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Free group automorphisms with parabolic boundary orbits

ARNAUD HILION

For N > 4, we show that there exist automorphisms of the free gfgumvhich have a parabolic orbit in
OFn. In fact, we exhibit a technology for producing infinitely mesuch examples.

20E05, 20E36; 37B05

1 Introduction

An automorphismy of the free groupFy of rank N induces a homeomorphisigly of the (Gromov)
boundaryoFy of Fy. The dynamics of the mafp on 0Fy has been studied a lot, s3] 14, 15, 16, 10].
We give a survey of the known results relevant in our contexdection3. In this paper, we focus on the
following question:

Does there exist an automorphismof Fy such that there is a parabolic orbit for the homeomorphiggf?

We say that an automorphisg has a parabolic orbiif there exists two pointX,Y € dFy, X # Y, such
that:

. Kk o
i O =X,

We note that this implies tha&X is a fixed point ofdy. In such a situation, the poiX € dFy is called a
parabolic fixed poinfor ¢, and the se{d¢*(Y) | k € Z} is called aparabolic orbitfor . We prove:

Theorem 1.1 ForN > 4 there exists an infinite familfyx | k € N} of automorphisms oFy which
have a parabolic orbit, such that for akyk',p,p’ € N, ¢ andgpﬁf are conjugate if and only K = k' and
p=p.

Discussions with some of the experts of the subject havehleatithor to feel that the existence of such
parabolic orbits come somehow as a surprise. To put Thedr&im prospective, we would like to mention
the following three facts.

First, given a compact sé& and a homeomorphisinof K, one says that hasNorth-South dynamicsf (i)

f has precisely two distinct fixed points™ andx—, (i) limg_ 1o fX(y) = xt and lim o0 FK(y) = x~
forall y € K~ {x~,x*}, and(iii) the limit of f, whenk tends to infinity, is uniform on compact subsets of
K~ {x~} and the limit off ~% is uniform on compact subsets Kf~. {x*}. Itis proved in [L3] that “most”
automorphisms ofy, in a precise sense we do not explain here, have North-Sguidgnucs ondFy. In
particular, they cannot have a parabolic orbit.

Second, let§ be the automorphism df, =< a,b > defined byj(a) = a and §(b) = ba. The outer
automorphism clasB of § is sometimes called Behn twist automorphismrhe reader, who has in mind
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the action by isometries @Ly(Z) on the hyperbolic plane, should be warned that Dehn twistraarphisms
do not give rise to parabolic orbits ifF,. We give in sectior6é a description of all possible dynamics of
automorphisms oF; in the outer clas®", for n € Z.

Third, more generally, it is known that geometric automaspts of Fy do not have parabolic orbits in
OFn. We recall that an automorphisms of Fy is geometricif there exist a surfac& (with hon empty
boundary) with fundamental group (S) isomorphic toFy and a homeomorphisiinof S which inducesy
on Fn = m1(S). More details are given in sectigh2 As a consequence, since all automorphismBoére
known to be geometric, one obtains:

Proposition 1.2 There does not exist an automorphisniefwhich has a parabolic orbit.

To our knowledge, the question of the existence of automsmnphwith a parabolic orbit is still open fds.

Acknowledgments.would like to express my gratitude to Gilbert Levitt, whoshgosed the question of the
existence of parabolic orbits as part of my thesis projem[1§], and has consistently encouraged me to
publish my results since then. I would like to thank Pascdiéttiand Erwan Lanneau for helpful discussions
about dilatation coefficients of matrices 81,(Z). | am grateful to Martin Lustig for his active interest in
the present paper.

2 Afirst example

For the impatient reader, we give a first example of an autphism ofF4, = < a, b, ¢, d > with a parabolic
orbit “inside F4” (using Propositior.5, this gives immediately a parabolic orbit 8F,).

Let ¢ be the automorphism defined by:

ba

o o T w

1111
O
2

dc.

The inverse ofp is given by:

a

ba~t
ca?
dafc L.

[N o N« 2]

1T 11

The common limit point of the forward and backward iteratainy (called a “parabolic fixed point”) will
be the elementba—> = bala—'a—la~!... € 9F,;. The element ofF4 which gives rise to a parabolic
orbit with this limit point isbd=t. We calculate:

bd % bacld L bclcldtEbalcla?cicld!®bactacla?cictd!s ...

-1 -1 -1 -1
b-d1% bal-ca?d 1% ba?.ca‘*ca?d !t bald calcaltcadl®s ...
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In these calculations, we help the reader to follow throdghiteration by introducing an extrawhich is
“mapped” to the- in the next iteration step. The crucial feature is that at@rthese- no cancellation does
occur. We see that lign, 1o ¢X(bd™1) = limy_ 1o ¢ (bd~1) = ba>°. A more formal justification is
given in sectiorb.

3 Basics

This section serves sort of as glossary: We summarize inieeseg of brief subsections the basic definitions
and facts which are needed to follow the arguments in thesgsulest sections. The expert reader is encour-
aged to skip the first few subsections (and to go back latdraimt if need be). However, the terminology
introduced in the last subsections is non-standard anddgbeuead carefully.

3.1 The induced boundary homeomorphism

Let Fy denote the free group of finite rartk > 2. The boundarypFy of Fy is a Cantor set. 1A =
{ay,...,an} is abasis ofFy, we denote byd*? the set{al,...,aN,al‘l,..., <. Awordw = Wi ... Wy

(w; € A*1)is reducedif w1 # wi . The free grougy can be understood as the set of (finite) reduced
words in A*1. Then the boundaryFy is naturally identified to the set of (right) infinite reducedrds
X=X1...%... withx € A*Y, x11 # %~ . The cylinder defined by a reduced wasd= w; . .. w; is the

set of right-infinite reduced word& = X; ... X ... which admitw as prefix:x = w; fori € {1,...,p}.

A basis of topology oDFy is given by the set of all such cylinders.

An automorphismy of a free groupFy induces a homeomorphisy of the boundaryoFy. This can
easily be checked by considering a standard set of gengmfttine automorphisms group AEt() of Fy.
Alternatively, this can be seen as a consequence of theHattat quasi-isometry of a proper Gromov-
hyperbolic space induces a homeomorphism on the boundahjso$pace, se€’]. Indeed,Fy equipped
with the word metric associated to a basls is a proper Gromov-0-hyperbolic space, and any automor-
phism of Fy is a quasi-isometry oy with respect to this metric.

3.2 Compactification of Fy

Let Fy denote the union oFy and its boundandFy, i.e. Fy = Fy U OFN. Given a basis ofy, if w
is a reduced word, leC,, be the set of reduced finite or infinite words which haves prefix. A basis
of topology of Fy is given by the finite subsets &y and the set<,, (with w describing all the reduced
words of Fy). ThenFy is a compact set, and the inclusionsFgf and 9Fy in Fy are embeddings. If is
an automorphism oFy, @ will denote the map defined by(g) = (g) if g € Fn andB(X) = dp(X) if
X € OFy. The mapp is a homeomorphism dfy.

3.3 Getting rid of periodicity

Let f be a homeomorphism of a topological spaceWe denote by Fix() = {x € X | f(X) = x} the set of
fixed points off , and by Peff() = J,o Fix(f K) the set of periodic points df.
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Levitt and Lustig have proved irifl] that there exists an integer which depends only on the ramkof Fy,
such that for allp € Aut(Fy), the periodic points o are fixed points: FixgP) = Per(zP). This result has
been refined by Feighn and Handel 8}, [where the notion of “forward rotationless” outer autoipizism
has been introduced. This lead us to say, in this paper, thati@morphismy € Aut(Fy) is rotationlessif
Fix(®) = Per{p). The previously mentioned result can be rephrased asmsilo

Theorem 3.1 (Levitt-Lustig) Any automorphismy € Aut(FN) has a power? (p € N) which is rota-
tionless.

3.4 Nature of fixed points

Let ¢ be a rotationless automorphism Bf. The set Fix{) is a subgroup ofy, which is called the
fixed subgroumf . This fixed subgroup has finite rank, se. [More precisely, it is proved inZ] that
rank(Fix(p)) < N. In particular, Fix() is a quasiconvex subgroup &f;, and thus its boundargFix(y)
naturally injects intadFy. By continuity of &, every point ofoFix(y) is contained in Fix@y). Following
Nielsen, these fixed points @ly are calledsingular, the fixed points ofdy which are not singular are
calledregular.

A fixed point X of 9y is attracting if there exists a neighbourhodd of X in Fy such that the sequence
7X(X) converges toX for all x in U. A fixed point X of dy is repulsingif it is attracting for dp~1. It is
proved in B] that:

Lemma 3.2 Letp € Aut(FyN). A regular fixed point oBy is either attracting or repulsing. O

However, outside of the regular fixed point set, i.e. for slagfixed points, the dynamics can be quite a
bit more complicated. In particular, there may exisikedfixed points, i.e. fixed points which serve as
attractor for some orbits, and simultaneously as repetieothers. This phenomenon is rather common;
some concrete examples will be spelled out in the subsegeetions.

A patrticular case of a mixed fixed point is the case (defineténlhtroduction) of a parabolic fixed point.
Thus we obtain as special case the following consequencerofia3.2

Remark 3.3 Any parabolic fixed point ofp is singular.

3.5 Limit points

Let ¢ be a rotationless automorphismgf. For anyx € Fy, if the limit limy_ ;. 7(X) exists, we denote
it by w,(x). In [16], Levitt and Lustig have proved:

Theorem 3.4 (Levitt-Lustig) Let ¢ € Aut(Fy) be rotationless. Then for anye Fy the sequencaX(x)
converges to some element(x) € Fix(p). O
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A point X € 9Fix(y) is a w-limit point of ¢ if there existsx € Fy such thatX = w,(X). A point
X € OFix(y) is alimit point of ¢ if it is a w-limit point of ¢ or p~1. Let L., denote the set ab-limit
points of » and letL,, denote the set of limit points ab.

For anyg € Fy, g # 1, the sequencg’ has a limit indFy whenk — +oo: this limit is denoted byg™ .

Proposition 3.5 Let ¢ € Aut(Fy) be a rotationless automorphism.gliE Fy ~\ Fix(y), then:

We (9 = We (9™).

Proof The proof is a simple adaptation of the arguments in the pod$13, Proposition 2.3]. We fix a
basis.A of Fy. We note that for alg € Fy ~ {1}, the Gromov productg; g°) (i.e. the length of longest
common prefix) ofg and g is bigger than%(|g| + 1) (where|g| denotes the length @f in the basisA). If
g ¢ Fix(y), then the length of¥(g), and thus also the Gromov product(g), (£4(g))>), tend to infinity.
Theorem3.4implies thatw,(g) = w,(9>). O

Proposition3.5 shows thatL = {w,(X) | X € dFn}. We do not know whethet = {w,(9) | g € Fn}
holds.

3.6 Isoglossy classes

For anyy € Aut(Fy), two pointsX,Y € OFy are calledisogloss(with respect top) if there exists some

g € Fix(¢) such thatX = gY. It follows directly from this definition that isoglossy is1a&quivalence
relation. The fixed subgroup Fixf acts naturally on the fixed point set Fik{), which is thus naturally
partitioned into isoglossy classes. XfY € Fix(dy) are isogloss, then they are of same “dynamical type”:
they are simultaneously singular, attracting, repulsmixed, parabolic or limit points.

3.7 Dynamics graph

Let ¢ € Aut(Fy) be a rotationless automorphism. We associate gographl’,,, called thedynamics graph
of p. The vertices ofl',, are the isoglossy classes of pointslof. There is an oriented edge from the
isoglossy clasg; to the isoglossy class, if there exists some representativ§sof x; and X € dFy such
thatw,,-1(X) = X1 andw,(X) = Xz. The main theorem oflf0] states thaf’,, is a finite graph. We give in
Figurel the dynamics graph of an automorphism which has North-Sayamics oroFy .

Figure 1: North-South dynamics graph

Finally, we note that, for a rotationless automorphigirthe existence of parabolic orbit is equivalent to the
fact that there is an edge of the dynamics graphwhich is a loop.
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Remark 3.6 In [11] G. Levitt introduces a graph in order to code the dynamicsatalled “simple-
dynamics homeomorphisms” of the Cantor €eta homeomorphisnfi : C — C hassimple dynamic#
the set Fix{) of its fixed points is finite, and if the sequent® uniformly converges on any compact set
disjoint from Fix{). If o € Aut(Fy) is a rotationless automorphism with trivial fixed subgrotign 0
has simple dynamics, and the graph is the same as the one defined 14][ In this case, the fixed points
of dp are either attracting or repulsing. Thus, if one is intexésh parabolic orbits, which are the main
focus of the present paper, one has to purposefully leavethlwf “simple dynamics” homeomorphisms.

4 Examples

4.1 Inner automorphisms

Let iy € Aut(Fy) denote theconjugation or inner automorphismby u € Fy, i.e. iy(g) = ugu?! for all
g € Fn. The set Innity) of inner automorphisms dfy is a normal subgroup of Auky). The quotient
group, denoted by OUWE(), is the group obuter automorphismef Fy.

The homeomorphismi, : 0Fy — JFy induced byiy, is the left translation by: 0iy(X) = uX. If u# 1,
the mapdiy has precisely 2 fixed pointsi™® andu—>° (whereu™ is the limit of the sequence®, andu—>
is is the limit of the sequence X, for k — +oc). Moreover, for any poiniX € dFy different fromu=—>°,
the sequenc@yX(X) converges ta® whenk tends to infinity. One checks easily that the nizip has
North-South dynamics, from=*° to u>, on 0Fy, see L3 for instance.

Remark 4.1 We note that the fixed subgroup f is cyclic, generated by the root of (i.e. the element
v € Fy such thatu = W’ with p € N maximal). In particularu> andu~°° are singular fixed points of
iy. This shows that when defining<‘is an attracting fixed point op” in section3.4, it makes a crucial
difference that we request the neighbourhadadf X to be taken irFy and not just indFy.

4.2 Geometric automorphisms

Let X be a compact surface with fundamental graty§>) isomorphic toFy (in particular, ¥ has non
empty boundary). The surfaceé can be equipped with a hyperbolic metric (i.e. a metric ofstant
curvature equal te-1) in such a way that every boundary component of the bounofaky is a geodesic.
The universal covel of ¥ is then identified with a closed convex subset of the hyp@tméhne H?, and
the Gromov boundary¥: of £, which is naturally identified with the boundafjFy of Fy, injects in the
boundary (or circle at infinity)S,, of H?. SinceS,, is a circle, it can be equipped with a natural cyclic
order. This order o8, induces a cyclic order oaFy.

In his fundamental work[9, 20, 21], Nielsen proposed an original and fruitful point of viewdimdy home-
omorphisms of surfaces. The basic idea is that the behagfcuhomeomorphisnh of a surfaceX is well
reflected by the collection of all the lift of f to 3 which have each much simpler individual behaviour.
This idea is at the origin of what is now called “Nielsen-T$ton classification” of homeomorphisms of
surfaces, sed], and it has much influenced the study of (outer) automorphisf free groups, seé,[5, 8].
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The key fact is that any liff of f induces a homeomorphisﬁf~ of 8%. A basic (but rather fundamental)
remark is thadf preserves the cyclic order @it C S, .

An homeomorphisnt of ¥ induces an outer automorphism #f(>), and thus an outer automorphism
® € Out(Fy) (in fact, this outer automorphisn only depends on the mapping classf®f Such an outer
automorphism® of Fy (and also any automorphism € @) is calledgeometric Classical Galois theory
for covering spaces states that the liftsfoére in bijective correspondance with the automorphismben t
outer classb. More precisely, an automorphispn e ¢ and a liftf of f are in correspondance if, and only
if,

p@of=Fog vgeFy,
where the elements dy are considered as deck transformationsofAs a consequence, the dynamics
of of on 9% and the dynamics adp on OFy are conjugate via the natural identification betwérhand
OFN.

It follows from the previous discussion that, for any geameetutomorphismy € Aut(Fy), the homeomor-
phism oy of OFy must preserve a cyclic order @iy .

Another fact proved by Nielsen is thaf has at least 2 periodic points @y (for a proof in the context of
free groups, seelfl]). This means that there exists a positive powedbfwhich has at least 2 fixed points
on OFy . Both these facts (existence of 2 fixed points and preservaii a cyclic order) yield directly:

Proposition 4.2 A geometric automorphism ¢fy cannot have a parabolic orbit 6Fy .

This fact is particularly meaningful for the free group ohka2. Indeed, it is well known that any outer
automorphism ofF, can be induced by a homeomorphism of a torus with one bourmtanponent, see
[18]. This is precisely how Propositioh2is proved.

4.3 Outer automorphisms

Although well known, we believe that at this point it might Wése to alert the less expert reader about a
common misunderstanding. It is by no means true that any twanzorphismsp, ¢’ which belong to the
same outer automorphism clagés must have conjugate dynamics. Indeed, their dynamicshgridp and

I',» may look quite different. Concrete examples are easy to dgmand some are given in the subsequent
sections.

The reader who wants to be more subtle can easily check tdaeihsome automorphisms i have
naturally conjugate dynamics. The resultisggredience classag again all the way back to Nielsen (see
also [13]), and one could associate d@atotal dynamics graphvhich is the disjoint union of thé',, over a

set of representatives for the single isogredience claskmgever, this goes beyond the scope of this paper.

5 Parabolic orbits

5.1 Structure of a parabolic fixed point

Let ¢ € Aut(Fy) be an automorphism, and € Fix(d¢) be a parabolic fixed point fop. We have
seen (cf Remar.3) that X must be singular. A poinK € 0Fy is rational if it a fixed point of an inner
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automorphism, i.eX = u™ for someu € Fy ~ {1}. Itis proved in [LO] that singular limit points ofy are
rational. We deduce the following:

Lemma 5.1 A parabolic fixed pointX of ¢ € Aut(Fy) is a singular rational pointX = u*™ with u €
Fix(y). O

Moreover, we have:

Proposition 5.2 Let ¢ be an automorphism dfy, andX € Fix(Oyp) be a parabolic fixed point fop.
Then any neighborhood of in OFy contains a full orbit{ 0oX(Y) | k € Z} c OFy

Proof We have seen that = u>, with u € Fix(y). We consider a given neighborhoddof X. Let ¢ =
{04X(Y)) | k € Z} be a parabolic orbit foK. We note thaty U {X} is a compact subset éfFy. Moreover,
u=>= ¢ 9 U {X} becauseY ¢ Fix(dy). Since the sequenc@if}),cy uniformly converges on compact
subsets 0DFy . {u=>°} towardsu> whenp tends to infinity, see sectioh1, the setdif(¥) is contained
in V, up to takingp sufficiently large. We remark that, sinecec Fix(¢), 9il(0¢X(Y)) = doXuPY), and
thus 9ib () = uPY is a parabolic orbit foiX. O

5.2 Automorphisms of F, which have parabolic orbits

For anyk € N, consider the automorphisgy of F4 =< a, b, c,d > given by:

a
ba
caktl
dc

k. a

1111

b
c
d
and its inverse:

a
ba!

Ca—k—l
dak+lc—l

Pk

[o R o N« 2 )

1111

The roseR, is the geometric realization of graph with one vertex and desd We put an orientation on
each edge, and we label them ayb, c andd. We can turnR, into a length space by declaring that each
edge has length 1. As usual, the automorphimﬁ% can be realized as homotopy equivalent;j'-i-sof the
roseR, where each edge is mapped linearly to the edge path with pebassigned bgo:ktl.

In fact, the automorphism@tl define outer automorphisms which are unipotent polynoyn@bwing in
the sense ofl]], and the mapsﬁkJr satisfy the conclusions of Theorem 5.1.8 B [We do not quote here the
statement of this theorem, which would lead us to introdulce @f technical background, but we freely use
in the sequel some consequences of it.

Let A be a basis ofy. We denote by d] the reduced word, in the basid, representing the element
g € Fn. Let o be an automorphism dfy . A splitting of g € Fy for ¢ is a way to writeg = g1 ... gy such
that:
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() n>2,
(i) forallie{1,...,n}, g €Fn~ {1},
(i) forall pe N, foralli € {1,...,n— 1}, [¢P(@)][¢P(Gi+1)] = [¢P(Gigi+1)] (this means that no
cancellation occurs betweenf(g;)] and [x°(gi+1)]).
In that case, we notg=g; - ... - gn, and eachy; is called abrick of the splitting.

We now apply that Theorem 5.1.8 df][to the given familypx and obtain:

Lemma 5.3 For allg € F4, there exists sompy € N such that for alp > po, [¢}(9)] and[¢, "(g)] have
a splitting, the bricks of which are either edges or path&iefollowing labels:badb~, caic™, badc™! or
calb1, for someq € Z. O

Remark 5.4 For the reader who is familiar with the terminology @f,[the edge paths labelled tglb—1,
calc™t, bafdc™t or calb~? are precisely the exceptional paths of the improved traokt mapfy .

Remark 5.5 As a consequence of Lemn&a3, one can easily check that the sequed{:eﬁ(g)ﬂ)peN of
lengths of [aE(g)] is bounded above by a polynomial of degree in

It is claimed in [L7] that there exists a general algorithm to compute the fixddysaup of a given auto-
morphism ofFy. There exist some easier algorithms for special casesn&ance, one could us8][to
compute the fixed subgroup @fx. In fact, it is sufficient to determines the so calledivisible Nielsen
paths see P].

Let NP denote the sefad, balb—,calc™t | g € Z}. We notice that\V'P C Fix(pk). For an element
g € F4, we consider the splitting ofgaﬂi’(g)] =01-02-... 0 given by Lemmab.3. If gi € NP for all

i € {1,...,r}, theng € Fix(¢x). Otherwise, there is somig such thatg; € NP forall i € {1,...,io}
andgi,+1 ¢ N'P. For simplicity, we writew,,, = wk. Thenwi(g) = 1. .. Gi;wk(Giy+1) € OF4. This shows
that Fix(ex) = < a,bab™t,cact >.

Moreover, we thus obtain all the isoglossy classes of limih{s of ¢k by considering all thev(h) with
h e {b*! ctt d*l balc™?, calb | g € Z}. A direct computation givespf(b) = beP, pf(c) = caPk+D),
pR(bafc™t) = balkPc~1, pP(d) = decdtica@®D) .. calP- VKD o (d~1) = ¢t d~1. We derive that:
wk(b) = bat*,

wi(€) = wi(ca¥b™1) = cat™>,

(™) = w(c™h) = wi(d™Y) = a,

wi(balc™) = ba=°,

wi(d) = X,

whereX,” = w(d) = dccad*tca?*+2ca®+3. ... We have thus shown that there are only 5 isoglossy classes
in LY, , given by X", a~>°, ca">°, ba">, ba >,

Theorem 5.6 The set{yy | k € N} is a family of automorphisms d¥4, such that eaclyx has a parabolic
orbit. The dynamics graph afy is given in Figure2. For anyk, K, p,p’ € N, ©f andgpﬁf are conjugate if
and only ifk = kK andp =p'.
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b
bd—1 @a—oo ba+OO

bc 1t

d oo b-1 -1 c
X <X atee a—° ca cate

Figure 2: The dynamics graph gf has 3 connected components. A lagetas been added to each edge: it means
thatwi(g) is the endpoint of the edge angf (g) is the origin of the edge.

Proof We write Wyt = Wy Arguing for ¢, ! as we have done fapy, we obtain that:
o w (b H=uw (ch=a">,
o w (O =w (d)=ca,
o wy(b)=ba>,
o wy (bc™t) =bate,
o w (d) =X,
whereX;, = w; (d) = ddtlclaZ+2c-1a¥+3c—1. .. Again, there are only 5 isoglossy classes_gkll,
given by X, , a™>, ca >°, ba >, ba">.
Note thatey(bd™t) = bac™! - d=1 is a splitting for k. Hencewy(bd™t) = wi(bac™t) = ba—>°. On the

other handp - d~ is a splitting forp, . Hencew, (bd™!) = w, (b) = ba>°. Thusba > is parabolic
fixed point for .

Suppose thap}; andwﬁf are conjugatek; k', p, p’ € N): there exists) € Aut(F4) such thaty} = ¢<,DE,/1,ZJ—1.
Let My, My, P € GL(4,Z) be the matrices obtained by abelianization of respegtiyel o andi. Then

1 p (k+1p F(k+21pp-1)

0 1 0 0

p_
Mc=10 0 1 P
0 0 0 1

ComputingMEP = PME,/, one sees tha must have the following shape:

A1 g1 p2 p3

p_ 0 X 0 pa
0 wus A3 pe
0 0 0 M\
with
(1) P(K + A3 =pk+ 1A and p'Az = ps.
We deduce that d& = A\ M\ \3)\4, and thus\; € {+1}, since deP = +1. From () we derivek = k' and
p=p. O
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5.3 Parabolic orbits for N > 5

For anyk € N, consider the automorphism, of F5 =< a, b, c,d, e > given by:

ak: a — a
b — ba
c — catt
d — dc
e — e

Since the restriction ofi to < a,b,c,d > is yx, it is clear thatw,, (bd™1) = wagl(baC‘l) = ba > is
a parabolic fixed point fory. Considering the abelianization and arguing as previpustycheck that if
k# K andp # p/, thenaf andaf, cannot be conjugate.

If N> 6, we splitFy = F4 % F2 x Fny_g. We first recall some facts about Oleg]. It is well known, since
Nielsen [L8], that the abelianisation morphism from G} to GLy(Z) is an isomorphism. IM € SLy(Z)
has a trace bigger than 2, thém has an eigenvalue > 1 which is an algebraic unity of a quadratic
extension ofQ: we call \ the dilatation ofM. For allk € N prime, there existd/y € SLy(Z) such that the
dilatation A\ of My belongs toQ(v/k) ~ Q. This implies in particular that for ap € N, )\E € Q(VK \ Q.
We choosdJk € Aut(F») in the outer class represented lglg. Then the automorphisrﬁ‘(’ has growth rate
equal toAf.

We definefk € Aut(Fn) by Gk = o1 % Ok *x id, whereid is the identity onFy_g. Again, wgk(bd‘l) =
wﬁk—l(bac_l) = ba~*° is a parabolic fixed point fopk. Sinces is polynomially growing, it follows that

the growth rate of3} is A} (see for instancelP]). This proves thatsf is not conjugate tqﬁlf,’ if k£ K or
p # p', because the growth rate is a conjugacy invariant and bed@igk) N Q(vk') = Q (if k andk’ are
prime integers).

This finishes the proof Theorefnl In view of Propositionl.2, it remains to ask the following question,
the answer of which we do not know:

Question 5.7 Does there exist an automorphismkref which has a parabolic orbit?

6 Dehn twist automorphisms ofF,

In this last section, we calculate the dynamics graphs ofhallautomorphisms in the outer class df
(n€ Z, n=#0), whered is the automorphism df, =< a,b > defined byj(a) = a andd(b) = ba.

Let D € Out(F2) be the outer class of. As explained in sectiod.2, the automorphisms in the outer class
D" (n € Z) cannot have parabolic orbits. We are going to describe mpa@sely the dynamics induced on
OFN by the automorphisms in the outer cld3% (n € Z, n # 0). For that, we pursue the strategy 6f13],
where the interested reader will be able to find details ofdllewing constructions.

The roseR; is the geometric realization of the graph with one vertex anetlges. We put an orientation
on each edge, and we label themdwandb. We can turnR; in a length space by declaring that each edge
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has length 1. We represebt' by an homotopy equivalendeof R, defined in the following wayf is the
identity on the edgex and linearly sends the eddpeto the edge path labelleos”.

The universal coveR, of R; is a tree, equipped by the action B by deck transformations. We lift the
labels of the edges d®, to the edges oR,. Equivalently,R, can be considered as the Cayley graplfrof
relative to the generating séa, b}. Let T be the tree obtained by contractingfa all the edges labelled
by a: the action ofFy on R, induces an action of, on T by isometries. We note that the stabilizer of a
vertex of T is conjugate to the subgroup a > C Fy generated by.

As in the geometric case (see sectibp) the automorphisms in the outer cld3% are in 1:1 correspondance
with the lifts of f to R,. Moreover, these lifts of induce isometries of . More precisely, the isometriyf
of T associated to the automorphisthe D" satisfies

d"(@oH=Hog VgeFy,

where the elements ¢y are considered as isometriesTof Then, foru € Fy, the mapH, = uo H is the
isometry of T associated to the automorphisgr §" € D", since {, o 6")(g) o H, = Hy o g holds for all
ge< Fn.

If Hy is a hyperbolic isometry of , theniy o 6" has North-South dynamics and the fixed points,of 6"
are determined by the ends of the axidfin T, see 13].

If Hy is an elliptic isometry, leP € T be a fixed point ofH,. There exists som& € Fy such that the
stabilizer ofP in Fy isw < a> w~L. The fact thatP is a fixed point ofH, then results in the existence of
an integerk € Z such thatus"(w) = wak. Or equivalently, such thag o 6" = iy o (i o 6") oi!. Indeed,

iu o = in<(5”(W))*1 o "

= lwaksnw-1) © o
iW o iak o i(;n(w—l) o"

. L
lw O lg 06" 0ly1.

The dynamics oB(iy o 4") is thus conjugate to the dynamics @fi« o 6") for somek € Z. We are now
going to study in more detail the automorphisigso 6" for k € Z, and in particular, to give their dynamics
graphs.

The inverse of « 0 6" is iz—k 0 7 ". We note that:

igoo": a — a igkod™": a — a
b — abak b — aXpa ™"
b=l — a“"pblak b=l — a'kp~lak

Thus the dynamics oﬁ(iag o ") depends on the sign éfand ofn — k.

Remark 6.1 Leto € Aut(Fy) defined byo(a) = a-* ando(b) = b~1. We note thaf« o 8" andiz—« o 6"
are conjugate by the involutiomn.

First case: Assumek(n — k) = 0. Sinced" andiz o 4" are conjugate by (see Remark.1), we focus on
5", One can check that Fi¥{) =< a,bab™! >. Let X be a point indF, \. 9 < a,bab~! >, and letx be
the longest prefix oK in < a,bab™! >. ThenX = xY, with no cancellation betweenand Y, and the first
letter of Y is equal tob or to b=1. If Y begins byb, thenws(Y) = ba® andws-n(Y) = ba . If Y begins
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by b~1, thenwsn(Y) = a=> andws-n(Y) = a>. Henced" has 2 isoglossy classes ©flimit points (with
representativepa™ and a=—>°), and 5" has 2 isoglossy classes oflimit points (with representatives
ba—>° anda>). The dynamics graph af" is given in Figure3.

ba> a~° I b~ 1a—oo a®
|
L ' b
ba~>° ax | b—la>* a—>
|
|
k=0 ' k=n

Figure 3: Dynamics graph afx o 6" for k(n — k) = 0.

Second casek(n — k) < 0. We suppose thdt > n (from which one deduces the cake< 0 by using
Remark6.1). The fixed subgroup is Fikf o 6") = < a >. We note thatvi , osn(D) = wiakogn(b_l) =a>
andw(iako(;n)fl(b) = w(iako(;n)fl(b—l) = a . It follows that d(ix o 6") has North-South dynamics ait,
see Figurel.

a > | ax~
|
T | T
aOO : a— o0
|
|
k<O ! kK>n

Figure 4: Dynamics graph ofx o 6" for k(n — k) < O.

Third case: k(n—k) > 0, i.e. 0< k < n. We check that the fixed subgroup is equal to Bixp") = < a >.
We note thatui osn(D) = @8>, wiosm(b™t) = a >, Wi oony-2(D) = a~> and w(iakoén)fl(b‘l) = a>~. For
X € OF, it follows thatwiako(;n(X) and w(iako(;n)fl(X) depend only on the first occurence of the letbeor
b=t in X: ifitis b, thenwi o5(X) = a* and Wi oony-1(X) = > if itis b~t, thenwi osm(X) = a>
and W(iakoén)—l(x) = a>. We say tha®(i x o 0") hassemi-North-South dynamics 0F,, see Figuré.

a—OO

()

aOO

Figure 5: Dynamics graph afx o 6" for k(n — k) > 0.
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