neN

sup Tt | o< ((0,7) ) < 0©.
neN

We consider the results developed in [Chal2, Section 3.1 & Section 3.2] by
Chambrion and leading to [Chal2, Proposition 6] (also adopted in [Duc]).
Each e®M: is a rotation in a two dimensional space for every [ € {1, ..., p} and
the mentioned work allows to explicit {77 };cy C RT and {u/,},,cn satisfying
(23) such that !, : (0,7!) — R for every n € N and

1
(24) Tim [y, ()T ox — Mgyl =0, VI < Ny,

1
As eaMi ¢ SU(#y,), we have lim,, o ||F§17q5k — Mg || =0 for k < Ny.

We consider the propagation of regularity developed by Kato in [Kat53]
and adopted in [Duc]. We notice that i(A+u(t) B—ic) is maximal dissipative
in H(QO) for suitable ¢ := [|ul| (0,7 r)- Let A > c and H(40) = D(A®N —

A)) = Hflo)' We know that B : flflo) C H(QO) — H(QO) and the arguments of
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Remark 1.1 imply that B € L( (0), (20)). ForT > 0and u € BV((0,T),R),
we have || u(t)B(ix — A)~L| (2) < 1and

M:= sup || (iA—A—u(®)B)™| 4y < sup Il (w(@®)BGX— A)HH (o) < +o00.
te[0,T] Moy o) [T]lz; Y

We know that [[k+f ()| sv(0.1)r) = IlfllBv(01) R forevery f € BV((0,T),R)
and k € R. The same idea leads to

= WA A—OB Y gy oy, ) = oy 1Bl g ) < +oo

We call C1 := || A(A +u(T)B — i\~ (27 < o0 and U the propaga-
tor generated by A + uB — ic such that Uty = e “T'f4p. Thanks to
[Katb3, Section 3.10], for every ¢ € H(o)v it follows ||(A+u(T) B—i\)Uf9| (2) <

MeMV[[(A = A ) and
I8l ay = AT 2y < CoMeMN+T g

as || (A —iN) A~ @2 = Il1- INATL| @2 < 1+ 7%2 For every T >
0, w € BV((0,7),R) and ¢ € HE‘O), there exists C'(K) > 0 depending

on K = (|lull svery, llull Lo o)), TllullLoo(0.0),r)) such that [Ty <
C(K)||%||(ay- Then, from (23), there exists C' > 0 such that

1
(25) Il F;Z (4 < C-

For every ¢ € H (40), from the Cauchy-Schwarz inequality, we have || Az)||? <
3 2 Lo
[A%p|[[¢]] and [|A29[|* < ((A%, Ay))” < [ A*¢[*|| A9 ||, which imply

(26) 191Gy < 1IP0Iy

In conclusion, the relations (24), (25) and (26) lead to the relation (22).

4) Infinite dimensional estimates:
Claim. There exist Ky, Ko, K3 > 0 such that for every € > 0, there
exist T > 0 and v € L*((0,7),R) such that ||[I}¢y — Dyll3) < € for
every k < N and

lull pv(ry < K1, llull oo (0,1),R) < Ka2, Tllull oo (0,1),r) < Ks.

Let us assume p = 2. The following result is valid for any p € N. Thanks
to (22) and to the propagation of regularity from [Kat53], for every ¢ > 0
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and N7 € N, there exists n € N large enough such that, for every k£ < N,
2 1 2 1
||F;~:%F;E¢k — e MeniMig || < || F;’% Il (3)\|T;§¢k — ™ Mgyl 3)

N
2 2 1
+ g ||(F1;—::é¢l — M) (g, e M) |3y < |l 14}:‘3 l (3)||F;§¢k — e Mgy |3
=1

N1 1
2 ,
e M (D I(Trson — e M) ) < e
=1

In the previous inequality, we considered that e®Mig, € SN, and that
2
Il F;Z Il (3 is uniformly bounded in n € N thanks to the propagation of

regularity from [Kat53] and to (23). The identity (21) leads to the existence
of Ky, Ky, K3 > 0 such that for every e > 0, there exist 7' > 0 and u €
L2((0,7),R) such that |[T%¢; — Ly, ¢kl (3) < € for every k < N and

27) Nullpvery < K1, lullpeorr) < K2, Tllullpeo1)r) < Ks.

The relation (18) and the triangular inequality achieve the claim.

5) Conclusion: For every {¢;}j<n C Hf’o), [ € U(4) such that {fz/;j}jSN C
H(%) and € > 0, there exists a natural number M € N such that, for ev-
ery | < N, it follows [[¢1]l3) < || 0L, ¢k<¢k»¢l>||?3) + e and |Tylls) <
|| 224:1 fq&k(gbk, oy ||?3) + e. The proof is achieved by simultaneously driving

{¢r}r<nr close enough to {fqﬁk}kSM since, for every | < N, T > 0 and
u € L*((0,T),R) satisfying (27),

M 1
I — Bl < ol (3 IT% s — Fonly)” + N TRl g+ De. D
k=1

3.2 Proofs of Theorem 1.6 and Theorem 1.8

In the current section, we provide the proofs of Theorem 1.6 and Theorem
1.8, which require the following proposition.

Proposition 3.4. Let N € N and B satisfy Assumptions I.

1. For any {Yitr<n, {$3tr<n C H(?’O) orthonormal systems, there exist
T >0, ue L*(0,7),R) and {fx}r<n C R such that e®x¢p? = Tl
for every k < N.

2. If B satisfies Assumptions A, then for any {}}r<n, {¥i}tp<n C H(30)

orthonormal systems, there exist T >0 and u € L?((0,T),R) so that
z/),% = F%‘pzp,i for every k < N.
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Proof. Let N € N and let ug € R belong to the neighborhoods provided by
Lemma B.5, Lemma B.6 and Remark B.9 (Appendix B).

1) Let a"® be the map with elements

S0 - |
|g];3(zi)|ak»‘j(u1)7 ]»k <N,
ag,j(u1), k>N, j<N.

The proof of Proposition 2.1 can be repeated in order to prove the local
surjectivity of a0 for every T > 0, instead of "0 introduced in (13). As
explained in Remark 3.1, this result corresponds to the simultaneous local
exact controllability up to phases of N problems (3) in a neighborhood

N
O = {{¢j}j§N C Hiy| (b tn) = 605 Y llby — 653 < 6}

J=1

with € > 0 small. In other words, for any {¢;}r<n € OéYT, there exist
ue L*((0,T),R) and {6;}j<n C R so that T%¢7° = e®4p; for any j < N.

Theorem 3.3 implies the simultaneous global approximate controllabil-
ity for N problems. For any {@[J}}jg N C H(g'o) composed by orthonormal
elements, there exist 77 > 0 and u; € L%((0,71),R) such that

€ . !
IP7Y; =6l < 5 Vi<N, = {TRyhen €0

The local controllability is also valid for the reversed dynamics of (10), for
every T > 0, there exist u € L2((0,7),R) and {6;};<n C R so that

(Tl jen = (9T oy = {e TN jan = {81} j<n-

Then, there exist T > 0 and ug € L?((0,T%), R) such that {e_iejr%id)}}jSN =
{QS;‘O }j<n. Now, the same property is valid for the reversed dynamics of (10)
and, for every {7,/;]2 }i<n C H (30) composed by orthonormal elements, there ex-
ist 73 > 0, uz € L?((0,T3),R) and {03}j<n C Rsuch that {e_i%f‘ﬁw}}jﬁv =
{(ﬁo }i<n- In conclusion, for ug(-) = uz(13 — -), the proof is achieved as

{7 OO gy = {92} <.

2) The proof of the second claim follows as in 1), with the difference that
if B satisfies Assumptions A, then Remark B.10 provides the validity of a
simultaneous local exact controllability without phase ambiguities.

Indeed, keeping in mind our notation, let H(?’V) be the space defined in
[MN15]. We know that H(SV) corresponds to fl(?’o) when V = 4B and B
is a suitable multiplication operator. We consider the assumptions (C3),
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(C4) and (C5) introduced in [MN15,p. 10]. If we substitute V with wyB
and p by —B, then the statement of [MN15, Theorem 4.1] is still valid.
The condition (C3) is ensured by Lemma B.5 (Appendix B), while the
assumptions (C4) and (C5) respectively follow from the first point of Remark
B.9 and Remark B.10 (Appendix B). The result of [MN15, Theorem 4.1]
is valid in Oé\fT C Hﬁ)) for suitable € > 0 and T' > 0 as in the proof of

Proposition 2.1. For every {1 }r<y € Oy, there exists u € L%((0,7),R)
such that ¢, = I'}.¢;° for every k < N. The remaining part of the proof is
achieved as in 1). O

Proof of Theorem 1.6. Let N € N and ug € R belong to the neighborhoods
provided by Lemma B.5, Lemma B.6 and Remark B.9 (Appendix B). Let
U3 = {ﬂ’?}jeN € H(SO) be an orthonormal systems. We consider {z/zjl}jeN,

{d’?}jeN C H (30) complete orthonormal systems and I' € U(#) such that
fq/;jl = 7,/}? and f*w;’ e H (30) for every 57 € N. Then, for every k < N,

Yp = Y iR vl = > wHTe) vl = > v w), TeR) = Ty € HYy).

j=1 j=1 j=1

Thanks to the first point of Proposition 3.4, there exist 7' > 0, u € L?((0,7),R)
and {0 }r<y C R such that eq)), = Uap3 for each k < N. Hence

(W, THoR) = (€%, €)= (F, e®4f),  VikeN, k<N.
Thanks to the time reversibility (Appendix 1.3), we have
(T, 0R) = (05, THoR) = (03, e%i), VikeN, k<N. O

Proof of Theorem 1.8. Let N € N and let ug € R belong to the neighbor-
hoods provided by Lemma B.5, Lemma B.6, Remark B.9 and Remark B.10
(Appendix B).

1) Controllability in projection of orthonormal systems: Let ¥3 :=
{¥3}jen € H, (3;)) be an orthonormal system. Let us consider {¢}}jen, {¢7}jen C
H (30) be complete orthonormal systems and I' € U(5#) be such that 1“77[1]1, =
1/)12» and F*zb? € H (30) for every j € N. As in the proof of Theorem 1.6,
for every k < N, we define zzk = Zj"zl 1/)}( ]2,¢2>- Thanks to the second
point of Proposition 3.4, there exist 7' > 0 and u € L%((0,T),R) such that
Y = I'ap? for each k < N. Hence

Thanks to Appendix 1.3, we have ( %1/)},1/},‘2{) = <z/)]1,f%1/),::’,> = (1/){?,1/),%) and
then WN(\II3)1/JJ2 = mn(U3) %1/1)1 for every j € N.
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2) Controllability in projection of unitarily equivalent functions:
Let us consider {z/fjl}jeN,{w?}jeN C H (30) unitarily equivalent. Let W3 :=
{1/139’ }jen be an orthonormal system. We suppose the existence of I' € U ()
such that f@bjl = Q/JJQ- and f*z/}? € H(go) for every j € N. One knows that,
for every jAG N, there exists {ai}keN € (?(C) such thaAt 1/}} = > ken qi,;d)z.
However, {Fz/)? }jen is an Hilbert basis of # and 1/132» = Fzﬁjl =Y pen @il
The point 2) implies that there exist 7' > 0 and u € L?((0,7),R) such that
WN(‘I/?’) F%zb,% = WN(\I/?’) I‘w}z for every k € N, and then for any j € N,

v (U9 Thol = > a (n(8°) Do) = mn (%) > al Ty = an(T?) 2.
keN keN

3) Controllability in projection with generic projector: Let U3 =
{wg’} jeNn C H (30) be a sequence of linearly independent elements. For every
N € N, thanks the Gram-Schmidt orthonormalization process, there exists
an orthonormal system U? := {{Jg}jSN,O,...} such that span{¢? : j <
N} = span{{lzv? : j < N}. The claim follows as 7y (¥3) = 7y (T3). If
U3 = {1/)5’ }jen CH 630) is a generic sequence of functions, then we extract from
U3 a subsequence of linearly independent elements and repeat as above. [

4 Global exact controllability in projection of den-
sity matrices

Let !, ¢ € #. We define the rank one operator |1) (1?| such that
[Pp1Y (2|9 = (% 4) for every o € H. For any I' € U(), we have

Llyphy(@?| = [Tu') (47, [ty (AT = [ty (D).

Corollary 4.1. Let B satisfy Assumptions I and Assumptions A. Let p', p* €

T () be two density matrices so that Ran(p'), Ran(p?) C H(?;)). We sup-
pose the eristence of I' € U(H) so that pt = T'p’I'*. Let U3 := {¢§"}jeN C
H(30) be such that {fﬁ{?}jel\l - H(Bo)’ for every j € N. For any N € N, there

exist T > 0 and a control function u € L*((0,T),R) such that
v (P°) Tt (D) mn(8%) = v (P°) p° i (T°).

Proof. Let T > 0 and W3 := {43} ey € H(30). Let p', p? € T(H) be
two unitarily equivalent density matrices such that Ran(p'), Ran(p?) C
H(%). We suppose that the unitary operator I' € U(J#) such that p? =

fplf satisfies the condition f*wi’ € H(30) for every j € N. One can en-
sure the existence of two complete orthonormal systems W' := {z/le. }ien,
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U2 = {1/;]2}jeN S H(g’o) respectively composed by eigenfunctions of p' and
p? such that p! = > l]|z/1j1><1/1]1| and p? = > Zj\wjgﬂw?\ The sequence
{lj}jen C R corresponds to the spectrum of p' and p?. Now, thanks to
Theorem 1.8, there exists a control function u € L?((0,T),R) such that
7N (U3) F%z/ljl = mn(P3) zp? Thus

N (U T, 1<P%)*m<w3>=25‘1 Ll (B%) Tl ) (I D (U°) |
= Z Ly (U%) [92) (02 |y (B%) = 7y (8%) pPrn (7). O
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A Moment problem

In this appendix, we briefly adapt some results concerning the solvability
of the moment problems (as (11) and (17)). Let [BL10, Proposition 19; 2)]
be satisfied and { fx}rez be a Riesz basis (see [BL10, Definition 2]) in X =
span{fr: k €Z} " C , with J and Hilbert space. For {vj}rez the
unique biorthogonal family to { fi }rez ([BL10, Remark 7)), {vk }rez is also a
Riesz basis of X ([BL10, Remark 9]). Thanks to [BL10, Proposition 19; 2)],
there exist C,Cy > 0 such that C1 Y,y [ak]? < ||lull?, < Co Yy cp |@kl? for
every u(t) = Yoz xkvr(t) with {z}ren € £2(C). Moreover, for every
u € X, we know that u = >, ./ vp(fx, u) » since {fi}rez and {vi}rez are
reciprocally biorthonoromal (see [BL10, Remark 9]) and

(28) CLY [P < lullZp < Co ) [(fs e

keZ kEZ

When Haraux’s Thoerem [KLO5, Theorem 4.6] is verified, for T' > 0 large
enough, {e™()};c7 is a Riesz basis in X = span{e?() : ke Z} C
L*((0,T),C). The relation (28) is satisfied and F : u € X — {(e (e 0) ) /ﬁ}kez €
¢%(C) is invertible. For every sequence {zj}rez € £2(C), there exists u € X
such that zp = fOT u(s)e‘i)‘ksds for every k € Z.

Remark A.1. Let {Ap}ren be an ordered sequence of real numbers such

that X\, # =X\ for every k,1 € N. Let G := infj4; |\ — Aj| > 0 and G’ :=

supgcninf pz; |Ax — Aj|, where K runs over the finite subsets of Z. For
k,jEN\K

k>0, we call wy, = — Ay, while we impose wy, = A_y for k <0 and k # —I.

We call Z* = Z\ {0}. The sequence {wy}rez\{—1} satisfies the hypotheses

of [KL05, Theorem 4.6] for supycy-\(—ipinf kz; |wp —wj| = G'. Given
kjEN\K
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{x1 hen € £2(C), we introduce {Tk}rez-\(-1) € 0%(C) such that Ty, = x, for
k>0, while T, = T_, for k <0 and k # —1. For T > 2w /G, there erists
u € L*((0,7),C) such that T}, = fOT u(s)e=“rsds for every k € Z* \ {—1}.
Then

T = fOT u(s)eM S ds = fOT U(s)eM3ds, ke N\ {l},
T = fOT u(s)ds, k=1,

which implies that, if x; € R, then u is real.

B Analytic Perturbation

Let us consider the problem (12) and the eigenvalues {)\}‘0 }jen of the opera-
tor A+wugB. When B is a bounded symmetric operator satisfying Assump-
tions I and A = —A is the Laplacian with Dirichlet type boundary conditions
D(A) = H?((0,1),C) N H}((0,1),C), thanks to [Kat95, Theorem VII.2.6]
and [Kat95, Theorem V11.3.9], the following proposition follows.

Proposition B.1. Let B be a bounded symmetric operator satisfying As-
sumptions 1. There exists a neighborhood D of uw = 0 in R small enough
where the maps u — )\}‘ are analytic for every j € N.

The next lemma proves the existence of perturbations, which do not
shrink the eigenvalues gaps.

Lemma B.2. Let B be a bounded symmetric operator satisfying Assump-
tions I. There exists a neighborhood U(0) in R of w = 0 such that, for each
ug € U(0), there exists v > 0 such that, for every j € N,

o Aj+ A
My = D)
Proof. Let D be the neighborhood provided by Proposition B.1. We know
(A — p ) is invertible in a bounded operator and p; € p(A) (resolvent set
of A). Let ¢ := minjen{|Aj41 — Aj|}. We know that [|(4A — p;)7t|| <
— 2 2
SUPKEN ;=] =~ TN Al < 5. Thus

€ p(A+uoB), Il (A +uoB — py) I <7

- _ 2
(A = 1) uo B I < fuol I (A = )T IHITB I < S Juol [ B |

and if |uo| < 2029 for € € (0,1), then ||| (A — ;) uoB|| < 1—e. The

21 Bl
operator (A + ugB — p;) is invertible and ||| (A + uoB (S—luj)—l I < % as
(A +uoB — )] > (A — )l — lluo B > Sllw]| — 222j|| for every
Y € D(A). O
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Lemma B.3. Let B be a bounded symmetric operator satisfying Assump-
tions I. There exists a neighborhood U(0) of 0 in R such that, for every
up €U (0),

(A+uoPy, B — )

is invertible with bounded inverse from D(A) N qﬁi to qﬁki,, for every k € N

and Paﬂ; is the projector onto the orthogonal space of ¢y.

Proof. Let D be the neighborhood provided by Lemma B.2. For any ug € D,
one can consider the decomposition (AJruoPdf;C B-)\°) = (Af)\ZO)JruOPd)lk B.
The operator A — )\ZO is invertible with bounded inverse when it acts on
the orthogonal space of ¢ and we estimate || ((A — /\ZO)’%)_luquﬁ;B Ill -

However, for every ¢ € D(A) N Ran(P(blk) such that [|7]] = 1, we have

104 = XYl 2 mind A = XL N = N [Hlo|

Let 6, := min {|Aj1 — Af°[, [A}® — Ag—1|}. Thanks to Lemma B.2, for |ug|

small enough, \;° € (’\k*12+’\k, ’\k+2)"““) and then

(2k — 1)7?

7 > k.

Ak + kg1 " ‘)\k—l + Ak

2 2 _A’H‘}Z

Ok > min{‘>\k+1 —

Afterwards, [| (A= A)|, ) "uoPE BI| < fuol || B | and, if fuo] < (1 -
7)1 for r € (0,1), then it follows || ((A—)\“O)| D7 MugPE B € (1-7) <
MBI k /g o

1. The operator Ay := (A —\.° + uon); B) is invertible when it acts on the
orthogonal space of ¢ and, for every ¢ € D(A),

Ak > [[(A = N2 || = [l uoPy, BYIl > 6|l = o Py B 4]l = réx]]l-
In conclusion, || ((A— \° + UOP(;;B)|¢L)_1 I < % for every k € N. a
i

Lemma B.4. Let B be satisfy Assumptions I. There exists a neighborhood
U(0) of 0 in R such that, for any ug € U(0), we have A{® # 0 and Aj° < \;
for every j € N. In other words, there exist two constants C1,Co > 0 such
that, for each j € N, C1\; < )\}‘0 < o).

Proof. Let up € D for D the neighborhood provided by Lemma B.3. We de-
compose the eigenfunction qﬁ?o = aj¢;j +1;, where a; is an orthonormalizing
constant and 7; is orthogonal to ¢;. Hence A\{°¢}° = (A + uoB)(ardi + nr)
and A\ %ardr + N0nk = Aardr + Ang + uoBaggy, + uoBng. By projecting
onto the orthogonal space of ¢y,

Nl = Any + uquﬂ;Bakd)k + UOP;‘ank.
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However, Lemma B.3 ensures that A + uquﬂ;cB — AR° is invertible with
bounded inverse when it acts on the orthogonal space of ¢ and then

(29) e = —a((A+ w04 B~ N9, )~ w0, B,

— AN = (a;0; +nj, (A+uwoB)(aj¢; +15)) = la;*A; + uola;é;, Bajoy)
+{a;¢;, (A +wB)n;) + (nj, (A +uoB)a;d;) + (nj, (A + uoB)nj).
By using the relation (29),

(nj, (A +uoB)n;) = (nj, (A +uoPg B — Aj°)m;) + X°[ln;[|* = AS°[|ny|?

- <m» —aj(A+ugPy B — Nj*)((A+uoPy; B — )\;‘0)|¢]_L)_1u0Pj};B¢j>.

However, (A+u0Pdf-jB— A;‘O)((AJruoP(/J);)B— )\;‘0)‘&)_1 = Id and (n;, (A+

J
upB)n;) = )\?0||77j||2—u0aj<77j, Pd)ljB(bj). Moreover, we have (¢;, (A+uoB)n;) =
uo{@y, Bry) = uo(Py. Bej,n;) and (1, (A+uoB)¢;) = uo(n;, Py Bo;). Thus

(30) NS = [a;[PA; + wolag[* By + AS°|mj|I* + wo; (Py; By, my).-

One can notice that |a;| € [0,1] and ||7;|| are uniformly bounded in j. We
show that the first accumulates at 1 and the second at 0. Indeed, from the
proof of Lemma (B.3) and the relation (29), there exists C1 > 0 such that

- Cr
B1)  [nll* < Juof* I (A +uo Py, B — A}‘O)I%L) 1% a2 Byl < 7

for r € (0, 1), which implies that lim;j_, ||7;]| = 0. Afterwards, by contradic-
tion, if |a;| does not converge to 1, then there exists {a;, }ren a subsequence

of {a;}en such that |a;_| := limy_ |aj,| € [0,1). Now, we have
1= tim 9200 < lim [, g+ el = Jim [ + | = o] < 1

that is absurd. Then, lim; , |a;| = 1. From (30), it follows A{® < A; for
|ug| small enough. The relation also implies that )\;‘0 # 0 for every j € N
and |ug| small enough. O

Lemma B.5. Let B be a bounded symmetric operator satisfying Assump-
tions 1. For every N € N, there exists a neighborhood U0) of 0 in R
such that there exists Cn > 0 such that, for any up € U(0), we have

(6", Boi®)| > %’31 for every k,j € N and j < N.

Proof. We start by choosing k& € N such that k£ # j and ug € D for D the
neighborhood provided by Lemma B.4. Thanks to Assumptions II, we have

(61", Boi®)| = [(ardk + nk, Blajd; + ;)]

(32) aga; _
> On=5- = @6k, Bry) + a; (i, Bé;) + (i, Biy)-
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1) Expansion of (ny, Bo;), (dr, Bnj), <77k, Bm) Thanks to (29), we have
(nk, Boj) = (—ar((A + uoPy, B — \.°)| ¢l YugPy. Boy, Py, Bo;) for every

k€ Nand j < N, while ((A + uopqﬂ- B — )\}:0 | L)_ corresponds to
k o

(A= NPy Z uo((A — \)Ps) Py By )"

for |up| small enough. For Mj, := Y% (uo((A — )\ZO)P(;C)_IP&B) Pj;,

(33) (k. Boj) = —uo{arMyBey, (A — A°) Py )" Py Bg;).

Thanks to B : D(A) — D(A), for every k € Nand j < N,

(A= NP3 ) 7 Py Boj = Py BI(A = \)Pg,) ™ 05 — [P B, (A= X)Pg) ™ Py ] 6
= Py B((A = N)P5) " by — (A= N D3 ) 7 Py 1B AJ((A = N Py ) ™ oy

For By, := (A — \°)P£ )" PL (B, A], we have (A — \*)PL)~'P)L B, =

PL (B + Br)(Aj — Aj®)"16;. and, for every k € Nand j < N,

(34) (i, Boj) = — (arMi By, (B + Bi)g;)-

Uo
Aj = AR
For every k € N and j < N, we obtain
[0k, Bng)| = (B, m;)| = [(uoar B((A — Auo)Pqﬂ;)_leB%,

(%
Aa]akA'lOLo <¢k? Lk j¢]>’

35
B ey (A= A)PE) M B -

with Ly := (A = XJ°)BMp((A — X;°)P; )" Pj. B((A — A;O)P;j)—leB.
Now, there exists € > 0 such that |a;| € (¢,1) for every | € N. Thanks to
(34), (35) and (32), there exists Cy such that

()

~ 1
(00, B 2 O = [5—4m

(M Boy. (B + Br)ey),

(36) o

- [ Byo M50 - |55

)\ )\’u,o <¢k7Lk]¢j>‘

2) Features of the operators M, Ek, Ly ;: Each My for k € N is uni-
formly bounded in L( (20), (20)) when |ug| is small enough so that ||| ug((A—

)‘ZO)P;&;) 1PJ- BPJ- Il L2, < 1. The definition of By, implies that B;,CPJ;C =
((A— /\ZU)P(;;C) IPJ;C (A— /\'“O)PJ;C PLkBPl Hence, the operators By, are

uniformly bounded in & in L(H(20) ﬂRcm(qu- ), H(zo) N Ran(Pl )). Third, one
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can notice that B((A — )\?O)Pafj)_leB € L(H? H(QO)) for every j € N.

0y
Then, for every k € N and j < N,

(A= NO)BMy((A— X0 Py ) Pg = (A= Xf°)B((A— \{°)Pg, )™
> (uoPL BU(A— X PL) 1) P = (A= N°) (A — \fo)PL,) " Py (By, + B) My,

n=0

with My, == 32 (uoPy, B((A — Ae0)P3)™)" Py Now, the operators M,
are uniformly bounded in L(H(QO),H(QO)) as My. Hence Ly ; are uniformly

bounded in L(H(QO)7 H(QO)).

Let { F} };en be an infinite uniformly bounded family of operators in L(H (20), H (20) ).

For every [,j € N, there exists ¢;; > 0 such that > 7o ; |[k*(¢x, Fi¢;)|* < o0,
which implies |(¢r, Fi¢;)| < %21 for every k£ € N. Now, the constant ¢; ; can

be assumed uniformly bounded in [ since, for every k,j € N|

sup [ (¢r, Figy)[* < sup > [m* (¢, Figsy)[* < sup || Figys |7y < oo
leN meN leN

Thus, for every infinite uniformly bounded family of operators {Fj};en in
L(H (20), H (20)) and for every j € N, there exists a constant ¢; such that

.
(37) Dk, Fi95)| < k—é, Vk, 1 € N.

3) Conclusion: We know that [A; — A{°[~" and |\, — )\?°|’1 asymptoti-
cally behave as k=2 thanks to Lemma B.4. From the previous point, the
families of operators { BM(B + By) }ken, {Lk,j }ken are uniformly bounded
in L(HZ,, HY)) and BM;(B + B;) € L(HZ,, H,)) for every 1 < j < N.
Hence, we use the relation (37) in (36) and there exist C1,Cy,C3,Cy > 0

depending on j € N such that, for |up| small enough and k& € N large enough,
(38)

(@}°, Bew)| > Cy

1 Ciuw  Chlul  Cawf 1
B Dy - AR D= NOTR2 Ty — ARRE T

Let K € N be so that [(¢;°(T), B¢j(T))| > Cys for every k > K. For
Jj € N, the zeros of the analytic map ug — {|(¢;°(T), B¢;°(T))|} <k € RK
are discrete. Then, for [up| small enough, [(¢;°(T), B¢;°(T))| # 0 for every
k < K. Thus, for every j € N and |ug| small enough, there exists C; > 0

such that [(¢°(T), B¢;*(1))| > % for every k € N. In conclusion, the claim
is achieved for every k € N and j < N with Cy = min{Cj: j < N} O
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Lemma B.6. Let B be a bounded symmetric operator satisfying Assump-
tions I. There exists a neighborhood U(0) of 0 in R contained in the one
introduced in Lemma B.4 such that, for any uy € U(0),

(i [[A%]2 (g0, .>|2)% = (i 15%(¢5, ->|2)%-
j=1 J=1

Proof. Let D be the neighborhood provided by Lemma B.4. For |ug| small
enough, we prove that there exist C; > 0 such that [||A + ugB|21| <
C1|||A]z¢|| for s = 3. We start with s = 4 and we recall that B € L(H(QO))

thanks to Remark 1.1. For any ¢ € H Elo)v there exists Co > 0 such that
1(A + uoB)? || < | A%|| + [uo *|| B*|| + [uol | AL (|| Bl ) + I BII) < Coll|AP4].

The proof of [BACC13, Lemma 1] implies the validity of the relation also

for s = 3. There exists C' > 0 such that |9z = [[|[A + uoB|%1/)|| <
(0)

ClALE ] = Clly, for every € Hfy. Now, Hpy = D(|A]) = D(4 +

ugBl) = H (20) and B preserves H (20) since B : H (20) — H (20). The arguments

of Remark 1.1 imply that B € L(PNI (20)) and the opposite inequality follows

as above thanks to the identity A = (A + uyB) — woB. O

Remark B.7. Let B be a bounded symmetric operator satisfying Assump-
tions 1. The techniques of the proof of Lemma B.6 also allow to prove thal,
for s € (0,3), there exists a neighborhood U(0) of 0 in R such that, for any

ug € U(0), it follows ( ;i1 |()\}l0)§<¢;&o7,>|2>5 = (Z;; |j”<¢j«,~>\2)§.

Lemma B.8. Let B be a bounded symmetric operator satisfying Assump-
tions I and N € N. Let € > 0 small enough and IN be the set defined in (5).
There exists a U, C R\ {0} such that, for each ug € U,

inf |)\§‘° — AL = NN > e

(3,k),(n.m)eIN

(5:k)#(n,m)
Moreover, for every § > 0 small there exists € > 0 such that dist(Ue,0) < 6.

Proof. Let us consider the neighborhood D provided by Lemma B.3. The
maps XY — Ay — Ay + Ay, are analytic for each j, k,n,m € Nand u € D. One
can notice that the number of elements such that

(39) )‘j_)\k_>\n+)\m:0» jvneN, kymSN
is finite. Indeed A, = k%72 and (39) corresponds to j2 — k? = n? — m?. We
have [j2 — n?| = |k* — m?| < N? — 1, which is satisfied for a finite number

of elements. Thus, for IV (defined in (5), the following set is finite
R:={((4,k),(n,m)) € (I™)? : (j,k) # (n,m); N\j — A\ — A + A = O}
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1) Let ((j, k), (n,m)) € R, theset V(; . nm) = {u € D| )\}*—)\}é—)\}i-i-)\?n =0}
is a discrete subset of D or equal to D. Thanks to the relation (30),

N = Mg = Ap 4 A = lag A+ ulag* B + Mg |1 + uaj(Py, Boj, mj) — laxl*Ax
— ulag* By — Melmel® — w@r(Pg; Bég, i) — lan|*An — wlan*Bryn — |02

- UW<P¢J;B¢7M M) + ‘am|2)\m + u|am‘23m,m + /\%HanQ + UW<P£;,LB¢m-,77m>

= A N AL A = ey P — JakP Ak = lanAn + lam|*Am

(40)
+ (|aj|2Bj,j - |ak|2-Bk:.k - |an|2Bn,n + |am|2Bm,m)u + O(U)

For |u| small enough, thanks to lim|u|_>0|aj|2 =1 and to the third point of
Assumptions I, Aj — A — Ay + Aj, can not be constantly equal to 0. Then,
Vijenm) is discrete and V = {u € D| 3(j, k,n,m) € R: XY =\l = X+ At =
0} is a discrete subset of D. As R is a finite set U, := {u € D : V(j, k,n,m) €
R A} — Af — An + AlL| > €} has positive measure for € > 0 small enough.
Moreover, for any § > 0 small, there exists g > 0 such that dist(0, (760) < 4.

2) Let ((4, k), (n,m)) € (IV)?\ R be different numbers. We know that|/\? —
A= 20 + AV | = 7?52 — k* — n® + m?| > «°. First, thanks to (30), we
have A} < la;|?\; + |u|Cy and A} > la;|?\; — |u|Cy for suitable constants
C1,Cs > 0 non depending on the index j. Thus

|)‘}l — A=At Al > ||aj|2)‘j - |ak|2)‘k - |an|2)\n + |am|2>‘m| — [u|(2C1 + 2C3).

Now, limj_s |ax|? = 1. For any w in D and e small enough, there exists
M. € N such that [|a;]®\; — |ag|* e — [an* A + |am[*Am| > 7% — € for
every ((4,k),(n,m)) € RY := (IN)2\ R and j,k,n,m > M.. However
limy,, 0 lar|> = 1 uniformly in k thanks to (31) and then there exists a
neighborhood W, C D such that, for each u € W,, it follows ||a;|?\; —
lar® Xk — |an*An + Jam?Am| > 72 — € for every ((j, k), (n,m)) € R® and
1 < j,k,n,m < M.. Thus, for each u € W, and ((j, k), (n,m)) € RY such
that (j, k) # (n,m), we have [\} — A\t — Al + AL | > 2 —e.

m

3) The proof is achieved since, for €; > 0 small enough, 1761 N W, is a non-
zero measure subset of D. For any u € U, N\W, and for any ((j, k), (n,m)) €
(IM)? such that (j,k) # (n,m), we have N} = A=A+ Al > min{n? —
€, e1}. O

Remark B.9. Let B be a bounded symmetric operator satisfying Assump-
tions 1. By using the techniques of the proofs of Lemma B.5 and Lemma
B.8, one can ensure the existence of a neighborhood Uy of ug in R and Us,
a countable subset of R such that, for any ug € U(0) := (Uy \ U2) \ {0}, we
have:

1. Forevery N € N, (j, k), (n,m) € IV (see (5)) such that (j, k) # (n,m),
there holds \j® — Ng° — Aj0 + A0 # 0.

m
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2. B = (;°(T), Bo;°(T)) # 0 for every j,k € N.
3. For e > 0, if |ug| is small enough, then SUpjen llo; — (b;-‘0||(3) <e.

Remark B.10. Let B be a bounded symmetric operator satisfying Assump-
tions II and Assumptions A. As Remark B.9, there exists a neighborhood Uy
of ug in R and Us, a countable subset of R containing u = 0 such that, for
any ug € U(0) := (U1 \ Uz) \ {0} and N € N, the numbers {1} U {)\?O}KN
are rationally independent. Indeed, we denote

7 U0

_ _ M .
%= B A)],) 1(((/\?—,4)\#) 'PLB) PLB. Vi MEN,

As (1—|In;]1?) = |ey|? for every j € N, by using (29) in (30), for |ug| small,

Ry uolaj|*Bj; upla;|? -
o = A2 A ol Ry ol (Ph B, (A+uoPE B = X))
! 1 — {2 L — [InylI* 1 —|n;/|? ¢ éj J |¢]L
400
uquﬂ;_ B¢j> = \j +upBj; + ug<¢j, Z (ué/[x;“}\[) ¢j>,
M=0

Let xjp = <¢j,E(M,j)¢j> with B(M,j) defined in Assumptions A and
J, M € N. We have limy, |0 :r;“}\[ =xjn. Let M <N andr:={rj}j<m €
QM \ OM. Thanks to Assumptions A, the map u > 11 + Zj\; TN s
non-constant and analytic. The set Vi of its posilive zeros is discrete. The
property is valid for Us := Up<n Uregm\om Vi that is discrete.
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