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Abstract

We consider an infinite number of one-dimensional bilinear Schrödinger
equations on a segment. We prove the simultaneous local exact con-
trollability in projection for any positive time and the simultaneous
global exact controllability in projection for sufficiently large time.
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1 Introduction

Let H be an infinite dimensional Hilbert space. In quantum mechanics,
any statistical ensemble can be described by a wave function (pure state)
or by a density matrix (mixed state) which is a positive operator of trace 1.
For any density matrix ρ, there exists a sequence {ψj}j∈N ⊂H such that

ρ =
∑
j∈N

lj |ψj〉〈ψj |,
∑
j∈N

lj = 1, lj ≥ 0 ∀j ∈ N.(1)
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The sequence {ψj}j∈N is a set of eigenvectors of ρ and {lj}j∈N are the corre-
sponding eigenvalues. If there exists j0 ∈ N such that lj0 = 1 and lj = 0 for
each j 6= j0, then the corresponding density matrix represents a pure state
up to a phase. For this reason, the density matrices formalism is said to be
an extension of the common formulation of the quantum mechanics in terms
of wave function.

Let us consider T > 0 and a time dependent self-adjoint operator H(t)
(called Hamiltonian) for t ∈ (0, T ). The dynamics of a general density
matrix ρ is described by the Von Neumann equation{

idρdt (t) = [H(t), ρ(t)], t ∈ (0, T ),

ρ(0) = ρ0, ([H, ρ] = Hρ− ρH),
(2)

for ρ0 the initial solution of the problem. The solution is ρ(t) = Utρ(0)U∗t ,
where Ut is the unitary propagator generated by H(t), i.e.{

i ddtUt = −iH(t)Ut, t ∈ (0, T ),

U0 = Id.

In the present work, we consider H = L2((0, 1),C) and H(t) = A +
u(t)B, for A = −∆ the Dirichlet Laplacian (i.e. D(A) = H2 ∩ H1

0 ), B a
bounded symmetric operator and u ∈ L2((0, T ),R) control function. From
now on, we call Γut the unitary propagator Ut when it is defined. The
problem (2) is said to be globally exactly controllable if, for any couple
of unitarily equivalent density matrices ρ1 and ρ2, there exist T > 0 and
u ∈ L2((0, T ),R) such that ρ2 = ΓuTρ

1(ΓuT )∗. Thanks to the decomposition
(1), the controllability of (2) is equivalent (up to phases) to the simultaneous
controllability of the Cauchy problems in H{

i∂tψj(t) = Aψj(t) + u(t)Bψj(t), t ∈ (0, T ),

ψj(0) = ψ0
j , ∀j ∈ N.

(3)

The state ψ0
j is the j-th eigenfunction of ρ0 corresponding to the eigenvalue

λj and ρ0 =
∑∞

j=1 λj |ψ0
j 〉〈ψ0

j |. The j-th solution of (3) is ψj(t) = Γut ψ
0
j .

To this purpose, we study the simultaneous global exact controllability of
infinitely many problems (3) and we only rephrase the results in terms of
the density matrices.

The controllability of the bilinear Schrödinger equation (3) has been
widely studied in the literature and we start by mentioning the work on
the bilinear systems of Ball, Mardsen and Slemrod [1]. In the framework
of the bilinear Schrödinger equation, the work shows the well-posedness of
(3) in H for controls belonging to L1

loc((0, T ),R) and an important non-
controllability result. In particular, let S be the unit sphere in H and

Z(ψ0) := {ψ ∈ D(A)| ∃T > 0, ∃r > 1, ∃u ∈ Lrloc((0, T ),R) : ψ = ΓTuψ0}.
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For every ψ0 ∈ S∩D(A), the attainable set Z(ψ0) is contained in a countable
union of compact sets and it has dense complement in S ∩D(A).
Despite this non-controllability result, many authors have addressed the
problem for weaker notions of controllability. We call Mµ the multiplication
operator for a function µ ∈H and Hs

(0) := D(|A|
s
2 ) for s > 0.

For instance in [3], Beauchard and Laurent improve the work [2] and they
prove the local exact controllability of (3) in a neighborhood of the first
eigenfunction of A in S ∩H3

(0) when B = Mµ for a suitable µ ∈ H3.
The global approximate controllability in a Hilbert space has been studied
by Boscain, Caponigro, Chambrion, Mason and Sigalotti in [4] and [6]. In
both, simultaneous global approximate controllability results are provided.
Morancey proves in [11] the simultaneous local exact controllability in S ∩
H3

(0) for at most three problems (3) and up to phases, when B = Mµ for

suitable µ ∈ H3.
In [12], Morancey and Nersesyan extend the result. They provide the exis-
tence of a residual set of functions Q in H4 so that, for B = Mµ and µ ∈ Q,
the simultaneous global exact controllability is verified for any finite number
of (3) in H4

(V ) := D(|A+ V |2) for V ∈ H4.

In the present work we use part of the notations of [3], [11], [12] and we
carry on the previous results. We provide explicit conditions in B that im-
ply the simultaneous global exact controllability in projection of infinitely
many problems (3) in H3

(0) by projecting onto suitable finite dimensional

subspaces of H3
(0). Another goal of this work is to prove the simultaneous

local exact controllability in projection for any T > 0 up to phase-shifts. We
use different techniques from the Coron’s return method usually adopted for
those types of results, e.g. [11] and [12]. Indeed, in the appendix we develop
a perturbation theory technique that we use in order to get rid of an issue
appearing in the proof of the local controllability: the “eigenvalues reso-
nances”. The formulation of the controllability for orthonormal basis allows
to provide the result in terms of density matrices and unitarily equivalent
sets of functions.

1.1 Framework and main results

We denote H = L2((0, 1),C), its norm ‖ · ‖ and its scalar product 〈·, ·〉.
The operator A is the Dirichlet Laplacian, i.e. A = − d2

dx2
and D(A) =

H1
0 ((0, 1),C)∩H2((0, 1),C). The control function u belongs to L2((0, T ),R)

and B is a bounded symmetric operator.
We consider an Hilbert basis {φj}j∈N composed by eigenfunctions of A re-
lated to the eigenvalues {λj}j∈N and we have

(4) φj(t) = e−iAtφj = e−iλjtφj .
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Let us define the spaces for s > 0

Hs
(0) = Hs

(0)((0, 1),C) := D(A
s
2 ), ‖ · ‖(s) = ‖ · ‖Hs

(0)
=
( ∞∑
k=1

|ks〈·, φk〉|2
) 1

2
,

`∞(H ) =
{
{ψj}j∈N ⊂H

∣∣ sup
j∈N
‖ψj‖H <∞

}
,

hs(H ) =
{
{ψj}j∈N ⊂H

∣∣ ∞∑
j=1

(js‖ψj‖)2 <∞
}
.

We call Hs := Hs((0, 1),C), Hs
0 := Hs

0((0, 1),C) and, for N ∈ N

(5) IN := {(j, k) ∈ N× {1, ..., N} : j 6= k}.

Assumption (I). The bounded symmetric operator B satisfies the following
conditions.

1. For any N ∈ N, there exists CN > 0 so that for every j ≤ N and k ∈ N

|〈φk, Bφj〉| ≥ CN/k3.

2. Ran(B|H2
(0)

) ⊆ H2
(0) and Ran(B|H3

(0)
) ⊆ H3 ∩H1

0 .

3. For every N ∈ N and (j, k), (l,m) ∈ IN such that (j, k) 6= (l,m) and
j2 − k2 − l2 +m2 = 0, there holds 〈φj , Bφj〉 − 〈φk, Bφk〉 − 〈φl, Bφl〉+
〈φm, Bφm〉 6= 0.

Remark 1. If a bounded operator B satisfies Assumptions I, then B ∈
L(H2

(0), H
2
(0)). Indeed, B is closed in H , so for every {un}n∈N ⊂ H

such that un
H−→ u and Bun

H−→ v, we have Bu = v. Now, for every

{un}n∈N ⊂ H2
(0) such that un

H2
(0)−→ u and Bun

H2
(0)−→ v, the convergences

with respect to the H -norm are implied and Bu = v. Hence, the operator
B is closed in H2

(0) and B ∈ L(H2
(0), H

2
(0)). The same argument leads to

B ∈ L(H3
(0), H

3 ∩H1
0 ) since Ran(B|H3

(0)
) ⊆ H3 ∩H1

0 .

Example. Assumptions I are satisfied for B : ψ 7→ x2ψ. Indeed, the condi-
tion 2) is trivially verified, while the first directly follows by considering|〈φj , x

2φk〉| =
∣∣∣ (−1)j−k

(j−k)2π2 − (−1)j+k

(j+k)2π2

∣∣∣, j 6= k,

|〈φk, x2φk〉| =
∣∣∣13 − 1

2k2π2

∣∣∣, k ∈ N.

The point 3) holds since for (j, k), (l,m) ∈ IN so that (j, k) 6= (l,m)

j2 − k2 − l2 +m2 = 0 =⇒ j−2 − k−2 − l−2 +m−2 6= 0.
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Let Ψ := {ψj}j∈N ⊂ H and HN (Ψ) := span{ψj : j ≤ N}. We define
πN (Ψ) the orthogonal projector onto HN (Ψ).

Definition 1. The problem (3) is said to be simultaneously globally exactly
controllable in projection in H3

(0) if, for every N ∈ N, there exist T > 0 and

Ψ := {ψj}j∈N ⊂ H so that the following property is verified. For every
{ψ1

j }j∈N, {ψ2
j }j∈N ⊂ H3

(0) unitarily equivalent, there exists u ∈ L2((0, T ),R)
such that

πN (Ψ)ψ2
j = πN (Ψ)ΓuTψ

1
j ∀j ∈ N.

Definition 2. Let us define

Oε,T :=
{
{ψj}j∈N ⊂ H3

(0)

∣∣ 〈ψj , ψk〉 = δj,k; sup
j∈N
‖ψj − φj(T )‖(3) < ε

}
.

The problem (3) is said to be simultaneously locally exactly controllable
in projection in H3

(0) if, for every N ∈ N, there exist ε > 0, T > 0 and

Ψ := {ψj}j∈N ⊂ H so that the following property is verified. For every
{ψ1

j }j∈N ⊂ Oε,T , there exists u ∈ L2((0, T ),R) such that

πN (Ψ)ψ1
j = πN (Ψ)ΓuTφj ∀j ∈ N.

Let U(H ) be the space of the unitary operators on H . We present the
simultaneous local exact controllability in projection for any positive time
up to phases.

Theorem 1. Let B satisfy Assumptions I. For every N ∈ N, there exist
ε > 0 so that, for every T > 0 and Ψ := {ψj}j∈N ⊂ H3

(0), the following holds.

For any {ψ̃j}j∈N ∈ Oε,T and Γ̂ ∈ U(H ) such that {ψ̃j}j∈N = {Γ̂φj}j∈N, if

(6)
{

Γ̂∗φj
}
j∈N ⊂ H

3
(0),

then there exist {θj}j≤N ⊂ R and u ∈ L2((0, T ),R) such that{
πN (Ψ)ψ̃j = πN (Ψ)eiθjΓuT ψ̃j j ≤ N,
πN (Ψ)ψ̃j = πN (Ψ)ΓuT ψ̃j j > N.

Proof. See Proposition 6.

We present now the simultaneous global exact controllability in projec-
tion.

Theorem 2. Let B satisfy Assumptions I and let Ψ3 := {ψ3
j }j∈N ⊂ H3

(0).

Let {ψ1
j }j∈N, {ψ2

j }j∈N,⊂ H3
(0) so that there exists Γ̂ ∈ U(H ) such that

{Γ̂ψ1
j }j∈N = {ψ2

j }j∈N. If

(7) {Γ̂ψ3
j }j∈N ⊂ H3

(0),
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then for any N ∈ N, there exist T > 0 and u ∈ L2((0, T ),R) such that

πN (Ψ3) ψ2
j = πN (Ψ3) ΓuTψ

1
j , j ∈ N.(8)

Proof. See Section 3.

We point out that if Ψ3 = Ψ2, then Γ̂∗ψ3
j ∈ H3

(0). By considering that

πN (Ψ2) ψ2
j =

{
ψ2
j , j ≤ N,
πN (Ψ2)ψ2

j , j > N,
(9)

the next corollary straightly follows (if Ψ2 is composed by orthogonal ele-
ments, then the second line of (9) is 0).

Corollary 3. Let B satisfy Assumption I. Let Ψ1 := {ψ1
j }j∈N, Ψ2 :=

{ψ2
j }j∈N ⊂ H3

(0) unitarily equivalent. For any N ∈ N, there exist T > 0

and a control function u ∈ L2((0, T ),R) such that

{
ΓuTψ

1
j = ψ2

j , j ≤ N
πN (Ψ2) ΓuTψ

1
j = πN (Ψ2)ψ2

j , j > N.

Remark. One can notice that Corollary 3 implies the simultaneous global
exact controllability (without projecting) of N problems (3). As we have
mentioned before, a similar result is proved by Morancey and Nersesyan in
[12,Main Theorem]. They prove the existence of a class of multiplication
operators B that guarantees the simultaneous global exact controllability of
a finite number of equations i∂tψ = (A+ V )ψ + u(t)Bψ in D(|A+ V |2) for
V ∈ H4. However, Theorem 2 and Corollary 3 provide a novelty as we are
able to provide conditions in B implying the validity of the result. Given
any bounded operator B, one can verify if those assumptions are satisfied,
e.g. B = x2.

Remark 2. Assumptions as (6) and (7) naturally occur when one tries to
control simultaneously infinite bilinear Schrödinger equations. Indeed, if
{ΓuTφj}j∈N = {Γ̂φj}j∈N for T > 0, u ∈ L2((0, T ),R) and Γ̂ ∈ U(H ), then
for every k ∈ N

+∞∑
j=1

j6|〈φk,ΓuTφj〉|2 =

+∞∑
j=1

j6|〈(ΓuT )∗φk, φj〉|2 = ‖(ΓuT )∗φk‖2(3).

As we present in the next section, (ΓuT )∗ preserves H3
(0) and then, for every

k ∈ N, we have ‖(ΓuT )∗φk‖2(3) < +∞. On the other hand, for every k ∈ N

+∞∑
j=1

j6|〈φk,ΓuTφj〉|2 =

+∞∑
j=1

j6|〈φk, Γ̂φj〉|2 =

+∞∑
j=1

j6|〈Γ̂∗φk, φj〉|2 = ‖Γ̂∗φk‖2(3).
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Now, we rephrase Theorem 2 in terms of density matrices.

Corollary 4. Let B satisfy Assumptions I and ρ1, ρ2 ∈ T (H ) be two density
matrices so that Ran(ρ1), Ran(ρ2) ⊆ H3

(0). We suppose the existence of

Γ̂ ∈ U(H ) so that ρ2 = Γ̂ρ1Γ̂∗. Let Ψ3 := {ψ3
j }j∈N ⊂ H3

(0) be such that

{Γ̂ψ3
j }j∈N ⊂ H3

(0),

for every j ∈ N. For any N ∈ N, there exist T > 0 and a control function
u ∈ L2((0, T ),R) such that

πN (Ψ3) ΓuTρ
1(ΓuT )∗ πN (Ψ3) = πN (Ψ3) ρ2 πN (Ψ3).

Proof. See Section 3.3.

1.2 Well-posedness

We mention now the crucial result of well-posedness for the problem in H{
i∂tψ(t) = Aψ(t) + u(t)µψ(t),

ψ(0) = ψ0, t ∈ (0, T ).
(10)

Proposition 5. [3, Lemma 1; Proposition 2]

1) Let T > 0 and f̃ ∈ L2((0, T ), H1
0∩H3). The function G : t 7→

∫ t
0 e

iAsf̃(s)ds
belongs to C0([0, T ], H3

(0)). Moreover

‖G‖L∞((0,T ),H3
(0)

) ≤ c1(T )‖f̃‖L2((0,T ),H3∩H1
(0)

),

where the constant c1(T ) is uniformly bounded with T in bounded intervals.

2) Let µ ∈ H3, T > 0, ψ0 ∈ H3
(0) and u ∈ L2((0, T ),R). There exists a

unique mild solution of (10) in H3
(0), i.e. ψ ∈ C0([0, T ], H3

(0)) so that

(11)

ψ(t, x) = e−iAtψ0(x)− i
∫ t

0
e−iA(t−s)(u(s)µ(x)ψ(s, x))ds, ∀t ∈ [0, T ].

Moreover, for every R > 0, there exists C = C(T, µ,R) > 0 such that,
if ‖u‖L2((0,T ),R) < R, then, for every ψ0 ∈ H3

(0), the solution satisfies

‖ψ‖C0([0,T ],H3
(0)

) ≤ C‖ψ0‖(3) and ‖ψ(t)‖H = ‖ψ0‖H for every t ∈ [0, T ].

The result of Proposition 5 is also valid if one substitute µ ∈ H3 with
B ∈ L(H3

(0), H
3 ∩ H1

0 ). When B satisfies Assumptions I, we know that

B ∈ L(H3
(0), H

3∩H1
0 ) (see Remark 1) and there exists a unique mild solution

of (3) in H3
(0) so that

ψj(t, x) = e−iAtψ0
j (x)− i

∫ t

0
e−iA(t−s)u(s)Bψj(s, x)ds.
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1.3 Time reversibility

We present another feature of the bilinear Schrödinger equation, the time
reversibility. First, we substitute t with T − t for T > 0 in the bilinear
Schrödinger equation (3) and we obtain{

i∂tΓ
u
T−tψ

0 = −AΓuT−tψ
0 − u(T − t)BΓuT−tψ

0,

ΓuT−0ψ
0 = ΓuTψ

0 = ψ1 t ∈ (0, T ).

Then ΓuT−tψ
0 = Γ̃ũt ψ

1 for ũ(t) := u(T − t) and Γ̃ũt so that{
i∂tΓ̃

ũ
t ψ

1 = (−A− ũ(t)B)Γ̃ũt ψ
1,

Γ̃ũ0ψ
0 = ψ1, t ∈ (0, T ).

(12)

Thanks to Id = Γ̃ũTΓuT , it follows Γ̃ũT = (ΓuT )−1 = (ΓuT )∗. The operator Γ̃ũt
describes the reversed dynamics of Γut and represents the propagator of (6)
generated by the Hamiltonian (−A− ũ(t)B).
The importance of the time reversibility resides in the fact that all the
controllability results that we are going to prove are also verified for the
reversed problem. We use this feature in many steps of the next proofs.

1.4 Scheme of the work

In Section 2, we presents Proposition 6 and its proof. The proposition ex-
tends Theorem 1 and it provides the simultaneous local exact controllability
in projection for any positive time up to phases. In order to motivate the
modification of the problem, we emphasize the obstructions to overcome.
In Section 3, at first we prove that the simultaneous local exact controlla-
bility in projection of infinite problems (3), under particular conditions, is
equivalent to the simultaneous local exact controllability of a finite number
of problems. We call this feature “transposition argument”. Second, we
prove the simultaneous global approximate controllability for N problems
(3) in Proposition 7. Third we gather Proposition 7 with the simultaneous
local exact controllability ensured by [12,Main Theorem] in order to prove
the simultaneous global exact controllability for N problems (3) (Proposi-
tion 8). The transposition argument leads to the proof of Theorem 2. In
conclusion the proof of Corollary 4 follows from Theorem 2.
In Appendix A, we develop the perturbation theory technique adopted in
the proofs of Theorem 2, Corollary 4 and Proposition 6.
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2 Simultaneous locale exact controllability in pro-
jection for T > 0

2.1 Preliminaries

In this section, we discuss the simultaneous local exact controllability in
projection and we explain why we modify the problem before proceeding.

Let Φ = {φj}j∈N be an Hilbert basis composed by eigenfunctions of A.
We start by studying the local exact controllability in projection with respect
to πN (Φ) of functions belonging toOε,T . Let Γut ψj =

∑∞
k=1 φk(T )〈φk(T ),Γut φj〉

be the solution of the j-th problem of (3). We consider the map α(u) as the
infinite matrix with elements

αk,j(u) = 〈φk(T ),ΓuTφj〉, k, j ∈ N k ≤ N.

Our goal is to prove the existence of ε > 0 such that for any {ψj}j∈N ∈ Oε,T ,
there exists u ∈ L2((0, T ),R) so that

πN (Φ)ΓuTφj = πN (Φ)ψj , ∀j ∈ N.

This outcome is equivalent to the local surjectivity of the map α for T > 0.
To this end, we want to use the Generalized Inverse Function Theorem
(see [10], p. 240) and we study the surjectivity of Fréchet derivative of α,
γ(v) := (duα(0)) · v. The map γ is the infinite matrix with elements

γk,j(v) : =

〈
φk(T ),−i

∫ T

0
e−iA(T−s)v(s)Be−iAsφjds

〉
= −i

∫ T

0
v(s)e−i(λj−λk)sdsBk,j , k ≤ N, j ∈ N,

for Bk,j = 〈φk, Bφj〉 = 〈Bφk, φj〉 = Bj,k. The surjectivity of γ consists in
proving the solvability of the moment problem

xk,j
Bk,j

= −i
∫ T

0
u(s)e−i(λj−λk)sds,(13)

for each infinite matrix x, with elements xk,j , belonging to a suitable space.
One would use the Haraux Theorem ([9], p. 67) but a problem appears. The
so-called “eigenvalues resonances” occur when, for j, k, n,m ∈ N, (j, k) 6=
(n,m) and k,m ≤ N , there holds λj − λk = λn − λm (we recall λl = π2l2).
Those relations imply the constraints

xk,j
Bk,j

= −i
∫ T

0
u(s)e−i(λj−λk)sds = −i

∫ T

0
u(s)e−i(λn−λm)sds =

xn,m
Bn,m

.

An example is λ7 − λ1 = λ8 − λ4, but they also appear for all the diagonal
terms of γ since λj − λk = 0 for j = k.

We avoid the problem by adopting the following procedure.
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� We decompose A + u(t)B = (A + u0B) + u1(t)B for u0 ∈ R and
u1 ∈ L2((0, T ),R). We consider A+ u0B instead of A and we modify
the eigenvalues gaps by using u0B as a perturbating term in order to
remove all the non-diagonal resonances.

� The previous point imposes to redefine α in a map α̂ depending on
the parameter u0. After, we introduce αu0 by acting the following
phase-shifts in order to remove the resonances on the diagonal terms

ψ̃j(t, x) =
α̂j,j(u)

|α̂j,j(u)|
ψj(t, x) =⇒ αu0k,j(u) =

α̂j,j(u)

|α̂j,j(u)|
α̂k,j(u).

2.2 The modified problem

Let N ∈ N and u(t) = u0 + u1(t), for u0 and u1(t) real. We introduce the
following Cauchy problem{

i∂tψj(t) = (A+ u0B)ψj(t) + u1(t)Bψj(t),

ψj(0) = φu0j t ∈ (0, T ), j ∈ N.
(14)

Its solutions are ψj(t) = Γu0+u1
t φu0j , where Γu0+u1

t is the unitary propagator
of the dynamics which is equivalent to the one of the problems (3). The
operator A + u0B has pure discrete spectrum and its eigenvalues {λu0j }j∈N
correspond to an Hilbert basis composed by eigenfunctions Φu0 := {φu0j }j∈N.

We set φu0j (T ) := e−iλ
u0
j Tφu0j and we introduce

Ou0ε0,T :=
{
{ψj}j∈N ⊂ H3

(0)

∣∣ 〈ψj , ψk〉 = δj,k; sup
j∈N
‖ψj − φu0j (T )‖(3) < ε0

}
.

(15)

In addition, we chose |u0| small enough so that λu0k 6= 0 for every k ∈ N
(Lemma 13). The introduction of the new Hilbert basis imposes to define

(16) H̃3
(0) := D(|A+ u0B|

3
2 ), ‖ · ‖

H̃3
(0)

=
( ∞∑
k=1

∣∣|λu0k | 32 〈·, φk〉∣∣2) 1
2
.

However, from now on, we consider the hypothesis of Lemma 15 (Appendix
A) being verified so that H̃3

(0) ≡ H
3
(0).

We define α̂, the infinite matrices with elements for k ≤ N and j ∈ N so
that α̂k,j(u1) = 〈φu0k (T ),Γu0+u1

T φu0j 〉 and the map αu0 with elements{
αu0k,j(u1) =

α̂j,j(u1)
|α̂j,j(u1)| α̂k,j(u1), j, k ≤ N,

αu0k,j(u1) = α̂k,j(u1), j > N, k ≤ N.

10



Now, we point out that for k ≤ N

(17) πN (Φu0)ωjΓ
u0+u1
T φu0j =

N∑
k=1

φu0k (T )αu0k,j(u1), ωj :=
α̂j,j(u1)

|α̂j,j(u1)|
.

Thus, the local surjectivity of the map αu0 in a suitable space (in QN defined
below in (19)) is equivalent to the simultaneous local exact controllability
in projection on Ou0ε0,T for a suitable ε0 > 0 up to N phases.

Let γu0(v) = ((du1α
u0)(0)) · v be the Fréchet derivative of αu0 and let

Bu0 be the infinite matrix with elements Bu0
j,k = 〈φu0j , Bφ

u0
k 〉 for j ≤ N and

k ∈ N. Defined γ̂k,j(v) = ((du1α̂)(0)) · v, we compute γu0(v) so that{
γu0k,j =

(
γ̂j,jδk,j + γ̂k,j − δk,j<(γ̂j,j)

)
, j, k ≤ N,

γu0k,j = γ̂k,j , k ≤ N, j > N.

Thus for k ≤ N and j ∈ N{
γu0k,j = γ̂k,j = −i

∫ T
0 u1(s)e−i(λ

u0
j −λ

u0
k )sdsBu0

k,j , k 6= j,

γu0k,k = <(γ̂k,k) = 0, k = j,
(18)

The relation γu0k,k = 0 comes from the fact that (iγ̂k,k) ∈ R since γ̂k,j = −γ̂j,k
for j, k ≤ N. Thanks to the phase-shifts, the diagonal elements of γu0 are
all 0.

Remark. Thanks to the orthogonality of the elements in Ou0ε0,T (see (15))

TΦu0O
u0
ε0,T

=
{
{fj}j∈N ⊂ `∞(H3

(0))
∣∣ 〈φu0k , fj〉 = −〈φu0j , fk〉

}
.

We have TΦu0O
u0
ε0,T
⊂ `∞(H3

(0)) since supj∈N ‖ψj − φ
u0
j ‖(3) ≤ ε0 for every

{ψj}j∈N ∈ Ou0ε0,T . In conclusion, thanks to Remark 2, the maps αu0 and γu0

take respectively value in

QN :=
{
{xk,j}k,j∈N

k≤N

∈ (h3(C))N
∣∣ xk,k ∈ R, k ≤ N

}
,

GN :=
{
{xk,j}k,j∈N

k≤N

∈ (h3(C))N
∣∣ xk,j = −xj,k & xk,k = 0 j, k ≤ N

}
.

(19)

2.3 Proof of Theorem 1

In the next proposition we ensure the simultaneous local exact controllability
in projection for any T > 0 up to phases.

Proposition 6. Let N ∈ N and B satisfy Assumptions I. For every T > 0,
there exist ε > 0 and u0 ∈ R such that for any {ψj}j∈N ∈ Oε,T satis-
fying the relation (6), there exist a sequence of real numbers {θj}j∈N ={{
θ̂j
}
j≤N , 0, ...

}
and a control function u ∈ L2((0, T ),R) such that

πN (Φu0)ψj = πN (Φu0)eiθjΓuTφ
u0
j , ∀j ∈ N.

11



Proof. 1) Let u0 belong to the neighborhoods defined in Appendix A by Re-
mark 7, Lemma 13, Lemma 14 and Lemma 15. First, by referring to Remark
2, the relation (6) is required for the following reason. Let {ΓuTφ

u0
j }j∈N =

{Γ̂φj}j∈N for T > 0, u ∈ L2((0, T ),R) and Γ̂ ∈ U(H ). For |u0| small
enough, thanks to Lemma 13, there exists C1 > 0 such that j6 ≤ C1|λu0j |3
and, thanks to Lemma 15, there exists C2 > 0 such that, for every k ∈ N

+∞∑
j=1

j6|〈φk,ΓuTφ
u0
j 〉|

2 ≤ C1‖(ΓuT )∗φk‖2H̃3
(0)

≤ C1C2‖Γ̃ũTφk‖2(3) <∞.

On the other hand, for every k ∈ N

+∞∑
j=1

j6|〈φk,ΓuTφ
u0
j 〉|

2 =
+∞∑
j=1

j6|〈φk, Γ̂φj〉|2 =
+∞∑
j=1

j6|〈Γ̂∗φk, φj〉|2 = ‖Γ̂∗φk‖2(3).

Second, thanks to the third point of Remark 7, the controllability in Ou0ε0,T
implies the controllability in Oε,T , for suitable ε0, since

sup
j∈N
‖ψj − φj(T )‖(3) ≤ sup

j∈N
‖φu0j − φj(T )‖(3) + sup

j∈N
‖ψj − φu0j (T )‖(3).

Third, thanks to the discussion provided for the relation (17), the local
surjectivity of the map αu0 guarantees the simultaneous local exact control-
lability in projection up to phases of (3) with initial state {φu0j }j∈N on Ou0ε0,T
for ε0 small enough. We consider Generalized Inverse Function Theorem
(see [10], p. 240) since QN and GN are Banach spaces. If γu0 is surjective
in GN , then the local surjectivity of αu0 in QN is ensured. Now, γu0 is
surjective when the following moment problem is solvable

xu0k,j
Bu0
k,j

= −i
∫ T

0
u(s)e−i(λ

u0
j −λ

u0
k )sds, j ∈ N, k ≤ N, k 6= j(20)

for
{
xu0k,j

}
j,k∈N
k≤N

∈ GN . We know that
{
xu0k,j

}
j,k∈N
k≤N

,
{
γu0k,j
}
j,k∈N
k≤N

∈ (h3)N .

Thanks to Lemma 14 and to |Bu0
k,j | = |B

u0
j,k|, it follows{

xu0k,j/B
u0
k,j

}
j,k∈N
k≤N

,
{
γu0k,j/B

u0
k,j

}
j,k∈N
k≤N

∈ (`2)N .

We do not consider the equations of (20) for k = j since γu0k,k = 0 and

xu0k,k = 0 for every k ≤ N and for every {xu0k,j}k,j∈N
k≤N

∈ GN . Thanks to Lemma

16 (Appendix A), for IN defined in (5), there exist

G ′ := inf
(j,k),(n,m)∈IN
(j,k)6=(n,m)

|λu0j − λ
u0
k − λ

u0
n + λu0m | > 0,

12



G := sup
A⊂IN

(
inf

(j,k),(n,m)∈IN\A
(j,k)6=(n,m)

|λu0j − λ
u0
k − λ

u0
n + λu0m |

)
≥ G ′,

where A runs over the finite subsets of I. Hence, for T > 2π
G , Haraux

Theorem ([9], p. 67) implies the solvability of the moment problem (20).
The proof is achieved since αu0 is locally surjective for T > 0 large enough.

2) Now, we show that the first point is valid for every T > 0 by proving that
G = +∞. Let AM := {(j, n) ∈ N2| j, n ≥M ; j 6= n} for M ∈ N. Thanks to
Lemma 13, for |u0| small enough and for every K ∈ R, there exists MK > 0
large enough so that inf(j,n)∈AMK |λu0j − λu0n | > K. Thus

G ≥ sup
M∈N

(
inf

(j,n)∈AM
|λu0j − λ

u0
n | − 2λu0N

)
> 0.

For |u0| small enough, Lemma 13 implies the existence of C > 0 so that

G ≥ C
(

lim
M→∞

inf
(j,n)∈AM

|λj−λn|−2λN
)
≥ C lim

M→∞
(λM+2−λM+1−2N2π2) = +∞.

Remark 3. The proof of Proposition 6 is still valid by phase-shifting the
components of the map u 7→ {Γut φ

u0
j }, i.e. by substituting αu0 with α̂k,k(u)

|α̂k,k(u)| α̂k,j(u), j, k ≤ N,
α̂k,j(u), j > N, k ≤ N.

3 Simultaneous global exact controllability in pro-
jection

The common approach adopted in order to prove the global exact controlla-
bility (also simultaneous) consists in gathering the results of global approx-
imate controllability and local exact controllability.
We would like to use this strategy in order to prove Theorem 2, but it is
not possible for the controllability in projection. Indeed, the propagator
ΓuT does not preserve the space πN (Ψ)H3

(0) for any Ψ := {ψj}j∈N ⊂ H3
(0),

making impossible to reverse and concatenate dynamics. In other words, let
ψ1, ψ2 ∈ H3

(0). For T1, T2 > 0, u1 ∈ L2((0, T1),R) and u2 ∈ L2((0, T2),R)

πN (Ψ)Γu1T1ψ
1 = πN (Ψ)Γ̃u2T2ψ

2 6⇒ πN (Ψ)Γũ2T2Γu1T1ψ
1 = πN (Ψ)ψ2.

Thus, we have to adopt an alternative strategy. We prove that, under par-
ticular conditions, the controllability in projection onto an N dimensional
space is equivalent to the controllability of N problems (without projecting).
We call this feature “transposition argument” (see remark below).
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Remark 4. The time reversibility (Section 1.3) implies that for j, k ∈ N

〈φu0k (T ),ΓuTφ
u0
j 〉 = e−iλ

u0
k T 〈ΓuTφ

u0
j , φ

u0
k 〉 = e−iλ

u0
k T 〈φu0j , (Γ

u
T )∗φu0k 〉

= e−i(λ
u0
k +λ

u0
j )T 〈φu0j (T ), Γ̃ũTφ

u0
k 〉.

(21)

Now, e−i(λ
u0
k +λ

u0
j )T does not depend on u and the relation (21) implies that

the surjectivity of the two following maps (on suitable spaces) is equivalent{
〈φu0k (T ),ΓuTφ

u0
j 〉
}
k,j∈N
k≤N

,
{
〈φu0k (T ), Γ̃ũTφ

u0
j 〉
}
k,j∈N
j≤N

.

For this reason, under particular conditions, the simultaneous global exact
controllability in projection of (3) onto a suitable N dimensional space is
equivalent to the controllability of N problems (6) (without projecting).

Remark 5. Keeping in mind our notation, the transposition argument and
[12, P roposition 4.4] imply the simultaneous local exact controllability in
projection in H̃3

(0) (defined in (16)) for any T > 0 with phases ambiguity

in the components. Indeed, H3
(V ), defined in [12], corresponds to H̃3

(0) when
V = u0B and B is a suitable multiplication operator. In particular, for
N ∈ N, there exists a set of assumptions on the couple (u0, B) so that, for
every T > 0, the following result is verified. Let O(Φu0) ∈ `∞(H̃3

(0)) be

a suitable neighborhood of Φu0 = {φu0j }j∈N and {θj}j∈N ⊂ R. For every

{ψj}j∈N ∈ O(Φu0
j ) satisfying the relation (6), there exists u ∈ L2((0, T ),R)

so that

N∑
k=1

φu0k e
iθk〈φu0k , ψj〉 = πN (Φu0)ΓuTφ

u0
j , ∀j ∈ N.

The transposition argument is particularly important as it allows to
concatenate and reverse dynamics on (H3

(0))
N which is preserved by the

propagator when one wants to prove the controllability in projection.
For the simultaneous local exact controllability result, we can use Proposi-
tion 6 with the transposition argument, but this is not the most convenient
approach. Even though Proposition 6 provides the controllability for any
T > 0, the outcome is true up to phases. For this reason, we consider
[12, Theorem 4.1] instead of Proposition 6. The mentioned theorem ex-
hibits the simultaneous local exact controllability of N problems including
the control of the phases, even if it is not valid for any T > 0 (contrary
to Proposition 6). However, we are not able to ensure Theorem 2 for any
T > 0 since the simultaneous global approximate controllability, adopted in
the proof, is not guaranteed for any T > 0, as we show in the section below.

3.1 Approximate simultaneous controllability

In this subsection we prove the simultaneous global approximate controlla-
bility of the problems (3).

14



Definition 3. The problem (3) is said to be simultaneously globally ap-
proximately controllable in Hs

(0) if for every N ∈ N, ψ1, ...., ψN ∈ Hs
(0),

Γ̂ ∈ U(H ) such that Γ̂ψ1, ...., Γ̂ψN ∈ Hs
(0) and ε > 0, then there exist T > 0

and u ∈ L2((0, T ),R) so that for every 1 ≤ k ≤ N

‖Γ̂ψk − ΓuTψk‖Hs < ε.

Proposition 7. Let B satisfy Assumptions I. The problem (3) is simulta-
neously globally approximately controllable in H3

(0).

Proof. Let N ∈ N and u0 belong to the neighborhoods provided in Appendix
A by Remark 6 and Remark 7. We define the norms

||| · ||| (s) := ||| · ||| L(Hs
(0)
,Hs

(0)
), ‖ · ‖BV ((0,T ),R) = ‖ · ‖BV (T ),

for ‖f‖BV ((0,T ),R) = sup{tj}j≤n∈P
∑n

j=1 |f(tj)− f(tj−1)| and P the set of the
partitions of (0, T ) so that t0 = 0 < t1 < ... < tn = T.

1) Let λ > 0 and Ĥ4
(0) := D(A(iλ−A)) ≡ H4

(0). We consider [7, Section 3.10].

For T > 0, u ∈ L2((0, T ),R) and λ large enough, |||u(t)B(iλε−A)−1 ||| (2) < 1
and

M := sup
t∈[0,T ]

||| (iλε −A− u(t)B)−1 |||
L(H2

(0)
,Ĥ4

(0)
)

= sup
t∈[0,T ]

||| (I − u(t)B(iλε −A)−1)−1 ||| (2)

≤ sup
t∈[0,T ]

+∞∑
l=1

||| (u(t)(iλε −A)−1B)l ||| (2) < +∞.

We know that B : Ĥ4
(0) ⊂ H3

(0) → H3 ∩ H1
0 ⊂ H2

(0) and the techniques of

Remark 1 imply that B ∈ L(Ĥ4
(0), H

2
(0)). Now

N := ||| iλε−A−u(·)B |||
BV
(

[0,T ],L(Ĥ4
(0)
,H2

(0)
)
) ≤ ‖u‖BV (T ) |||B ||| L(Ĥ4

(0)
,H2

(0)
)
< +∞.

Thanks to [7, Section 3.10], for every ψ ∈ H4
(0)

‖(A+ u(T )B − iλ)ΓuTψ‖(2) ≤MeMN‖(A− iλ)ψ‖(2).

Now, C1 := |||A(A+ u(T )B − iλ)−1 ||| (2) <∞. There exists C2 > 0 so that

‖ΓuTψ‖(4) = ‖AΓuTψ‖(2) ≤ C1MeMN‖(A− iλ)ψ‖(2) ≤ C2MeMN‖ψ‖(4).

In conclusion, for every T > 0, u ∈ L2((0, T ),R) and ψ1, ψ2 ∈ H4
(0), there

holds ‖ΓuTψ1 − ψ2‖(4) < +∞.
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2) Let {ψ1
j }j≤N , {ψ2

j }j≤N ⊂ H3
(0) unitarily equivalent. Thanks to the den-

sity of H4
(0) in H3

(0) with respect to the H3
(0)−norm, we know that, for every

ε > 0, there exist {ψ̃1
j }j≤N , {ψ̃2

j }j≤N ⊂ H4
(0) such that for every j ≤ N

‖ψ1
j − ψ̃1

j ‖(3) ≤ ε, ‖ψ2
j − ψ̃2

j ‖(3) ≤ ε.

We point out that the same arguments of the first point can be used in order
to prove that, for every T > 0, u ∈ L2((0, T ),R) and ψ ∈ H3

(0), there exists

C3 > 0 so that ‖ΓuTψ‖(3) ≤ C3‖ψ‖(3). Now

‖ΓuTψ1
j − ψ2

j ‖(3) ≤ ε+ ‖ΓuTψ1
j − ΓuT ψ̃

1
j ‖(3) + ‖ΓuT ψ̃1

j − ψ̃2
j ‖(3)

≤ (C3 + 1)ε+ ‖ΓuT ψ̃1
j − ψ̃2

j ‖(3).

Thanks to the Cauchy-Schwarz inequality, for every ψ ∈ H4
(0), we have

‖ψ‖2(3) = 〈|A|
3
2ψ, |A|

3
2ψ〉 = 〈|A|2ψ, |A|ψ〉 = ‖ψ‖(2)‖ψ‖(4)

and, thanks to the first point of the proof, there exists C4 > 0 so that

‖ΓuTψ1
j − ψ2

j ‖(3) ≤ (C3 + 1)ε+ C
1
2
4 ‖Γ

u
T ψ̃

1
j − ψ̃2

j ‖
1
2

(2).

Afterwards, the hypothesis of [5, P roposition 5] are satisfied since the opera-
tors−i(A+u0B) and−i(A+u0B)−iuB are skew-adjoint. Moreover, Remark
1 implies the validity of [5, P roposition 6] which ensures that the couple (A+
u0B,B) is 2-weakly coupled (see [5, Definition 1]). Now, (A+ u0B,B) ad-
mits a non-degenerate chain of connectedness (see [5, Definition 3]) thanks
to Remark 7. Thanks to Remark 6, it follows H̃2

(0) ≡ H2
(0) and there exists

C5 > 0 so that ‖ · ‖(2) ≤ C5‖ · ‖H̃2
(0)

. Now [5, P roposition 5] implies the

existence of u : [0, T ]→ U so that

‖ΓuT ψ̃1
j − ψ̃2

j ‖(2) ≤ C5‖ΓuT ψ̃1
j − ψ̃2

j ‖H̃2
(0)
< C5ε ∀j ≤ N.

In conclusion, ‖ΓuTψ1
j − ψ2

j ‖(3) ≤ ε̃ for ε̃ = (C3 + 1)ε+ C
1
2
4 C

1
2
5 ε

1
2 .

3.2 Proofs of Theorem 2 and Corollary 4

In the current section, we provide the proof of Theorem 2 which requires
the following proposition.

Proposition 8. Let N ∈ N and B satisfy Assumption I. For any {ψ1
k}k≤N ,

{ψ2
k}k≤N ⊂ H3

(0) orthonormal systems, there exist T > 0 and a control

function u ∈ L2((0, T ),R) such that:

ψ2
k = Γ̃uTψ

1
k, k ≤ N.
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Proof. Let N ∈ N and let u0 ∈ R belong to the neighborhoods provided in
Appendix A by Remark 7, Remark 8, Lemma 14 and Lemma 15.
Keeping in mind the discussion in Remark 5, we consider the assumptions
(C3), (C4) and (C5) introduced in [12, p. 10]. If we substitute V with u0B
and µ by −B, then the statement of [12, Theorem 4.1] is still valid. How-
ever, the condition (C3) is ensured by Lemma 14, while the assumptions (C4)
and (C5) respectively follow from the first point of Remark 7 and Remark
8. Let ε, T > 0 and

ONε,T :=
{
{ψj}j≤N ⊂ H3

(0)

∣∣ 〈ψj , ψk〉 = δj,k;
N∑
j=1

‖ψj − φj‖(3) < ε
}
.

Thanks to Lemma 14 and [12, Theorem 4.1], the simultaneous local exact
controllability is guaranteed in ONε,T for suitable ε > 0 and T > 0. Lemma 14
allows to obtain the result of [12, Theorem 4.1], not only in a neighborhood
of H̃3

(0), but also in ONε,T ⊂ H3
(0). The controllability is also verified for the

problem (6).

Now, Theorem 7 implies the simultaneous global approximate controllabiliy
for N problems. For any {ψ1

j }j≤N ⊂ H3
(0) composed by orthonormal ele-

ments, there exist T1 > 0 and u1 ∈ L2((0, T1),R) so that

‖Γu1T1ψ
1
j − φ

u0
j ‖(3) <

ε

N
, ∀j ≤ N =⇒ {Γu1T1ψ

1
j }j≤N ∈ ONε,T .

Thanks to the local controllability, there exists u ∈ L2((0, T ),R) so that

{Γu1T1ψ
1
j }j≤N = {Γ̃uTφ

u0
j }j≤N =⇒ {ΓũTΓu1T1ψ

1
j }j≤N = {φu0j }j≤N .

By concatenating and reversing the dynamics, the proof is achieved.

Proof of Theorem 2. Let N ∈ N and u0 ∈ R in the neighborhoods provided
in Appendix A by Remark 7, Remark 8, Lemma 14 and Lemma 15.

1) Controllability in projection of orthonormal systems: Let Ψ3 :=
{ψ3

j }j∈N ∈ H3
(0) be an orthonormal basis. We consider {ψ1

j }j∈N, {ψ2
j }j∈N ⊂

H3
(0) orthonormal systems and Γ̂ ∈ U(H ) so that Γ̂ψ1

j = ψ2
j and Γ̂∗ψ3

j ∈
H3

(0) for every j ∈ N. The last relation implies that for every k ≤ N

ψ̃k :=
∞∑
j=1

ψ1
j 〈ψ2

j , ψ
3
k〉 =

∞∑
j=1

ψ1
j 〈Γ̂ψ1

j , ψ
3
k〉 =

∞∑
j=1

ψ1
j 〈ψ1

j , Γ̂
∗ψ3

k〉 = Γ̂∗ψ3
k ∈ H3

(0).

Thanks to Proposition 8, there exist T > 0 and u ∈ L2((0, T ),R) so that
ψ̃k = Γ̃uTψ

3
k, for each k ≤ N . Hence

〈ψ1
j , Γ̃

u
Tψ

3
k〉 = 〈ψ1

j , ψ̃k〉 = 〈ψ2
j , ψ

3
k〉, ∀j, k ∈ N, k ≤ N.
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Thanks to Section 1.3, we have 〈ΓũTψ1
j , ψ

3
k〉 = 〈ψ1

j , Γ̃
u
Tψ

3
k〉 = 〈ψ2

j , ψ
3
k〉 and

(22) πN (Ψ3)ψ2
j = πN (Ψ3)ΓũTψ

1
j , ∀j ∈ N.

2) Controllability in projection of unitarily equivalent functions:
Let us consider {ψ1

j }j∈N, {ψ2
j }j∈N ⊂ H3

(0) unitarily equivalent. Let Ψ3 :=

{ψ3
j }j∈N be an Hilbert basis of H . We suppose the existence of Γ̂ ∈ U(H )

so that Γ̂ψ1
j = ψ2

j and Γ̂∗ψ3
j ∈ H3

(0) for every j ∈ N. One knows that for every

j ∈ N, there exists {ajk}k∈N ∈ `
2(C) such that ψ1

j =
∑

k∈N a
j
kψ

3
k. However,

{Γ̂ψ3
j }j∈N is an Hilbert basis of H and

ψ2
j = Γ̂ψ1

j =
∑
k∈N

ajkΓ̂ψ
3
k.

The point 2) implies that there exist T > 0 and u ∈ L2((0, T ),R) so that

πN (Ψ3) ΓuTψ
3
k = πN (Ψ3) Γ̂ψ3

k

for every k ∈ N, and then for any j ∈ N

πN (Ψ3) ΓuTψ
1
j =

∑
k∈N

ajk
(
πN (Ψ3) ΓuTψ

3
k

)
= πN (Ψ3)

∑
k∈N

ajkΓ̂ψ
3
k = πN (Ψ3) ψ2

j .

3) Controllability in projection with generic projector: Let Ψ3 =
{ψ3

j }j∈N ⊂ H3
(0) be a sequence of linearly independent elements. For every

N ∈ N, by considering the Gram-Schmidt orthonormalization process, there
exists an orthonormal system Ψ̃3 := {{ψ̃3

j }j≤N , 0, ...} such that

span{ψ3
j : j ≤ N} = span{ψ̃3

j : j ≤ N}.

The claim then follows since πN (Ψ3) ≡ πN (Ψ̃3). If Ψ3 = {ψ3
j }j∈N ⊂ H3

(0) is

a generic sequence of functions, then one can extract from Ψ3 a subsequence
of linearly independent elements and repeat as above.

3.3 Proof of Corollary 4

Let ψ1, ψ2 ∈H . We define the rank one operator |ψ1〉〈ψ2| so that

|ψ1〉〈ψ2|ψ = ψ1〈ψ2, ψ〉, ∀ψ ∈H .

We point out that, for any Γ̂ ∈ U(H ), we have Γ̂|ψ1〉〈ψ2| = |Γ̂ψ1〉〈ψ2| and
|ψ1〉〈ψ2|Γ̂∗ = |ψ1〉〈Γ̂ψ2| since for every ψ ∈H

|ψ1〉〈ψ2|Γ̂∗ψ = ψ1〈ψ2, Γ̂∗ψ〉) = ψ1〈Γ̂ψ2, ψ〉 = |ψ1〉〈Γ̂ψ2|ψ.
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Proof of Corollary 4. Let T > 0 large enough and Ψ3 := {ψ3
j }j∈N ∈ H3

(0).

Let ρ1, ρ2 ∈ T (H ) be two unitarily equivalent density matrices such that
Ran(ρ1), Ran(ρ2) ⊆ H3

(0). We suppose that the unitary operator Γ̂ ∈ U(H )

such that ρ2 = Γ̂ρ1Γ̂ satisfies the condition Γ̂∗ψ3
j ∈ H3

(0) for every j ∈ N.

One can ensure the existence of two complete orthonormal systems Ψ1 :=
{ψ1

j }j∈N, Ψ2 := {ψ2
j }j∈N ∈ H3

(0) respectively composed by eigenfunctions of

ρ1 and of ρ2 such that

ρ1 =
∞∑
j=1

lj |ψ1
j 〉〈ψ1

j |, ρ2 =
∞∑
j=1

lj |ψ2
j 〉〈ψ2

j |.

The sequence {lj}j∈N ⊂ R+ corresponds to the spectrum of ρ1 and of ρ2.
Now, thanks to Theorem 2, there exists a control function u ∈ L2((0, T ),R)
such that πN (Ψ3) ΓuTψ

1
j = πN (Ψ3) ψ2

j . Thus

πN (Ψ3) ΓuTρ
1(ΓuT )∗πN (Ψ3) =

∞∑
j=1

lj |πN (Ψ3) ΓuTψ
1
j 〉〈ψ1

jΓ
u
TπN (Ψ3) |

=
∞∑
j=1

ljπN (Ψ3) |ψ2
j 〉〈ψ2

j |πN (Ψ3) = πN (Ψ3) ρ2πN (Ψ3).
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gesting him the problem and Nabile Boussäıd for the periodic discussions.
He is also grateful to Morgan Morancey for the explanation about the works
[11], [12] and to the colleagues Lorenzo Tentarelli, Riccardo Adami for the
fruitful discussions.

A Analytic Perturbation

Let us consider the problems (14) and the eigenvalues {λu0j }j∈N of the opera-
tor A+u0B. LetB be a bounded symmetric operator satisfying Assumptions
I. We introduce some classical results by Kato [8].

Definition 4. Let D be a domain of the complex plan. A family T (z) for
z ∈ D of closed operators from a Banach space X to a Banach space Y is
said to be a holomorphic family of type (A) if D(T (z)) is independent of z
and if T (z)u is holomorphic for z ∈ D and for every u ∈ D(T (z)).

Theorem 9 (Kato; [8]; Theorem VII.3.9). Let T (z) be a self-adjoint holo-
morphic family of type (A) defined for z in a neighborhood of an interval
I ⊂ R. Furthermore, let T (z) have a compact resolvent. Then all eigenvalues
of T (z) can be represented by functions which are holomorphic in I. More
precisely, there is a sequence of scalar-valued functions z 7→ {λn(z)}n∈N and
operator-valued functions z 7→ {φn(z)}n∈N, all holomorphic on I, such that
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for z ∈ I, the sequence {λn(z)}n∈N represents all the repeated eigenvalues of
T (z) and {φn(z)}n∈N forms a complete orthonormal family of the associated
eigenvectors of T (z).

Proposition 10. Let B be a bounded symmetric operator satisfying As-
sumptions I. There exists a neighborhood D of u = 0 in R small enough
where the maps u 7→ λuj are analytic ∀j ∈ N.

Proof. Thanks to [8, Theorem V II.2.6], there exists a neighborhood D ⊂ R
containing 0 so that the self-adjoint family of operators A+u0B is holomor-
phic of type (A) for u0 ∈ D. Theorem 9 achieves the proof.

The next lemma proves the existence of perturbations which do not
shrink the eigenvalues gaps. From now on, we use the notation ||| · ||| for
the operators norm of bounded operators in H .

Lemma 11. Let B be a bounded symmetric operator satisfying Assumptions
I. There exists a neighborhood U(0) of u = 0 in R such that for each u0 ∈
U(0), there exists r > 0 such that ∀j ∈ N

µj :=
λj + λj+1

2
∈ ρ(A+ u0B), ||| (A+ u0B − µj)−1 ||| ≤ r.

Proof. Let D be the neighborhood provided by Proposition 10. First, we
prove that for u0 ∈ D so that |u0| is small enough, (A + u0B − µj) is
invertible with bounded inverse for each j ∈ N. We know that (A − µj) is
invertible in a bounded operator since µj ∈ ρ(A) (resolvent set of A). For
δ := minj∈N{|λj+1 − λj |}

||| (A− µj)−1 ||| ≤ sup
k∈N

1

|µj − λk|
=

2

|λj+1 − λj |
≤ 2

δ
.

=⇒ ||| (A− µj)−1u0B ||| ≤ |u0| ||| (A− µj)−1 ||| |||B ||| ≤ 2

δ
|u0| |||B ||| .

If |u0| ≤ δ(1−ε)
2 |||B ||| for ε ∈ (0, 1), then ||| (A−µj)−1u0B ||| ≤ 1− ε. The operator

(A+ u0B − µj) is invertible and one can notice that

||| (A+ u0B − µj) ||| ≥ ||| (A− µj) ||| − |||u0B ||| ≥
δ

2
− δ(1− ε)

2
=
δε

2

and in conclusion ||| (A+ u0B − µj)−1 ||| ≤ 2
δε .

Lemma 12. Let B be a bounded symmetric operator satisfying Assumptions
I. There exists a neighborhood U(0) of 0 in R such that ∀u0 ∈ U(0)

(A+ u0P
⊥
φk
B − λu0k )

is invertible with bounded inverse from D(A)∩φ⊥k to φ⊥k , for P⊥φk the projector
onto the orthogonal space of φk and for every k ∈ N.
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Proof. Let D be the neighborhood provided by Lemma 11. For any u0 ∈ D,
one can consider the decomposition

(A+ u0P
⊥
φk
B − λu0k ) = (A− λu0k ) + u0P

⊥
φk
B.

The operator A−λu0k is invertible with bounded inverse when it acts on the
orthogonal space of φk and we want to estimate

||| ((A− λu0k )
∣∣
φ⊥k

)−1u0P
⊥
φk
B ||| .

However, for every ψ ∈ D(A) ∩Ran(P⊥φk) such that ‖ψ‖ = 1, we have

‖(A− λu0k )ψ‖ ≥ min{|λk+1 − λu0k |, |λ
u0
k − λk−1|}‖ψ‖.

Let δk := min
{
|λk+1 − λu0k |, |λ

u0
k − λk−1|

}
. Thanks to Lemma 11, for |u0|

small enough, there holds λu0k ∈
(
λk−1+λk

2 ,
λk+λk+1

2

)
and then

δk ≥ min

{∣∣∣λk+1 −
λk + λk+1

2

∣∣∣, ∣∣∣λk−1 + λk
2

− λk−1

∣∣∣} ≥ (2k − 1)π2

2
> k.

Afterwards, ||| ((A− λu0k )
∣∣
φ⊥k

)−1u0P
⊥
φk
B ||| ≤ 1

δk
|u0| |||B ||| and, if |u0| ≤ (1−

r) δk
|||B ||| for r ∈ (0, 1), one has that

||| ((A− λu0k )
∣∣
φ⊥k

)−1u0P
⊥
φk
B ||| ≤ (1− r) < 1.

The operator Ak := (A− λu0k + u0P
⊥
φk
B) is invertible when it acts onto the

orthogonal space of φk and

|||Ak
∣∣
φ⊥k
||| ≥ ||| (A− λu0k )

∣∣
φ⊥k
||| − |||u0P

⊥
φk
B
∣∣
φ⊥k
||| ≥ δk − |||u0P

⊥
φk
B |||

≥ δk − |u0| |||B ||| ≥ δk − (1− r)δk = rδk.

In conclusion, the proof is achieved since

||| ((A− λu0k + u0P
⊥
φk
B)
∣∣
φ⊥k

)−1 ||| ≤ 1

rδk
<

1

rk
.(23)

Lemma 13. Let B be a bounded symmetric operator satisfying Assumptions
I. There exists a neighborhood U(0) of 0 in R such that, for any u0 ∈ U(0),
we have λu0j 6= 0 and λu0j � λj for every j ∈ N. In other words, there exist
two constants C1, C2 > 0 so that for each j ∈ N

(24) C1λj ≤ λu0j ≤ C2λj .
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Proof. Let u0 ∈ D for D the neighborhood provided by Lemma 12. We de-
compose the eigenfunction φu0j = ajφj +ηj , where aj is an orthonormalizing
constant and ηj is orthogonal to φj . Hence

λu0k φ
u0
k = (A+ u0B)(akφk + ηk)

= Aakφk +Aηk + u0Bakφk + u0Bηk,

=⇒ λu0k αkφk + λu0k ηk = Aakφk +Aηk + u0Bakφk + u0Bηk.

By projecting onto the orthogonal space of φk

λu0k ηk = Aηk + u0P
⊥
φk
Bakφk + u0P

⊥
φk
Bηk

=⇒ (A+ u0P
⊥
φk
B − λu0k )ηk = −u0P

⊥
φk
Bakφk.

However, Lemma 12 ensures thatA+u0P
⊥
φk
B−λu0k is invertible with bounded

inverse when it acts on the orthogonal space of φk and then

(25) ηk = −ak((A+ u0P
⊥
φk
B − λu0k )

∣∣
φ⊥k

)−1u0P
⊥
φk
Bφk.

Afterwards, we know that

λu0j = 〈ajφj + ηj , (A+ u0B)(ajφj + ηj)〉
= |aj |2λj + u0〈ajφj , Bajφj〉+ 〈ajφj , (A+ u0B)ηj〉
+ 〈ηj , (A+ u0B)ajφj〉+ 〈ηj , (A+ u0B)ηj〉.

By using the relation (25), there holds

〈ηj , (A+ u0B)ηj〉 = 〈ηj , (A+ u0P
⊥
φk
B − λu0j )ηj〉+ λu0j ‖ηj‖

2

=λu0j ‖ηj‖
2 +

〈
ηj ,−aj(A+ u0P

⊥
φj
B − λu0j )

· ((A+ u0P
⊥
φj
B − λu0j )

∣∣
φ⊥j

)−1u0P
⊥
φj
Bφj

〉
.

However, (A+ u0P
⊥
φj
B − λu0j )((A+ u0P

⊥
φj

)B − λu0j )
∣∣
φ⊥j

)−1 = Id and then

〈ηj , (A+ u0B)ηj〉 = λu0j ‖ηj‖
2 − u0aj〈ηj , P⊥φjBφj〉.

Moreover, 〈φj , (A + u0B)ηj〉 = u0〈φj , Bηj〉 = u0〈P⊥φjBφj , ηj〉 and equiva-

lently 〈ηj , (A+ u0B)φj〉 = u0〈ηj , P⊥φjBφj〉. Thus

λu0j = |aj |2λj + u0|aj |2Bj,j + λu0j ‖ηj‖
2 + u0aj〈P⊥φjBφj , ηj〉.(26)

One can notice that |aj | ∈ [0, 1] and ‖ηj‖ are uniformly bounded in j. We
show that the first accumulates at 1 and the second at 0. Indeed, from (23)
and (25), one has that there exists a constant C1 > 0 such that

‖ηj‖2 ≤ |u0|2 ||| ((A+ u0P
⊥
φj
B − λu0j )

∣∣
φ⊥j

)−1 ||| 2|aj |2‖Bφj‖2 ≤
C1

j2
.(27)
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for r ∈ (0, 1), which implies that limj→∞ ‖ηj‖ = 0. Afterwards, by contra-
diction, if a∞ := limj→∞ |aj | 6= 1, then |a∞| ∈ [0, 1) and thus

1 = lim
j→∞

‖φu0j ‖ ≤ lim
j→∞

|aj |‖φj‖ < 1

that is absurd. From (26), it follows that λu0j � λj for |u0| small enough.
The relation also implies that λu0j 6= 0, for every j ∈ N and for |u0| small
enough.

Lemma 14. Let B be a bounded symmetric operator satisfying Assumptions
I. For every N ∈ N, there exists a neighborhood U(0) of 0 in R such that,
for any u0 ∈ U(0), there exists C̃N > 0 such that

(28) |〈φu0k (T ), Bφu0j (T )〉| ≥ C̃N
k3

, ∀j, k ∈ N, j ≤ N.

Proof. We achieve the proof for fixed j ≤ N . The generalization follows by
using the minimum of all the constants defined for every j ≤ N .

We start by choosing k ∈ N such that k 6= j and u0 ∈ D for D the
neighborhood provided by Lemma 13. Thanks to Assumptions I, we have

|〈φu0k , Bφ
u0
j 〉| = |〈akφk + ηk, B(ajφj + ηj)〉|

≥ CN
akaj
k3
−
∣∣ak〈φk, Bηj〉+ aj〈ηk, Bφj〉+ 〈ηk, Bηj〉

∣∣.(29)

1) Expansion of the terms of (29): Thanks to (25), for |u0| small enough

〈ηk, Bφj〉 = 〈ηk, P⊥φkBφj〉 =

〈−ak((A+ u0P
⊥
φk
B − λu0k )

∣∣
φ⊥k

)−1u0P
⊥
φk
Bφk, P

⊥
φk
Bφj〉

=
(
(A+ u0P

⊥
φk
B − λu0k )

∣∣
φ⊥k

)−1
u0P

⊥
φk
Bφk, P

⊥
φk
Bφj〉 =

((A− λu0k )P⊥φk)−1
∞∑
n=0

(
u0((A− λu0k )P⊥φk)−1P⊥φkBP

⊥
φk

)n
u0P

⊥
φk
Bφk, P

⊥
φk
Bφj〉

(30)

By defining Mk :=
∑∞

n=0

(
u0((A− λu0k )P⊥φk)−1P⊥φkB

)n
P⊥φk , there holds

〈ηk, Bφj〉 = −u0〈akMkBφk, ((A− λu0k )P⊥φk)−1P⊥φkBφj〉.(31)

Thanks to the fact that B : D(A)→ D(A)

((A− λu0k )P⊥φk)−1P⊥φkBφj = P⊥φkB((A− λu0k )P⊥φk)−1φj

−
[
P⊥φkB, ((A− λ

u0
k )P⊥φk)−1P⊥φk

]
φj = P⊥φkB((A− λu0k )P⊥φk)−1φj

− ((A− λu0k )P⊥φk)−1P⊥φk [B,A]((A− λu0k )P⊥φk)−1φj .
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By calling B̃k := ((A− λu0k )P⊥φk)−1P⊥φk [B,A]

((A− λu0k )P⊥φk)−1P⊥φkBφj = P⊥φk(B + B̃k)(λj − λu0k )−1φj .(32)

Let us consider (31) and (32), we have

〈ηk, Bφj〉 = − u0

λj − λu0k
〈akMkBφk, (B + B̃k)φj〉.(33)

Now, thanks to the same techniques

|〈ηk, Bηj〉| = |〈Bηk, ηj〉| = |〈u0akB((A− λu0k )P⊥φk)−1MkBφk,

u0aj((A− λu0j )P⊥φj )
−1MjBφj〉

∣∣∣ =
∣∣∣ ajaku2

0

λk − λu0j

〈
φk, Lk,jφj

〉∣∣∣(34)

for Lk,j := (A− λu0j )BMk((A− λu0k )P⊥φk)−1P⊥φkB((A− λu0j )P⊥φj )
−1MjB. We

know the existence of ε > 0 such that |al| ∈ (ε, 1), for every l ∈ N. Thanks
to (33) and (34), there exists ĈN such that from the relation (29), we have

|〈φu0k , Bφ
u0
j 〉| ≥

ĈN
k3
−
∣∣∣ u0

λj − λu0k
〈MkBφk, (B + B̃k)φj〉

∣∣∣
−
∣∣∣ u0

λk − λu0j
〈(B + B̃j)φk,MjBφj〉

∣∣∣− ∣∣∣ u2
0

λk − λu0j

〈
φk, Lk,jφj

〉∣∣∣.(35)

2) Features of the operators Mk, B̃k, Lk,j: First, the operators Mk

are uniformly bounded in L(H2
(0), H

2
(0)), when |u0| is small enough so that

|||u0((A− λu0k )P⊥φk)−1P⊥φkBP
⊥
φk
||| L(H2

(0)
) < 1. Second, (32) implies that

B̃kP
⊥
φk

= ((A− λu0k )P⊥φk)−1P⊥φkB(A− λu0k )P⊥φk − P
⊥
φk
BP⊥φk

from which follows that the operators B̃k are uniformly bounded in k in

L
(
H2

(0) ∩Ran(P⊥φk), H2
(0) ∩Ran(P⊥φk)

)
.

Third, one can notice that B((A− λu0j )P⊥φj )
−1MjB ∈ L(H2

(0), H
2
(0)) and

(A− λu0j )BMk((A− λu0k )P⊥φk)−1P⊥φk

= (A− λu0j )B((A− λu0k )P⊥φk)−1
∞∑
n=0

(
u0P

⊥
φk
B((A− λu0k )P⊥φk)−1

)n
P⊥φk

= (A− λu0j )((A− λu0k )P⊥φk)−1P⊥φk(B̃k +B)M̃k

for M̃k :=
∑∞

n=0

(
u0P

⊥
φk
B((A − λu0k )P⊥φk)−1

)n
P⊥φk . Now, the operators M̃k

and Lk,j are uniformly bounded in L(H2
(0), H

2
(0)) as Mk.
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Let {Fl}l∈N be an infinite family of uniformly bounded operators in L(H2
(0), H

2
(0))

∀l ∈ N, ∃ cl > 0 :
∞∑
k=1

|k2〈φk, Flφj〉|2 <∞, =⇒ |〈φk, Flφj〉| ≤
cl
k2
.

Now, one can choose constants cl uniformly bounded in l since

sup
l∈N
|k2〈φk, Flφj〉|2 = sup

l∈N

∑
m∈N
|m2〈φm, Flφj〉|2 − sup

l∈N

∑
m6=k
|m2〈φm, Flφj〉|2

≤ 2 sup
l∈N
‖Flφj‖2(2) <∞.

Thus, for every family of uniformly bounded operators Fl in L(H2
(0), H

2
(0))

(36) ∃ c > 0 : |〈φk, Flφj〉| ≤
c

k2
.

3) Conclusion: The operators {BMk(B+B̃k)}k∈N, {Lk,j}k∈N are uniformly

bounded in L(H2
(0), H

2
(0)) and BMj(B + B̃j) ∈ L(H2

(0), H
2
(0)) for every 1 ≤

j ≤ N . Hence, we use the relation (36) in (35). Now, |λj−λu0k |
−1 ∼ k−2 and

|λk−λu0j |−1 ∼ k−2, thanks to Lemma 13. Thus, there exist C1, C2, C3, C4 >
0 so that for |u0| small enough

|〈φu0k (T ), Bφu0j (T )〉| = |〈φu0k (T ), Bφu0j (T )〉| ≥ ĈN
1

k3
− C1|u0|
|λj − λu0k |k2

− C2|u0|
|λk − λu0j |k2

− C3|u0|2

|λk − λu0j |k2
≥ C4

1

k3
.

Now, the relation (28) is verified for k = j thanks to the analyticity and by
choosing u0 such that |〈φu0j (T ), Bφu0j (T )〉| = c 6= 0. For fixed j ≤ N , the

relation (28) is valid for a constant Cj = min{C4, c · j3}. In conclusion, (28)

is valid for every j ≤ N by imposing C̃N = minj≤N{Cj}.

Lemma 15. Let B be a bounded symmetric operator satisfying Assumptions
I. There exists a neighborhood U(0) of 0 in R contained in the one introduced
in Lemma 13 so that, for any u0 ∈ U(0)( ∞∑

j=1

∣∣|λu0j | 32 〈φu0j , ·〉∣∣2) 1
2 �

( ∞∑
j=1

|j3〈φj , ·〉|2
) 1

2
.

Proof. For |u0| small enough, we prove that there exist C1 > 0 such that
‖|A + u0B|

s
2ψ‖ ≤ C1‖|A|

s
2ψ‖ for s = 3. We start by assuming s = 4. For

any ψ ∈ H4
(0), there exist C2, C3 > 0 such that

‖|A+ u0B|2ψ‖ = ‖(A+ u0B)2ψ‖ ≤ ‖A2ψ‖+ |u0|2‖B2ψ‖+ |u0|‖ABψ‖
+ |u0|‖BAψ‖ ≤ ‖A2ψ‖+ |u0|2‖B2ψ‖+ |u0| |||B ||| L(H2

(0)
)‖Aψ‖

+ |u0| |||B ||| ‖Aψ‖ ≤ C2‖A2ψ‖+ C3‖ψ‖ ≤ (C2 + C3)‖|A|2ψ‖.
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Now, the proof of [5, Lemma 1] implies the validity of the relation also for
s = 3. There exists C > 0 so that for every ψ ∈ H3

(0)

‖ψ‖
H̃3

(0)
= ‖|A+ u0B|

3
2ψ‖ ≤ C‖|A|

3
2ψ‖ = C‖ψ‖H3

(0)
.

The opposite inequality follows by the same techniques thanks to the de-
composition A = (A+ u0B)− u0B.

Remark 6. Let B be a bounded symmetric operator satisfying Assumptions
I. The techniques of the proof of Lemma 15 also allow to prove the existence
of a neighborhood U(0) of 0 in R so that, for any u0 ∈ U(0)

∥∥ · ∥∥
H̃2

(0)

=
( ∞∑
j=1

∣∣|λu0j |〈φu0j , ·〉∣∣2) 1
2 �

( ∞∑
j=1

|j2〈φj , ·〉|2
) 1

2
=
∥∥ · ∥∥

(2)
.

Lemma 16. Let B be a bounded symmetric operator satisfying Assumptions
I and N ∈ N. Let ε > 0 small enough and IN be the set defined in (5). There
exists a Uε ⊂ R \ {0} such that for each u0 ∈ Uε

inf
(j,k),(n,m)∈IN
(j,k)6=(n,m)

|λu0j − λ
u0
k − λ

u0
n + λu0m | > ε

Moreover, for every δ > 0 small there exists ε > 0 such that dist(Uε, 0) < δ.

Proof. Let us consider the neighborhood D provided by Lemma 12. The
maps λuj −λuk −λun +λum are analytic for each j, k, n,m ∈ N and u ∈ D. One
can notice that the number of elements such that

(37) λj − λk − λn + λm = 0, j, n ∈ N, k,m ≤ N

is finite. Indeed λk = k2π2 and (37) corresponds to j2 − k2 = n2 −m2. We
have |j2− n2| = |k2−m2| ≤ N2− 1 which is satisfied for a finite number of
elements. Thus, for I the set defined in (5), the following set is finite

R := {((j, k), (n,m)) ∈ (IN )2 : (j, k) 6= (n,m); λj − λk − λn + λm = 0}.

1) Let ((j, k), (n,m)) ∈ R, the set V(j,k,n,m) = {u ∈ D
∣∣ λuj−λuk−λun+λum = 0}

is either a discrete subset of D or equal to D. Thanks to the relation (26)

λuj − λuk − λun + λum =

|aj |2λj + u0|aj |2Bj,j + λu0j ‖ηj‖
2 + u0aj〈P⊥φjBφj , ηj〉

− |ak|2λk − u0|ak|2Bk,k − λu0k ‖ηk‖
2 − u0ak〈P⊥φkBφk, ηk〉

− |an|2λn − u0|an|2Bn,n − λu0n ‖ηn‖2 − u0an〈P⊥φnBφn, ηn〉
+ |am|2λm + u0|am|2Bm,m + λu0m ‖ηm‖2 + u0am〈P⊥φmBφm, ηm〉,
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=⇒ λuj − λuk − λun + λum = |aj |2λj − |ak|2λk − |an|2λn + |am|2λm
+ (|aj |2Bj,j − |ak|2Bk,k − |an|2Bn,n + |am|2Bm,m)u0 + o(u0).

(38)

For |u| small enough, thanks to the fact that lim|u0|→0|aj |2 = 1 and to the
third point of Assumptions I, λuj −λuk−λun+λum can not be constantly equal
to 0. Then, V(j,k,n,m) is discrete and

V = {u ∈ D
∣∣ ∃(j, k, n,m) ∈ R : λuj − λuk − λun + λum = 0}

is a discrete subset of D. Thanks to the fact that R is a finite set

Ũε := {u ∈ D : ∀(j, k, n,m) ∈ R
∣∣ |λuj − λuk − λun + λum| ≥ ε}

has positive measure for ε > 0 small enough. Moreover, for any δ > 0 small,
there exists ε0 > 0 such that dist(0, Ũε0) < δ.

2) Let ((j, k), (n,m)) ∈ (IN )2 \R be different numbers, we know that

|λ0
j − λ0

k − λ0
n + λ0

m| = π2|j2 − k2 − n2 +m2| > π2.

First, thanks (26), λu0j ≤ |aj |2λj + |u0|C1 and λu0j ≥ |aj |2λj − |u0|C2 for
suitable constants C1, C2 > 0 non depending on the index j. Thus

|λu0j − λ
u0
k − λ

u0
n + λu0m | ≥ ||aj |2λj − |ak|2λk − |an|2λn + |am|2λm|

− |u0|(2C1 + 2C2).
(39)

Now, thanks to the relation (25), limk→∞ |ak|2 = 1. For any u in D and ε
small enough, there exists Mε ∈ N so that for RC := (IN )2 \R

||aj |2λj − |ak|2λk − |an|2λn + |am|2λm| ≥ π2 − ε,
∀((j, k), (n,m)) ∈ RC , j, k, n,m ≥Mε.

However lim|u0|→0 |ak|2 = 1 uniformly in k thanks to (27) and then there
exists a neighborhood Wε ⊆ D such that for each u ∈Wε

||aj |2λj − |ak|2λk − |an|2λn + |am|2λm| ≥ π2 − ε,
∀((j, k), (n,m)) ∈ RC , 1 ≤ j, k, n,m < Mε.

Thus for each u ∈Wε and ((j, k), (n,m)) ∈ RC such that (j, k) 6= (n,m)

|λuj − λuk − λun + λum| ≥ π2 − ε.

3) The proof is achieved since for ε1 > 0 small enough, Ũε1 ∩Wε is non zero
measure subset of D. For any u0 ∈ Ũε1 ∩Wε and for any ((j, k), (n,m)) ∈
(IN )2 so that (j, k) 6= (n,m), we have

|λu0j − λ
u0
k − λ

u0
n + λu0m | ≥ min{π2 − ε, ε1}.
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Remark 7. Let B be a bounded symmetric operator satisfying Assumptions
I. By using the techniques of the proofs of Lemma 14 and Lemma 16, one
can ensure the existence of a neighborhood U1 of u0 in R and U2, a countable
subset of R so that, for any u0 ∈ U(0) := (U1 \ U2) \ {0} we have

1. For every N ∈ N, λu0j − λ
u0
k − λ

u0
n + λu0m 6= 0 for all (j, k), (n,m) ∈ IN

(see (5)) so that (j, k) 6= (n,m).

2. Bu0
j,k = 〈ψu0j (T ), Bφu0k (T )〉 6= 0 for every j, k ∈ N.

3. For ε > 0, if |u0| is small enough, then supj∈N ‖φj − φ
u0
j ‖(3) ≤ ε.

Remark 8. Let B be a bounded symmetric operator satisfying Assumptions
I. As Remark 7, there exists a neighborhood U1 of u0 in R and U2, a count-
able subset of R containing u = 0 so that, for any u0 ∈ U(0) := (U1\U2)\{0},
the numbers {1, λu0j }j∈N are rationally independent, i.e. for any M ∈ N and

{rj}0≤j≤M ⊂ Q \ {0} it holds r0 +
∑M

j=1 rjλ
u0
j 6= 0.
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