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RIPS INDUCTION: INDEX OF THE DUAL LAMINATION OF AN
R-TREE

THIERRY COULBOIS, ARNAUD HILION

Abstract. Let T be a R-tree in the boundary of the Outer Space CVN , with dense orbits.
The Q-index of T is defined by means of the dual lamination of T . It is a generalisation of
the Poincaré-Lefschetz index of a foliation on a surface. We prove that the Q-index of T is
bounded above by 2N − 2, and we study the case of equality. The main tool is to develop
the Rips Machine in order to deal with systems of isometries on compact R-trees.

Combining our results on the Q-index with results on the classical geometric index of a
tree, developed by Gaboriau and Levitt [GL95], we obtain a beginning of classification of
trees.
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1. Introduction

The space of minimal, free and discrete actions by isometries of the free group FN of
finite rank N ≥ 2 on R-trees has been introduced by Culler and Vogtmann [CV86]. Its
projectivization is called Outer Space, and we denote it by CVN . It has a Thurston-boundary
∂CVN , which gives rise to a compactification CVN = CVN∪∂CVN . Elements of this compact
space CVN are projective classes [T ] of minimal, very small actions by isometries of the free
group FN on R-trees T (see [CL95] and [BF95]). The reader will find a survey on Outer
Space in [Vog02].

In this article, we introduce and study the Q-index indQ(T ) of R-trees T in ∂CVN with
dense orbits. The Q-index of an R-tree (see Section 5.2) naturally extends the Poincaré-
Lefschetz index of a foliation on a surface as explained below. The main result of our paper
regarding this Q-index is:

Theorem 5.3. Let T be an R-tree with a very small, minimal action of FN by isometries
with dense orbits. Then

indQ(T ) ≤ 2N − 2.

We also characterize the case of equality, see Section 4.5.
This Q-index charaterizes dynamical properties of trees. Using it together with the geo-

metric index introduced by Gaboriau and Levitt [GL95] we obtain a classification of trees.
Theorem 5.3 already has several important consequences.
First, it answers a question of Levitt and Lustig [LL03, Remark 3.6] on the finiteness of

the fibres of the map Q (see below).
In our paper [CH10], we obtain a qualitative classification of fully irreducible outer auto-

morphisms of free groups which extends that of Handel and Mosher [HM07] and of Guirardel [Gui05].
The key point is to interpret the index of an iwip automorphism [GJLL98] as the Q-index
of its repelling tree in ∂CVN .

In our paper with P. Reynolds [CHR11] we define an induction analogous to Rauzy-
Veech for trees in ∂CVN . As we are working with systems of isometries on compact trees,
Theorem 5.3 is crucially used to ensure that there are points where to start the splitting
procedure.

1.1. Measured foliations on surfaces. Let Σ be a surface of negative Euler characteristic,
χ(Σ) < 0, with a measured foliation F (see [FLP79]). The foliation lifts to a measured
foliation F̃ of the universal cover Σ̃ of Σ. The space of leaves of F̃ is an R-tree T : the
distance in the tree T is given by the transverse measure of the foliation F̃ (see for instance
[Kap01, chapter 11]). This tree comes with a small action of the fundamental group of Σ.
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When Σ has non empty boundary, its fundamental group is a free group FN and T defines an
element of CVN . The foliation F has k-prong singularities which give rise to branch points
of valence k in the tree. Locally the picture is as in Figure 1. We say that the foliation and
the tree are dual to each other.

Figure 1. 3-prong singularity and the transverse tree (in bold). The local
Poincaré-Lefschetz index is −1

2
and the local contribution to the Q-index is 1.

A local index can be defined for each singularity P : the Poincaré-Lefschetz index. In this
paper, we rather consider minus two times this index: ind(P ) can be defined as the number
of half-leaves reaching the singular point, minus two. Alternatively, ind(P ) is the valence of
the corresponding point in the tree, minus two. Adding-up over all singular points in Σ, we
obtain the (global) index of the foliation, which turns out to be equal to −2χ(Σ) (= 2N − 2
when π1(Σ) = FN).

Figure 2. Vertical foliation of the mapping torus of an interval exchange
transformation. This foliation has two singularities (in bold), each of Poincaré-
Lefschetz index −1

2
and local Q-index 1. The Q-index of the foliation is 2.

The surface is a torus with one boundary component: its Euler Characteristic
is −1.

Interval exchange transformations provide examples of such foliated surfaces. Indeed, the
mapping torus of an interval exchange transformation is a surface (with boundary), naturally
foliated by the vertical direction, as in Figure 2. The transverse measure of the foliation is
given by the Lebesgue measure of the interval. We define, in this case, the index of the
interval exchange transformation as the index defined above for this foliation and its dual
R-tree.
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1.2. Geometric trees. This surface situation has been generalized (see for instance [Bes02]).
Let us consider a finite family of partial isometries of an interval (or a finite number of in-
tervals, or even a finite tree). The suspension of these partial isometries gives rise to a
2-complex B (which is not a surface in general), naturally foliated by the vertical direction.
As previously, the foliation can be lifted to the universal cover of B, and the space of leaves
of this foliation is an R-tree with an action of π1(B) by isometries. A tree obtained by such a
construction is called a geometric tree. In this situation, we can define two local indices: one
for the tree, using the valence of branch points, and one for the foliation, using the number
of ends of singular leaves. We would like to stress that, contrary to the case of a foliation on
a surface, these two indices do not agree, not even locally.

The first index has been introduced by Gaboriau and Levitt [GL95]. In this paper we call
it the geometric index, and denote it by indgeo(T ). It is defined using the valence of the
branch points, of the R-tree T , with an action of the free group by isometries:

indgeo(T ) =
∑

[P ]∈T/FN

indgeo(P ).

where the local index of a point P in T is

indgeo(P ) = #(π0(T r {P})/Stab(P )) + 2 rank(Stab(P ))− 2.

Gaboriau and Levitt [GL95] proved that the geometric index of a geometric tree is equal to
2N−2 and that for any tree in the compactification of Outer Space CVN the geometric index
is bounded above by 2N − 2. Moreover, they proved that the trees in CVN with geometric
index equal to 2N − 2 are precisely the geometric trees.

The second index is defined from the number of ends of singular leaves. To our knowledge
it has never been studied in its own right, although Gaboriau [Gab96] gives a lot of relevant
insights. In particular Gaboriau [Gab96, Theorem VI.1] gives partial results to bound this
index.

1.3. The Q-index of an R-tree. Let T be an R-tree in the boundary of Outer Space with
dense orbits. We denote by T its metric completion, ∂T its Gromov-boundary at infinity.
The set T̂ = T ∪∂T equipped with the observers’ topology (a slight weakening of the metric
topology, see [CHL07]) is a compact set denoted T̂ obs.

Let P be a point in T . The map Q : ∂FN → T̂ obs is the unique continuous extension (see
[CHL07]) of the map

FN → T
u 7→ u · P.

It does not depend on the choice of the point P .
The map Q can be easily understood in the special case of a tree T dual to a foliation on

a 2-complex B. Each leaf of the foliation of B̃ is a point of the dual tree T . A half-leaf of
the foliation of B̃ defines a point X ∈ ∂FN = ∂π1(B) and Q(X) is the point of T defined by
the leaf.

The general definition of the Q-index of the tree T is given as follows:

indQ(T ) =
∑

[P ]∈T̂ /FN

max(0; indQ(P )).
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where the local index of a point P in T is:

indQ(P ) = #(Q−1(P )/Stab(P )) + 2 rank(Stab(P ))− 2.

Levitt and Lustig [LL03] proved that points in ∂T have exactly one pre-image by Q (see
Proposition 5.2). Thus, only points in T contribute to the Q-index of T .

Our main result states that the Q-index of an R-tree in the boundary of Outer Space is
bounded above by 2N−2. This answers the question of Levitt and Lustig [LL03, Remark 3.6]
whether the map Q : ∂FN → T̂ has finite fibers (in the case where the action is free).

In [CHL08] the dual lamination of T is defined: it is the set of pairs (X, Y ) of distinct
points in the boundary ∂FN such that Q(X) = Q(Y ). More conceptually, the Q-index of T
can indeed be understood in a more general context as that of its dual lamination.

The limit set Ω is the subset of T which consists of points with at least two pre-images by
the map Q.

We also describe the trees such that indQ(T ) = 2N − 2: these are the trees such that all
points of T have at least two pre-images by Q.

Theorem 5.10. Let T be an R-tree in the boundary of Outer Space with dense orbits. The
Q-index is maximal: indQ(T ) = 2N − 2 if and only if T is contained in the limit set Ω.

An R-tree dual to a foliation on a surface with boundary of negative Euler characteristic,
has maximal Q-index. We call trees with maximal Q-index trees of surface type.

1.4. Compact systems of isometries. A traditional strategy to study a tree in the bound-
ary of Outer Space is

(1) describe any geometric tree by a system of isometries on a finite tree (or even a
multi-interval) and then use the Rips Machine;

(2) approximate any tree by a sequence of geometric trees.
In particular Gaboriau and Levitt [GL95] proved in this way that the geometric index of any
tree in Outer Space is bounded above by 2N − 2.

In [CHL09] a new approach was proposed: to describe an R-tree by a system of isometries
on a compact R-tree (rather than on a finite tree). The point here is that any tree T in the
compactification of Outer Space can be described by a system of isometries on a compact
R-tree: SA = (KA, A) (where A is a basis of FN and KA is a compact subtree of T ). This
system of isometries encodes all of the original tree T (together with the action of FN). An
index is defined in Section 2.3 for any such system of isometries.

Theorem 5.7. Let T be an R-tree with a very small, minimal action of FN by isometries
with dense orbits. The Q-index of T and the index of the induced system of isometries
SA = (KA, A), for any basis A, are equal:

indQ(T ) = i(SA).

The computation of the index of a tree is thus achieved by computing the index of a
system of isometries. We study system of isometries by themselves in Sections 2, 3 and 4.

We improve the classical Rips Machine (see [GLP94, BF95]) to work in the context of
systems of isometries on compact R-trees (or forests). The Rips Machine applied to a system
of isometries returns a new system of isometries obtained by erasing parts of the supporting
forest. To each system of isometries we associate a finite graph Γ, the index of which is given
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by the Euler characteristic. We study the effect of the Rips Machine on this graph: the Rips
Machine decreases the index of the graph Γ.

Iterating the Rips Machine infinitely many times, the sequence of associated graphs Γ has
a limit Γ̂. The index of Γ̂ is bounded above by the decreasing sequence of indices. We prove
that the index of the limit graph Γ̂ is equal to the index of the system of isometries. In
fact, in the case of a Levitt system of isometries the graph Γ̂ can be viewed as a geometric
realization of the dual lamination of the system of isometries. We obtain

Theorem 2.2. The index of a system of isometries S = (F,A) with independent generators
is finite and bounded above by the index of the associated graph Γ.

The above Theorem 5.10 follows from our characterization of systems of isometries with
maximal index:

Theorem 4.8. Let S = (F,A) be a reduced system of isometries with independent generators,
let Γ be its associated graph, and Γ̂ be its limit graph. The following are equivalent

(1) The system of isometries S has maximal index,
(2) The graph Γ̂ is finite,
(3) The Rips Machine, starting from S, halts after finitely many steps.

Acknowledgment: We thank Martin Lustig for his constant interest in our work.
We are grateful to Vincent Guirardel and Gilbert Levitt for introducing us to mixing prop-

erties of trees.

2. Systems of isometries

2.1. Definitions. We collect in this Section basic facts from [CHL09].
An R-tree, (T, d) is a metric space such that for any two points P,Q in T , there exists a

unique arc [P ;Q] between them and this arc is isometric to the segment [0; d(P,Q)].
A compact forest F is a metric space with finitely many connected components each of

which is a compact R-tree.
A partial isometry of a compact forest F is an isometry a : K → K ′, between two

compact subtrees K and K ′ of F . The domain of a is K, its range is K ′. The partial
isometry a is non-empty if its domain is non-empty. The domain (and the range) of a
partial isometry needs not be a whole connected component of F . A system of isometries
S = (F,A) consists of a compact forest F and of a finite set A of non-empty partial isometries
of F .

To such a system of isometries S we associate the oriented graph Γ which has the connected
components of F as vertices and the non-empty partial isometries of A as oriented edges.
The edge a ∈ A starts at the connected component of F which contains its domain, and
ends at the connected component of F which contains its range.

We regard the reverse edge a−1 of the edge a ∈ A as the inverse partial isometry a−1 of a.
A reduced path w in the graph Γ, given as a sequence of edges w = z1 · · · zn with zi ∈ A±1

(such that zi+1 6= zi
−1), defines a (possibly empty) partial isometry, also denoted by w: the

composition of partial isometries z1 ◦ z2 ◦ · · · ◦ zn. We write this pseudo-action on F on
the right, i.e.

P (u ◦ v) = (Pu)v
6



for all point P ∈ F and for all path uv in Γ.
The pseudo-orbit of a point P in F is the subset of F which can be reached from P :

{P.w | w reduced path in Γ, P ∈ dom(w)}.

A reduced path w in Γ is admissible if it is non-empty as a partial isometry of F .
An infinite reduced path X in Γ is admissible if all its subpaths are admissible. The

domains of the initial subpaths of X are nested compact subtrees, their intersection is the
domain of X, denoted by dom(X).

A bi-infinite reduced path Z in Γ is admissible if all its subpaths are admissible. A
bi-infinite reduced path, Z = · · · z−2z−1z0z1z2 · · · , has two halves which are infinite reduced
paths:

Z+ = z1z2 · · · , Z− = z0
−1z−1

−1z−2
−1 · · · .

The domain of Z is the intersection of the domains of its two halves. Equivalently, a
bi-infinite reduced path Z in Γ is admissible if and only if its domain is non-empty.

The limit set Ω of a system of isometries S = (F,A) is the set of elements of K which
are in the domain of a bi-infinite admissible reduced path in Γ. The limit set is the place
where the dynamics of the system of isometries concentrates. Alternatively, Ω is the largest
subset of F such that for each P ∈ Ω there exists at least two partial isometries a, b ∈ A±1

with P.a and P.b in Ω.
A system of isometries S = (F,A) has independent generators (compare Gaboriau

[Gab97] and [CHL09]) if the domain of any admissible infinite reduced path X in Γ consists
of exactly one point which we denote by Q(X):

dom(X) = {Q(X)}.

In this case, the domain of a bi-infinite admissible reduced path Z in Γ also consists of
exactly one point which we also denote by Q(Z).

If S has independent generators we have:

Ω = {P ∈ K|∃Z bi-infinite admissible, Q(Z) = P}.

The restriction of a partial isometry a to the compact R-tree K (at the source) is the
(possibly empty) partial isometry Kea which is defined for each P ∈ K ∩ dom(a). The
restriction of a to the compact R-tree K ′ (at the destination) is the (possibly empty) partial
isometry adK′ which is defined for each P ∈ dom(a) such that Pa ∈ K ′. The restriction
of the partial isometry to the compact R-trees K and K ′ is the (possibly empty) partial
isometry KeadK′ which is defined for each P ∈ K ∩ dom(a) such that P.a is in K ′.

2.2. Index of a Graph. We denote by V (Γ) the set of vertices of a graph Γ and by E(Γ)
its set of edges.

For a vertex x of a graph Γ the valence vΓ(x) of x is the number of edges incident to x.
The index iΓ(x) = vΓ(x)− 2 of x is its valence minus two.

The index i(Γ) of a finite connected graph Γ is:

i(Γ) = max(0;
∑

x∈V (Γ) iΓ(x))

= max(0; 2(#E(Γ)−#V (Γ)))
= max(0;−2χ(Γ))
= max(0; 2 rank(π1(Γ))− 2)
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where χ(Γ) is the Euler characteristic of Γ. The index i(Γ) is a homotopy invariant of the
graph Γ.

v4v1

v2

v3

Figure 3. A graph of index 2, with vertices of indices i(v1) = 2, i(v2) = 0,
i(v3) = 1 and i(v4) = −1.

The index of a finite graph Γ is the sum of the indices of its connected components.
The core of a graph Γ is the largest subgraph of Γ without vertices of valence 0 and 1 (see

[Ger83]), we denote it by core(Γ). The core of a graph is the union of all bi-infinite reduced
paths. Alternatively, if Γ is finite, the subgraph core(Γ) is obtained by recursively erasing
vertices of valence 0 and the vertices of valence 1 together with their incident edges. The
core of a graph may be empty: this is the case, for instance, when the graph is a union finite
of trees.

The index of a finite graph can be computed using its core with the easier formula:

i(Γ) = i(core(Γ)) =
∑

x∈V (core(Γ))

icore(Γ)(x).

We use this formula to define the index of an infinite graph Γ: The core does not have
vertices of valence 0 and 1 and thus we can compute the above (possibly infinite) non-negative
sum.

For a connected (possibly infinite) graph Γ the index is thus

i(Γ) = i(core(Γ))
= max(0; #∂Γ + 2 rank(π1(Γ))− 2)

where ∂Γ is the set of ends of Γ. If Γ is not connected we sum the above value for each of
its connected components.

A morphism of graphs τ : Γ′ → Γ maps vertices to vertices, edges to edges and respects
incidence.

We will need the following Lemma in our proofs:

Lemma 2.1. Let τ : Γ′ → Γ be a morphism between two finite graphs. Assume that τ is
injective on edges. Then the index of Γ′ is smaller or equal to the index of Γ:

i(Γ′) ≤ i(Γ).

Proof. For each vertex x of Γ, the set of edges incident to the vertices in the fiber τ−1(x)
injects in the set of edges incident to x. Thus∑

x′∈τ−1(x)

iΓ′(x
′) ≤ iΓ(x).

Moreover, τ maps the core of Γ′ inside the core of Γ.
8



We get

i(Γ′) = i(core(Γ′)) =
∑

x∈V (core(Γ′))

icore(Γ′)(x) ≤
∑

x∈V (core(Γ))

icore(Γ)(x) = i(core(Γ)) = i(Γ).

�

In particular if Γ′ is a subgraph of a finite graph Γ

i(Γ′) ≤ i(Γ).

2.3. Index of a system of isometries. Let F be a compact forest and S = (F,A) be a
system of isometries. Let Ω be the limit set of S.

For a point P in F , we define its index by

iS(P ) = #{a ∈ A±1 | P.a ∈ Ω} − 2.

By definition of the limit set, for any point P in Ω, there exists a bi-infinite reduced admissible
path Z = · · · z−1z0z1 · · · in Γ such that P ∈ dom(Z). The edges z1 and z0

−1 send P inside
Ω, and thus the index of P is greater or equal to 0: iS(P ) ≥ 0.

Conversely, if the index of a point P in F is non-negative: iS(P ) ≥ 0, then there exists two
elements a, b ∈ A±1, such that P.a and P.b are in the limit set Ω. As P.a is in Ω there exists a
bi-infinite reduced admissible path Z = · · · z−1z0z1 · · · in Γ such that P.a ∈ dom(Z). Up to
replacing Z by Z−1 (the same bi-infinite path with reversed orientation), we assume that z1 6=
a−1. Symmetrically there exists a bi-infinite reduced admissible path Z ′ = · · · z′−1z

′
0z
′
1 · · ·

in Γ such that P.b ∈ dom(Z ′) and z′0 6= b−1. We get that Z ′′ = · · · z′−1z
′
0b · az1z2 · · · is a

bi-infinite reduced path in Γ with P ∈ dom(Z ′′) and thus that P is in the limit set Ω:

P ∈ Ω ⇐⇒ iS(P ) ≥ 0.

The index of S is defined by

i(S) =
∑
P∈F

max(0; iS(P )) =
∑
P∈Ω

iS(P ).

As there is a max in the first sum, and by the above equivalence, both sums are non-negative
and are well defined possibly as +∞.

The main result of this paper can now be stated

Theorem 2.2. The index of a system of isometries S = (F,A) with independent generators
is finite and bounded above by the index of the associated graph Γ.

2.4. Cayley graphs. Let S = (F,A) be a system of isometries and let Γ be its associated
graph. Let P be a point in F and K be the connected component of F which contains K.
Let Γ0 be the connected component of Γ which contains P and Γ̃0 its universal cover.

The trajectory tree of P is the smallest subtree Γ̃(P ) = Γ̃(P, S) of Γ̃0 which contains
all the admissible paths w based at K such that P is in the domain of w.

Let Stab(P ) be the subgroup of the fundamental group π1(Γ, K) of the graph Γ based at
K of admissible paths w such that P.w = P . The group Stab(P ) is a free group that acts
on the tree Γ̃(P ).

The Cayley graph Γ(P ) = Γ(P, S) of P is the quotient of Γ̃(P ) by the action of the
stabilizer Stab(P ) (compare Gaboriau [Gab96]). Vertices of the Cayley graph of P are
in one-to-one correspondence with the elements of the pseudo-orbit of P in F under the
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pseudo-group of isometries. The vertices of the core of the Cayley graph of P are in one-
to-one correspondence with the intersection ω(P ) of the pseudo-orbit of P and the limit set
Ω.

The index of a vertex P ′ in core(Γ(P )) is equal to the index iS(P ′) of the point P ′ for the
system of isometries S. Thus, we get that the index of the core of the Cayley graph i(Γ(P ))
is equal to the contribution of the pseudo-orbit of P to the index of S:

i(Γ(P )) = i(core(Γ(P )) =
∑

P ′∈ω(P )

iS(P ′).

Adding up, for all pseudo-orbits [P ] we get

i(S) =
∑
[P ]

i(Γ(P )).

3. Rips Machine

3.1. Elementary step. Let S = (F,A) be a system of isometries on a compact forest F .
One step of the Rips Machine produces a new system of isometries S ′ = (F ′, A′) defined as
follows.

The forest F ′ is the set of all elements of F which are in the domains of at least two
distinct partial isometries in A±1:

F ′ = {P ∈ F | ∃a 6= b ∈ A±1, P ∈ dom(a) ∩ dom(b)}.
The set F ′ has finitely many connected components which are compact R-trees because it is
the finite union of all possible intersections dom(a)∩dom(b) for all pairs of distinct elements
a, b of A±1.

For each partial isometry a ∈ A and for each pair of connected components K0, K1 of F ′,
we consider the partial isometry, a′ = K0eadK1 , which is the restriction of a to K0 and K1.
The finite set A′ consists of all such non-empty partial isometries K0eadK1 of F ′.

An elementary step of the Rips Machine gives rise to a map τ from the graph Γ′ associated
to the resulting system of isometries S ′, to the original graph Γ. A vertex K ′ of Γ′ is a
connected component of F ′ and it is mapped by τ to the connected component τ(K ′) of F
which contains K ′. Similarly an edge a′ of Γ′ is a non-empty partial isometry a′ = K0eadK1

and it is mapped by τ to the original partial isometry a. The map τ is a morphism of
oriented graphs.

If w is an admissible reduced path in Γ′, the domain of τ(w) contains the domain of w and
τ(w) is an admissible path in Γ. Moreover, the image τ(w) of an admissible reduced path w
in Γ′ is a reduced path of Γ. Finally, if a bi-infinite reduced path Z in Γ is admissible, then
its domain is contained in F ′, which leads to the following

Proposition 3.1. Let S be a system of isometries and S ′ be the result of the Rips Machine.
Then the limit sets and the indices of S and S ′ are equal:

Ω = Ω′ and i(S) = i(S ′). �

3.2. Indices through the Rips Machine. As explained previously, the Rips Machine
defines a new system of isometries S ′ = (F ′, A′) starting from a system of isometries S =
(F,A) by erasing the subset E of the forest F which consists of points which belongs to at
most one domain of partial isometries of A±1.
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To better understand the Rips Machine we decompose its elementary step into a finite
sequence of elementary moves. Instead of erasing E in one step we successively erase subsets
Ei of E. This gives us a finite sequence of system of isometries starting from S and ending
at S ′. The successive systems of isometries of this sequence differ by an elementary move.

As F is a compact forest, the set E may have infinitely many connected components. We
first describe a preliminary move which erases all the “peripheral” ones. Then we are left
with a finite forest to erase, which we erase in finitely many elementary moves.

This decomposition of the Rips Machine is used in the next Proposition to prove that the
index of the associated graphs is decreasing.

Proposition 3.2. Let S = (F,A) be a system of isometries and S ′ = (F ′, A′) be the output
of the Rips Machine. Let Γ and Γ′ be the associated graphs.

Then the index i(Γ′) is smaller or equal than the index i(Γ).

Proof. Let E be the part of the forest F which is erased by the Rips Machine:

E = F r F ′ = {P ∈ F | #{a ∈ A±1 | P ∈ dom(a)} ≤ 1}.
Let EC be the subset of E which is in the convex hull of F ′:

EC = {P ∈ E | ∃Q,R ∈ F ′, P ∈ [Q,R]},
and let E0 = E r EC be the complement of EC in E.

Let F0 = F r E0 = F ′ ∪ EC : F0 is the convex hull of the connected components of F ′ in
F :

F0 = {P ∈ F | ∃Q,R ∈ F ′, P ∈ [Q,R]}.
Thus F0 has finitely many connected components, each of which is a compact R-tree: F0 is
a compact forest.

Let A0 be the set of all non-empty restrictions of partial isometries of A to partial isometries
of F0. Let Γ0 be the graph associated to the system of isometries S0 = (F0, A0) and let
τ0 : Γ0 → Γ be the graph morphism defined as before. As E0 does not split connected
components of F , the map τ0 is injective and thus by Lemma 2.1,

i(Γ0) ≤ i(Γ)

(we note that this inequality can be strict if τ0 is not onto).
As F ′ has finitely many connected components, EC is a finite union of finite open arcs of

the form ]P ;Q[ where P and Q are two points of F ′.

Lemma 3.3. The erased part EC can be decomposed to get a partition

EC = α1 ] α2 ] · · · ] αn
where each αi is an open arc such that the number of connected components of Fi is exactly
one plus the number connected components of Fi−1, where for each i = 1, . . . , n, we let
Fi = Fi−1 r αi.

Proof. We recursively define αi by choosing a connected component C of Fi−1 which contains
at least two connected components of F ′. Then we choose a connected component K of F ′
contained in C and which is not contained in the convex hull C ′ of (C ∩ F ′) rK in C. We
choose the open arc αi that joins K and C ′. Removing αi from Fi−1 splits the connected
component C of Fi−1 into two new connected components: K and C ′. �

11



Let Ai be the set of non-empty restrictions of partial isometries in A to Fi and let Γi
be the graph associated to the system of isometries Si = (Fi, Ai). As before we get graph
morphisms τi : Γi → Γi−1. We observe that the last system of isometries is the output of the
Rips Machine: Sn = S ′. The map τ factors through the graphs Γi: τ = τ0 ◦ τ1 ◦ · · · ◦ τn.

We now proceed to prove that for each i = 1, . . . , n, the index of Γi is lower or equal to
the index of Γi−1. This will conclude the proof.

Going from Si−1 to Si corresponds to one of the following elementary moves of the Rips
Machine. For each i removing the arc αi from Fi−1 has one of the following two effects on
the graph Γi−1:

(1) Split a vertex: αi joins two connected components, K and K ′, of Fi, and no partial
isometry in A±1

i−1 is defined simultaneously on K and K ′. Then the map τi is injective
on edges and, applying Lemma 2.1, the index of Γi is smaller or equal to the index
of Γi−1.

αi

d

a b

e

Fi−1: Γi−1:

τi

f

d

a b

e

K K ′Fi : Γi:
f

c

c

b

e

a

d

f

b

e

c

d f

c

a

Figure 4. Split a vertex move

(2) Split an edge: αi joins two connected components K and K ′ of Fi, and a partial
isometry a in A±1

i−1 is defined on K and K ′ (and thus its domain dom(a) contains
αi). By definition of E no other partial isometry is defined on αi, in particular the
range of a is contained in Fi. The graph morphism τi maps the two distinct vertices
K and K ′ to the same vertex, K ∪ αi ∪K ′, of Γi−1, it maps the two edges a′ = Kea
and a′′ = K′ea which are the restrictions of a to K and K ′ to the same edge a of Γi−1.
On all other vertices and edges, τi is one-to-one. Thus, τi is a homotopy equivalence
and the index of Γi is equal to the index of Γi−1. Indeed, τi is a folding in Stallings’
terminology [Sta83].

�

3.3. Iterating the Rips Machine. Let S0 = (F0, A0) be a system of isometries. By repeat-
edly applying the Rips Machine we get a sequence Sn = (Fn, An) of systems of isometries.
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Figure 5. Split an edge move

Of course the Rips Machine may halt after some time, that is to say, we do not exclude that
Sn+1 = Sn for n big enough.

We also get graph morphisms τn from the graph Γn+1 associated to Sn+1 to the graph
Γn associated to Sn. Indeed, a partial isometries an ∈ An is the restriction of the partial
isometry a = τ0 ◦ τ1 · · · τn−1(an) in A0 to connected components of the compact forest Fn.

Lemma 3.4. The intersection Ω of the nested sequence (Fn)n∈N of compact subsets of F0 is
equal to the limit set Ω0 of the system of isometries S0.

Proof. By Proposition 3.1, at each step n the limit sets Ωn+1 and Ωn of the corresponding
system of isometries are equal. In particular Ω0 is contained in Fn at each step n and thus
in the nested intersection.

Conversely, let P be a point in the nested intersection Ω = ∩n∈NFn. For any n ∈ N, P
belongs to Fn+1 and by definition of the Rips Machine, there exists at least two distinct
partial isometries an and bn defined at P in An

±1. Thus P.an and P.bn are in Fn. Up to
passing to a subsequence we can assume that an and bn are the restrictions of two fixed and
distinct partial isometries a and b in A±1

0 . We get that for all n, P.a and P.b are in Fn, which
proves that P.a and P.b are also in the nested intersection Ω = ∩n∈NFn. The set Ω is a subset
of F0 such that for any point P in Ω, there exists at least two distinct partial isometries a
and b in A±1

0 such that P.a and P.b are also in Ω. This proves that Ω is contained in the
limit set Ω0 of the initial system of isometries S0. �

The limit graph Γ̂ of the system of isometries S0 = (F0, A0) is the (possibly infinite)
graph whose vertices are the connected components of the limit set Ω and whose edges are
all possible restrictions of partial isometries in A0 to connected components of Ω. We denote
by τ̂n : Γ̂ → Γn the graph morphism that maps a connected component C of Ω to the
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connected component of Fn that contains C, and which maps an edge e of Γ̂ to the partial
isometry an ∈ An of which it is a restriction.

From the previous Lemma and from the definition of an inverse limit, we deduce:

Lemma 3.5. The limit graph Γ̂ of a system of isometries, S0 = (F0, A0), is the inverse limit
of the sequence of graphs (Γn)n∈N (together with the sequence of maps (τn)n∈N) associated
to the sequence of systems of isometries (Sn)n∈N obtained from S0 by iterating the Rips
Machine. �

By definition of Ω, the graph Γ̂ does not have vertices of valence 0 or 1, and we defined
its index as the non-negative sum

i(Γ̂) =
∑

x∈V (Γ̂)

iΓ̂(x).

Recall that, by Proposition 3.2, the sequence of indices (i(Γn))n∈N is decreasing.

Proposition 3.6. Let Γ̂ be the limit graph of a system of isometries S0 = (F0, A0). Then
the index of Γ̂ is smaller or equal to the index of Γ0:

i(Γ̂) ≤ i(Γ0).

Proof. For any point P in Ω, by definition, there exist at least two distinct partial isometries
a and b in A±1

0 defined at P and such that P.a and P.b also lie in Ω. For any n ∈ N, Ω
is contained in Fn: let Cn be the connected component of P in Fn. There are at least two
edges going out of the vertex Cn of Γn corresponding to the restrictions of a and b to Cn.
This proves that the image of Γ̂ by τ̂n in Γn does not contain vertices of valence 0 or 1: τ̂n(Γ̂)
is a subgraph of the core of Γn.

Let Θ0 be a finite set of vertices of Γ̂. Let Θ be a finite subgraph of Γ̂ that contains Θ0

and all edges incident to elements of Θ0. The graph Θ exists because vertices of Γ̂ have finite
valence bounded above by twice the cardinality of A0.

By Lemma 3.5, there exists n ∈ N such that Θ is mapped injectively by τ̂n into Γn.
Arguing as in Lemma 2.1 and using the definition of the index of a graph, the following
inequalities hold:∑

x∈Θ0

iΓ̂(x) =
∑
x∈Θ0

iΘ(x) ≤
∑
x∈Θ0

icore(Γn)(τ̂n(x)) ≤ i(core(Γn)) = i(Γn).

Using Proposition 3.2 we get that for any finite subset Θ0 of vertices of Γ̂∑
x∈Θ0

iΓ̂(x) ≤ i(Γ0).

Taking Θ0 arbitrarily large we finally get

i(Γ̂) ≤ i(Γ0). �

A connected component K of Ω is called regular if it corresponds to a vertex of valence
2 of the limit graph Γ̂. A connected component K of Ω is singular if it corresponds to a
vertex of valence at least 3 of Γ̂.

Corollary 3.7. All connected components of Γ̂ are lines except at most i(Γ0). Moreover,
there are at most i(Γ0) singular connected components of Ω. �
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We are now ready to prove Theorem 2.2 in the special case where the Rips Machine never
halts and digs holes everywhere.

Theorem 3.8. Let S = (F,A) be system of isometries and Γ be its associated graph. Assume
that the limit set Ω is totally disconnected. Then the index of S is bounded above by the index
of Γ.

Proof. As connected components of Ω are reduced to single points, the graph Γ̂ is the disjoint
union of all the cores of the Cayley graphs Γ(P ):

Γ̂ =
⊎
[P ]

core(Γ(P )).

Thus, the index of Γ̂ is equal to the index of S. The Theorem now follows from Proposi-
tion 3.6. �

We turn back to the general case where the limit set has non-trivial (i.e. not reduced to
a single point) connected components.

Proposition 3.9. The limit set Ω of a system of isometries S0 = (F0, A0) has finitely many
non-trivial connected components.

Proof. By Corollary 3.7, there are finitely many singular connected components of Ω.
Let K be a regular connected component of Ω. Then there exists exactly two distinct

partial isometries a 6= b in A0
±1 with non trivial restrictions a′ = KeadΩ and b′ = KebdΩ to

K and Ω. These are the partial isometries which give rise to the two edges of Γ̂ going out
of the vertex K. By definition of Ω, for each point P of K there exists at least two partial
isometries in A±1

0 which map P inside Ω. Thus P lies in both the domains of a′ and b′ and
thus dom(a′) = dom(b′) = K.

Now, if the range K.a′ of a′ is also a regular connected component of Ω then a′ is an
isometry between K and K.a′ and in particular they have the same diameter. From the next
Lemma we get that there can only be finitely many non-trivial regular connected components.

This proves that Ω only has finitely many non-trivial connected components. �

Lemma 3.10. Let K be a compact R-tree and (Ki)i∈N be a collection of disjoint subtrees of
K. Then

lim
i→∞

diam(Ki) = 0.

Proof. By contradiction, assume that there exists ε > 0 such that (extracting a subsequence)
∀i, diam(Ki) > ε. Let Pi, Qi be in Ki with d(Pi, Qi) ≥ ε. By compacity of K, up to passing
to a subsequence, the sequences Pi and Qi converge to P and Q respectively in K and
d(P,Q) ≥ ε. For i big enough d(Pi, P ) < ε/2 and d(Qi, Q) < ε/2, from which we deduce
that the segment [Pi, Qi] contains the midpoint of [P,Q], and therefore the segments [Pi, Qi]
and [Pj, Qj] are not disjoint for i and j big enough. A contradiction. �

3.4. Reduced systems of isometries. In this section we introduce an extra hypothesis
on the system of isometries. Under this hypothesis using the Rips Machine is considerably
easier. For system of isometries on finite trees, such an extra hypothesis was introduced by
D. Gaboriau in [Gab96] where it appears in Proposition V.4 as Property (*).
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The set of extremal points ∂K of a compact R-tree K is the set of points of K that
do not lie in the interior of an interval contained in K. Equivalently a point P is extremal
in K if K r {P} is connected. The tree K is the convex hull of its extremal points:

K =
⋃

P,P ′∈∂K

[P ;P ′].

We remark that ∂K may fail to be compact.

Definition 3.11. Let S0 = (F0, A0) be a system of isometries. Let S1 = (F1, A1) be the
output of the Rips Machine. The system of isometries S0 is reduced if

(i) For any point P in F0 the tree of trajectories Γ̃(P ) is infinite.
(ii) For any partial isometry a in A±1

0 the set of extremal points ∂dom(a) of the domain
of a is contained in F1.

Lemma 3.12. The graph Γ0 associated to a reduced system of isometries does not have
vertices of negative index, that is to say of valence 0 or 1.

Proof. Let K be a connected component of F and let P be a point in K. From condition (i),
the tree of trajectories Γ̃(P ) is infinite and thus there exists at least one partial isometry
a ∈ A±1

0 defined at P . Let now Q be an extremal point of dom(a). From condition (ii), Q
is in F1 and thus belongs to at least another domain dom(b) with b ∈ A±1

0 , a 6= b. Thus, the
vertex K of Γ0 has at least two outgoing edges a and b. �

When dealing with the Rips Machine, reduced systems of isometries are easier to handle.
The elementary moves “split a vertex” and “split an edge” are described in the proof of
Proposition 3.2.

Proposition 3.13. Let S0 = (F0, A0) be a reduced system of isometries. Let S1 = (F1, A1)
be the output of the Rips Machine.

Then going from S0 to S1 only performs elementary moves of type “split an edge”, and the
map τ : Γ1 → Γ0 is a homotopy equivalence. In particular

i(Γ0) = i(Γ1).

Proof. In the proof of Proposition 3.2, starting with a reduced system of isometries, we first
get that E0 is empty. Indeed, let P be an extremal point of F which is not in F1. From
condition (ii), P does not belong to any domain of a partial isometry in A±1 and thus its
tree of trajectories consists in a single vertex, which contradicts condition (i).

Then we get that no “split a vertex” move can occur, because the removed points in this
move have a tree of trajectories which consists in a single vertex. �

We can now prove that the reduced condition is inherited while iterating the Rips Machine.

Proposition 3.14. Let S0 = (F0, A0) be a reduced system of isometries. Let S1 = (F1, A1)
be the output of the Rips Machine. Then S1 is reduced.

Proof. For a point P in F1, the tree of trajectories of P with respect to S1 is obtained from
the tree of trajectories with respect to S0 by pruning off the terminal vertices. Thus, if the
latter is infinite, so is the former.
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By contradiction, let S2 = (F2, A2) be the output of the Rips Machine applied to S1, let
a1 be a partial isometry in A1 and let P be an extremal point in ∂dom(a1) which is not in
F2. Let a0 be the partial isometry in A0 of which a1 is a restriction.

As P is in dom(a1), and thus in F1, there is at least another partial isometry b0 ∈ A0 such
that P is in the domain dom(b0). There exist two extremal points Q,R in ∂dom(b0) such
that P lies in the segment [Q;R]. By hypothesis, Q,R, as well as Q.b0 and R.b0 lie in F1.

As P is an extremal point in ∂dom(a1), up to exchanging the two points Q and R, we
assume that Q is not in the domain of a1 and that [P ;Q] ∩ dom(a1) = {P}. Let (Qn) be a
sequence of points in the open arc ]P ;Q[ that converges to P .

?

6

? ?

6

a1

a2

b0b1
b′1

QnP QR

In the original system of isometries S0, Qn has an infinite tree of trajectories, in particular
there exists a reduced admissible path cn.dn of length 2 in Γ0 which is defined at Qn. As Γ0

is a finite graph, up to passing to a subsequence we assume that this path is constant: for
any n the reduced admissible path c.d is defined at Qn. As domains of partial isometries are
closed, the point P is in the domain of c.d. Since c−1 6= d, by definition of the Rips Machine,
the point Pc is in F1 and there is a restriction c1 of c in A1 which is defined at P . As P is
not in F2 and as a1 is defined at P , the partial isometries c1 and a1 are equal. Thus for any
integer n the partial isometry a0 is defined at Qn and Qna0 is in F1. There are only finitely
many restrictions of a0 to the connected components of F1. Thus a1 is defined at some Qn

and P is not an extremal point in ∂dom(a1). A contradiction. �

We now state an equivalent characterization of reduced systems of isometries.

Proposition 3.15. A system of isometries S0 = (F0, A0) is reduced if and only if the two
following conditions hold:

(i) For any point P in F the tree of trajectories Γ̃(P ) is infinite.
(ii’) For any partial isometry a in A±1 the set of extremal points ∂dom(a) of the domain

of a is contained in the limit set Ω0.

Proof. As the limit set Ω0 of S0 is contained in F1 we get that condition (ii’) implies condi-
tion (ii).
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Conversely, let S0 = (F0, A0) be a reduced system of isometries and let Sn = (Fn, An) be
the systems of isometries obtained by iteratively applying the Rips machine. From Propo-
sition 3.14, Sn is reduced. Let P be an extremal point of dom(a0) for a partial isometry
a0 ∈ A±1

0 . By condition (ii), P is in F1 as well as P.a0, and thus there exists a restriction
a1 ∈ A±1

1 of a0 such that P is an extremal point of dom(a1). By induction for each n there
exists a partial isometry an in A±1

n such that P is an extremal point in dom(an) and thus P
is in Fn. By Lemma 3.4 we conclude that P is in the limit set Ω0. �

4. Computing the index of a system of isometries

4.1. Systems of isometries on finite trees. We translate and adapt in this section Propo-
sition 6.1 of [GLP94].

A finite tree is an R-tree which is the convex hull of finitely many of its points. It has
finitely many branch points and is the metric realization of a simplicial finite tree. A finite
forest is a metric space with finitely many connected components each of which is a finite
tree.

We remark that removing the branch points, such a finite forest gives a disjoint union of
finitely many intervals. The integral of a function defined on F is the integral on this disjoint
union of intervals (with respect to Lebesgue measure).

Let S = (F,A) be a system of isometries where F is a finite forest.
The valence of a point P in F is

vS(P ) = #{a ∈ A±1 | P ∈ dom(a)}.
We emphasize that in Section 2.3 we defined the index iS(P ) by restricting partial isometries
to the limit set Ω, and thus for a system of isometries we may have iS(P ) 6= vS(P )− 2.

The function P 7→ vS(P ) is a finite sum of characteristic functions of finite subtrees. It is
Lebesgue integrable.

We translate Proposition 6.1 of [GLP94] to get:

Proposition 4.1. Let S = (F,A) be a system of isometries with independent generators.
Assume that F is a finite forest. Then

∫
P∈F (vS(P )− 2) ≤ 0

Proof. The sum
∫
P∈F vS(P ) is twice the sum of the Lebesgue measure of the domains of the

partial isometries in A. It is denoted by 2` in Section 6 of [GLP94] while
∫
P∈F 2 is twice the

Lebesgue measure of F which is denoted there by 2m. �

4.2. Shortening systems of isometries. To use Proposition 4.1 in the broader context of
compact forests, we need a standard procedure to shorten a system of isometries to a finite
one.

Let F be a compact forest and let ε > 0. We define:

F†ε = {P ∈ F | ∃P−ε, P+ε ∈ F, P ∈ [P−ε, P+ε], d(P, P−ε) = d(P, P+ε) = ε}
(i.e. P is the midpoint of the segment [P−ε, P+ε] which has length 2ε).

The set of extremal points ∂F of a compact forest F is the union of the sets of extremal
points of the connected components of F .

Lemma 4.2. (i) For any ε > 0, for any connected component K of F , K ∩ F†ε = K†ε
is a finite tree (possibly empty);

(ii) For any ε > ε′ > 0, F†ε ⊂ F†ε′;
18



(iii) ∪ε>0F†ε = F r ∂F . �

For any partial isometry a of F , we denote by aε its restriction to F†ε. We denote by
Aε and Sε the corresponding finite set of partial isometries and the restricted system of
isometries. We remark that if S has independent generators then Sε also has.

4.3. Pseudo-surface systems of isometries. Let S = (F,A) be a system of isometries,
where F is a compact forest and such that each point of F lies inside the domain of at least
two different partial isometries in A±1. In this case the limit set Ω is equal to F and the
Rips Machine does not do anything to S.

If, in addition, the system of isometries S has independent generators, we say that it is
pseudo-surface.

A key step in our proof of Theorem 2.2 is the following Proposition which is proved using
Proposition 4.1 by shortening the system of isometry as in Section 4.2. We note that the
following Proposition is obvious if F is a finite tree or a finite forest (cf. for example [Gab96,
Processus II.3 5)]).

Proposition 4.3. Let S = (F,A) be a pseudo-surface system of isometries. Then, for
any choice of three distinct partial isometries in A±1 the intersection of the three domains
contains at most one point of F .

Proof. By definition of pseudo-surface systems of isometries, for any P in F the valence
vS(P ) is greater or equal to 2.

By contradiction we assume that there exist three distinct partial isometries a, b and c in
A±1 such that the intersection of their domains is strictly bigger than a point. As domains
are compact subtrees, there exists a non-trivial arc I which is contained in the three domains:

∀P ∈ I, vS(P ) ≥ 3.

For any ε > 0 we consider the finite forest F†ε and the corresponding system of isometries
Sε.

Let ` be the length of I. For any ε < `/3, the sub-arc J of I which is contained in the
domains of the partial isometries aε, bε and cε of Aε contains the middle third of I thus the
length of J is bigger than `/3.

For such an ε > 0, F†ε is a finite forest by Lemma 4.2 and Proposition 4.1 holds:

Iε =

∫
P∈F†ε

(vSε(P )− 2) ≤ 0

Let Pε, resp. Nε, be the set of points of F†ε which contributes positively, resp. negatively,
to Iε:

Pε = {P ∈ F†ε | vSε(P ) ≥ 2} and Nε = {P ∈ F†ε | vSε(P ) ≤ 1}.
As the points in J have valence at least 3, we get∫

P∈Pε

(vSε(P )− 2) ≥ `/3

and thus, we have:

0 ≥ Iε ≥ `/3 +

∫
P∈Nε

(vSε(P )− 2).
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Our goal is to prove that the negative part goes to zero to get a contradiction. We only need
to prove that the Lebesgue measure of Nε goes to zero.

We claim that Nε has Lebesgue measure bounded above by 8N2 ε where N = #A is the
cardinality of A.

Let P be inNε, then P is in F†ε which means that P is the midpoint of a segment [P−ε, P+ε]
of length 2ε in F . As S is pseudo-surface, there are at least two elements a1, a2 ∈ A±1 which
are defined at P−ε and at least two elements b1, b2 ∈ A±1 which are defined at P+ε. As P is
in Nε at most one of the four partial isometries a1ε,a2ε,b1ε,b2ε is defined at P . By switching
the indices we can assume that a1ε and b1ε are not defined at P . Taking ε sufficiently small
ensures that the partial isometries a1ε and b1ε are not empty.

The domain of a1ε and the point P−ε lie in the same connected component of F r {P}:
else P would be located in a segment [P−ε, P

′] with P ′ in the domain of a1ε and P−ε in the
domain of a1, thus P would be in the domain of a1ε. We argue similarly for the domain of
b1ε.

6 6

6 6

P−ε P+εP

a1ε b1ε

a1 b1

We have thus proved that P is in the non-trivial arc joining the disjoint domains of a1ε

and b1ε. The point P−ε is in the domain of a1 and thus at distance less than ε of the domain
of a1ε. Thus P is at distance less than 2ε from this domain. Hence, the length of the arc
joining the disjoint domains of a1ε and b1ε is at most 4ε.

If, over all the possible pairs of partial isometries, we sum the lengths of the arcs, we get
that the volume of Nε is bounded above by (2N(2N − 1)/2)× 4ε. Which proves the claim
and concludes the proof. �

If the compact forest F = I is an interval and if the system of isometries S = (F,A) is
pseudo-surface, Proposition 4.3 states that this is the classical case of an interval exchange
transformation and S is usually called surface. This justifies the terminology of pseudo-
surface system of isometries.

From Proposition 4.3, it is easy to deduce a rough bound of the index of a pseudo-surface
system of isometries.

Corollary 4.4. Let S = (F,A) be a pseudo-surface system of isometries. Then i(S) is finite
and bounded above by a constant depending only on the cardinality of A.

Proof. We denote, as before, by N = #A the cardinal of A. From the previous Proposition,
there are at most

(
2N
3

)
points in F which belongs to the domains of at least three different

partial isometries in A±1. Each of these points has valence at most 2N . Adding up we get
that

i(S) =
∑
P∈F

iS(P ) =
∑
P∈F

(vS(P )− 2) ≤ N(2N − 1)(2N − 2)2/3. �
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We now state a combinatorial Lemma.
Let K be a compact R-tree and let K = (Ka)a∈A be a finite collection of compact subtrees

of K. For such a collection, and for any point P ∈ K we denote by vK(P ) the number of
elements a of A such that P is in Ka.

Lemma 4.5. Let K = (Ka)a∈A be a finite collection of compact subtrees of a compact R-tree
K. Assume that

(1) for any choice of three distinct elements of A the intersection of the corresponding
subtrees is at most one point,

(2) any element P of K is in at least two compact subtrees Ka and Kb (a 6= b ∈ A).
Then ∑

P∈K

(vK(P )− 2) = #A− 2.

Proof. Let T be the convex hull in K of all elements P ∈ K such that vK(P ) ≥ 3. From our
first hypothesis T is a finite tree. For each a ∈ A the intersection Ta = Ka ∩ T is a finite
tree. Let T = (Ta)a∈A be the corresponding collection of finite subtrees of T . We have the
equality ∑

P∈K

(vK(P )− 2) =
∑
P∈T

(vT (P )− 2).

Moreover T satisfies the same hypothesis as K: the intersection of three of its elements is
at most a point and any element of T is in at least two subtrees Ta and Tb, a 6= b ∈ A. We
regard T and each Ta as a simplicial tree by considering all the branch points and extremal
points as vertices. Each edge of the simplicial tree T belongs to exactly two trees Ta and Tb.
Combinatorial computation gives∑

P∈T

(vT (P )− 2) =
∑

P∈V (T )

(vT (P )− 2)

=
∑

P∈V (T )

∑
a∈A

1P∈V (Ta) − 2#V (T )

=
∑
a∈A

∑
P∈V (T )

1P∈V (Ta) − 2#E(T )− 2

=
∑
a∈A

#V (Ta)−
∑
a∈A

#E(Ta)− 2

= #A− 2.

�

We can now get the correct bound for the index of a pseudo-surface system of isometries

Theorem 4.6. Let S = (F,A) be a pseudo-surface system of isometries and, let Γ be the
associated graph. Then i(S) = i(Γ).

Proof. As S is pseudo-surface, at least two distinct partial isometries are defined at each
point of F . Thus, the graph Γ does not have vertices of valence 0 or 1 and its index is given
by

i(Γ) =
∑

K∈V (Γ)

iΓ(K).
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Let K be a connected component of F and let B be the subset of A±1 which consists of
partial isometries with domains inside K. The set B is also the set of edges going out of the
vertex K of the graph Γ and thus

iΓ(K) = #B − 2.

Let K be the collection of domains of elements of B. Thus for each point P in K

iS(P ) = vK(P )− 2.

By Proposition 4.3, the collection K satisfies the hypothesis of Lemma 4.5 and we get∑
P∈K

(vK(P )− 2) = #B − 2.

Thus the contribution of the points of K to the index of S is equal to the contribution of
the corresponding vertex of Γ: ∑

P∈K

iS(P ) = iΓ(K).

Adding up for all connected components K of F , proves the Theorem. �

4.4. Proof of Theorem 2.2. Using Proposition 3.6, Theorem 2.2 is a consequence of

Proposition 4.7. Let S = (F,A) be a system of isometries with independent generators.
Let Γ̂ be its limit graph. Then the index of S is equal to the index of Γ̂:

i(S) = i(Γ̂).

Proof. Let Ω0 be the union of all non-trivial connected components of the limit set Ω. By
Proposition 3.9, Ω0 has finitely many connected components, that is to say, Ω0 is a compact
forest. Let S0 = (Ω0, A0) be the system of isometries which consists of the restrictions of
S to Ω0. By definition of the limit set, S0 is a pseudo-surface system of isometries. By
Proposition 4.3, the intersection the domains of three distinct partial isometries of A0

±1

contains at most one point.
For a vertex of Γ̂ corresponding to a connected component K (possibly a single point) of

Ω we can apply Lemma 4.5 to the collection given by the domains of the edges going out of
K to get:

iΓ̂(K) =
∑
P∈K

(vS(P )− 2).

By Corollary 3.7, Γ̂ has finitely many vertices with index strictly positive (and these indices
are finite). Adding up for all these singular vertices of Γ̂, we get

i(S) = i(Γ̂). �

4.5. Systems of isometries with maximal index. From Theorem 2.2, we say that a
system of isometries S has maximal index if its index is equal to the index of its associated
graph Γ: i(S) = i(Γ).

The following Proposition characterizes reduced systems of isometries with maximal index.

Theorem 4.8. Let S = (F,A) be a reduced system of isometries with independent generators,
let Γ be its associated graph, and Γ̂ be its limit graph. The following are equivalent

(1) The system of isometries S has maximal index,
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(2) The graph Γ̂ is finite,
(3) The Rips Machine, starting from S, halts after finitely many steps.

Proof. As before we denote by Sn = (Fn, An) the system of isometries obtained after n
steps of the Rips Machine. By Proposition 3.13 and Proposition 3.14 the Rips Machine only
performs “split an edge” moves and induces a homotopy equivalence τn : Γn+1 → Γn at each
step. And thus the index is constant:

i(Γn) = i(Γ0) = i(Γ).

Moreover at each step the graph Γn does not have vertices of valence 0 or 1.
3⇒2: If the Rips Machine halts after step n, then Γn+1 = Γn = Γ̂ is a finite graph.
2⇒3: Conversely, at each step n the Rips Machine only performs “split an edge” moves.

This move adds one edge to Γn to get Γn+1. If the Rips Machine never halts, then the number
of edges of Γn goes to infinity. As each of the τn is onto, we get that Γ̂ is infinite.

3⇒1: If the Rips Machine halts after finitely many steps: for n big enough

Γ̂ = Γn+1 = Γn,

by Proposition 4.7, i(Γ̂) = i(S) and we get that S has maximal index.
1⇒3: Assume that S has maximal index: i(S) = i(Γ̂) = i(Γ).
We proceed as in the proof of Proposition 3.6. Let Θ0 be the finite subset of vertices of

Γ̂ with valence strictly bigger than 2. Let Θ be the finite subgraph of Γ̂ which contains all
edges incident to Θ0. The graph Θ contains all the index of Γ̂:

i(Γ̂) =
∑
x∈Θ0

iΘ(x).

For n big enough, τ̂n is injective on Θ and thus for each vertex x in Θ0

iΘ(x) ≤ iΓn(τ̂n(x)).

We assumed that S is reduced and thus that Γn does not have vertices of strictly negative
index.

By maximality of the index, i(Γ̂) = i(Γn) and thus we can compute

i(Γ̂) =
∑
x∈Θ0

iΘ(x) =
∑
x∈Θ0

iΓn(τ̂n(x)) +
∑

y∈V (Γn)rτ̂n(Θ0)

iΓn(y) = i(Γn).

We deduce that for each x in Θ0 and for all y ∈ V (Γn) r τ̂n(Θ0),

iΘ(x) = iΓn(τ̂n(x)) and iΓn(y) = 0.

The commutative diagram

Γ̂
τ̂n+1

~~

τ̂n

��
Γn+1

τn // Γn

restricts to graph isomorphisms between Θ and its images. Moreover, τ̂n+1(Θ0) and τ̂n(Θ0)
contain all the vertices of strictly positive index of Γn+1 and Γn respectively. Thus no “split
an edge” move can occur when passing from Γn to Γn+1 and thus the Rips Machine does not
do anything to the system of isometries Sn. �
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5. Trees

Throughout this Section, T is an R-tree with a very small, minimal action of the free
group FN of rank N by isometries with dense orbits.

5.1. The map Q. Let P be a point in T , we consider the equivariant map QP : FN → T ,
u 7→ u · P . This maps does not extends continuously to the boundary ∂FN of FN . To
overcome this difficulty we weaken the topology on T by considering the observers’ topology.

Let T̂ = T ∪∂T be the union of the metric completion of T and its (Gromov) boundary. T̂
inherits from the metric on T a well defined topology. However, T̂ is not compact in general.

We consider on T̂ the weaker observers’ topology and we denote by T̂ obs this topological
space. A basis of open sets in T̂ obs is given by the set of connected components of T̂ r {P}
for all points P . This topology is Hausdorff and T̂ obs is a compact space with the same
connected subspaces than T̂ , see [CHL07].

Proposition 5.1 ([CHL07]). Let T be an R-tree with a very small, minimal action of FN by
isometries with dense orbits. There exists a unique map Q that is the continuous extension
from ∂FN to T̂ obs of the map QP : u 7→ u · P . The map Q does not depend on the choice of
a point P . �

This map Q was first introduced by Levitt and Lustig in [LL03, LL08] with a slightly
different approach. In particular they proved

Proposition 5.2. Let T be an R-tree with a very small, minimal action of FN by isometries
with dense orbits. The map Q is onto T̂ . The points P in T̂ with strictly more than one
pre-image by Q are in the metric completion T of T (and not in the (Gromov) boundary
∂T ).

It has been asked by Levitt and Lustig [LL03, Remark 3.6] whether the map Q : ∂FN → T̂
has finite fibers (in the case where the action is free). We are going to answer this question
and to give a precise bound for the cardinal of the fibers. In this purpose we need to make
this question precise by the following definition of the Q-index.

5.2. The Q-index. We denote by Stab(P ) the stabilizer in FN of a point P of T̂ .
It is proved in [GL95] that Stab(P ) is a finitely generated subgroup of FN . The subgroup

Stab(P ) is a free group and its boundary ∂Stab(P ) embeds in the boundary of FN . For
any element X ∈ ∂Stab(P ) ⊆ ∂FN , Proposition 5.1 proves that Q(X) = P . Elements of
∂Stab(P ) are called singular, and the other elements of the fiber Q−1(P ) are regular. We
denote by Q−1

r (P ) the set of regular points. As Q is equivariant, Stab(P ) acts on Q−1(P )
and on Q−1

r (P ).
The Q-index indQ(P ) of a point P in T̂ is defined by

indQ(P ) = #(Q−1
r (P )/Stab(P )) + 2 rank(Stab(P ))− 2.

When Stab(P ) is trivial this definition becomes

indQ(P ) = #Q−1(P )− 2.
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The Q-index only depends on the orbit [P ] of P under the action of FN and we can define
the Q-index of the tree T by

indQ(T ) =
∑

[P ]∈T̂ /FN

max(0; iQ([P ])).

From Proposition 5.2, points in ∂T have exactly one pre-image by Q. Thus, only points in
T contribute to the Q-index of T .

The main goal of this section is to prove the following Theorem:

Theorem 5.3. Let T be an R-tree with a very small, minimal action of FN by isometries
with dense orbits. Then

indQ(T ) ≤ 2N − 2.

In the case of a free action of the free group FN on T this gives the answer to Levitt and
Lustig’s question:

Corollary 5.4. Let T be an R-tree with a free, minimal action of FN by isometries with
dense orbits. Then, there are finitely many orbits of points P in T̂ with strictly more than 2
elements in their Q-fiber Q−1(P ) and these fibers are finite. �

5.3. Dual lamination and compact heart. The double boundary of FN is

∂2FN = (∂FN × ∂FN) r ∆

where ∆ is the diagonal. An element of ∂2FN is a line.
Using the map Q, in [CHL08], the dual lamination L(T ) to the tree T is defined.

L(T ) = {(X, Y ) ∈ ∂2FN | Q(X) = Q(Y )}.

From this definition, the map Q naturally induces an equivariant map Q2 : L(T )→ T̂ . It is
proved in [CHL08] that the map Q2 is continuous and its image is a subset Ω of T which we
call the limit set.

We fix a basis A of FN . Elements of FN are reduced finite words in the alphabet A±1. An
element X of ∂FN is an infinite reduced words in A±1, we denote by X1 its first letter.

The unit cylinder CA(1) of ∂2FN is

CA(1) = {(X, Y ) ∈ ∂2FN | X1 6= Y1}.
Although ∂2FN is not compact, the unit cylinder is compact and indeed a Cantor set.

In [CHL09] the relative limit set of T with respect to A is defined:

ΩA = Q2(L(T ) ∩ CA(1)).

From the continuity of the map Q2, the relative limit set ΩA is a compact subset of T .
The compact heart KA of T is the convex hull of ΩA.
For any element a of the basis A we consider the partial isometry (which we also denote

by a, but which we write on the right) which is the restriction of the action of a−1:
KA ∩ aKA → KA ∩ a−1KA

x 7→ x.a = a−1x

We get a system of isometries SA = (KA, A) as defined in Section 2.
In [CHL09] it is proved that S encodes all the informations given by T and the action of

FN . To be more specific, we summarize results of [CHL09] as follows:
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Proposition 5.5 ([CHL09]). Let T be an R-tree with a very small, minimal action of FN
by isometries with dense orbits. Let A be a basis of FN , let KA be its compact heart and
SA = (KA, A) be the associated system of isometries. Then

(1) SA has independent generators.
(2) For any word u ∈ FN , and for any point P ∈ KA, u−1.P ∈ KA if and only if u is

admissible for SA and P ∈ dom(u). In this case P.u = u−1.P .
(3) For any element X ∈ ∂FN , Q(X) = P ∈ KA if and only if X is admissible and
{P} = dom(X).

Proof. Assertion 1 is Lemma 5.1 of [CHL09]. Assertion 2 is proved in Lemma 3.5 (1) and
Corollary 5.5 and Assertion 3 is a consequence of Proposition 4.3, Lemma 4.7 and Corol-
lary 5.5. �

We deduce that for an infinite reduced admissible word X the definition of Q(X) of
Section 2.1 agrees with the definition given by Proposition 5.1. Moreover the relative limit
set ΩA of the R-tree T is equal to the limit set of the system of isometries SA.

5.4. The compact heart of a tree is reduced. As explained in Section 3.4, reduced
systems of isometries (see Definition 3.11) considerably simplifies the use of the Rips Machine.
Fortunately, in the context of R-trees, which we are studying, and thanks to [CHL09], we
can work with reduced systems of isometries.

Proposition 5.6. Let T be an R-tree with a minimal very small action of FN by isometries
with dense orbits. Let A be a basis of FN , let ΩA be the relative limit set and KA be the
compact heart of T . Let SA = (KA, A) the induced system of isometries.

Then, the system of isometries SA is reduced.

Proof. By Proposition 5.2, the map Q is onto T̂ : for any point P in KA there exists X ∈ ∂FN
such that Q(X) = P . By Proposition 5.5, X is admissible and P is in the domain of X.
Thus, any point P of the compact heart KA has an infinite tree of trajectories.

Let S1 = (F1, A1) be the output of the Rips Machine. Let a be a partial isometry in A and
let P be an extremal point of the domain of a. If P is an extremal point of KA, then, as KA

is the convex hull of the relative limit set ΩA, we get that P is in ΩA and thus in F1. If P is
not an extremal point of KA there exists a sequence Qn of points in F which converges to P
and which are not in the domain of a. The points in the compact heart KA have infinite tree
of trajectories, thus for each of these points Qn there exists a partial isometry bn in A such
that Qn is in the domain of bn. As A is finite, up to passing to a subsequence we assume
that all the Qn are in the domain of a partial isometry b in A. The domain of b is close and
thus P is in the domain of b. By definition of the Rips Machine we get that P is in F1. �

5.5. Proof of Theorem 5.3. Theorem 5.3 is a consequence of Theorem 2.2 and of the
following Theorem which relates the Q-index of T and the index of the system of isometries
SA defined on its compact heart.

Theorem 5.7. Let T be an R-tree with a very small, minimal action of FN by isometries
with dense orbits. Let A be a basis of FN . The Q-index of T and the index of the induced
system of isometries SA = (KA, A) on the heart KA of T and A are equal:

indQ(T ) = i(SA).
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Proof. Let P be a point in T̂ and [P ] be its orbit under the action of FN . By Proposition 5.5
assertion 2, the intersection of the orbit [P ] and of the compact heart KA is a pseudo-orbit
(possibly empty) of the system of isometries SA.

Assume that indQ([P ]) ≥ 0. There are at least two distinct elements X, Y in the fiber
Q−1(P ). Let u be the common prefix of X and Y , then X ′ = u−1X and Y ′ = u−1Y have
different first letter and are in the pre-image by Q of P ′ = u−1P . By definition P ′ is in the
relative limit set ΩA of the tree T .

This proves that the Q-index of T can be computed by considering only pseudo-orbits in
KA:

indQ(T ) =
∑

[P ]∈KA/FN

max(0; indQ([P ])).

Let P be a point in KA. By Proposition 5.5, the boundary at infinity of the tree of
trajectories Γ̃(P ) is exactly Q−1(P ) and the discussion in Section 2.4 shows that

indQ([P ]) = #(Q−1
r (P )/Stab(P )) + 2 rank(Stab(P ))− 2

= #∂Γ(P ) + 2 rank(Stab(P ))− 2 =
∑

P ′∈[P ]∩KA

iS(P ′).

Adding up for all points P in KA, proves the Theorem. �

5.6. Geometric index of a tree. Gaboriau and Levitt in [GL95] introduced the index of
T as follows.

Let P a point in T and let π0(T r {P}) be the set of connected components of T without
P . The stabilizer of P acts on this set. The geometric index of P is

indgeo(P ) = #(π0(T r {P})/Stab(P )) + 2 rank(Stab(P ))− 2.

This index is always non-negative because there are no terminal vertices in a minimal tree.
If the action of FN on the tree T is free the above definition becomes simpler:

indgeo(P ) = #π0(T r {P})− 2.

The geometric index is constant inside an orbit under the action of FN . The geometric
index of T is then the sum of the indices over all orbits of points:

indgeo(T ) =
∑

[P ]∈T/FN

indgeo(P ).

The following Theorem is proved by Gaboriau and Levitt:

Theorem 5.8 ([GL95]). The geometric index of an R-tree with a very small minimal action
of the free group FN is bounded above by 2N − 2. �

5.7. Botanic of Trees. In this Section we establish a beginning of classification of trees in
the boundary of Outer Space. Let T be an R-tree with a minimal very small action of FN
by isometries with dense orbits. Let A be a basis of FN , let ΩA be the relative limit set, let
KA be the compact heart of T and let SA = (KA, A) be the associated system of isometries.

We first recall the existing terminology of geometric trees. The tree T is geometric if it
can be obtained from a system of isometries on a finite tree, as explained in the Introduction
(see for instance [Gab97, Bes02]). Geometric trees can be alternatively characterized thanks
to the following:
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Theorem 5.9 ([GL95], see also [CHL09, Corollary 6.1]). Let T be an R-tree with a minimal,
very small action by isometries of FN with dense orbits. The following are equivalent:

(1) T is geometric;
(2) the geometric index is maximal: indgeo(T ) = 2N − 2;
(3) KA is a finite tree. �

We now introduce more terminology. The tree T is of surface type if the Rips Machine,
starting with the system of isometries SA = (KA, A), halts after finitely many steps. More
precisely, a tree of surface type is:

• a surface tree if it is geometric (this terminology is justified by the fact that a tree
dual to measured foliation on a surface with boundary is a surface tree.),
• a pseudo-surface tree if it is not geometric.

(Note that the fact that a tree is pseudo-surface does not exactly correspond to the fact that
the system of isometries SA = (KA, A) is pseudo-surface, according to the definition given
in Section 4.3).

By Theorem 4.8 and Theorem 5.7 we get the following characterization of trees of surface
type:

Theorem 5.10. Let T be an R-tree with a minimal, very small action by isometries of
FN with dense orbits. The tree T is of surface type if and only if its Q-index is maximal:
indQ(T ) = 2N − 2. �

This proves in particular that being of surface type is a property of T and does not depend
on the choice of a basis A of the free group FN .

The tree T is of Levitt type if its relative limit set ΩA is totally disconnected (i.e. the
connected components of ΩA are points). More precisely, a tree of Levitt type is

• Levitt if it is geometric (these trees were discovered by Levitt [Lev93] and are also
termed thin or exotic).
• pseudo-Levitt if it is not geometric.

We now prove that being of Levitt type is a property of T and does not depend on the choice
of a basis A of FN .

Let L(T ) be the dual lamination of the tree T . The limit set Ω of T is the image in the
metric completion T of L(T ) by the map Q2:

Ω = Q2(L(T )).

Contrary to the relative limit set ΩA, the limit set Ω is in general not closed.

Theorem 5.11. The tree T is of Levitt type if and only if the limit set Ω is totally discon-
nected.

Proof. By definition, the relative limit set ΩA = Q2(L(T )∩CA(1)) is a subset of Ω. Thus, if
Ω does not contain a non-trivial arc, ΩA neither.

Conversely, the double boundary of FN is the union of the translates of the unit cylinder
and

L(T ) =
⋃
u∈FN

u(L(T ) ∩ CA(1)) and Ω =
⋃
u∈FN

uΩA
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In particular if I is a non-trivial arc in the limit set Ω, it is the countable union of its
intersections with translates of the relative limit set ΩA. Using Baire’s Property for I, we
get that ΩA contains a non-trivial arc. �

We remark that there are trees in the boundary of Outer Space which are neither of surface
or Levitt type. These are trees of mixed type, that is to say their relative limit set ΩA

contains non-trivial arcs but have infinitely many connected components.

Remark 5.12. A general classification of systems of isometries, in particular a Theorem à-la
Imanishi to decompose trees of mixed type would be of interest. More generally, the question
of understanding the relationships between mixing properties of trees, indecomposability of
systems of isometries and minimality of laminations seems to be natural. Together with
Reynolds [CHR11] we prove that indecomposable trees and minimal (up to diagonal leaves)
laminations are dual to each other. In this spirit, see also the work of Reynolds [Rey10].

5.8. Mixing trees. In this section we give sufficient hypothesis on a tree to enforce that it
is either of surface type or of Levitt type.

We first describe the limit set of trees of surface type.

Proposition 5.13. Let T be an R-tree with a minimal, very small action by isometries of
FN with dense orbits. If the tree T is of surface type, then the limit set Ω is connected and
contains T .

Proof. As T is minimal, and as Ω is FN -invariant, we get that Ω is connected if and only if
Ω contains T :

T ⊆ Ω ⊆ T .

If T is of surface type, the Rips Machine starting with the system of isometries SA = (KA, A),
halts after finitely many steps, and thus ΩA = Fn for some n, where Fn is the forest remaining
after n steps of the Rips Machine. The system of isometries is reduced, hence the pseudo-
orbit of each point in KA is infinite and thus meets Fn, which proves that KA ⊆ FN .ΩA.
Moreover the orbit of each point in T meets KA, thus T ⊆ FNKA, which concludes the
proof. �

A converse of this Proposition that requires stronger hypothesis on T is proved in Propo-
sition 5.14

A segment of an R-tree is a subset isometric to a compact real interval which is not
reduced to a point. The action of FN on an R-tree T by isometries is arc-dense if every
segment of T meets every orbits. Following [Mor88], the action of FN on an R-tree T by
isometries is mixing if for every segments I and J in T , the segment J is covered by finitely
many translates of I: there exists finitely many elements u1, . . . , ur of FN such that

J ⊆ u1I ∪ · · · ∪ urI.
It is obvious that a mixing action is arc-dense. An arc-dense action has dense orbits and is
minimal.

Proposition 5.14. Let T be an R-tree with a mixing action of FN by isometries. Then T
is either of surface type or of Levitt type.

Proof. Let A be a basis of FN , let ΩA be the relative limit set, KA the compact heart of T
and SA = (KA, A) be the associated system of isometries.
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By contradiction assume that T is neither of surface type or of Levitt type. Then by
definition of Levitt type, ΩA contains a non-trivial connected component and thus a segment
I.

Let S0 = SA and let Sn = (Fn, An) be the sequence of systems of isometries obtained from
SA by applying the Rips Machine. By definition of surface type, the Rips Machine runs
forever.

Let E0 be the set of points of F0 = KA erased at the first step of the Rips Machine:
E0 = F0 rF1. As S0 is reduced, E0 is contained in the convex hull in F0 of F1 and is a finite
union of finite trees and an open subset of F0.

Let En = FnrFn+1 be the subset of Fn erased at the n+ 1 step of the Rips Machine. Let
Dn be the subset of E0 defined by

Dn = {P ∈ E0 | ∃u ∈ FN , |u| = n and P.ui ∈ Ei, for i = 1, . . . , n}
where ui is the prefix of u of length i. By definition, for each n, Dn+1 ⊂ Dn. As the Rips
Machine runs forever, Dn is a non-empty subset of F0. We distinguish two cases.

First assume that the nested intersection of the open non-empty subsets Dn is non-empty
and let P0 ∈ ∩n∈NDn. As P0 is in the open subset E0 it is not an extremal point of F and
as T is arc-dense, there exists u ∈ FN such that uP0 ∈ I. From Proposition 5.5, the partial
isometry u−1 is defined at P0 and P0u

−1 = uP0 is in the relative limit set ΩA. By definition
of the Rips Machine, for n bigger than |u|, P0 is not in Dn. A contradiction.

Assume now that the nested intersection ∩n∈NDn is empty and let P0 be in the nested
intersection of compact subsets

P0 ∈
⋂
n∈N

Dn.

Then, there exists n0, such that for n bigger than n0, P0 is in Dn rDn. Recall that Dn0

is a finite tree and let Q be a point of Dn0 . Then Q is not an extremal point of KA and let
J = [P0, Q]. The segment J intersects all the Dn for n ∈ N. If P0 is in T (and not in T r T )
then, as T is mixing, there there exist u1, . . . , ur ∈ FN such that

J ⊆ u1I ∪ · · · ∪ urI.
The partial isometries u1, . . . , ur are not empty and for each k, ukI ∩KA = Iu−1

k thus, using
Proposition 5.5,

J ⊆ Iu−1
1 ∪ · · · ∪ Iu−1

r .

Hence, for n bigger than all the lengths of the ui, J ∩Dn is empty. A contradiction.
Thus, P0 is in T r T . We get that P0 is an extremal point of E0 and, as E0 is open in

KA, P0 is in E0 rE0. As P0 is not in E0 there are at least two partial isometries a, b ∈ A±1

defined at P0. One at least of a and b is not defined in E0, say a, and thus is defined only at
P0. Thus, in T , there are at least two directions going out from P0 (one containing KA and
the other containing a−1KA). This contradicts the fact that P0 is in T r T . �

Corollary 5.15. Let T be an R-tree with a mixing action of FN by isometries. Let Ω be the
limit set of T . The following are equivalent:

(1) T is of surface type;
(2) ΩA has finitely many components (i.e. ΩA is a finite forest);
(3) Ω is connected;
(4) Ω contains T , that is to say T ⊆ Ω ⊆ T .
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Proof. The equivalence of conditions 2 and 1 follows from the definition of surface type.
Conditions 3 and 4 are equivalent because T is minimal. We proved in Proposition 5.13
that condition 1 implies condition 3. From the dichotomy of Proposition 5.14 and from
Theorem 5.11 we get that condition 3 implies condition 1 �

6. Botanic memo

In this Section we give a glossary of our classification of trees for the working mathemati-
cian.

Let T be an R-tree with a minimal, very small action of FN by isometries with dense orbits.
We assume that the action is indecomposable (see the definition in Guirardel [Gui08]) or at
least that T is not of mixed type.

For a basis A of FN , ΩA is the relative limit set and KA = conv(ΩA) is the compact heart.
The compact heart KA is either a finite tree (and in the good cases an interval) or not. This
dichotomy is a property of T and does not depend of the choice of a particular basis A of
FN .

As we assumed that T is indecomposable, ΩA is either a compact forest, that is to say
it has finitely many connected components (and in the good cases ΩA = KA is a tree) or
totally disconnected (and in the good cases a Cantor set). This dichotomy is a property of
T and does not depend on the choice of a particular basis A of FN .

The limit set of T is Ω = Q2(L(T )) = FN ·ΩA. It is either totally disconnected (if ΩA is),
or it is connected (if ΩA is a forest): in the later case, Ω is a tree, T ⊆ Ω ⊆ T .

For such a tree T we considered two indices: the geometric index indgeo(T ) and the Q-
index indQ(T ). Both indices are bounded above by 2N − 2. We sum up the terminology for
T and the results of Section 5.7 in the following table.

geometric not geometric
KA is a finite tree

m
indgeo(T ) = 2N − 2

KA is not a finite tree
m

indgeo(T ) < 2N − 2

S
u
rf
ac
e

ty
p
e

Ω is a tree (T ⊂ Ω)
m

ΩA is a finite forest
m

indQ(T ) = 2N − 2

surface pseudo-surface

L
ev
it
t

ty
p
e

Ω is totally disconnected
m

ΩA is totally disconnected
m

indQ(T ) < 2N − 2

Levitt pseudo-Levitt
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