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Free group automorphisms with parabolic boundary orbits

ARNAUD HILION

For N > 4, we show that there exist automorphisms of the free groupFN which have a parabolic orbit in
∂FN . In fact, we exhibit a technology for producing infinitely many such examples.

20E05, 20E36; 37B05

1 Introduction

An automorphismϕ of the free groupFN of rank N induces a homeomorphism∂ϕ of the (Gromov)
boundary∂FN of FN . The dynamics of the map∂ϕ on ∂FN has been studied a lot, see [13, 14, 15, 16, 10].
We give a survey of the known results relevant in our context in section3. In this paper, we focus on the
following question:

Does there exist an automorphismϕ of FN such that there is a parabolic orbit for the homeomorphism∂ϕ?

We say that an automorphismϕ has a parabolic orbitif there exists two pointsX,Y ∈ ∂FN , X 6= Y, such
that:

lim
k→±∞

∂ϕk(Y) = X.

We note that this implies thatX is a fixed point of∂ϕ. In such a situation, the pointX ∈ ∂FN is called a
parabolic fixed pointfor ϕ, and the set{∂ϕk(Y) | k ∈ Z} is called aparabolic orbit for ϕ. We prove:

Theorem 1.1 For N > 4 there exists an infinite family{ϕk | k ∈ N} of automorphisms ofFN which
have a parabolic orbit, such that for anyk, k′,p,p′ ∈ N, ϕp

k andϕp′

k′ are conjugate if and only ifk = k′ and
p = p′ .

Discussions with some of the experts of the subject have led the author to feel that the existence of such
parabolic orbits come somehow as a surprise. To put Theorem1.1in prospective, we would like to mention
the following three facts.

First, given a compact setK and a homeomorphismf of K , one says thatf hasNorth-South dynamics, if (i)
f has precisely two distinct fixed pointsx+ and x− , (ii) limk→+∞ f k(y) = x+ and limk→+∞ f−k(y) = x−

for all y ∈ K r {x−, x+}, and(iii) the limit of f k , whenk tends to infinity, is uniform on compact subsets of
K r {x−} and the limit off−k is uniform on compact subsets ofK r {x+}. It is proved in [13] that “most”
automorphisms ofFN , in a precise sense we do not explain here, have North-South dynamics on∂FN . In
particular, they cannot have a parabolic orbit.

Second, letδ be the automorphism ofF2 =< a,b > defined byδ(a) = a and δ(b) = ba. The outer
automorphism classD of δ is sometimes called aDehn twist automorphism. The reader, who has in mind
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the action by isometries ofSL2(Z) on the hyperbolic plane, should be warned that Dehn twist automorphisms
do not give rise to parabolic orbits in∂F2. We give in section6 a description of all possible dynamics of
automorphisms ofF2 in the outer classDn, for n ∈ Z.

Third, more generally, it is known that geometric automorphisms of FN do not have parabolic orbits in
∂FN . We recall that an automorphismsϕ of FN is geometricif there exist a surfaceS (with non empty
boundary) with fundamental groupπ1(S) isomorphic toFN and a homeomorphismf of S which inducesϕ
on FN

∼= π1(S). More details are given in section4.2. As a consequence, since all automorphisms ofF2 are
known to be geometric, one obtains:

Proposition 1.2 There does not exist an automorphism ofF2 which has a parabolic orbit.

To our knowledge, the question of the existence of automorphisms with a parabolic orbit is still open forF3.

Acknowledgments.I would like to express my gratitude to Gilbert Levitt, who has posed the question of the
existence of parabolic orbits as part of my thesis project, see[10], and has consistently encouraged me to
publish my results since then. I would like to thank Pascal Hubert and Erwan Lanneau for helpful discussions
about dilatation coefficients of matrices inSL2(Z). I am grateful to Martin Lustig for his active interest in
the present paper.

2 A first example

For the impatient reader, we give a first example of an automorphism ofF4 = < a,b, c,d > with a parabolic
orbit “inside F4” (using Proposition3.5, this gives immediately a parabolic orbit in∂F4).

Let ϕ be the automorphism defined by:

ϕ : a 7→ a
b 7→ ba
c 7→ ca2

d 7→ dc.

The inverse ofϕ is given by:
ϕ−1 : a 7→ a

b 7→ ba−1

c 7→ ca−2

d 7→ da2c−1.

The common limit point of the forward and backward iterationof ϕ (called a “parabolic fixed point”) will
be the element:ba−∞ = ba−1a−1a−1a−1 · · · ∈ ∂F4. The element ofF4 which gives rise to a parabolic
orbit with this limit point isbd−1 . We calculate:

bd−1 ϕ7→ bac−1·d−1 ϕ7→ bc−1·c−1d−1 ϕ7→ ba−1c−1·a−2c−1c−1d−1 ϕ7→ ba−2c−1·a−4c−1a−2c−1c−1d−1 ϕ7→ . . .

b · d−1 ϕ−1

7→ ba−1 · ca−2d−1 ϕ−1

7→ ba−2 · ca−4ca−2d−1 ϕ−1

7→ ba−3 · ca−6ca−4ca−2d−1 ϕ−1

7→ . . .
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In these calculations, we help the reader to follow through the iteration by introducing an extra· which is
“mapped” to the· in the next iteration step. The crucial feature is that at anyof these· no cancellation does
occur. We see that limk→+∞ ϕk(bd−1) = limk→+∞ ϕ−k(bd−1) = ba−∞ . A more formal justification is
given in section5.

3 Basics

This section serves sort of as glossary: We summarize in a sequence of brief subsections the basic definitions
and facts which are needed to follow the arguments in the subsequent sections. The expert reader is encour-
aged to skip the first few subsections (and to go back later to them, if need be). However, the terminology
introduced in the last subsections is non-standard and should be read carefully.

3.1 The induced boundary homeomorphism

Let FN denote the free group of finite rankN > 2. The boundary∂FN of FN is a Cantor set. IfA =

{a1, . . . ,aN} is a basis ofFN , we denote byA±1 the set{a1, . . . ,aN,a
−1
1 , . . . ,a−1

N }. A word w = w1 . . .wp

(wi ∈ A±1) is reducedif wi+1 6= w−1
i . The free groupFN can be understood as the set of (finite) reduced

words inA±1. Then the boundary∂FN is naturally identified to the set of (right) infinite reducedwords
X = x1 . . . xp . . . with xi ∈ A±1, xi+1 6= x−1

i . The cylinder defined by a reduced wordw = w1 . . .wp is the
set of right-infinite reduced wordsX = x1 . . . xk . . . which admitw as prefix:xi = wi for i ∈ {1, . . . ,p}.
A basis of topology of∂FN is given by the set of all such cylinders.

An automorphismϕ of a free groupFN induces a homeomorphism∂ϕ of the boundary∂FN . This can
easily be checked by considering a standard set of generators of the automorphisms group Aut(FN) of FN .
Alternatively, this can be seen as a consequence of the fact that a quasi-isometry of a proper Gromov-
hyperbolic space induces a homeomorphism on the boundary ofthis space, see [7]. Indeed,FN equipped
with the word metric associated to a basisA, is a proper Gromov-0-hyperbolic space, and any automor-
phism ofFN is a quasi-isometry ofFN with respect to this metric.

3.2 Compactification ofFN

Let FN denote the union ofFN and its boundary∂FN , i.e. FN = FN ∪ ∂FN . Given a basis ofFN , if w
is a reduced word, letCw be the set of reduced finite or infinite words which havew as prefix. A basis
of topology of FN is given by the finite subsets ofFN and the setsCw (with w describing all the reduced
words ofFN ). ThenFN is a compact set, and the inclusions ofFN and∂FN in FN are embeddings. Ifϕ is
an automorphism ofFN , ϕ will denote the map defined byϕ(g) = ϕ(g) if g ∈ FN andϕ(X) = ∂ϕ(X) if
X ∈ ∂FN . The mapϕ is a homeomorphism ofFN .

3.3 Getting rid of periodicity

Let f be a homeomorphism of a topological spaceX . We denote by Fix(f ) = {x ∈ X | f (x) = x} the set of
fixed points off , and by Per(f ) =

⋃
k∈N

Fix(f k) the set of periodic points off .
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Levitt and Lustig have proved in [14] that there exists an integerp, which depends only on the rankN of FN ,
such that for allϕ ∈ Aut(FN), the periodic points ofϕp are fixed points: Fix(ϕp) = Per(ϕp). This result has
been refined by Feighn and Handel in [5], where the notion of “forward rotationless” outer automorphism
has been introduced. This lead us to say, in this paper, that an automorphismϕ ∈ Aut(FN) is rotationlessif
Fix(ϕ) = Per(ϕ). The previously mentioned result can be rephrased as follows:

Theorem 3.1 (Levitt-Lustig) Any automorphismϕ ∈ Aut(FN) has a powerϕp (p ∈ N) which is rota-
tionless.

3.4 Nature of fixed points

Let ϕ be a rotationless automorphism ofFN . The set Fix(ϕ) is a subgroup ofFN , which is called the
fixed subgroupof ϕ. This fixed subgroup has finite rank, see [4]. More precisely, it is proved in [2] that
rank(Fix(ϕ)) 6 N. In particular, Fix(ϕ) is a quasiconvex subgroup ofFN , and thus its boundary∂Fix(ϕ)
naturally injects into∂FN . By continuity ofϕ, every point of∂Fix(ϕ) is contained in Fix(∂ϕ). Following
Nielsen, these fixed points of∂ϕ are calledsingular; the fixed points of∂ϕ which are not singular are
calledregular.

A fixed point X of ∂ϕ is attracting if there exists a neighbourhoodU of X in FN such that the sequence
ϕk(x) converges toX for all x in U . A fixed point X of ∂ϕ is repulsingif it is attracting for∂ϕ−1 . It is
proved in [6] that:

Lemma 3.2 Let ϕ ∈ Aut(FN). A regular fixed point of∂ϕ is either attracting or repulsing.

However, outside of the regular fixed point set, i.e. for singular fixed points, the dynamics can be quite a
bit more complicated. In particular, there may existmixedfixed points, i.e. fixed points which serve as
attractor for some orbits, and simultaneously as repeller for others. This phenomenon is rather common;
some concrete examples will be spelled out in the subsequentsections.

A particular case of a mixed fixed point is the case (defined in the Introduction) of a parabolic fixed point.
Thus we obtain as special case the following consequence of Lemma3.2:

Remark 3.3 Any parabolic fixed point ofϕ is singular.

3.5 Limit points

Let ϕ be a rotationless automorphism ofFN . For anyx ∈ FN , if the limit limk→+∞ ϕk(x) exists, we denote
it by ωϕ(x). In [16], Levitt and Lustig have proved:

Theorem 3.4 (Levitt-Lustig) Let ϕ ∈ Aut(FN) be rotationless. Then for anyx ∈ FN the sequenceϕk(x)
converges to some elementωϕ(x) ∈ Fix(ϕ).
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A point X ∈ ∂Fix(ϕ) is a ω -limit point of ϕ if there existsx ∈ FN such thatX = ωϕ(x). A point
X ∈ ∂Fix(ϕ) is a limit point of ϕ if it is a ω -limit point of ϕ or ϕ−1. Let Lω

ϕ denote the set ofω -limit
points ofϕ and letLϕ denote the set of limit points ofϕ.

For anyg ∈ FN , g 6= 1, the sequencegk has a limit in∂FN whenk → +∞: this limit is denoted byg∞ .

Proposition 3.5 Let ϕ ∈ Aut(FN) be a rotationless automorphism. Ifg ∈ FN r Fix(ϕ), then:

ωϕ(g) = ωϕ(g∞).

Proof The proof is a simple adaptation of the arguments in the proofof [13, Proposition 2.3]. We fix a
basisA of FN . We note that for allg ∈ FN r {1}, the Gromov product (g,g∞) (i.e. the length of longest
common prefix) ofg andg∞ is bigger than1

2(|g|+ 1) (where|g| denotes the length ofg in the basisA). If
g /∈ Fix(ϕ), then the length ofϕk(g), and thus also the Gromov product (ϕk(g), (ϕk(g))∞), tend to infinity.
Theorem3.4 implies thatωϕ(g) = ωϕ(g∞).

Proposition3.5 shows thatLω
ϕ = {ωϕ(X) | X ∈ ∂FN}. We do not know whetherLω

ϕ = {ωϕ(g) | g ∈ FN}
holds.

3.6 Isoglossy classes

For anyϕ ∈ Aut(FN), two pointsX,Y ∈ ∂FN are calledisogloss(with respect toϕ) if there exists some
g ∈ Fix(ϕ) such thatX = gY. It follows directly from this definition that isoglossy is an equivalence
relation. The fixed subgroup Fix(ϕ) acts naturally on the fixed point set Fix(∂ϕ), which is thus naturally
partitioned into isoglossy classes. IfX,Y ∈ Fix(∂ϕ) are isogloss, then they are of same “dynamical type”:
they are simultaneously singular, attracting, repulsing,mixed, parabolic or limit points.

3.7 Dynamics graph

Let ϕ ∈ Aut(FN) be a rotationless automorphism. We associate toϕ a graphΓϕ , called thedynamics graph
of ϕ. The vertices ofΓϕ are the isoglossy classes of points ofLϕ . There is an oriented edge from the
isoglossy classx1 to the isoglossy classx2 if there exists some representativesXi of xi andX ∈ ∂FN such
thatωϕ−1(X) = X1 andωϕ(X) = X2. The main theorem of [10] states thatΓϕ is a finite graph. We give in
Figure1 the dynamics graph of an automorphism which has North-Southdynamics on∂FN .

•

��
•

Figure 1: North-South dynamics graph

Finally, we note that, for a rotationless automorphismϕ, the existence of parabolic orbit is equivalent to the
fact that there is an edge of the dynamics graphΓϕ which is a loop.
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Remark 3.6 In [11] G. Levitt introduces a graph in order to code the dynamics ofso-called “simple-
dynamics homeomorphisms” of the Cantor setC: a homeomorphismf : C → C hassimple dynamicsif
the set Fix(f ) of its fixed points is finite, and if the sequencef n uniformly converges on any compact set
disjoint from Fix(f ). If ϕ ∈ Aut(FN) is a rotationless automorphism with trivial fixed subgroup, then∂ϕ
has simple dynamics, and the graphΓϕ is the same as the one defined in [11]. In this case, the fixed points
of ∂ϕ are either attracting or repulsing. Thus, if one is interested in parabolic orbits, which are the main
focus of the present paper, one has to purposefully leave to world of “simple dynamics” homeomorphisms.

4 Examples

4.1 Inner automorphisms

Let iu ∈ Aut(FN) denote theconjugation, or inner automorphism, by u ∈ FN , i.e. iu(g) = ugu−1 for all
g ∈ FN . The set Inn(FN) of inner automorphisms ofFN is a normal subgroup of Aut(FN). The quotient
group, denoted by Out(FN), is the group ofouter automorphismsof FN .

The homeomorphism∂iu : ∂FN → ∂FN induced byiu is the left translation byu: ∂iu(X) = uX. If u 6= 1,
the map∂iu has precisely 2 fixed points:u∞ andu−∞ (whereu∞ is the limit of the sequenceuk , andu−∞

is is the limit of the sequenceu−k , for k → +∞). Moreover, for any pointX ∈ ∂FN different fromu−∞ ,
the sequence∂ϕk(X) converges tou∞ when k tends to infinity. One checks easily that the map∂iu has
North-South dynamics, fromu−∞ to u∞ , on ∂FN , see [13] for instance.

Remark 4.1 We note that the fixed subgroup ofiu is cyclic, generated by the root ofu (i.e. the element
v ∈ FN such thatu = vp with p ∈ N maximal). In particular,u∞ and u−∞ are singular fixed points of
iu. This shows that when defining “X is an attracting fixed point ofϕ” in section3.4, it makes a crucial
difference that we request the neighbourhoodU of X to be taken inFN and not just in∂FN .

4.2 Geometric automorphisms

Let Σ be a compact surface with fundamental groupπ1(Σ) isomorphic toFN (in particular, Σ has non
empty boundary). The surfaceΣ can be equipped with a hyperbolic metric (i.e. a metric of constant
curvature equal to−1) in such a way that every boundary component of the boundaryof Σ is a geodesic.
The universal cover̃Σ of Σ is then identified with a closed convex subset of the hyperbolic planeH2, and
the Gromov boundary∂Σ̃ of Σ̃, which is naturally identified with the boundary∂FN of FN , injects in the
boundary (or circle at infinity)S∞ of H2. SinceS∞ is a circle, it can be equipped with a natural cyclic
order. This order onS∞ induces a cyclic order on∂FN .

In his fundamental work [19, 20, 21], Nielsen proposed an original and fruitful point of view tostudy home-
omorphisms of surfaces. The basic idea is that the behaviourof a homeomorphismf of a surfaceΣ is well
reflected by the collection of all the lifts̃f of f to Σ̃ which have each much simpler individual behaviour.
This idea is at the origin of what is now called “Nielsen-Thurston classification” of homeomorphisms of
surfaces, see [9], and it has much influenced the study of (outer) automorphisms of free groups, see [6, 5, 8].
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The key fact is that any lift̃f of f induces a homeomorphism∂ f̃ of ∂Σ̃. A basic (but rather fundamental)
remark is that∂ f̃ preserves the cyclic order on∂Σ̃ ⊆ S∞ .

An homeomorphismf of Σ induces an outer automorphism ofπ1(Σ), and thus an outer automorphism
Φ ∈ Out(FN) (in fact, this outer automorphismΦ only depends on the mapping class off ). Such an outer
automorphismΦ of FN (and also any automorphismϕ ∈ Φ) is calledgeometric. Classical Galois theory
for covering spaces states that the lifts off are in bijective correspondance with the automorphisms in the
outer classΦ. More precisely, an automorphismϕ ∈ Φ and a lift f̃ of f are in correspondance if, and only
if,

ϕ(g) ◦ f̃ = f̃ ◦ g ∀g ∈ FN,

where the elements ofFN are considered as deck transformations ofΣ̃. As a consequence, the dynamics
of ∂ f̃ on ∂Σ̃ and the dynamics of∂ϕ on ∂FN are conjugate via the natural identification between∂Σ̃ and
∂FN .

It follows from the previous discussion that, for any geometric automorphismϕ ∈ Aut(FN), the homeomor-
phism∂ϕ of ∂FN must preserve a cyclic order on∂FN .

Another fact proved by Nielsen is that∂ f̃ has at least 2 periodic points on∂FN (for a proof in the context of
free groups, see [14]). This means that there exists a positive power of∂ f̃ which has at least 2 fixed points
on ∂FN . Both these facts (existence of 2 fixed points and preservation of a cyclic order) yield directly:

Proposition 4.2 A geometric automorphism ofFN cannot have a parabolic orbit in∂FN .

This fact is particularly meaningful for the free group of rank 2. Indeed, it is well known that any outer
automorphism ofF2 can be induced by a homeomorphism of a torus with one boundarycomponent, see
[18]. This is precisely how Proposition1.2 is proved.

4.3 Outer automorphisms

Although well known, we believe that at this point it might bewise to alert the less expert reader about a
common misunderstanding. It is by no means true that any two automorphismsϕ,ϕ′ which belong to the
same outer automorphism classΦ, must have conjugate dynamics. Indeed, their dynamics graphs Γϕ and
Γϕ′ may look quite different. Concrete examples are easy to comeby, and some are given in the subsequent
sections.

The reader who wants to be more subtle can easily check that indeed some automorphisms inΦ have
naturally conjugate dynamics. The resultingisogredience classesgo again all the way back to Nielsen (see
also [13]), and one could associate toΦ a total dynamics graphwhich is the disjoint union of theΓϕ over a
set of representatives for the single isogredience classes. However, this goes beyond the scope of this paper.

5 Parabolic orbits

5.1 Structure of a parabolic fixed point

Let ϕ ∈ Aut(FN) be an automorphism, andX ∈ Fix(∂ϕ) be a parabolic fixed point forϕ. We have
seen (cf Remark3.3) that X must be singular. A pointX ∈ ∂FN is rational if it a fixed point of an inner
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automorphism, i.e.X = u∞ for someu ∈ FN r {1}. It is proved in [10] that singular limit points ofϕ are
rational. We deduce the following:

Lemma 5.1 A parabolic fixed pointX of ϕ ∈ Aut(FN) is a singular rational point:X = u∞ with u ∈
Fix(ϕ).

Moreover, we have:

Proposition 5.2 Let ϕ be an automorphism ofFN , and X ∈ Fix(∂ϕ) be a parabolic fixed point forϕ.
Then any neighborhood ofX in ∂FN contains a full orbit{∂ϕk(Y) | k ∈ Z} ⊂ ∂FN

Proof We have seen thatX = u∞ , with u ∈ Fix(ϕ). We consider a given neighborhoodV of X. Let ϑ =

{∂ϕk(Y)) | k ∈ Z} be a parabolic orbit forX. We note thatϑ∪{X} is a compact subset of∂FN . Moreover,
u−∞ /∈ ϑ ∪ {X} becauseY /∈ Fix(∂ϕ). Since the sequence (∂ipu)p∈N uniformly converges on compact
subsets of∂FN r {u−∞} towardsu∞ whenp tends to infinity, see section4.1, the set∂ipu(ϑ) is contained
in V , up to takingp sufficiently large. We remark that, sinceu ∈ Fix(ϕ), ∂ipu(∂ϕk(Y)) = ∂ϕk(upY), and
thus∂ipu(ϑ) = upϑ is a parabolic orbit forX.

5.2 Automorphisms ofF4 which have parabolic orbits

For anyk ∈ N, consider the automorphismϕk of F4 =< a,b, c,d > given by:

ϕk : a 7→ a
b 7→ ba
c 7→ cak+1

d 7→ dc

and its inverse:
ϕ−1

k : a 7→ a
b 7→ ba−1

c 7→ ca−k−1

d 7→ dak+1c−1

The roseR4 is the geometric realization of graph with one vertex and 4 edges. We put an orientation on
each edge, and we label them bya, b, c andd. We can turnR4 into a length space by declaring that each
edge has length 1. As usual, the automorphismsϕ±1

k can be realized as homotopy equivalencesf±k of the
roseR4 where each edge is mapped linearly to the edge path with labelpreassigned byϕ±1

k .

In fact, the automorphismsϕ±1
k define outer automorphisms which are unipotent polynomially growing in

the sense of [1], and the mapsf +

k satisfy the conclusions of Theorem 5.1.8 of [1]. We do not quote here the
statement of this theorem, which would lead us to introduce alot of technical background, but we freely use
in the sequel some consequences of it.

Let A be a basis ofFN . We denote by [g] the reduced word, in the basisA, representing the element
g ∈ FN . Let ϕ be an automorphism ofFN . A splitting of g ∈ FN for ϕ is a way to writeg = g1 . . . gn such
that:
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(i) n > 2,

(ii) for all i ∈ {1, . . . ,n}, gi ∈ FN r {1},

(iii) for all p ∈ N, for all i ∈ {1, . . . ,n − 1}, [ϕp(gi )][ϕp(gi+1)] = [ϕp(gigi+1)] (this means that no
cancellation occurs between [ϕp(gi )] and [ϕp(gi+1)]).

In that case, we noteg = g1 · . . . · gn , and eachgi is called abrick of the splitting.

We now apply that Theorem 5.1.8 of [1] to the given familyϕk and obtain:

Lemma 5.3 For all g ∈ F4, there exists somep0 ∈ N such that for allp > p0, [ϕp
k(g)] and [ϕ−p

k (g)] have
a splitting, the bricks of which are either edges or paths of the following labels:baqb−1 , caqc−1, baqc−1 or
caqb−1, for someq ∈ Z.

Remark 5.4 For the reader who is familiar with the terminology of [1], the edge paths labelled bybaqb−1 ,
caqc−1, baqc−1 or caqb−1 are precisely the exceptional paths of the improved train-track mapfk .

Remark 5.5 As a consequence of Lemma5.3, one can easily check that the sequence (|[ϕp
k(g)]|)p∈N of

lengths of [ϕp
k(g)] is bounded above by a polynomial of degree 2 inp.

It is claimed in [17] that there exists a general algorithm to compute the fixed subgroup of a given auto-
morphism ofFN . There exist some easier algorithms for special cases: for instance, one could use [3] to
compute the fixed subgroup ofϕk . In fact, it is sufficient to determines the so calledindivisible Nielsen
paths, see [2].

Let NP denote the set{aq,baqb−1, caqc−1 | q ∈ Z}. We notice thatNP ⊆ Fix(ϕk). For an element
g ∈ F4, we consider the splitting of [ϕp

k(g)] = g1 · g2 · . . . · gr given by Lemma5.3. If gi ∈ NP for all
i ∈ {1, . . . , r}, theng ∈ Fix(ϕk). Otherwise, there is somei0 such thatgi ∈ NP for all i ∈ {1, . . . , i0}
andgi0+1 /∈ NP . For simplicity, we writeωϕk = ωk . Thenωk(g) = g1 . . . gi0ωk(gi0+1) ∈ ∂F4. This shows
that Fix(ϕk) = < a,bab−1, cac−1 >.

Moreover, we thus obtain all the isoglossy classes of limit points of ϕk by considering all theωk(h) with
h ∈ {b±1, c±1,d±1,baqc−1, caqb−1 | q ∈ Z}. A direct computation gives:ϕp

k(b) = bap , ϕp
k(c) = cap(k+1) ,

ϕp
k(baqc−1) = baq−kpc−1, ϕp

k(d) = dccak+1ca2(k+1) . . . ca(p−1)(k+1) , ϕk(d−1) = c−1 · d−1 . We derive that:

• ωk(b) = ba+∞ ,

• ωk(c) = ωk(caqb−1) = ca+∞ ,

• ωk(b−1) = ωk(c−1) = ωk(d−1) = a−∞ ,

• ωk(baqc−1) = ba−∞ ,

• ωk(d) = X+

k ,

whereX+

k = ωk(d) = dccak+1ca2k+2ca3k+3 . . . . We have thus shown that there are only 5 isoglossy classes
in Lω

ϕk
, given byX+

k , a−∞ , ca+∞ , ba+∞ , ba−∞ .

Theorem 5.6 The set{ϕk | k ∈ N} is a family of automorphisms ofF4, such that eachϕk has a parabolic
orbit. The dynamics graph ofϕk is given in Figure2. For anyk, k′,p,p′ ∈ N, ϕp

k andϕp′

k′ are conjugate if
and only if k = k′ andp = p′ .
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ba−∞

== ba+∞

��

ZZ
bd−1

b

bc−1

X+

k X−

k
doo a+∞

b−1
// a−∞ ca−∞

c //d−1
oo ca+∞

Figure 2: The dynamics graph ofϕk has 3 connected components. A labelg has been added to each edge: it means
thatωk(g) is the endpoint of the edge andω−

k (g) is the origin of the edge.

Proof We writeω
ϕ−1

k
= ω−

k . Arguing forϕ−1
k as we have done forϕk , we obtain that:

• ω−

k (b−1) = ω−

k (c−1) = a+∞ ,

• ω−

k (c) = ω−

k (d−1) = ca−∞ ,

• ω−

k (b) = ba−∞ ,

• ω−

k (bc−1) = ba+∞ ,

• ω−

k (d) = X−

k ,

whereX−

k = ω−

k (d) = dak+1c−1a2k+2c−1a3k+3c−1 . . . . Again, there are only 5 isoglossy classes inLω

ϕ−1
k

,

given byX−

k , a+∞ , ca−∞ , ba−∞ , ba+∞ .

Note thatϕk(bd−1) = bac−1 · d−1 is a splitting forϕk . Henceωk(bd−1) = ωk(bac−1) = ba−∞ . On the
other hand,b · d−1 is a splitting forϕ−1

k . Henceω−

k (bd−1) = ω−

k (b) = ba−∞ . Thusba−∞ is parabolic
fixed point forϕk .

Suppose thatϕp
k andϕp′

k′ are conjugate (k, k′,p,p′ ∈ N): there existsψ ∈ Aut(F4) such thatϕp
k = ψϕp′

k′ψ
−1 .

Let Mk,Mk′ ,P ∈ GL(4,Z) be the matrices obtained by abelianization of respectively ϕk , ϕk′ andψ . Then

Mp
k =




1 p (k + 1)p 1
2(k + 1)p(p− 1)

0 1 0 0
0 0 1 p
0 0 0 1


 .

ComputingMp
kP = PMp′

k′ , one sees thatP must have the following shape:

P =




λ1 µ1 µ2 µ3

0 λ2 0 µ4

0 µ5 λ3 µ6

0 0 0 λ4




with

(1) p′(k′ + 1)λ3 = p(k + 1)λ1 and p′λ3 = pλ4.

We deduce that detP = λ1λ2λ3λ4, and thusλi ∈ {±1}, since detP = ±1. From (1) we derivek = k′ and
p = p′ .
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5.3 Parabolic orbits for N > 5

For anyk ∈ N, consider the automorphismαk of F5 =< a,b, c,d,e> given by:

αk : a 7→ a
b 7→ ba
c 7→ cak+1

d 7→ dc
e 7→ e

Since the restriction ofαk to < a,b, c,d > is ϕk , it is clear thatωαk(bd−1) = ω
α−1

k
(bac−1) = ba−∞ is

a parabolic fixed point forαk . Considering the abelianization and arguing as previously, we check that if
k 6= k′ andp 6= p′ , thenαp

k andαp′

k′ cannot be conjugate.

If N > 6, we splitFN = F4 ∗ F2 ∗ FN−6. We first recall some facts about Out(F2). It is well known, since
Nielsen [18], that the abelianisation morphism from Out(F2) to GL2(Z) is an isomorphism. IfM ∈ SL2(Z)
has a trace bigger than 2, thenM has an eigenvalueλ > 1 which is an algebraic unity of a quadratic
extension ofQ: we callλ the dilatation ofM . For all k ∈ N prime, there existsMk ∈ SL2(Z) such that the
dilatationλk of Mk belongs toQ(

√
k) r Q. This implies in particular that for allp ∈ N, λp

k ∈ Q(
√

k) r Q.
We chooseθk ∈ Aut(F2) in the outer class represented byMk . Then the automorphismθp

k has growth rate
equal toλp

k .

We defineβk ∈ Aut(FN) by βk = ϕ1 ∗ θk ∗ id , where id is the identity onFN−6. Again, ωβk(bd−1) =

ω
β−1

k
(bac−1) = ba−∞ is a parabolic fixed point forβk . Sinceϕ1 is polynomially growing, it follows that

the growth rate ofβp
k is λp

k (see for instance [12]). This proves thatβp
k is not conjugate toβp′

k′ if k 6= k′ or
p 6= p′ , because the growth rate is a conjugacy invariant and because Q(

√
k) ∩Q(

√
k′) = Q (if k andk′ are

prime integers).

This finishes the proof Theorem1.1. In view of Proposition1.2, it remains to ask the following question,
the answer of which we do not know:

Question 5.7 Does there exist an automorphism ofF3 which has a parabolic orbit?

6 Dehn twist automorphisms ofF2

In this last section, we calculate the dynamics graphs of allthe automorphisms in the outer class ofδn

(n ∈ Z, n 6= 0), whereδ is the automorphism ofF2 =< a,b> defined byδ(a) = a andδ(b) = ba.

Let D ∈ Out(F2) be the outer class ofδ . As explained in section4.2, the automorphisms in the outer class
Dn (n ∈ Z) cannot have parabolic orbits. We are going to describe moreprecisely the dynamics induced on
∂FN by the automorphisms in the outer classDn (n ∈ Z, n 6= 0). For that, we pursue the strategy of [6, 13],
where the interested reader will be able to find details of thefollowing constructions.

The roseR2 is the geometric realization of the graph with one vertex and2 edges. We put an orientation
on each edge, and we label them bya andb. We can turnR2 in a length space by declaring that each edge
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has length 1. We representDn by an homotopy equivalencef of R2 defined in the following way:f is the
identity on the edgea and linearly sends the edgeb to the edge path labelledban .

The universal cover̃R2 of R2 is a tree, equipped by the action ofF2 by deck transformations. We lift the
labels of the edges ofR2 to the edges of̃R2. Equivalently,R̃2 can be considered as the Cayley graph ofF2

relative to the generating set{a,b}. Let T be the tree obtained by contracting iñR2 all the edges labelled
by a: the action ofFN on R̃2 induces an action ofF2 on T by isometries. We note that the stabilizer of a
vertex ofT is conjugate to the subgroup< a> ⊂ FN generated bya.

As in the geometric case (see section4.2) the automorphisms in the outer classDn are in 1:1 correspondance
with the lifts of f to R̃2. Moreover, these lifts off induce isometries ofT . More precisely, the isometryH
of T associated to the automorphismδn ∈ Dn satisfies

δn(g) ◦ H = H ◦ g ∀g ∈ FN,

where the elements ofFN are considered as isometries ofT . Then, foru ∈ FN , the mapHu = u ◦ H is the
isometry ofT associated to the automorphismiu ◦ δn ∈ Dn, since (iu ◦ δn)(g) ◦ Hu = Hu ◦ g holds for all
g ∈ FN .

If Hu is a hyperbolic isometry ofT , then iu ◦ δn has North-South dynamics and the fixed points ofiu ◦ δn

are determined by the ends of the axis ofHu in T , see [13].

If Hu is an elliptic isometry, letP ∈ T be a fixed point ofHu. There exists somew ∈ FN such that the
stabilizer ofP in FN is w< a> w−1. The fact thatP is a fixed point ofHu then results in the existence of
an integerk ∈ Z such thatuδn(w) = wak . Or equivalently, such thatiu ◦ δn = iw ◦ (iak ◦ δn) ◦ i−1

w . Indeed,

iu ◦ δn = iwak(δn(w))−1 ◦ δn

= iwakδn(w−1) ◦ δn

= iw ◦ iak ◦ iδn(w−1) ◦ δn

= iw ◦ iak ◦ δn ◦ iw−1.

The dynamics of∂(iu ◦ δn) is thus conjugate to the dynamics of∂(iak ◦ δn) for somek ∈ Z. We are now
going to study in more detail the automorphismsiak ◦ δn for k ∈ Z, and in particular, to give their dynamics
graphs.

The inverse ofiak ◦ δn is ia−k ◦ δ−n. We note that:

iak ◦ δn : a 7→ a ia−k ◦ δ−n : a 7→ a
b 7→ akban−k b 7→ a−kbak−n

b−1 7→ ak−nb−1a−k b−1 7→ an−kb−1ak.

Thus the dynamics of∂(iak
2
◦ δn) depends on the sign ofk and ofn− k.

Remark 6.1 Let σ ∈ Aut(FN) defined byσ(a) = a−1 andσ(b) = b−1 . We note thatiak ◦ δn and ian−k ◦ δn

are conjugate by the involutionσ .

First case: Assumek(n− k) = 0. Sinceδn and ian ◦ δn are conjugate byσ (see Remark6.1), we focus on
δn. One can check that Fix(δn) =< a,bab−1 >. Let X be a point in∂F2 r ∂ < a,bab−1 >, and letx be
the longest prefix ofX in < a,bab−1 >. ThenX = xY, with no cancellation betweenx andY, and the first
letter of Y is equal tob or to b−1 . If Y begins byb, thenωδn(Y) = ba∞ andωδ−n(Y) = ba−∞ . If Y begins
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by b−1 , thenωδn(Y) = a−∞ andωδ−n(Y) = a∞ . Henceδn has 2 isoglossy classes ofω -limit points (with
representativesba∞ and a−∞ ), and δ−n has 2 isoglossy classes ofω -limit points (with representatives
ba−∞ anda∞ ). The dynamics graph ofδn is given in Figure3.

ba∞ a−∞

�

�

�

�

�

�

�

� b−1a−∞ a∞

ba−∞

OO

a∞

OO

b−1a∞

OO

a−∞

OO

k = 0 k = n

Figure 3: Dynamics graph ofiak ◦ δn for k(n− k) = 0.

Second case:k(n − k) < 0. We suppose thatk > n (from which one deduces the casek < 0 by using
Remark6.1). The fixed subgroup is Fix(iak ◦ δn) = < a >. We note thatωiak◦δn(b) = ωiak◦δn(b−1) = a∞

andω(iak◦δn)−1(b) = ω(iak◦δn)−1(b−1) = a−∞ . It follows that∂(iak ◦ δn) has North-South dynamics on∂F2,
see Figure4.

a−∞

�

�

�

�

�

�

�

� a∞

a∞

OO

a−∞

OO

k < 0 k > n

Figure 4: Dynamics graph ofiak ◦ δn for k(n− k) < 0.

Third case: k(n−k) > 0, i.e. 0< k < n. We check that the fixed subgroup is equal to Fix(iak◦δn) = < a>.
We note thatωiak◦δn(b) = a∞ , ωiak◦δn(b−1) = a−∞ , ω(iak◦δn)−1(b) = a−∞ andω(iak◦δn)−1(b−1) = a∞ . For
x ∈ ∂F2, it follows thatωiak◦δn(X) andω(iak◦δn)−1(X) depend only on the first occurence of the letterb or

b−1 in X: if it is b, thenωiak◦δn(X) = a∞ andω(iak◦δn)−1(X) = a−∞ ; if it is b−1 , thenωiak◦δn(X) = a−∞

andω(iak◦δn)−1(X) = a∞ . We say that∂(iak ◦ δn) hassemi-North-South dynamicson ∂F2, see Figure5.

a−∞

��
a∞

CC

Figure 5: Dynamics graph ofiak ◦ δn for k(n− k) > 0.
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